Merge branch 'master' into assets-redo-part2

This commit is contained in:
Jedrzej Kosinski 2026-01-15 20:34:44 -08:00
commit a5ed151e51
14 changed files with 1086 additions and 16 deletions

View File

@ -1014,6 +1014,7 @@ class CLIPType(Enum):
KANDINSKY5 = 22 KANDINSKY5 = 22
KANDINSKY5_IMAGE = 23 KANDINSKY5_IMAGE = 23
NEWBIE = 24 NEWBIE = 24
FLUX2 = 25
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@ -1046,6 +1047,7 @@ class TEModel(Enum):
QWEN3_2B = 17 QWEN3_2B = 17
GEMMA_3_12B = 18 GEMMA_3_12B = 18
JINA_CLIP_2 = 19 JINA_CLIP_2 = 19
QWEN3_8B = 20
def detect_te_model(sd): def detect_te_model(sd):
@ -1089,6 +1091,8 @@ def detect_te_model(sd):
return TEModel.QWEN3_4B return TEModel.QWEN3_4B
elif weight.shape[0] == 2048: elif weight.shape[0] == 2048:
return TEModel.QWEN3_2B return TEModel.QWEN3_2B
elif weight.shape[0] == 4096:
return TEModel.QWEN3_8B
if weight.shape[0] == 5120: if weight.shape[0] == 5120:
if "model.layers.39.post_attention_layernorm.weight" in sd: if "model.layers.39.post_attention_layernorm.weight" in sd:
return TEModel.MISTRAL3_24B return TEModel.MISTRAL3_24B
@ -1214,11 +1218,18 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer
tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None) tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None)
elif te_model == TEModel.QWEN3_4B: elif te_model == TEModel.QWEN3_4B:
clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data)) if clip_type == CLIPType.FLUX or clip_type == CLIPType.FLUX2:
clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer clip_target.clip = comfy.text_encoders.flux.klein_te(**llama_detect(clip_data), model_type="qwen3_4b")
clip_target.tokenizer = comfy.text_encoders.flux.KleinTokenizer
else:
clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer
elif te_model == TEModel.QWEN3_2B: elif te_model == TEModel.QWEN3_2B:
clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data)) clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer
elif te_model == TEModel.QWEN3_8B:
clip_target.clip = comfy.text_encoders.flux.klein_te(**llama_detect(clip_data), model_type="qwen3_8b")
clip_target.tokenizer = comfy.text_encoders.flux.KleinTokenizer8B
elif te_model == TEModel.JINA_CLIP_2: elif te_model == TEModel.JINA_CLIP_2:
clip_target.clip = comfy.text_encoders.jina_clip_2.JinaClip2TextModelWrapper clip_target.clip = comfy.text_encoders.jina_clip_2.JinaClip2TextModelWrapper
clip_target.tokenizer = comfy.text_encoders.jina_clip_2.JinaClip2TokenizerWrapper clip_target.tokenizer = comfy.text_encoders.jina_clip_2.JinaClip2TokenizerWrapper

View File

@ -763,7 +763,7 @@ class Flux2(Flux):
def __init__(self, unet_config): def __init__(self, unet_config):
super().__init__(unet_config) super().__init__(unet_config)
self.memory_usage_factor = self.memory_usage_factor * (2.0 * 2.0) * 2.36 self.memory_usage_factor = self.memory_usage_factor * (2.0 * 2.0) * (unet_config['hidden_size'] / 2604)
def get_model(self, state_dict, prefix="", device=None): def get_model(self, state_dict, prefix="", device=None):
out = model_base.Flux2(self, device=device) out = model_base.Flux2(self, device=device)

