add video support for language models, improve torch compile for transformers models, make it easier to load videos, fix progess messages from language nodes

This commit is contained in:
doctorpangloss 2025-12-03 13:45:01 -08:00
parent 81ea9726b6
commit b149031748
7 changed files with 276 additions and 37 deletions

View File

@ -1161,8 +1161,12 @@ class PromptServer(ExecutorToClientProgress):
await self.send_image(data, sid=sid)
elif event == BinaryEventTypes.PREVIEW_IMAGE_WITH_METADATA:
# data is (preview_image, metadata)
data: PreviewImageWithMetadataMessage
preview_image, metadata = data
if isinstance(preview_image, dict):
# todo: this has to be fixed from transformers loader for previewing tokens in real time
return
await self.send_image_with_metadata(preview_image, metadata, sid=sid)
elif isinstance(data, (bytes, bytearray)):
await self.send_bytes(event, data, sid)

View File

@ -92,14 +92,13 @@ class LanguageModel(Protocol):
def generate(self, tokens: TOKENS_TYPE = None,
max_new_tokens: int = 512,
repetition_penalty: float = 0.0,
seed: int = 0,
sampler: Optional[GENERATION_KWARGS_TYPE] = None,
*args,
**kwargs) -> str:
...
def tokenize(self, prompt: str | LanguagePrompt, images: RGBImageBatch | None, chat_template: str | None = None) -> ProcessorResult:
def tokenize(self, prompt: str | LanguagePrompt, images: RGBImageBatch | None, videos: list[torch.Tensor] | None, chat_template: str | None = None) -> ProcessorResult:
...
@property

View File

@ -19,7 +19,7 @@ from transformers import PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixi
from huggingface_hub import hf_api
from huggingface_hub.file_download import hf_hub_download
from transformers.models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES, \
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, AutoModelForImageTextToText
from .chat_templates import KNOWN_CHAT_TEMPLATES
from .language_types import ProcessorResult, TOKENS_TYPE, GENERATION_KWARGS_TYPE, TransformerStreamedProgress, \
@ -122,7 +122,7 @@ class TransformersManagedModel(ModelManageableStub, LanguageModel):
for i, kwargs_to_try in enumerate(kwargses_to_try):
try:
if model_type in MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES:
model = AutoModelForVision2Seq.from_pretrained(**from_pretrained_kwargs, **kwargs_to_try)
model = AutoModelForImageTextToText.from_pretrained(**from_pretrained_kwargs, **kwargs_to_try)
elif model_type in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
model = AutoModelForSeq2SeqLM.from_pretrained(**from_pretrained_kwargs, **kwargs_to_try)
elif model_type in _OVERRIDDEN_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
@ -176,7 +176,6 @@ class TransformersManagedModel(ModelManageableStub, LanguageModel):
def generate(self, tokens: TOKENS_TYPE = None,
max_new_tokens: int = 512,
repetition_penalty: float = 0.0,
seed: int = 0,
sampler: Optional[GENERATION_KWARGS_TYPE] = None,
*args,
@ -257,7 +256,6 @@ class TransformersManagedModel(ModelManageableStub, LanguageModel):
**inputs,
streamer=text_streamer if num_beams <= 1 else None,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty if repetition_penalty != 0 else None,
**generate_kwargs
)
@ -364,7 +362,7 @@ class TransformersManagedModel(ModelManageableStub, LanguageModel):
if processor is not None and hasattr(processor, "image_processor") and hasattr(processor.image_processor, "do_rescale"):
processor.image_processor.do_rescale = False
def tokenize(self, prompt: str | LanguagePrompt, images: RGBImageBatch | None, chat_template: str | None = None) -> ProcessorResult:
def tokenize(self, prompt: str | LanguagePrompt, images: RGBImageBatch | None, videos: list[torch.Tensor] | None = None, chat_template: str | None = None) -> ProcessorResult:
tokenizer = self.processor if self.processor is not None else self.tokenizer
assert tokenizer is not None
assert hasattr(tokenizer, "decode")
@ -391,16 +389,18 @@ class TransformersManagedModel(ModelManageableStub, LanguageModel):
messages: LanguagePrompt
if isinstance(prompt, list) and len(prompt) > 0 and isinstance(prompt[0], dict):
messages = prompt
elif "content[" in chat_template:
elif images is not None and len(images) > 0 or videos is not None and len(videos) > 0:
messages = [
{"role": "user",
"content": [
{
"type": "text",
"text": prompt
"text": prompt if isinstance(prompt, str) else ""
}
] + [
{"type": "image"} for _ in range(len(images))
] + [
{"type": "video"} for _ in range(len(videos))
]
}
@ -409,6 +409,7 @@ class TransformersManagedModel(ModelManageableStub, LanguageModel):
messages = [
{"role": "user", "content": prompt},
]
prompt = tokenizer.apply_chat_template(messages, chat_template=chat_template, add_generation_prompt=True, tokenize=False)
except Exception as exc:
logger.debug("Could not apply chat template", exc_info=exc)
@ -422,7 +423,14 @@ class TransformersManagedModel(ModelManageableStub, LanguageModel):
# convert tuple to list from images.unbind() for paligemma workaround
image_tensor_list = list(images.unbind()) if images is not None and len(images) > 0 else None
try:
batch_feature: BatchFeature = self.processor(text=[prompt], images=image_tensor_list, return_tensors="pt", padding=True)
batch_feature: BatchFeature = self.processor(
text=[prompt],
images=image_tensor_list,
videos=None if videos is not None and len(videos) == 0 or (hasattr(videos, "shape") and videos.shape[0]) == 0 else videos,
return_tensors="pt",
padding=True,
input_data_format="channels_last" # Ensure this is set for Qwen
)
except TypeError as exc_info:
logger.warning(f"Exception while trying to run processor. Your transformers package is version {transformers.__version__} and may need to be updated")
raise exc_info

