qwen eligen batch size > 1 fix

This commit is contained in:
nolan4 2025-10-24 19:22:26 -07:00
parent b0ade4bb85
commit b222265628
2 changed files with 179 additions and 35 deletions

View File

@ -3,6 +3,7 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import logging
from typing import Optional, Tuple
from einops import repeat, rearrange
@ -12,6 +13,8 @@ from comfy.ldm.flux.layers import EmbedND
import comfy.ldm.common_dit
import comfy.patcher_extension
logger = logging.getLogger(__name__)
class QwenEmbedRope(nn.Module):
"""RoPE implementation for EliGen.
@ -269,9 +272,6 @@ class Attention(nn.Module):
txt_query = self.norm_added_q(txt_query)
txt_key = self.norm_added_k(txt_key)
### NEW
#################################################
# Handle both tuple (EliGen) and single tensor (standard) RoPE formats
if isinstance(image_rotary_emb, tuple):
# EliGen path: Apply RoPE BEFORE concatenation (research-accurate)
@ -303,6 +303,7 @@ class Attention(nn.Module):
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
# Apply EliGen attention mask if present
effective_mask = attention_mask
if transformer_options is not None:
eligen_mask = transformer_options.get("eligen_attention_mask", None)
@ -312,11 +313,12 @@ class Attention(nn.Module):
# Validate shape
expected_seq = joint_query.shape[1]
if eligen_mask.shape[-1] != expected_seq:
raise ValueError(f"EliGen mask shape {eligen_mask.shape} doesn't match sequence length {expected_seq}")
raise ValueError(
f"EliGen attention mask shape mismatch: {eligen_mask.shape} "
f"doesn't match sequence length {expected_seq}"
)
#################################################
# Standard path: Use ComfyUI's optimized attention
# Use ComfyUI's optimized attention
joint_query = joint_query.flatten(start_dim=2)
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
@ -443,8 +445,12 @@ class LastLayer(nn.Module):
x = torch.addcmul(shift[:, None, :], self.norm(x), (1 + scale)[:, None, :])
return x
### NEW changes
class QwenImageTransformer2DModel(nn.Module):
# Constants for EliGen processing
LATENT_TO_PIXEL_RATIO = 8 # Latents are 8x downsampled from pixel space
PATCH_TO_LATENT_RATIO = 2 # 2x2 patches in latent space
PATCH_TO_PIXEL_RATIO = 16 # Combined: 2x2 patches on 8x downsampled latents = 16x in pixel space
def __init__(
self,
patch_size: int = 2,
@ -540,8 +546,8 @@ class QwenImageTransformer2DModel(nn.Module):
entity_prompt_emb: List[[1, L_i, 3584]] - Entity prompts
entity_prompt_emb_mask: List[[1, L_i]]
entity_masks: [1, N, 1, H/8, W/8]
height: int
width: int
height: int (padded pixel height)
width: int (padded pixel width)
image: [B, patches, 64] - Patchified latents
Returns:
@ -549,6 +555,17 @@ class QwenImageTransformer2DModel(nn.Module):
image_rotary_emb: RoPE embeddings
attention_mask: [1, 1, total_seq, total_seq]
"""
num_entities = len(entity_prompt_emb)
batch_size = latents.shape[0]
logger.debug(
f"[EliGen Model] Processing {num_entities} entities for {height}x{width}px image "
f"(latents: {latents.shape}, batch_size: {batch_size})"
)
# Validate batch consistency (all batches should have same sequence lengths)
# This is a ComfyUI requirement - batched prompts must have uniform padding
if batch_size > 1:
logger.debug(f"[EliGen Model] Batch size > 1 detected ({batch_size} batches), ensuring RoPE compatibility")