View File

@ -3,7 +3,7 @@ import comfy.text_encoders.t5
import comfy.text_encoders.sd3_clip import comfy.text_encoders.sd3_clip
import comfy.text_encoders.llama import comfy.text_encoders.llama
import comfy.model_management import comfy.model_management
from transformers import T5TokenizerFast, LlamaTokenizerFast from transformers import T5TokenizerFast, LlamaTokenizerFast, Qwen2Tokenizer
import torch import torch
import os import os
import json import json
@ -172,3 +172,60 @@ def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False):
model_options["num_layers"] = 30 model_options["num_layers"] = 30
super().__init__(device=device, dtype=dtype, model_options=model_options) super().__init__(device=device, dtype=dtype, model_options=model_options)
return Flux2TEModel_ return Flux2TEModel_
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
class Qwen3Tokenizer8B(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='qwen3_8b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
class KleinTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, name="qwen3_4b"):
if name == "qwen3_4b":
tokenizer = Qwen3Tokenizer
elif name == "qwen3_8b":
tokenizer = Qwen3Tokenizer8B
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name=name, tokenizer=tokenizer)
self.llama_template = "<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
return tokens
class KleinTokenizer8B(KleinTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, name="qwen3_8b"):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name=name)
class Qwen3_4BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer=[9, 18, 27], layer_idx=None, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Qwen3_8BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer=[9, 18, 27], layer_idx=None, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_8B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
def klein_te(dtype_llama=None, llama_quantization_metadata=None, model_type="qwen3_4b"):
if model_type == "qwen3_4b":
model = Qwen3_4BModel
elif model_type == "qwen3_8b":
model = Qwen3_8BModel
class Flux2TEModel_(Flux2TEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, name=model_type, model_options=model_options, clip_model=model)
return Flux2TEModel_

View File

@ -99,6 +99,28 @@ class Qwen3_4BConfig:
rope_scale = None rope_scale = None
final_norm: bool = True final_norm: bool = True
@dataclass
class Qwen3_8BConfig:
vocab_size: int = 151936
hidden_size: int = 4096
intermediate_size: int = 12288
num_hidden_layers: int = 36
num_attention_heads: int = 32
num_key_value_heads: int = 8
max_position_embeddings: int = 40960
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
@dataclass @dataclass
class Ovis25_2BConfig: class Ovis25_2BConfig:
vocab_size: int = 151936 vocab_size: int = 151936
@ -628,6 +650,15 @@ class Qwen3_4B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype self.dtype = dtype
class Qwen3_8B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_8BConfig(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Ovis25_2B(BaseLlama, torch.nn.Module): class Ovis25_2B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations): def __init__(self, config_dict, dtype, device, operations):
super().__init__() super().__init__()

View File

@ -118,8 +118,9 @@ class LTXAVTEModel(torch.nn.Module):
sdo = comfy.utils.state_dict_prefix_replace(sd, {"text_embedding_projection.aggregate_embed.weight": "text_embedding_projection.weight", "model.diffusion_model.video_embeddings_connector.": "video_embeddings_connector.", "model.diffusion_model.audio_embeddings_connector.": "audio_embeddings_connector."}, filter_keys=True) sdo = comfy.utils.state_dict_prefix_replace(sd, {"text_embedding_projection.aggregate_embed.weight": "text_embedding_projection.weight", "model.diffusion_model.video_embeddings_connector.": "video_embeddings_connector.", "model.diffusion_model.audio_embeddings_connector.": "audio_embeddings_connector."}, filter_keys=True)
if len(sdo) == 0: if len(sdo) == 0:
sdo = sd sdo = sd
missing, unexpected = self.load_state_dict(sdo, strict=False)
return self.load_state_dict(sdo, strict=False) missing = [k for k in missing if not k.startswith("gemma3_12b.")] # filter out keys that belong to the main gemma model
return (missing, unexpected)
def memory_estimation_function(self, token_weight_pairs, device=None): def memory_estimation_function(self, token_weight_pairs, device=None):
constant = 6.0 constant = 6.0

View File

@ -929,7 +929,9 @@ def bislerp(samples, width, height):
return result.to(orig_dtype) return result.to(orig_dtype)
def lanczos(samples, width, height): def lanczos(samples, width, height):
images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] #the below API is strict and expects grayscale to be squeezed
samples = samples.squeeze(1) if samples.shape[1] == 1 else samples.movedim(1, -1)
images = [Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images]
images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images]
result = torch.stack(images) result = torch.stack(images)