View File

@ -65,7 +65,7 @@ class ProgressHandler(ABC):
max_value: float,
state: NodeProgressState,
prompt_id: str,
image: PreviewImageTuple | None = None,
image: PreviewImageTuple | dict | None = None,
):
"""Called when a node's progress is updated"""
pass
@ -210,7 +210,7 @@ class WebUIProgressHandler(ProgressHandler):
max_value: float,
state: NodeProgressState,
prompt_id: str,
image: PreviewImageTuple | None = None,
image: PreviewImageTuple | dict | None = None,
):
# Send progress state of all nodes
if self.registry:
@ -233,6 +233,7 @@ class WebUIProgressHandler(ProgressHandler):
),
"real_node_id": self.registry.dynprompt.get_real_node_id(node_id),
}
# todo: image can be a dict because of transformers loader, do we have to deal with this specially? things just work
message: PreviewImageWithMetadataMessage = (image, metadata)
self.server_instance.send_sync(
BinaryEventTypes.PREVIEW_IMAGE_WITH_METADATA,
@ -300,7 +301,7 @@ class ProgressRegistry(AbstractProgressRegistry):
handler.start_handler(node_id, entry, self.prompt_id)
def update_progress(
self, node_id: str, value: float, max_value: float, image: PreviewImageTuple | None = None
self, node_id: str, value: float, max_value: float, image: PreviewImageTuple | dict | None = None
) -> None:
"""Update progress for a node"""
entry = self.ensure_entry(node_id)

