mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-15 08:40:50 +08:00
Merge branch 'master' into master
This commit is contained in:
commit
af96939c95
@ -183,7 +183,7 @@ Simply download, extract with [7-Zip](https://7-zip.org) or with the windows exp
|
||||
|
||||
If you have trouble extracting it, right click the file -> properties -> unblock
|
||||
|
||||
Update your Nvidia drivers if it doesn't start.
|
||||
The portable above currently comes with python 3.13 and pytorch cuda 13.0. Update your Nvidia drivers if it doesn't start.
|
||||
|
||||
#### Alternative Downloads:
|
||||
|
||||
@ -212,7 +212,7 @@ Python 3.14 works but you may encounter issues with the torch compile node. The
|
||||
|
||||
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
|
||||
|
||||
torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch unless it is less than 2 weeks old.
|
||||
torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch with the latest cuda version unless it is less than 2 weeks old.
|
||||
|
||||
### Instructions:
|
||||
|
||||
|
||||
@ -237,6 +237,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
else:
|
||||
dit_config["vec_in_dim"] = None
|
||||
|
||||
dit_config["num_heads"] = dit_config["hidden_size"] // sum(dit_config["axes_dim"])
|
||||
|
||||
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
|
||||
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
|
||||
|
||||
@ -368,7 +368,7 @@ try:
|
||||
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
if rocm_version >= (7, 0):
|
||||
if any((a in arch) for a in ["gfx1201"]):
|
||||
if any((a in arch) for a in ["gfx1200", "gfx1201"]):
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
|
||||
if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx950"]): # TODO: more arches, "gfx942" gives error on pytorch nightly 2.10 1013 rocm7.0
|
||||
|
||||
@ -1059,9 +1059,9 @@ def detect_te_model(sd):
|
||||
return TEModel.JINA_CLIP_2
|
||||
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
|
||||
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
|
||||
if weight.shape[-1] == 4096:
|
||||
if weight.shape[0] == 10240:
|
||||
return TEModel.T5_XXL
|
||||
elif weight.shape[-1] == 2048:
|
||||
elif weight.shape[0] == 5120:
|
||||
return TEModel.T5_XL
|
||||
if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd:
|
||||
return TEModel.T5_XXL_OLD
|
||||
|
||||
@ -36,7 +36,7 @@ def te(dtype_t5=None, t5_quantization_metadata=None):
|
||||
if t5_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
|
||||
if dtype is None:
|
||||
if dtype_t5 is not None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return CosmosTEModel_
|
||||
|
||||
@ -32,7 +32,7 @@ def mochi_te(dtype_t5=None, t5_quantization_metadata=None):
|
||||
if t5_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
|
||||
if dtype is None:
|
||||
if dtype_t5 is not None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return MochiTEModel_
|
||||
|
||||
@ -36,7 +36,7 @@ def pixart_te(dtype_t5=None, t5_quantization_metadata=None):
|
||||
if t5_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
|
||||
if dtype is None:
|
||||
if dtype_t5 is not None:
|
||||
dtype = dtype_t5
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return PixArtTEModel_
|
||||
|
||||
@ -567,7 +567,7 @@ async def execute_lipsync(
|
||||
# Upload the audio file to Comfy API and get download URL
|
||||
if audio:
|
||||
audio_url = await upload_audio_to_comfyapi(
|
||||
cls, audio, container_format="mp3", codec_name="libmp3lame", mime_type="audio/mpeg", filename="output.mp3"
|
||||
cls, audio, container_format="mp3", codec_name="libmp3lame", mime_type="audio/mpeg"
|
||||
)
|
||||
logging.info("Uploaded audio to Comfy API. URL: %s", audio_url)
|
||||
else:
|
||||
|
||||
@ -55,7 +55,7 @@ def image_tensor_pair_to_batch(image1: torch.Tensor, image2: torch.Tensor) -> to
|
||||
|
||||
def tensor_to_bytesio(
|
||||
image: torch.Tensor,
|
||||
name: str | None = None,
|
||||
*,
|
||||
total_pixels: int = 2048 * 2048,
|
||||
mime_type: str = "image/png",
|
||||
) -> BytesIO:
|
||||
@ -75,7 +75,7 @@ def tensor_to_bytesio(
|
||||
|
||||
pil_image = tensor_to_pil(image, total_pixels=total_pixels)
|
||||
img_binary = pil_to_bytesio(pil_image, mime_type=mime_type)
|
||||
img_binary.name = f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}"
|
||||
img_binary.name = f"{uuid.uuid4()}.{mimetype_to_extension(mime_type)}"
|
||||
return img_binary
|
||||
|
||||
|
||||
|
||||
@ -82,7 +82,6 @@ async def upload_audio_to_comfyapi(
|
||||
container_format: str = "mp4",
|
||||
codec_name: str = "aac",
|
||||
mime_type: str = "audio/mp4",
|
||||
filename: str = "uploaded_audio.mp4",
|
||||
) -> str:
|
||||
"""
|
||||
Uploads a single audio input to ComfyUI API and returns its download URL.
|
||||
@ -92,7 +91,7 @@ async def upload_audio_to_comfyapi(
|
||||
waveform: torch.Tensor = audio["waveform"]
|
||||
audio_data_np = audio_tensor_to_contiguous_ndarray(waveform)
|
||||
audio_bytes_io = audio_ndarray_to_bytesio(audio_data_np, sample_rate, container_format, codec_name)
|
||||
return await upload_file_to_comfyapi(cls, audio_bytes_io, filename, mime_type)
|
||||
return await upload_file_to_comfyapi(cls, audio_bytes_io, f"{uuid.uuid4()}.{container_format}", mime_type)
|
||||
|
||||
|
||||
async def upload_video_to_comfyapi(
|
||||
|
||||
Loading…
Reference in New Issue
Block a user