View File

@ -0,0 +1,160 @@
from typing import TypedDict
from pydantic import BaseModel, Field
from comfy_api.latest import Input
class InputShouldRemesh(TypedDict):
should_remesh: str
topology: str
target_polycount: int
class InputShouldTexture(TypedDict):
should_texture: str
enable_pbr: bool
texture_prompt: str
texture_image: Input.Image | None
class MeshyTaskResponse(BaseModel):
result: str = Field(...)
class MeshyTextToModelRequest(BaseModel):
mode: str = Field("preview")
prompt: str = Field(..., max_length=600)
art_style: str = Field(..., description="'realistic' or 'sculpture'")
ai_model: str = Field(...)
topology: str | None = Field(..., description="'quad' or 'triangle'")
target_polycount: int | None = Field(..., ge=100, le=300000)
should_remesh: bool = Field(
True,
description="False returns the original mesh, ignoring topology and polycount.",
)
symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'")
pose_mode: str = Field(...)
seed: int = Field(...)
moderation: bool = Field(False)
class MeshyRefineTask(BaseModel):
mode: str = Field("refine")
preview_task_id: str = Field(...)
enable_pbr: bool | None = Field(...)
texture_prompt: str | None = Field(...)
texture_image_url: str | None = Field(...)
ai_model: str = Field(...)
moderation: bool = Field(False)
class MeshyImageToModelRequest(BaseModel):
image_url: str = Field(...)
ai_model: str = Field(...)
topology: str | None = Field(..., description="'quad' or 'triangle'")
target_polycount: int | None = Field(..., ge=100, le=300000)
symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'")
should_remesh: bool = Field(
True,
description="False returns the original mesh, ignoring topology and polycount.",
)
should_texture: bool = Field(...)
enable_pbr: bool | None = Field(...)
pose_mode: str = Field(...)
texture_prompt: str | None = Field(None, max_length=600)
texture_image_url: str | None = Field(None)
seed: int = Field(...)
moderation: bool = Field(False)
class MeshyMultiImageToModelRequest(BaseModel):
image_urls: list[str] = Field(...)
ai_model: str = Field(...)
topology: str | None = Field(..., description="'quad' or 'triangle'")
target_polycount: int | None = Field(..., ge=100, le=300000)
symmetry_mode: str = Field(..., description="'auto', 'off' or 'on'")
should_remesh: bool = Field(
True,
description="False returns the original mesh, ignoring topology and polycount.",
)
should_texture: bool = Field(...)
enable_pbr: bool | None = Field(...)
pose_mode: str = Field(...)
texture_prompt: str | None = Field(None, max_length=600)
texture_image_url: str | None = Field(None)
seed: int = Field(...)
moderation: bool = Field(False)
class MeshyRiggingRequest(BaseModel):
input_task_id: str = Field(...)
height_meters: float = Field(...)
texture_image_url: str | None = Field(...)
class MeshyAnimationRequest(BaseModel):
rig_task_id: str = Field(...)
action_id: int = Field(...)
class MeshyTextureRequest(BaseModel):
input_task_id: str = Field(...)
ai_model: str = Field(...)
enable_original_uv: bool = Field(...)
enable_pbr: bool = Field(...)
text_style_prompt: str | None = Field(...)
image_style_url: str | None = Field(...)
class MeshyModelsUrls(BaseModel):
glb: str = Field("")
class MeshyRiggedModelsUrls(BaseModel):
rigged_character_glb_url: str = Field("")
class MeshyAnimatedModelsUrls(BaseModel):
animation_glb_url: str = Field("")
class MeshyResultTextureUrls(BaseModel):
base_color: str = Field(...)
metallic: str | None = Field(None)
normal: str | None = Field(None)
roughness: str | None = Field(None)
class MeshyTaskError(BaseModel):
message: str | None = Field(None)
class MeshyModelResult(BaseModel):
id: str = Field(...)
type: str = Field(...)
model_urls: MeshyModelsUrls = Field(MeshyModelsUrls())
thumbnail_url: str = Field(...)
video_url: str | None = Field(None)
status: str = Field(...)
progress: int = Field(0)
texture_urls: list[MeshyResultTextureUrls] | None = Field([])
task_error: MeshyTaskError | None = Field(None)
class MeshyRiggedResult(BaseModel):
id: str = Field(...)
type: str = Field(...)
status: str = Field(...)
progress: int = Field(0)
result: MeshyRiggedModelsUrls = Field(MeshyRiggedModelsUrls())
task_error: MeshyTaskError | None = Field(None)
class MeshyAnimationResult(BaseModel):
id: str = Field(...)
type: str = Field(...)
status: str = Field(...)
progress: int = Field(0)
result: MeshyAnimatedModelsUrls = Field(MeshyAnimatedModelsUrls())
task_error: MeshyTaskError | None = Field(None)