View File

@ -2,6 +2,7 @@ from __future__ import annotations
import operator
import os.path
import re
from abc import ABC, abstractmethod
from functools import reduce
from typing import Optional, List
@ -332,6 +333,7 @@ class OneShotInstructTokenize(CustomNode):
},
"optional": {
"images": ("IMAGE", {}),
"videos": ("VIDEO", {}),
"system_prompt": ("STRING", {"multiline": True, "default": ""})
}
}
@ -340,9 +342,8 @@ class OneShotInstructTokenize(CustomNode):
RETURN_TYPES = (TOKENS_TYPE_NAME,)
FUNCTION = "execute"
def execute(self, model: LanguageModel, prompt: str, images: List[torch.Tensor] | torch.Tensor = None, chat_template: Optional[str] = _AUTO_CHAT_TEMPLATE, system_prompt: str = "") -> ValidatedNodeResult:
def execute(self, model: LanguageModel, prompt: str, images: List[torch.Tensor] | torch.Tensor = None, videos: list | object = None, chat_template: Optional[str] = _AUTO_CHAT_TEMPLATE, system_prompt: str = "") -> ValidatedNodeResult:
if chat_template == _AUTO_CHAT_TEMPLATE:
# use an exact match
model_name = os.path.basename(model.repo_id)
if model_name in KNOWN_CHAT_TEMPLATES:
chat_template = KNOWN_CHAT_TEMPLATES[model_name]
@ -351,22 +352,43 @@ class OneShotInstructTokenize(CustomNode):
elif chat_template is not None:
chat_template = KNOWN_CHAT_TEMPLATES[chat_template]
video_tensors = []
if videos is not None:
if not isinstance(videos, list):
videos_list = [videos]
else:
videos_list = videos
for vid in videos_list:
if hasattr(vid, "get_components"):
components = vid.get_components()
video_tensors.append(components.images)
elif isinstance(vid, torch.Tensor):
video_tensors.append(vid)
messages: LanguagePrompt | str
if system_prompt != "":
messages: LanguagePrompt = [
{"role": "system",
"content": system_prompt},
{"role": "user",
"content": [
{"type": "text",
"text": prompt}
] + [
{"type": "image"} for _ in range(len(images) if images is not None else 0)
], }
has_images = images is not None and len(images) > 0
has_videos = len(video_tensors) > 0
if system_prompt != "" or has_images or has_videos:
user_content = [{"type": "text", "text": prompt}]
if has_images:
user_content += [{"type": "image"} for _ in range(len(images))]
if has_videos:
user_content += [{"type": "video"} for _ in range(len(video_tensors))]
messages = [
{"role": "user", "content": user_content}
]
if system_prompt.strip() != "":
messages.insert(0, {"role": "system", "content": system_prompt})
else:
messages: str = prompt
return model.tokenize(messages, images, chat_template),
messages = prompt
return model.tokenize(messages, images, video_tensors, chat_template),
class TransformersGenerate(CustomNode):
@ -376,8 +398,7 @@ class TransformersGenerate(CustomNode):
"required": {
"model": ("MODEL",),
"tokens": (TOKENS_TYPE_NAME, {}),
"max_new_tokens": ("INT", {"default": 512, "min": 1}),
"repetition_penalty": ("FLOAT", {"default": 0.0, "min": 0}),
"max_new_tokens": ("INT", {"default": 512, "min": 1, "max": 0xffffffff}),
"seed": Seed,
},
"optional": {
@ -393,11 +414,10 @@ class TransformersGenerate(CustomNode):
model: Optional[LanguageModel] = None,
tokens: TOKENS_TYPE = None,
max_new_tokens: int = 512,
repetition_penalty: float = 0.0,
seed: int = 0,
sampler: Optional[GENERATION_KWARGS_TYPE] = None,
):
return model.generate(tokens, max_new_tokens, repetition_penalty, seed, sampler),
return model.generate(tokens, max_new_tokens, seed, sampler),
class PreviewString(CustomNode):
@ -427,7 +447,7 @@ class SaveString(CustomNode):
"filename_prefix": ("STRING", {"default": "ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."})
},
"optional": {
"extension": ("STRING", {"default": ".json"})
"extension": ("STRING", {"default": ".txt"})
}
}
@ -439,17 +459,53 @@ class SaveString(CustomNode):
def get_save_path(self, filename_prefix) -> SaveImagePathTuple:
return folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory(), 0, 0)
def execute(self, value: str | list[str], filename_prefix: str, extension: str = ".json"):
def execute(self, value: str | list[str] = "", filename_prefix: str = "ComfyUI", extension: str = ".txt"):
full_output_folder, filename, counter, subfolder, filename_prefix = self.get_save_path(filename_prefix)
if isinstance(value, str):
value = [value]
for i, value_i in enumerate(value):
# roughly matches the behavior of save image, but does not support batch numbers
with open(os.path.join(full_output_folder, f"{filename}_{counter:05d}_{extension}" if len(value) == 1 else f"{filename}_{counter:05d}_{i:02d}_{extension}"), "wt+") as f:
with open(os.path.join(full_output_folder, f"{filename}_{counter:05d}{extension}" if len(value) == 1 else f"{filename}_{counter:05d}_{i:02d}{extension}"), "wt+") as f:
f.write(value_i)
return {"ui": {"string": value}}
class OmitThink(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"value": ("STRING", {"forceInput": True}),
},
}
CATEGORY = "strings"
FUNCTION = "execute"
OUTPUT_NODE = True
RETURN_TYPES = ("STRING",)
def execute(self, value: str | list[str] = "") -> tuple[list[str]]:
pattern_explicit = r"<think>.*?</think>"
pattern_missing_start = r"^.*?</think>"
if isinstance(value, str):
values = [value]
else:
values = value
result = []
for value in values:
if "<think>" in value:
cleaned_text = re.sub(pattern_explicit, "", value, flags=re.DOTALL)
elif "</think>" in value:
cleaned_text = re.sub(pattern_missing_start, "", value, flags=re.DOTALL)
else:
cleaned_text = value
result.append(cleaned_text.strip())
return result,
export_custom_nodes()
export_package_as_web_directory("comfy_extras.language_web")