# SECTION 1: Concatenate entity + global prompts
all_prompt_emb = entity_prompt_emb + [prompt_emb]
@ -556,45 +573,63 @@ class QwenImageTransformer2DModel(nn.Module):
all_prompt_emb = torch.cat(all_prompt_emb, dim=1)
# SECTION 2: Build RoPE position embeddings
# Calculate img_shapes for RoPE (batch, height//16, width//16 for images in latent space after patchifying)
img_shapes = [(latents.shape[0], height//16, width//16)]
# For EliGen, we create RoPE for ONE batch element's dimensions
# The queries/keys have shape [batch, seq, heads, dim], and RoPE broadcasts across batch dim
patch_h = height // self.PATCH_TO_PIXEL_RATIO
patch_w = width // self.PATCH_TO_PIXEL_RATIO
# Create RoPE for a single image (frame=1 for images, not video)
# This will broadcast across all batch elements automatically
img_shapes_single = [(1, patch_h, patch_w)]
# Calculate sequence lengths for entities and global prompt
entity_seq_lens = [int(mask.sum(dim=1).item()) for mask in entity_prompt_emb_mask]
# Use [0] to get first batch element (all batches should have same sequence lengths)
entity_seq_lens = [int(mask.sum(dim=1)[0].item()) for mask in entity_prompt_emb_mask]
# Handle None case in ComfyUI (None means no padding, all tokens valid)
if prompt_emb_mask is not None:
global_seq_len = int(prompt_emb_mask.sum(dim=1).item())
global_seq_len = int(prompt_emb_mask.sum(dim=1)[0].item())
else:
# No mask = no padding, use full sequence length
global_seq_len = int(prompt_emb.shape[1])
# Get base image RoPE using global prompt length (returns tuple: (img_freqs, txt_freqs))
# We pass a single shape, not repeated for batch, because RoPE will broadcast
txt_seq_lens = [global_seq_len]
image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=latents.device)
image_rotary_emb = self.pos_embed(img_shapes_single, txt_seq_lens, device=latents.device)
# Create SEPARATE RoPE embeddings for each entity
# Each entity gets its own positional encoding based on its sequence length
entity_rotary_emb = [self.pos_embed(img_shapes, [entity_seq_len], device=latents.device)[1]
# We only need to create these once since they're the same for all batch elements
entity_rotary_emb = [self.pos_embed([(1, patch_h, patch_w)], [entity_seq_len], device=latents.device)[1]
for entity_seq_len in entity_seq_lens]
# Concatenate entity RoPEs with global RoPE along sequence dimension
# Result: [entity1_seq, entity2_seq, ..., global_seq] concatenated
# This creates the RoPE for ONE batch element's sequence
# Note: We DON'T repeat for batch_size because the queries/keys have shape [batch, seq, ...]
# and PyTorch will broadcast the RoPE [seq, ...] across the batch dimension automatically
txt_rotary_emb = torch.cat(entity_rotary_emb + [image_rotary_emb[1]], dim=0)
logger.debug(
f"[EliGen Model] RoPE created for single batch element - "
f"img: {image_rotary_emb[0].shape}, txt: {txt_rotary_emb.shape} "
f"(both will broadcast across batch_size={batch_size})"
)
# Replace text part of tuple with concatenated entity + global RoPE
image_rotary_emb = (image_rotary_emb[0], txt_rotary_emb)
# SECTION 3: Prepare spatial masks
repeat_dim = latents.shape[1] # 16
repeat_dim = latents.shape[1] # 16 (latent channels)
max_masks = entity_masks.shape[1] # N entities
entity_masks = entity_masks.repeat(1, 1, repeat_dim, 1, 1)