View File

@ -0,0 +1,790 @@
import os
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis.meshy import (
InputShouldRemesh,
InputShouldTexture,
MeshyAnimationRequest,
MeshyAnimationResult,
MeshyImageToModelRequest,
MeshyModelResult,
MeshyMultiImageToModelRequest,
MeshyRefineTask,
MeshyRiggedResult,
MeshyRiggingRequest,
MeshyTaskResponse,
MeshyTextToModelRequest,
MeshyTextureRequest,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_bytesio,
poll_op,
sync_op,
upload_images_to_comfyapi,
validate_string,
)
from folder_paths import get_output_directory
class MeshyTextToModelNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MeshyTextToModelNode",
display_name="Meshy: Text to Model",
category="api node/3d/Meshy",
inputs=[
IO.Combo.Input("model", options=["latest"]),
IO.String.Input("prompt", multiline=True, default=""),
IO.Combo.Input("style", options=["realistic", "sculpture"]),
IO.DynamicCombo.Input(
"should_remesh",
options=[
IO.DynamicCombo.Option(
"true",
[
IO.Combo.Input("topology", options=["triangle", "quad"]),
IO.Int.Input(
"target_polycount",
default=300000,
min=100,
max=300000,
display_mode=IO.NumberDisplay.number,
),
],
),
IO.DynamicCombo.Option("false", []),
],
tooltip="When set to false, returns an unprocessed triangular mesh.",
),
IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]),
IO.Combo.Input(
"pose_mode",
options=["", "A-pose", "T-pose"],
tooltip="Specify the pose mode for the generated model.",
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd":0.8}""",
),
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
style: str,
should_remesh: InputShouldRemesh,
symmetry_mode: str,
pose_mode: str,
seed: int,
) -> IO.NodeOutput:
validate_string(prompt, field_name="prompt", min_length=1, max_length=600)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/meshy/openapi/v2/text-to-3d", method="POST"),
response_model=MeshyTaskResponse,
data=MeshyTextToModelRequest(
prompt=prompt,
art_style=style,
ai_model=model,
topology=should_remesh.get("topology", None),
target_polycount=should_remesh.get("target_polycount", None),
should_remesh=should_remesh["should_remesh"] == "true",
symmetry_mode=symmetry_mode,
pose_mode=pose_mode.lower(),
seed=seed,
),
)
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{response.result}"),
response_model=MeshyModelResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyRefineNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MeshyRefineNode",
display_name="Meshy: Refine Draft Model",
category="api node/3d/Meshy",
description="Refine a previously created draft model.",
inputs=[
IO.Combo.Input("model", options=["latest"]),
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
IO.Boolean.Input(
"enable_pbr",
default=False,
tooltip="Generate PBR Maps (metallic, roughness, normal) in addition to the base color. "
"Note: this should be set to false when using Sculpture style, "
"as Sculpture style generates its own set of PBR maps.",
),
IO.String.Input(
"texture_prompt",
default="",
multiline=True,
tooltip="Provide a text prompt to guide the texturing process. "
"Maximum 600 characters. Cannot be used at the same time as 'texture_image'.",
),
IO.Image.Input(
"texture_image",
tooltip="Only one of 'texture_image' or 'texture_prompt' may be used at the same time.",
optional=True,
),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd":0.4}""",
),
)
@classmethod
async def execute(
cls,
model: str,
meshy_task_id: str,
enable_pbr: bool,
texture_prompt: str,
texture_image: Input.Image | None = None,
) -> IO.NodeOutput:
if texture_prompt and texture_image is not None:
raise ValueError("texture_prompt and texture_image cannot be used at the same time")
texture_image_url = None
if texture_prompt:
validate_string(texture_prompt, field_name="texture_prompt", max_length=600)
if texture_image is not None:
texture_image_url = (await upload_images_to_comfyapi(cls, texture_image, wait_label="Uploading texture"))[0]
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v2/text-to-3d", method="POST"),
response_model=MeshyTaskResponse,
data=MeshyRefineTask(
preview_task_id=meshy_task_id,
enable_pbr=enable_pbr,
texture_prompt=texture_prompt if texture_prompt else None,
texture_image_url=texture_image_url,
ai_model=model,
),
)
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v2/text-to-3d/{response.result}"),
