Merge branch 'comfyanonymous:master' into webui-fix

This commit is contained in:
Muhammed Yusuf 2023-09-01 18:25:56 +03:00 committed by GitHub
commit a8191862b9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 41 additions and 88 deletions

View File

@ -143,7 +143,7 @@ class ControlNet(ControlBase):
if control_prev is not None:
return control_prev
else:
return {}
return None
output_dtype = x_noisy.dtype
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
@ -155,7 +155,7 @@ class ControlNet(ControlBase):
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
context = torch.cat(cond['c_crossattn'], 1)
context = cond['c_crossattn']
y = cond.get('c_adm', None)
if y is not None:
y = y.to(self.control_model.dtype)

View File

@ -1,87 +1,36 @@
import json
import os
import yaml
import folder_paths
from comfy.sd import load_checkpoint
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
from . import diffusers_convert
import comfy.sd
def first_file(path, filenames):
for f in filenames:
p = os.path.join(path, f)
if os.path.exists(p):
return p
return None
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None):
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json")))
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json")))
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
# magic
v2 = diffusers_unet_conf["sample_size"] == 96
if 'prediction_type' in diffusers_scheduler_conf:
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction'
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
if v2:
if v_pred:
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml')
else:
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml')
else:
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml')
text_encoder_paths = [text_encoder1_path]
if text_encoder2_path is not None:
text_encoder_paths.append(text_encoder2_path)
with open(config_path, 'r') as stream:
config = yaml.safe_load(stream)
unet = comfy.sd.load_unet(unet_path)
model_config_params = config['model']['params']
clip_config = model_config_params['cond_stage_config']
scale_factor = model_config_params['scale_factor']
vae_config = model_config_params['first_stage_config']
vae_config['scale_factor'] = scale_factor
model_config_params["unet_config"]["params"]["use_fp16"] = fp16
clip = None
if output_clip:
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
vae = None
if output_vae:
vae = comfy.sd.VAE(ckpt_path=vae_path)
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
unet_state_dict = load_file(unet_path, device="cpu")
else:
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
unet_state_dict = torch.load(unet_path, map_location="cpu")
if osp.exists(vae_path):
vae_state_dict = load_file(vae_path, device="cpu")
else:
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
vae_state_dict = torch.load(vae_path, map_location="cpu")
if osp.exists(text_enc_path):
text_enc_dict = load_file(text_enc_path, device="cpu")
else:
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
# Convert the UNet model
unet_state_dict = diffusers_convert.convert_unet_state_dict(unet_state_dict)
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
vae_state_dict = diffusers_convert.convert_vae_state_dict(vae_state_dict)
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
if is_v20_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
text_enc_dict = diffusers_convert.convert_text_enc_state_dict_v20(text_enc_dict)
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
else:
text_enc_dict = diffusers_convert.convert_text_enc_state_dict(text_enc_dict)
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
return load_checkpoint(embedding_directory=embedding_directory, state_dict=sd, config=config)
return (unet, clip, vae)

View File

@ -402,8 +402,6 @@ class MemoryEfficientCrossAttention(nn.Module):
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None, operations=comfy.ops):
super().__init__()
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
f"{heads} heads.")
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)

View File

@ -50,10 +50,10 @@ class BaseModel(torch.nn.Module):
def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
if c_concat is not None:
xc = torch.cat([x] + c_concat, dim=1)
xc = torch.cat([x] + [c_concat], dim=1)
else:
xc = x
context = torch.cat(c_crossattn, 1)
context = c_crossattn
dtype = self.get_dtype()
xc = xc.to(dtype)
t = t.to(dtype)

View File

@ -165,9 +165,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
c_crossattn_out.append(c)
if len(c_crossattn_out) > 0:
out['c_crossattn'] = [torch.cat(c_crossattn_out)]
out['c_crossattn'] = torch.cat(c_crossattn_out)
if len(c_concat) > 0:
out['c_concat'] = [torch.cat(c_concat)]
out['c_concat'] = torch.cat(c_concat)
if len(c_adm) > 0:
out['c_adm'] = torch.cat(c_adm)
return out

View File

@ -245,7 +245,7 @@ class VAEDecodeTiled:
@classmethod
def INPUT_TYPES(s):
return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
"tile_size": ("INT", {"default": 512, "min": 192, "max": 4096, "step": 64})
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
@ -475,7 +475,7 @@ class DiffusersLoader:
model_path = path
break
return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
class unCLIPCheckpointLoader:

View File

@ -127,7 +127,7 @@ class PromptServer():
@routes.get("/embeddings")
def get_embeddings(self):
embeddings = folder_paths.get_filename_list("embeddings")
return web.json_response(list(map(lambda a: os.path.splitext(a)[0].lower(), embeddings)))
return web.json_response(list(map(lambda a: os.path.splitext(a)[0], embeddings)))
@routes.get("/extensions")
async def get_extensions(request):

View File

@ -6233,11 +6233,17 @@ LGraphNode.prototype.executeAction = function(action)
,posAdd:[!mClikSlot_isOut?-30:30, -alphaPosY*130] //-alphaPosY*30]
,posSizeFix:[!mClikSlot_isOut?-1:0, 0] //-alphaPosY*2*/
});
skip_action = true;
}
}
}
}
if (!skip_action && this.allow_dragcanvas) {
//console.log("pointerevents: dragging_canvas start from middle button");
this.dragging_canvas = true;
}
} else if (e.which == 3 || this.pointer_is_double) {