# Pad masks to match padded latent dimensions
# entity_masks shape: [1, N, 16, H/8, W/8]
# Need to pad to match orig_shape which is [B, 16, padded_H/8, padded_W/8]
padded_h = height // 8
padded_w = width // 8
padded_h = height // self.LATENT_TO_PIXEL_RATIO
padded_w = width // self.LATENT_TO_PIXEL_RATIO
if entity_masks.shape[3] != padded_h or entity_masks.shape[4] != padded_w:
assert entity_masks.shape[3] <= padded_h and entity_masks.shape[4] <= padded_w, \
f"Entity masks {entity_masks.shape[3]}x{entity_masks.shape[4]} larger than padded dims {padded_h}x{padded_w}"
@ -602,6 +637,7 @@ class QwenImageTransformer2DModel(nn.Module):
# Pad each entity mask
pad_h = padded_h - entity_masks.shape[3]
pad_w = padded_w - entity_masks.shape[4]
logger.debug(f"[EliGen Model] Padding entity masks by ({pad_h}, {pad_w}) to match latent dimensions")
entity_masks = torch.nn.functional.pad(entity_masks, (0, pad_w, 0, pad_h), mode='constant', value=0)
entity_masks = [entity_masks[:, i, None].squeeze(1) for i in range(max_masks)]
@ -617,12 +653,20 @@ class QwenImageTransformer2DModel(nn.Module):
seq_lens = entity_seq_lens + [global_seq_len]
total_seq_len = int(sum(seq_lens) + image.shape[1])
logger.debug(
f"[EliGen Model] Building attention mask: "
f"total_seq={total_seq_len} (entities: {entity_seq_lens}, global: {global_seq_len}, image: {image.shape[1]})"
)
patched_masks = []
for i in range(N):
patched_mask = rearrange(
entity_masks[i],
"B C (H P) (W Q) -> B (H W) (C P Q)",
H=height//16, W=width//16, P=2, Q=2
H=height // self.PATCH_TO_PIXEL_RATIO,
W=width // self.PATCH_TO_PIXEL_RATIO,
P=self.PATCH_TO_LATENT_RATIO,
Q=self.PATCH_TO_LATENT_RATIO
)
patched_masks.append(patched_mask)
@ -671,10 +715,16 @@ class QwenImageTransformer2DModel(nn.Module):
# SECTION 6: Convert to additive bias
attention_mask = attention_mask.float()
num_valid_connections = (attention_mask == 1).sum().item()
attention_mask[attention_mask == 0] = float('-inf')
attention_mask[attention_mask == 1] = 0
attention_mask = attention_mask.to(device=latents.device, dtype=latents.dtype).unsqueeze(1)
logger.debug(
f"[EliGen Model] Attention mask created: shape={attention_mask.shape}, "
f"valid_connections={num_valid_connections}/{total_seq_len * total_seq_len}"
)
return all_prompt_emb, image_rotary_emb, attention_mask
def forward(self, x, timestep, context, attention_mask=None, guidance=None, ref_latents=None, transformer_options={}, **kwargs):

View File

@ -3,9 +3,13 @@ import comfy.utils
import comfy.conds
import math
import torch
import logging
from typing import Optional
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
logger = logging.getLogger(__name__)
class TextEncodeQwenImageEdit(io.ComfyNode):
@classmethod
@ -105,8 +109,31 @@ class TextEncodeQwenImageEditPlus(io.ComfyNode):
conditioning = node_helpers.conditioning_set_values(conditioning, {"reference_latents": ref_latents}, append=True)
return io.NodeOutput(conditioning)
################ NEW
class TextEncodeQwenImageEliGen(io.ComfyNode):
"""
Entity-Level Image Generation (EliGen) conditioning node for Qwen Image model.
Allows specifying different prompts for different spatial regions using masks.
Each entity (mask + prompt pair) will only influence its masked region through
spatial attention masking.