response_model=MeshyModelResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyImageToModelNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MeshyImageToModelNode",
display_name="Meshy: Image to Model",
category="api node/3d/Meshy",
inputs=[
IO.Combo.Input("model", options=["latest"]),
IO.Image.Input("image"),
IO.DynamicCombo.Input(
"should_remesh",
options=[
IO.DynamicCombo.Option(
"true",
[
IO.Combo.Input("topology", options=["triangle", "quad"]),
IO.Int.Input(
"target_polycount",
default=300000,
min=100,
max=300000,
display_mode=IO.NumberDisplay.number,
),
],
),
IO.DynamicCombo.Option("false", []),
],
tooltip="When set to false, returns an unprocessed triangular mesh.",
),
IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]),
IO.DynamicCombo.Input(
"should_texture",
options=[
IO.DynamicCombo.Option(
"true",
[
IO.Boolean.Input(
"enable_pbr",
default=False,
tooltip="Generate PBR Maps (metallic, roughness, normal) "
"in addition to the base color.",
),
IO.String.Input(
"texture_prompt",
default="",
multiline=True,
tooltip="Provide a text prompt to guide the texturing process. "
"Maximum 600 characters. Cannot be used at the same time as 'texture_image'.",
),
IO.Image.Input(
"texture_image",
tooltip="Only one of 'texture_image' or 'texture_prompt' "
"may be used at the same time.",
optional=True,
),
],
),
IO.DynamicCombo.Option("false", []),
],
tooltip="Determines whether textures are generated. "
"Setting it to false skips the texture phase and returns a mesh without textures.",
),
IO.Combo.Input(
"pose_mode",
options=["", "A-pose", "T-pose"],
tooltip="Specify the pose mode for the generated model.",
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["should_texture"]),
expr="""
(
$prices := {"true": 1.2, "false": 0.8};
{"type":"usd","usd": $lookup($prices, widgets.should_texture)}
)
""",
),
)
@classmethod
async def execute(
cls,
model: str,
image: Input.Image,
should_remesh: InputShouldRemesh,
symmetry_mode: str,
should_texture: InputShouldTexture,
pose_mode: str,
seed: int,
) -> IO.NodeOutput:
texture = should_texture["should_texture"] == "true"
texture_image_url = texture_prompt = None
if texture:
if should_texture["texture_prompt"] and should_texture["texture_image"] is not None:
raise ValueError("texture_prompt and texture_image cannot be used at the same time")
if should_texture["texture_prompt"]:
validate_string(should_texture["texture_prompt"], field_name="texture_prompt", max_length=600)
texture_prompt = should_texture["texture_prompt"]
if should_texture["texture_image"] is not None:
texture_image_url = (
await upload_images_to_comfyapi(
cls, should_texture["texture_image"], wait_label="Uploading texture"
)
)[0]
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/meshy/openapi/v1/image-to-3d", method="POST"),
response_model=MeshyTaskResponse,
data=MeshyImageToModelRequest(
image_url=(await upload_images_to_comfyapi(cls, image, wait_label="Uploading base image"))[0],
ai_model=model,
topology=should_remesh.get("topology", None),
target_polycount=should_remesh.get("target_polycount", None),
symmetry_mode=symmetry_mode,
should_remesh=should_remesh["should_remesh"] == "true",
should_texture=texture,
enable_pbr=should_texture.get("enable_pbr", None),
pose_mode=pose_mode.lower(),
texture_prompt=texture_prompt,
texture_image_url=texture_image_url,
seed=seed,
),
)
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/image-to-3d/{response.result}"),
response_model=MeshyModelResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyMultiImageToModelNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MeshyMultiImageToModelNode",
display_name="Meshy: Multi-Image to Model",
category="api node/3d/Meshy",
inputs=[
IO.Combo.Input("model", options=["latest"]),
IO.Autogrow.Input(
"images",
template=IO.Autogrow.TemplatePrefix(IO.Image.Input("image"), prefix="image", min=2, max=4),
),
IO.DynamicCombo.Input(
"should_remesh",
options=[
IO.DynamicCombo.Option(
"true",
[
IO.Combo.Input("topology", options=["triangle", "quad"]),
IO.Int.Input(
"target_polycount",
default=300000,
min=100,
max=300000,
display_mode=IO.NumberDisplay.number,
),
],
),
IO.DynamicCombo.Option("false", []),
],
tooltip="When set to false, returns an unprocessed triangular mesh.",
),
IO.Combo.Input("symmetry_mode", options=["auto", "on", "off"]),
IO.DynamicCombo.Input(
"should_texture",
options=[
