mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-10 13:32:36 +08:00
Merge branch 'comfyanonymous:master' into webui-fix
This commit is contained in:
commit
a8191862b9
@ -143,7 +143,7 @@ class ControlNet(ControlBase):
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
return None
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
@ -155,7 +155,7 @@ class ControlNet(ControlBase):
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
|
||||
context = torch.cat(cond['c_crossattn'], 1)
|
||||
context = cond['c_crossattn']
|
||||
y = cond.get('c_adm', None)
|
||||
if y is not None:
|
||||
y = y.to(self.control_model.dtype)
|
||||
|
||||
@ -1,87 +1,36 @@
|
||||
import json
|
||||
import os
|
||||
import yaml
|
||||
|
||||
import folder_paths
|
||||
from comfy.sd import load_checkpoint
|
||||
import os.path as osp
|
||||
import re
|
||||
import torch
|
||||
from safetensors.torch import load_file, save_file
|
||||
from . import diffusers_convert
|
||||
import comfy.sd
|
||||
|
||||
def first_file(path, filenames):
|
||||
for f in filenames:
|
||||
p = os.path.join(path, f)
|
||||
if os.path.exists(p):
|
||||
return p
|
||||
return None
|
||||
|
||||
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None):
|
||||
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json")))
|
||||
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json")))
|
||||
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
|
||||
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
|
||||
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
|
||||
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
|
||||
|
||||
# magic
|
||||
v2 = diffusers_unet_conf["sample_size"] == 96
|
||||
if 'prediction_type' in diffusers_scheduler_conf:
|
||||
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction'
|
||||
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
|
||||
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
|
||||
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
|
||||
|
||||
if v2:
|
||||
if v_pred:
|
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml')
|
||||
else:
|
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml')
|
||||
else:
|
||||
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml')
|
||||
text_encoder_paths = [text_encoder1_path]
|
||||
if text_encoder2_path is not None:
|
||||
text_encoder_paths.append(text_encoder2_path)
|
||||
|
||||
with open(config_path, 'r') as stream:
|
||||
config = yaml.safe_load(stream)
|
||||
unet = comfy.sd.load_unet(unet_path)
|
||||
|
||||
model_config_params = config['model']['params']
|
||||
clip_config = model_config_params['cond_stage_config']
|
||||
scale_factor = model_config_params['scale_factor']
|
||||
vae_config = model_config_params['first_stage_config']
|
||||
vae_config['scale_factor'] = scale_factor
|
||||
model_config_params["unet_config"]["params"]["use_fp16"] = fp16
|
||||
clip = None
|
||||
if output_clip:
|
||||
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
|
||||
|
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
||||
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
||||
vae = None
|
||||
if output_vae:
|
||||
vae = comfy.sd.VAE(ckpt_path=vae_path)
|
||||
|
||||
# Load models from safetensors if it exists, if it doesn't pytorch
|
||||
if osp.exists(unet_path):
|
||||
unet_state_dict = load_file(unet_path, device="cpu")
|
||||
else:
|
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
||||
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
||||
|
||||
if osp.exists(vae_path):
|
||||
vae_state_dict = load_file(vae_path, device="cpu")
|
||||
else:
|
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
||||
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
||||
|
||||
if osp.exists(text_enc_path):
|
||||
text_enc_dict = load_file(text_enc_path, device="cpu")
|
||||
else:
|
||||
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
||||
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
||||
|
||||
# Convert the UNet model
|
||||
unet_state_dict = diffusers_convert.convert_unet_state_dict(unet_state_dict)
|
||||
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
||||
|
||||
# Convert the VAE model
|
||||
vae_state_dict = diffusers_convert.convert_vae_state_dict(vae_state_dict)
|
||||
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
||||
|
||||
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
||||
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
||||
|
||||
if is_v20_model:
|
||||
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
||||
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
||||
text_enc_dict = diffusers_convert.convert_text_enc_state_dict_v20(text_enc_dict)
|
||||
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
||||
else:
|
||||
text_enc_dict = diffusers_convert.convert_text_enc_state_dict(text_enc_dict)
|
||||
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
||||
|
||||
# Put together new checkpoint
|
||||
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
||||
|
||||
return load_checkpoint(embedding_directory=embedding_directory, state_dict=sd, config=config)
|
||||
return (unet, clip, vae)
|
||||
|
||||
@ -402,8 +402,6 @@ class MemoryEfficientCrossAttention(nn.Module):
|
||||
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
||||
f"{heads} heads.")
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
|
||||
|
||||
@ -50,10 +50,10 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
|
||||
if c_concat is not None:
|
||||
xc = torch.cat([x] + c_concat, dim=1)
|
||||
xc = torch.cat([x] + [c_concat], dim=1)
|
||||
else:
|
||||
xc = x
|
||||
context = torch.cat(c_crossattn, 1)
|
||||
context = c_crossattn
|
||||
dtype = self.get_dtype()
|
||||
xc = xc.to(dtype)
|
||||
t = t.to(dtype)
|
||||
|
||||
@ -165,9 +165,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
c_crossattn_out.append(c)
|
||||
|
||||
if len(c_crossattn_out) > 0:
|
||||
out['c_crossattn'] = [torch.cat(c_crossattn_out)]
|
||||
out['c_crossattn'] = torch.cat(c_crossattn_out)
|
||||
if len(c_concat) > 0:
|
||||
out['c_concat'] = [torch.cat(c_concat)]
|
||||
out['c_concat'] = torch.cat(c_concat)
|
||||
if len(c_adm) > 0:
|
||||
out['c_adm'] = torch.cat(c_adm)
|
||||
return out
|
||||
|
||||
4
nodes.py
4
nodes.py
@ -245,7 +245,7 @@ class VAEDecodeTiled:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
|
||||
"tile_size": ("INT", {"default": 512, "min": 192, "max": 4096, "step": 64})
|
||||
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
|
||||
}}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "decode"
|
||||
@ -475,7 +475,7 @@ class DiffusersLoader:
|
||||
model_path = path
|
||||
break
|
||||
|
||||
return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
|
||||
|
||||
class unCLIPCheckpointLoader:
|
||||
|
||||
@ -127,7 +127,7 @@ class PromptServer():
|
||||
@routes.get("/embeddings")
|
||||
def get_embeddings(self):
|
||||
embeddings = folder_paths.get_filename_list("embeddings")
|
||||
return web.json_response(list(map(lambda a: os.path.splitext(a)[0].lower(), embeddings)))
|
||||
return web.json_response(list(map(lambda a: os.path.splitext(a)[0], embeddings)))
|
||||
|
||||
@routes.get("/extensions")
|
||||
async def get_extensions(request):
|
||||
|
||||
@ -6233,11 +6233,17 @@ LGraphNode.prototype.executeAction = function(action)
|
||||
,posAdd:[!mClikSlot_isOut?-30:30, -alphaPosY*130] //-alphaPosY*30]
|
||||
,posSizeFix:[!mClikSlot_isOut?-1:0, 0] //-alphaPosY*2*/
|
||||
});
|
||||
|
||||
skip_action = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!skip_action && this.allow_dragcanvas) {
|
||||
//console.log("pointerevents: dragging_canvas start from middle button");
|
||||
this.dragging_canvas = true;
|
||||
}
|
||||
|
||||
|
||||
} else if (e.which == 3 || this.pointer_is_double) {
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user