Features:
- Supports up to 3 entities per generation
- Spatial attention masks prevent cross-entity contamination
- Separate RoPE embeddings per entity (research-accurate)
- Falls back to standard generation if no entities provided
Usage:
1. Create spatial masks using LoadImageMask (white=entity, black=background)
2. Use 'red', 'green', or 'blue' channel (NOT 'alpha' - it gets inverted)
3. Provide entity-specific prompts for each masked region
Based on DiffSynth Studio: https://github.com/modelscope/DiffSynth-Studio
"""
# Qwen Image model uses 2x2 patches on latents (which are 8x downsampled from pixels)
PATCH_SIZE = 2
@classmethod
def define_schema(cls):
return io.Schema(
@ -129,8 +156,18 @@ class TextEncodeQwenImageEliGen(io.ComfyNode):
)
@classmethod
def execute(cls, clip, global_conditioning, latent, entity_prompt_1="", entity_mask_1=None,
entity_prompt_2="", entity_mask_2=None, entity_prompt_3="", entity_mask_3=None) -> io.NodeOutput:
def execute(
cls,
clip,
global_conditioning,
latent,
entity_prompt_1: str = "",
entity_mask_1: Optional[torch.Tensor] = None,
entity_prompt_2: str = "",
entity_mask_2: Optional[torch.Tensor] = None,
entity_prompt_3: str = "",
entity_mask_3: Optional[torch.Tensor] = None
) -> io.NodeOutput:
# Extract dimensions from latent tensor
# latent["samples"] shape: [batch, channels, latent_h, latent_w]
@ -139,10 +176,9 @@ class TextEncodeQwenImageEliGen(io.ComfyNode):
unpadded_latent_width = latent_samples.shape[3] # Unpadded latent space
# Calculate padded dimensions (same logic as model's pad_to_patch_size with patch_size=2)
# The model pads latents to be multiples of patch_size (2 for Qwen)
patch_size = 2
pad_h = (patch_size - unpadded_latent_height % patch_size) % patch_size
pad_w = (patch_size - unpadded_latent_width % patch_size) % patch_size
# The model pads latents to be multiples of PATCH_SIZE
pad_h = (cls.PATCH_SIZE - unpadded_latent_height % cls.PATCH_SIZE) % cls.PATCH_SIZE
pad_w = (cls.PATCH_SIZE - unpadded_latent_width % cls.PATCH_SIZE) % cls.PATCH_SIZE
latent_height = unpadded_latent_height + pad_h # Padded latent dimensions
latent_width = unpadded_latent_width + pad_w # Padded latent dimensions
@ -150,8 +186,8 @@ class TextEncodeQwenImageEliGen(io.ComfyNode):
width = latent_width * 8
if pad_h > 0 or pad_w > 0:
print(f"[EliGen] Latent padding detected: {unpadded_latent_height}x{unpadded_latent_width}{latent_height}x{latent_width}")
print(f"[EliGen] Target generation dimensions: {height}x{width} pixels ({latent_height}x{latent_width} latent)")
logger.debug(f"[EliGen] Latent padding detected: {unpadded_latent_height}x{unpadded_latent_width}{latent_height}x{latent_width}")
logger.debug(f"[EliGen] Target generation dimensions: {height}x{width} pixels ({latent_height}x{latent_width} latent)")
# Collect entity prompts and masks
entity_prompts = [entity_prompt_1, entity_prompt_2, entity_prompt_3]
@ -166,7 +202,7 @@ class TextEncodeQwenImageEliGen(io.ComfyNode):
# Log warning if some entities were skipped
total_prompts_provided = len([p for p in entity_prompts if p.strip()])
if len(valid_entities) < total_prompts_provided:
print(f"[EliGen] Warning: Only {len(valid_entities)} of {total_prompts_provided} entity prompts have valid masks")
logger.warning(f"[EliGen] Only {len(valid_entities)} of {total_prompts_provided} entity prompts have valid masks")
# If no valid entities, return standard conditioning
if len(valid_entities) == 0:
@ -200,7 +236,37 @@ class TextEncodeQwenImageEliGen(io.ComfyNode):
# This is different from IMAGE type which is [batch, height, width, channels]
mask_tensor = mask
# Log original mask dimensions
# Validate mask dtype
if mask_tensor.dtype not in [torch.float32, torch.float16, torch.bfloat16]:
raise TypeError(
f"Entity {i+1} mask has invalid dtype {mask_tensor.dtype}. "
f"Expected float32, float16, or bfloat16. "
f"Ensure you're using LoadImageMask node, not LoadImage."