IO.DynamicCombo.Option(
"true",
[
IO.Boolean.Input(
"enable_pbr",
default=False,
tooltip="Generate PBR Maps (metallic, roughness, normal) "
"in addition to the base color.",
),
IO.String.Input(
"texture_prompt",
default="",
multiline=True,
tooltip="Provide a text prompt to guide the texturing process. "
"Maximum 600 characters. Cannot be used at the same time as 'texture_image'.",
),
IO.Image.Input(
"texture_image",
tooltip="Only one of 'texture_image' or 'texture_prompt' "
"may be used at the same time.",
optional=True,
),
],
),
IO.DynamicCombo.Option("false", []),
],
tooltip="Determines whether textures are generated. "
"Setting it to false skips the texture phase and returns a mesh without textures.",
),
IO.Combo.Input(
"pose_mode",
options=["", "A-pose", "T-pose"],
tooltip="Specify the pose mode for the generated model.",
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed controls whether the node should re-run; "
"results are non-deterministic regardless of seed.",
),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MESHY_TASK_ID").Output(display_name="meshy_task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["should_texture"]),
expr="""
(
$prices := {"true": 0.6, "false": 0.2};
{"type":"usd","usd": $lookup($prices, widgets.should_texture)}
)
""",
),
)
@classmethod
async def execute(
cls,
model: str,
images: IO.Autogrow.Type,
should_remesh: InputShouldRemesh,
symmetry_mode: str,
should_texture: InputShouldTexture,
pose_mode: str,
seed: int,
) -> IO.NodeOutput:
texture = should_texture["should_texture"] == "true"
texture_image_url = texture_prompt = None
if texture:
if should_texture["texture_prompt"] and should_texture["texture_image"] is not None:
raise ValueError("texture_prompt and texture_image cannot be used at the same time")
if should_texture["texture_prompt"]:
validate_string(should_texture["texture_prompt"], field_name="texture_prompt", max_length=600)
texture_prompt = should_texture["texture_prompt"]
if should_texture["texture_image"] is not None:
texture_image_url = (
await upload_images_to_comfyapi(
cls, should_texture["texture_image"], wait_label="Uploading texture"
)
)[0]
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/meshy/openapi/v1/multi-image-to-3d", method="POST"),
response_model=MeshyTaskResponse,
data=MeshyMultiImageToModelRequest(
image_urls=await upload_images_to_comfyapi(
cls, list(images.values()), wait_label="Uploading base images"
),
ai_model=model,
topology=should_remesh.get("topology", None),
target_polycount=should_remesh.get("target_polycount", None),
symmetry_mode=symmetry_mode,
should_remesh=should_remesh["should_remesh"] == "true",
should_texture=texture,
enable_pbr=should_texture.get("enable_pbr", None),
pose_mode=pose_mode.lower(),
texture_prompt=texture_prompt,
texture_image_url=texture_image_url,
seed=seed,
),
)
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/multi-image-to-3d/{response.result}"),
response_model=MeshyModelResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyRigModelNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MeshyRigModelNode",
display_name="Meshy: Rig Model",
category="api node/3d/Meshy",
description="Provides a rigged character in standard formats. "
"Auto-rigging is currently not suitable for untextured meshes, non-humanoid assets, "
"or humanoid assets with unclear limb and body structure.",
inputs=[
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
IO.Float.Input(
"height_meters",
min=0.1,
max=15.0,
default=1.7,
tooltip="The approximate height of the character model in meters. "
"This aids in scaling and rigging accuracy.",
),
IO.Image.Input(
"texture_image",
tooltip="The model's UV-unwrapped base color texture image.",
optional=True,
),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MESHY_RIGGED_TASK_ID").Output(display_name="rig_task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd":0.2}""",
),
)
@classmethod
async def execute(
cls,
meshy_task_id: str,
height_meters: float,
texture_image: Input.Image | None = None,
) -> IO.NodeOutput:
texture_image_url = None
if texture_image is not None:
texture_image_url = (await upload_images_to_comfyapi(cls, texture_image, wait_label="Uploading texture"))[0]
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/rigging", method="POST"),
response_model=MeshyTaskResponse,
data=MeshyRiggingRequest(