View File

@ -1,7 +1,6 @@
from __future__ import annotations
import dataclasses
import io
import json
import logging
import os
@ -16,6 +15,7 @@ from typing import Sequence, Optional, TypedDict, List, Literal, Tuple, Any, Dic
import PIL
import aiohttp
import av
import certifi
import cv2
import fsspec
@ -872,4 +872,162 @@ class ImageRequestParameter(CustomNode):
return ImageMaskTuple(output_images_batched, output_masks_batched)
class LoadImageFromURL(ImageRequestParameter):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"value": ("STRING", {"default": ""})
},
"optional": {
"default_if_empty": ("IMAGE",),
"alpha_is_transparency": ("BOOLEAN", {"default": False}),
}
}
def execute(self, value: str = "", default_if_empty=None, alpha_is_transparency=False, *args, **kwargs) -> ImageMaskTuple:
return super().execute(value, default_if_empty, alpha_is_transparency, *args, **kwargs)
class VideoRequestParameter(CustomNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"value": ("STRING", {"default": ""})
},
"optional": {
**_open_api_common_schema,
"default_if_empty": ("VIDEO",),
"frame_load_cap": ("INT", {"default": 0, "min": 0, "step": 1, "tooltip": "0 for no limit, otherwise stop loading after N frames"}),
"skip_first_frames": ("INT", {"default": 0, "min": 0, "step": 1}),
"select_every_nth": ("INT", {"default": 1, "min": 1, "step": 1}),
}
}
RETURN_TYPES = ("VIDEO", "MASK", "INT", "FLOAT")
RETURN_NAMES = ("VIDEO", "MASK", "frame_count", "fps")
FUNCTION = "execute"
CATEGORY = "api/openapi"
def execute(self, value: str = "", default_if_empty=None, frame_load_cap=0, skip_first_frames=0, select_every_nth=1, *args, **kwargs) -> tuple[Tensor, Tensor, int, float]:
if value.strip() == "":
if default_if_empty is None:
return (torch.zeros((0, 1, 1, 3)), torch.zeros((0, 1, 1)), 0, 0.0)
frames = default_if_empty.shape[0] if isinstance(default_if_empty, torch.Tensor) else 0
height = default_if_empty.shape[1] if frames > 0 else 1
width = default_if_empty.shape[2] if frames > 0 else 1
default_mask = torch.ones((frames, height, width), dtype=torch.float32)
return (default_if_empty, default_mask, frames, 0.0)
output_videos = []
output_masks = []
total_frames_loaded = 0
fps = 0.0
fsspec_kwargs = {}
if value.startswith('http'):
fsspec_kwargs.update({
"headers": {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.5672.64 Safari/537.36'
},
'get_client': get_client
})
with fsspec.open_files(value, mode="rb", **fsspec_kwargs) as files:
for f in files:
try:
container = av.open(f)
except Exception as e:
logger.error(f"VideoRequestParameter: Failed to open video container for {value}: {e}")
continue
if len(container.streams.video) == 0:
continue
stream = container.streams.video[0]
stream.thread_type = "AUTO"
if fps == 0.0:
fps = float(stream.average_rate)
frames_list = []
masks_list = []
frames_processed = 0
frames_kept = 0
for frame in container.decode(stream):
frames_processed += 1
if frames_processed <= skip_first_frames:
continue
if (frames_processed - skip_first_frames - 1) % select_every_nth != 0:
continue
np_frame = frame.to_ndarray(format="rgba")
tensor_img = torch.from_numpy(np_frame[..., :3]).float() / 255.0
frames_list.append(tensor_img)
tensor_mask = torch.from_numpy(np_frame[..., 3]).float() / 255.0
masks_list.append(tensor_mask)
frames_kept += 1
if frame_load_cap > 0 and frames_kept >= frame_load_cap:
break
container.close()
if frames_list:
video_tensor = torch.stack(frames_list)
mask_tensor = torch.stack(masks_list)
output_videos.append(video_tensor)
output_masks.append(mask_tensor)
total_frames_loaded += frames_kept
if not output_videos:
if default_if_empty is not None:
frames = default_if_empty.shape[0]
height = default_if_empty.shape[1]
width = default_if_empty.shape[2]
return (default_if_empty, torch.ones((frames, height, width), dtype=torch.float32), frames, 0.0)
return (torch.zeros((0, 1, 1, 3)), torch.zeros((0, 1, 1)), 0, 0.0)
try:
final_video = torch.cat(output_videos, dim=0)
final_mask = torch.cat(output_masks, dim=0)
except RuntimeError:
logger.warning("VideoRequestParameter: Video resolutions mismatch in input list. Returning only the first video.")
final_video = output_videos[0]
final_mask = output_masks[0]
total_frames_loaded = final_video.shape[0]
return (final_video, final_mask, total_frames_loaded, fps)
class LoadVideoFromURL(VideoRequestParameter):
@classmethod
def INPUT_TYPES(cls) -> InputTypes:
return {
"required": {
"value": ("STRING", {"default": ""})
},
"optional": {
"default_if_empty": ("VIDEO",),
"frame_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}),
"skip_first_frames": ("INT", {"default": 0, "min": 0, "step": 1}),
"select_every_nth": ("INT", {"default": 1, "min": 1, "step": 1}),
}
}
RETURN_TYPES = ("VIDEO", "MASK", "INT", "FLOAT")
RETURN_NAMES = ("VIDEO", "MASK", "frame_count", "fps")
def execute(self, value: str = "", default_if_empty=None, frame_load_cap=0, skip_first_frames=0, select_every_nth=1, *args, **kwargs):
return super().execute(value, default_if_empty, frame_load_cap, skip_first_frames, select_every_nth, *args, **kwargs)
export_custom_nodes()

View File

@ -46,6 +46,8 @@ def write_atomic(
torch._inductor.codecache.write_atomic = write_atomic
# torch._inductor.utils.is_big_gpu = lambda *args: True
@ -98,7 +100,18 @@ class TorchCompileModel(CustomNode):
"make_refittable": True,
}
del compile_kwargs["mode"]
if isinstance(model, (ModelPatcher, TransformersManagedModel, VAE)):
if isinstance(model, TransformersManagedModel):
to_return = model.clone()
model = to_return.model
model_management.unload_all_models()
model.to(device=model_management.get_torch_device())
res = torch.compile(model=model, **compile_kwargs),
model.to(device=model_management.unet_offload_device())
to_return.add_object_patch("model", res)
return to_return,
elif isinstance(model, (ModelPatcher, VAE)):
to_return = model.clone()
object_patches = [p.strip() for p in object_patch.split(",")]
patcher: ModelPatcher