)
# Log original mask statistics
logger.debug(
f"[EliGen] Entity {i+1} input mask: shape={mask_tensor.shape}, "
f"dtype={mask_tensor.dtype}, min={mask_tensor.min():.4f}, max={mask_tensor.max():.4f}"
)
# Check for all-zero masks (common error when wrong channel selected)
if mask_tensor.max() == 0.0:
raise ValueError(
f"Entity {i+1} mask is all zeros! This usually means:\n"
f" 1. Wrong channel selected in LoadImageMask (use 'red', 'green', or 'blue', NOT 'alpha')\n"
f" 2. Your mask image is completely black\n"
f" 3. The mask file failed to load"
)
# Check for constant masks (no variation)
if mask_tensor.min() == mask_tensor.max() and mask_tensor.max() > 0:
logger.warning(
f"[EliGen] Entity {i+1} mask has no variation (all pixels = {mask_tensor.min():.4f}). "
f"This entity will affect the entire image."
)
# Extract original dimensions
original_shape = mask_tensor.shape
if len(original_shape) == 2:
# [height, width] - single mask without batch
@ -211,7 +277,20 @@ class TextEncodeQwenImageEliGen(io.ComfyNode):
# [batch, height, width] - standard MASK format
orig_h, orig_w = original_shape[1], original_shape[2]
else:
raise ValueError(f"Unexpected mask shape: {original_shape}. Expected [H, W] or [B, H, W]")
raise ValueError(
f"Entity {i+1} has unexpected mask shape: {original_shape}. "
f"Expected [H, W] or [B, H, W]. Got {len(original_shape)} dimensions."
)
# Log size mismatch if mask doesn't match expected latent dimensions
expected_h, expected_w = latent_height * 8, latent_width * 8
if orig_h != expected_h or orig_w != expected_w:
logger.info(
f"[EliGen] Entity {i+1} mask size mismatch: {orig_h}x{orig_w} vs expected {expected_h}x{expected_w}. "
f"Will resize to {latent_height}x{latent_width} latent space."
)
else:
logger.debug(f"[EliGen] Entity {i+1} mask: {orig_h}x{orig_w} → will resize to {latent_height}x{latent_width} latent")
# Convert MASK format [batch, height, width] to [batch, 1, height, width] for common_upscale
# common_upscale expects [batch, channels, height, width]
@ -233,17 +312,32 @@ class TextEncodeQwenImageEliGen(io.ComfyNode):
# Log how many pixels are active in the mask
active_pixels = (resized_mask > 0).sum().item()
total_pixels = resized_mask.numel()
coverage_pct = 100 * active_pixels / total_pixels if total_pixels > 0 else 0
if active_pixels == 0:
raise ValueError(
f"Entity {i+1} mask has no active pixels after resizing to latent space! "
f"Original mask may have been too small or all black."
)
logger.debug(
f"[EliGen] Entity {i+1} mask coverage: {active_pixels}/{total_pixels} pixels ({coverage_pct:.1f}%)"
)
processed_entity_masks.append(resized_mask)
# Stack masks: [batch, num_entities, 1, latent_height, latent_width]
# Each item in processed_entity_masks has shape [1, 1, H, W] (batch=1, channel=1)
# We need to remove batch dim, stack, then add it back
# Option 1: Squeeze batch dim from each mask
processed_no_batch = [m.squeeze(0) for m in processed_entity_masks] # Each: [1, H, W]
entity_masks_tensor = torch.stack(processed_no_batch, dim=0) # [num_entities, 1, H, W]
processed_entity_masks_no_batch = [m.squeeze(0) for m in processed_entity_masks] # Each: [1, H, W]
entity_masks_tensor = torch.stack(processed_entity_masks_no_batch, dim=0) # [num_entities, 1, H, W]
entity_masks_tensor = entity_masks_tensor.unsqueeze(0) # [1, num_entities, 1, H, W]
logger.debug(
f"[EliGen] Stacked {len(valid_entities)} entity masks into tensor: "
f"shape={entity_masks_tensor.shape} (expected: [1, {len(valid_entities)}, 1, {latent_height}, {latent_width}])"
)
# Extract global prompt embedding and mask from conditioning
# Conditioning format: [[cond_tensor, extra_dict]]
global_prompt_emb = global_conditioning[0][0] # The embedding tensor directly