input_task_id=meshy_task_id,
height_meters=height_meters,
texture_image_url=texture_image_url,
),
)
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/rigging/{response.result}"),
response_model=MeshyRiggedResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(
result.result.rigged_character_glb_url, os.path.join(get_output_directory(), model_file)
)
return IO.NodeOutput(model_file, response.result)
class MeshyAnimateModelNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MeshyAnimateModelNode",
display_name="Meshy: Animate Model",
category="api node/3d/Meshy",
description="Apply a specific animation action to a previously rigged character.",
inputs=[
IO.Custom("MESHY_RIGGED_TASK_ID").Input("rig_task_id"),
IO.Int.Input(
"action_id",
default=0,
min=0,
max=696,
tooltip="Visit https://docs.meshy.ai/en/api/animation-library for a list of available values.",
),
],
outputs=[
IO.String.Output(display_name="model_file"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd":0.12}""",
),
)
@classmethod
async def execute(
cls,
rig_task_id: str,
action_id: int,
) -> IO.NodeOutput:
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/animations", method="POST"),
response_model=MeshyTaskResponse,
data=MeshyAnimationRequest(
rig_task_id=rig_task_id,
action_id=action_id,
),
)
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/animations/{response.result}"),
response_model=MeshyAnimationResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.result.animation_glb_url, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyTextureNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MeshyTextureNode",
display_name="Meshy: Texture Model",
category="api node/3d/Meshy",
inputs=[
IO.Combo.Input("model", options=["latest"]),
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
IO.Boolean.Input(
"enable_original_uv",
default=True,
tooltip="Use the original UV of the model instead of generating new UVs. "
"When enabled, Meshy preserves existing textures from the uploaded model. "
"If the model has no original UV, the quality of the output might not be as good.",
),
IO.Boolean.Input("pbr", default=False),
IO.String.Input(
"text_style_prompt",
default="",
multiline=True,
tooltip="Describe your desired texture style of the object using text. Maximum 600 characters."
"Maximum 600 characters. Cannot be used at the same time as 'image_style'.",
),
IO.Image.Input(
"image_style",
optional=True,
tooltip="A 2d image to guide the texturing process. "
"Can not be used at the same time with 'text_style_prompt'.",
),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="meshy_task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd":0.4}""",
),
)
@classmethod
async def execute(
cls,
model: str,
meshy_task_id: str,
enable_original_uv: bool,
pbr: bool,
text_style_prompt: str,
image_style: Input.Image | None = None,
) -> IO.NodeOutput:
if text_style_prompt and image_style is not None:
raise ValueError("text_style_prompt and image_style cannot be used at the same time")
if not text_style_prompt and image_style is None:
raise ValueError("Either text_style_prompt or image_style is required")
image_style_url = None
if image_style is not None:
image_style_url = (await upload_images_to_comfyapi(cls, image_style, wait_label="Uploading style"))[0]
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/meshy/openapi/v1/retexture", method="POST"),
response_model=MeshyTaskResponse,
data=MeshyTextureRequest(
input_task_id=meshy_task_id,
ai_model=model,
enable_original_uv=enable_original_uv,
enable_pbr=pbr,
text_style_prompt=text_style_prompt if text_style_prompt else None,
image_style_url=image_style_url,
),
)
result = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/meshy/openapi/v1/retexture/{response.result}"),
response_model=MeshyModelResult,
status_extractor=lambda r: r.status,
progress_extractor=lambda r: r.progress,
)
model_file = f"meshy_model_{response.result}.glb"
await download_url_to_bytesio(result.model_urls.glb, os.path.join(get_output_directory(), model_file))
return IO.NodeOutput(model_file, response.result)
class MeshyExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
MeshyTextToModelNode,
MeshyRefineNode,
MeshyImageToModelNode,
MeshyMultiImageToModelNode,
MeshyRigModelNode,
MeshyAnimateModelNode,
MeshyTextureNode,
]
async def comfy_entrypoint() -> MeshyExtension:
return MeshyExtension()

