Merge branch 'comfyanonymous:master' into master

This commit is contained in:
patientx 2025-03-13 03:13:15 +03:00 committed by GitHub
commit b57a624e7c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 34 additions and 9 deletions

View File

@ -19,5 +19,6 @@
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata /app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata /utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
# Extra nodes # Node developers
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink /comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered
/comfy/comfy_types/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered

View File

@ -2,6 +2,7 @@
from __future__ import annotations from __future__ import annotations
from typing import Literal, TypedDict from typing import Literal, TypedDict
from typing_extensions import NotRequired
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from enum import Enum from enum import Enum
@ -26,6 +27,7 @@ class IO(StrEnum):
BOOLEAN = "BOOLEAN" BOOLEAN = "BOOLEAN"
INT = "INT" INT = "INT"
FLOAT = "FLOAT" FLOAT = "FLOAT"
COMBO = "COMBO"
CONDITIONING = "CONDITIONING" CONDITIONING = "CONDITIONING"
SAMPLER = "SAMPLER" SAMPLER = "SAMPLER"
SIGMAS = "SIGMAS" SIGMAS = "SIGMAS"
@ -66,6 +68,7 @@ class IO(StrEnum):
b = frozenset(value.split(",")) b = frozenset(value.split(","))
return not (b.issubset(a) or a.issubset(b)) return not (b.issubset(a) or a.issubset(b))
class RemoteInputOptions(TypedDict): class RemoteInputOptions(TypedDict):
route: str route: str
"""The route to the remote source.""" """The route to the remote source."""
@ -80,6 +83,14 @@ class RemoteInputOptions(TypedDict):
refresh: int refresh: int
"""The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed.""" """The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
class MultiSelectOptions(TypedDict):
placeholder: NotRequired[str]
"""The placeholder text to display in the multi-select widget when no items are selected."""
chip: NotRequired[bool]
"""Specifies whether to use chips instead of comma separated values for the multi-select widget."""
class InputTypeOptions(TypedDict): class InputTypeOptions(TypedDict):
"""Provides type hinting for the return type of the INPUT_TYPES node function. """Provides type hinting for the return type of the INPUT_TYPES node function.
@ -133,9 +144,22 @@ class InputTypeOptions(TypedDict):
"""Specifies which folder to get preview images from if the input has the ``image_upload`` flag. """Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
""" """
remote: RemoteInputOptions remote: RemoteInputOptions
"""Specifies the configuration for a remote input.""" """Specifies the configuration for a remote input.
Available after ComfyUI frontend v1.9.7
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
control_after_generate: bool control_after_generate: bool
"""Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types.""" """Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
options: NotRequired[list[str | int | float]]
"""COMBO type only. Specifies the selectable options for the combo widget.
Prefer:
["COMBO", {"options": ["Option 1", "Option 2", "Option 3"]}]
Over:
[["Option 1", "Option 2", "Option 3"]]
"""
multi_select: NotRequired[MultiSelectOptions]
"""COMBO type only. Specifies the configuration for a multi-select widget.
Available after ComfyUI frontend v1.13.4
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2987"""
class HiddenInputTypeDict(TypedDict): class HiddenInputTypeDict(TypedDict):

View File

@ -688,10 +688,10 @@ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=N
if len(sigmas) <= 1: if len(sigmas) <= 1:
return x return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
seed = extra_args.get("seed", None) seed = extra_args.get("seed", None)
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp() sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg() t_fn = lambda sigma: sigma.log().neg()
@ -762,10 +762,10 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
if solver_type not in {'heun', 'midpoint'}: if solver_type not in {'heun', 'midpoint'}:
raise ValueError('solver_type must be \'heun\' or \'midpoint\'') raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None) seed = extra_args.get("seed", None)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
old_denoised = None old_denoised = None
@ -808,10 +808,10 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
if len(sigmas) <= 1: if len(sigmas) <= 1:
return x return x
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None) seed = extra_args.get("seed", None)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
denoised_1, denoised_2 = None, None denoised_1, denoised_2 = None, None
@ -858,7 +858,7 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if len(sigmas) <= 1: if len(sigmas) <= 1:
return x return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler) return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
@ -867,7 +867,7 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
if len(sigmas) <= 1: if len(sigmas) <= 1:
return x return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type) return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@ -876,7 +876,7 @@ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
if len(sigmas) <= 1: if len(sigmas) <= 1:
return x return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r) return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)