View File

@ -43,7 +43,7 @@ class UploadResponse(BaseModel):
async def upload_images_to_comfyapi( async def upload_images_to_comfyapi(
cls: type[IO.ComfyNode], cls: type[IO.ComfyNode],
image: torch.Tensor, image: torch.Tensor | list[torch.Tensor],
*, *,
max_images: int = 8, max_images: int = 8,
mime_type: str | None = None, mime_type: str | None = None,
@ -55,15 +55,28 @@ async def upload_images_to_comfyapi(
Uploads images to ComfyUI API and returns download URLs. Uploads images to ComfyUI API and returns download URLs.
To upload multiple images, stack them in the batch dimension first. To upload multiple images, stack them in the batch dimension first.
""" """
tensors: list[torch.Tensor] = []
if isinstance(image, list):
for img in image:
is_batch = len(img.shape) > 3
if is_batch:
tensors.extend(img[i] for i in range(img.shape[0]))
else:
tensors.append(img)
else:
is_batch = len(image.shape) > 3
if is_batch:
tensors.extend(image[i] for i in range(image.shape[0]))
else:
tensors.append(image)
# if batched, try to upload each file if max_images is greater than 0 # if batched, try to upload each file if max_images is greater than 0
download_urls: list[str] = [] download_urls: list[str] = []
is_batch = len(image.shape) > 3 num_to_upload = min(len(tensors), max_images)
batch_len = image.shape[0] if is_batch else 1
num_to_upload = min(batch_len, max_images)
batch_start_ts = time.monotonic() batch_start_ts = time.monotonic()
for idx in range(num_to_upload): for idx in range(num_to_upload):
tensor = image[idx] if is_batch else image tensor = tensors[idx]
img_io = tensor_to_bytesio(tensor, total_pixels=total_pixels, mime_type=mime_type) img_io = tensor_to_bytesio(tensor, total_pixels=total_pixels, mime_type=mime_type)
effective_label = wait_label effective_label = wait_label

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is # This file is automatically generated by the build process when version is
# updated in pyproject.toml. # updated in pyproject.toml.
__version__ = "0.9.1" __version__ = "0.9.2"

View File

@ -788,6 +788,7 @@ class VAELoader:
#TODO: scale factor? #TODO: scale factor?
def load_vae(self, vae_name): def load_vae(self, vae_name):
metadata = None
if vae_name == "pixel_space": if vae_name == "pixel_space":
sd = {} sd = {}
sd["pixel_space_vae"] = torch.tensor(1.0) sd["pixel_space_vae"] = torch.tensor(1.0)
@ -2400,6 +2401,7 @@ async def init_builtin_api_nodes():
"nodes_sora.py", "nodes_sora.py",
"nodes_topaz.py", "nodes_topaz.py",
"nodes_tripo.py", "nodes_tripo.py",
"nodes_meshy.py",
"nodes_moonvalley.py", "nodes_moonvalley.py",
"nodes_rodin.py", "nodes_rodin.py",
"nodes_gemini.py", "nodes_gemini.py",

View File

@ -1,6 +1,6 @@
[project] [project]
name = "ComfyUI" name = "ComfyUI"
version = "0.9.1" version = "0.9.2"
readme = "README.md" readme = "README.md"
license = { file = "LICENSE" } license = { file = "LICENSE" }
requires-python = ">=3.10" requires-python = ">=3.10"

View File

@ -1,5 +1,5 @@
comfyui-frontend-package==1.36.14 comfyui-frontend-package==1.36.14
comfyui-workflow-templates==0.8.4 comfyui-workflow-templates==0.8.10
comfyui-embedded-docs==0.4.0 comfyui-embedded-docs==0.4.0
torch torch
torchsde torchsde

View File

@ -686,7 +686,10 @@ class PromptServer():
@routes.get("/object_info") @routes.get("/object_info")
async def get_object_info(request): async def get_object_info(request):
seed_assets(["models"]) try:
seed_assets(["models"])
except Exception as e:
logging.error(f"Failed to seed assets: {e}")
with folder_paths.cache_helper: with folder_paths.cache_helper:
out = {} out = {}
for x in nodes.NODE_CLASS_MAPPINGS: for x in nodes.NODE_CLASS_MAPPINGS: