Merge branch 'comfyanonymous:master' into master

This commit is contained in:
patientx 2025-07-09 00:16:45 +03:00 committed by GitHub
commit b621197729
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 1123 additions and 12 deletions

View File

@ -0,0 +1,121 @@
# SA-Solver: Stochastic Adams Solver (NeurIPS 2023, arXiv:2309.05019)
# Conference: https://proceedings.neurips.cc/paper_files/paper/2023/file/f4a6806490d31216a3ba667eb240c897-Paper-Conference.pdf
# Codebase ref: https://github.com/scxue/SA-Solver
import math
from typing import Union, Callable
import torch
def compute_exponential_coeffs(s: torch.Tensor, t: torch.Tensor, solver_order: int, tau_t: float) -> torch.Tensor:
"""Compute (1 + tau^2) * integral of exp((1 + tau^2) * x) * x^p dx from s to t with exp((1 + tau^2) * t) factored out, using integration by parts.
Integral of exp((1 + tau^2) * x) * x^p dx
= product_terms[p] - (p / (1 + tau^2)) * integral of exp((1 + tau^2) * x) * x^(p-1) dx,
with base case p=0 where integral equals product_terms[0].
where
product_terms[p] = x^p * exp((1 + tau^2) * x) / (1 + tau^2).
Construct a recursive coefficient matrix following the above recursive relation to compute all integral terms up to p = (solver_order - 1).
Return coefficients used by the SA-Solver in data prediction mode.
Args:
s: Start time s.
t: End time t.
solver_order: Current order of the solver.
tau_t: Stochastic strength parameter in the SDE.
Returns:
Exponential coefficients used in data prediction, with exp((1 + tau^2) * t) factored out, ordered from p=0 to p=solver_order1, shape (solver_order,).
"""
tau_mul = 1 + tau_t ** 2
h = t - s
p = torch.arange(solver_order, dtype=s.dtype, device=s.device)
# product_terms after factoring out exp((1 + tau^2) * t)
# Includes (1 + tau^2) factor from outside the integral
product_terms_factored = (t ** p - s ** p * (-tau_mul * h).exp())
# Lower triangular recursive coefficient matrix
# Accumulates recursive coefficients based on p / (1 + tau^2)
recursive_depth_mat = p.unsqueeze(1) - p.unsqueeze(0)
log_factorial = (p + 1).lgamma()
recursive_coeff_mat = log_factorial.unsqueeze(1) - log_factorial.unsqueeze(0)
if tau_t > 0:
recursive_coeff_mat = recursive_coeff_mat - (recursive_depth_mat * math.log(tau_mul))
signs = torch.where(recursive_depth_mat % 2 == 0, 1.0, -1.0)
recursive_coeff_mat = (recursive_coeff_mat.exp() * signs).tril()
return recursive_coeff_mat @ product_terms_factored
def compute_simple_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, is_corrector_step: bool = False) -> torch.Tensor:
"""Compute simple order-2 b coefficients from SA-Solver paper (Appendix D. Implementation Details)."""
tau_mul = 1 + tau_t ** 2
h = lambda_t - lambda_s
alpha_t = sigma_next * lambda_t.exp()
if is_corrector_step:
# Simplified 1-step (order-2) corrector
b_1 = alpha_t * (0.5 * tau_mul * h)
b_2 = alpha_t * (-h * tau_mul).expm1().neg() - b_1
else:
# Simplified 2-step predictor
b_2 = alpha_t * (0.5 * tau_mul * h ** 2) / (curr_lambdas[-2] - lambda_s)
b_1 = alpha_t * (-h * tau_mul).expm1().neg() - b_2
return torch.stack([b_2, b_1])
def compute_stochastic_adams_b_coeffs(sigma_next: torch.Tensor, curr_lambdas: torch.Tensor, lambda_s: torch.Tensor, lambda_t: torch.Tensor, tau_t: float, simple_order_2: bool = False, is_corrector_step: bool = False) -> torch.Tensor:
"""Compute b_i coefficients for the SA-Solver (see eqs. 15 and 18).
The solver order corresponds to the number of input lambdas (half-logSNR points).
Args:
sigma_next: Sigma at end time t.
curr_lambdas: Lambda time points used to construct the Lagrange basis, shape (N,).
lambda_s: Lambda at start time s.
lambda_t: Lambda at end time t.
tau_t: Stochastic strength parameter in the SDE.
simple_order_2: Whether to enable the simple order-2 scheme.
is_corrector_step: Flag for corrector step in simple order-2 mode.
Returns:
b_i coefficients for the SA-Solver, shape (N,), where N is the solver order.
"""
num_timesteps = curr_lambdas.shape[0]
if simple_order_2 and num_timesteps == 2:
return compute_simple_stochastic_adams_b_coeffs(sigma_next, curr_lambdas, lambda_s, lambda_t, tau_t, is_corrector_step)
# Compute coefficients by solving a linear system from Lagrange basis interpolation
exp_integral_coeffs = compute_exponential_coeffs(lambda_s, lambda_t, num_timesteps, tau_t)
vandermonde_matrix_T = torch.vander(curr_lambdas, num_timesteps, increasing=True).T
lagrange_integrals = torch.linalg.solve(vandermonde_matrix_T, exp_integral_coeffs)
# (sigma_t * exp(-tau^2 * lambda_t)) * exp((1 + tau^2) * lambda_t)
# = sigma_t * exp(lambda_t) = alpha_t
# exp((1 + tau^2) * lambda_t) is extracted from the integral
alpha_t = sigma_next * lambda_t.exp()
return alpha_t * lagrange_integrals
def get_tau_interval_func(start_sigma: float, end_sigma: float, eta: float = 1.0) -> Callable[[Union[torch.Tensor, float]], float]:
"""Return a function that controls the stochasticity of SA-Solver.
When eta = 0, SA-Solver runs as ODE. The official approach uses
time t to determine the SDE interval, while here we use sigma instead.
See:
https://github.com/scxue/SA-Solver/blob/main/README.md
"""
def tau_func(sigma: Union[torch.Tensor, float]) -> float:
if eta <= 0:
return 0.0 # ODE
if isinstance(sigma, torch.Tensor):
sigma = sigma.item()
return eta if start_sigma >= sigma >= end_sigma else 0.0
return tau_func

View File

@ -9,6 +9,7 @@ from tqdm.auto import trange, tqdm
from . import utils
from . import deis
from . import sa_solver
import comfy.model_patcher
import comfy.model_sampling
@ -1648,3 +1649,113 @@ def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=Non
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
return x
@torch.no_grad()
def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=False, tau_func=None, s_noise=1.0, noise_sampler=None, predictor_order=3, corrector_order=4, use_pece=False, simple_order_2=False):
"""Stochastic Adams Solver with predictor-corrector method (NeurIPS 2023)."""
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object("model_sampling")
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
lambdas = sigma_to_half_log_snr(sigmas, model_sampling=model_sampling)
if tau_func is None:
# Use default interval for stochastic sampling
start_sigma = model_sampling.percent_to_sigma(0.2)
end_sigma = model_sampling.percent_to_sigma(0.8)
tau_func = sa_solver.get_tau_interval_func(start_sigma, end_sigma, eta=1.0)
max_used_order = max(predictor_order, corrector_order)
x_pred = x # x: current state, x_pred: predicted next state
h = 0.0
tau_t = 0.0
noise = 0.0
pred_list = []
# Lower order near the end to improve stability
lower_order_to_end = sigmas[-1].item() == 0
for i in trange(len(sigmas) - 1, disable=disable):
# Evaluation
denoised = model(x_pred, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({"x": x_pred, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
pred_list.append(denoised)
pred_list = pred_list[-max_used_order:]
predictor_order_used = min(predictor_order, len(pred_list))
if i == 0 or (sigmas[i + 1] == 0 and not use_pece):
corrector_order_used = 0
else:
corrector_order_used = min(corrector_order, len(pred_list))
if lower_order_to_end:
predictor_order_used = min(predictor_order_used, len(sigmas) - 2 - i)
corrector_order_used = min(corrector_order_used, len(sigmas) - 1 - i)
# Corrector
if corrector_order_used == 0:
# Update by the predicted state
x = x_pred
else:
curr_lambdas = lambdas[i - corrector_order_used + 1:i + 1]
b_coeffs = sa_solver.compute_stochastic_adams_b_coeffs(
sigmas[i],
curr_lambdas,
lambdas[i - 1],
lambdas[i],
tau_t,
simple_order_2,
is_corrector_step=True,
)
pred_mat = torch.stack(pred_list[-corrector_order_used:], dim=1) # (B, K, ...)
corr_res = torch.tensordot(pred_mat, b_coeffs, dims=([1], [0])) # (B, ...)
x = sigmas[i] / sigmas[i - 1] * (-(tau_t ** 2) * h).exp() * x + corr_res
if tau_t > 0 and s_noise > 0:
# The noise from the previous predictor step
x = x + noise
if use_pece:
# Evaluate the corrected state
denoised = model(x, sigmas[i] * s_in, **extra_args)
pred_list[-1] = denoised
# Predictor
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
tau_t = tau_func(sigmas[i + 1])
curr_lambdas = lambdas[i - predictor_order_used + 1:i + 1]
b_coeffs = sa_solver.compute_stochastic_adams_b_coeffs(
sigmas[i + 1],
curr_lambdas,
lambdas[i],
lambdas[i + 1],
tau_t,
simple_order_2,
is_corrector_step=False,
)
pred_mat = torch.stack(pred_list[-predictor_order_used:], dim=1) # (B, K, ...)
pred_res = torch.tensordot(pred_mat, b_coeffs, dims=([1], [0])) # (B, ...)
h = lambdas[i + 1] - lambdas[i]
x_pred = sigmas[i + 1] / sigmas[i] * (-(tau_t ** 2) * h).exp() * x + pred_res
if tau_t > 0 and s_noise > 0:
noise = noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * tau_t ** 2 * h).expm1().neg().sqrt() * s_noise
x_pred = x_pred + noise
return x
@torch.no_grad()
def sample_sa_solver_pece(model, x, sigmas, extra_args=None, callback=None, disable=False, tau_func=None, s_noise=1.0, noise_sampler=None, predictor_order=3, corrector_order=4, simple_order_2=False):
"""Stochastic Adams Solver with PECE (PredictEvaluateCorrectEvaluate) mode (NeurIPS 2023)."""
return sample_sa_solver(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, tau_func=tau_func, s_noise=s_noise, noise_sampler=noise_sampler, predictor_order=predictor_order, corrector_order=corrector_order, use_pece=True, simple_order_2=simple_order_2)

View File

@ -254,13 +254,12 @@ class Chroma(nn.Module):
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
bs, c, h, w = x.shape
patch_size = 2
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=self.patch_size, pw=self.patch_size)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
h_len = ((h + (self.patch_size // 2)) // self.patch_size)
w_len = ((w + (self.patch_size // 2)) // self.patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
@ -268,4 +267,4 @@ class Chroma(nn.Module):
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h,:w]

View File

@ -720,7 +720,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3"]
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3", "sa_solver", "sa_solver_pece"]
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):

View File

@ -1,6 +1,7 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Optional
from typing import Optional, Union
import io
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
class VideoInput(ABC):
@ -31,6 +32,22 @@ class VideoInput(ABC):
"""
pass
def get_stream_source(self) -> Union[str, io.BytesIO]:
"""
Get a streamable source for the video. This allows processing without
loading the entire video into memory.
Returns:
Either a file path (str) or a BytesIO object that can be opened with av.
Default implementation creates a BytesIO buffer, but subclasses should
override this for better performance when possible.
"""
buffer = io.BytesIO()
self.save_to(buffer)
buffer.seek(0)
return buffer
# Provide a default implementation, but subclasses can provide optimized versions
# if possible.
def get_dimensions(self) -> tuple[int, int]:

View File

@ -64,6 +64,15 @@ class VideoFromFile(VideoInput):
"""
self.__file = file
def get_stream_source(self) -> str | io.BytesIO:
"""
Return the underlying file source for efficient streaming.
This avoids unnecessary memory copies when the source is already a file path.
"""
if isinstance(self.__file, io.BytesIO):
self.__file.seek(0)
return self.__file
def get_dimensions(self) -> tuple[int, int]:
"""
Returns the dimensions of the video input.

View File

@ -1,6 +1,6 @@
# generated by datamodel-codegen:
# filename: filtered-openapi.yaml
# timestamp: 2025-05-19T21:38:55+00:00
# timestamp: 2025-07-06T09:47:31+00:00
from __future__ import annotations
@ -1355,6 +1355,158 @@ class ModelResponseProperties(BaseModel):
)
class Keyframes(BaseModel):
image_url: Optional[str] = None
class MoonvalleyPromptResponse(BaseModel):
error: Optional[Dict[str, Any]] = None
frame_conditioning: Optional[Dict[str, Any]] = None
id: Optional[str] = None
inference_params: Optional[Dict[str, Any]] = None
meta: Optional[Dict[str, Any]] = None
model_params: Optional[Dict[str, Any]] = None
output_url: Optional[str] = None
prompt_text: Optional[str] = None
status: Optional[str] = None
class MoonvalleyTextToVideoInferenceParams(BaseModel):
add_quality_guidance: Optional[bool] = Field(
True, description='Whether to add quality guidance'
)
caching_coefficient: Optional[float] = Field(
0.3, description='Caching coefficient for optimization'
)
caching_cooldown: Optional[int] = Field(
3, description='Number of caching cooldown steps'
)
caching_warmup: Optional[int] = Field(
3, description='Number of caching warmup steps'
)
clip_value: Optional[float] = Field(
3, description='CLIP value for generation control'
)
conditioning_frame_index: Optional[int] = Field(
0, description='Index of the conditioning frame'
)
cooldown_steps: Optional[int] = Field(
None, description='Number of cooldown steps (calculated based on num_frames)'
)
fps: Optional[int] = Field(
24, description='Frames per second of the generated video'
)
guidance_scale: Optional[float] = Field(
12.5, description='Guidance scale for generation control'
)
height: Optional[int] = Field(
1080, description='Height of the generated video in pixels'
)
negative_prompt: Optional[str] = Field(None, description='Negative prompt text')
num_frames: Optional[int] = Field(64, description='Number of frames to generate')
seed: Optional[int] = Field(
None, description='Random seed for generation (default: random)'
)
shift_value: Optional[float] = Field(
3, description='Shift value for generation control'
)
steps: Optional[int] = Field(80, description='Number of denoising steps')
use_guidance_schedule: Optional[bool] = Field(
True, description='Whether to use guidance scheduling'
)
use_negative_prompts: Optional[bool] = Field(
False, description='Whether to use negative prompts'
)
use_timestep_transform: Optional[bool] = Field(
True, description='Whether to use timestep transformation'
)
warmup_steps: Optional[int] = Field(
None, description='Number of warmup steps (calculated based on num_frames)'
)
width: Optional[int] = Field(
1920, description='Width of the generated video in pixels'
)
class MoonvalleyTextToVideoRequest(BaseModel):
image_url: Optional[str] = None
inference_params: Optional[MoonvalleyTextToVideoInferenceParams] = None
prompt_text: Optional[str] = None
webhook_url: Optional[str] = None
class MoonvalleyUploadFileRequest(BaseModel):
file: Optional[StrictBytes] = None
class MoonvalleyUploadFileResponse(BaseModel):
access_url: Optional[str] = None
class MoonvalleyVideoToVideoInferenceParams(BaseModel):
add_quality_guidance: Optional[bool] = Field(
True, description='Whether to add quality guidance'
)
caching_coefficient: Optional[float] = Field(
0.3, description='Caching coefficient for optimization'
)
caching_cooldown: Optional[int] = Field(
3, description='Number of caching cooldown steps'
)
caching_warmup: Optional[int] = Field(
3, description='Number of caching warmup steps'
)
clip_value: Optional[float] = Field(
3, description='CLIP value for generation control'
)
conditioning_frame_index: Optional[int] = Field(
0, description='Index of the conditioning frame'
)
cooldown_steps: Optional[int] = Field(
None, description='Number of cooldown steps (calculated based on num_frames)'
)
guidance_scale: Optional[float] = Field(
12.5, description='Guidance scale for generation control'
)
negative_prompt: Optional[str] = Field(None, description='Negative prompt text')
seed: Optional[int] = Field(
None, description='Random seed for generation (default: random)'
)
shift_value: Optional[float] = Field(
3, description='Shift value for generation control'
)
steps: Optional[int] = Field(80, description='Number of denoising steps')
use_guidance_schedule: Optional[bool] = Field(
True, description='Whether to use guidance scheduling'
)
use_negative_prompts: Optional[bool] = Field(
False, description='Whether to use negative prompts'
)
use_timestep_transform: Optional[bool] = Field(
True, description='Whether to use timestep transformation'
)
warmup_steps: Optional[int] = Field(
None, description='Number of warmup steps (calculated based on num_frames)'
)
class ControlType(str, Enum):
motion_control = 'motion_control'
pose_control = 'pose_control'
class MoonvalleyVideoToVideoRequest(BaseModel):
control_type: ControlType = Field(
..., description='Supported types for video control'
)
inference_params: Optional[MoonvalleyVideoToVideoInferenceParams] = None
prompt_text: str = Field(..., description='Describes the video to generate')
video_url: str = Field(..., description='Url to control video')
webhook_url: Optional[str] = Field(
None, description='Optional webhook URL for notifications'
)
class Moderation(str, Enum):
low = 'low'
auto = 'auto'
@ -3107,6 +3259,23 @@ class LumaUpscaleVideoGenerationRequest(BaseModel):
resolution: Optional[LumaVideoModelOutputResolution] = None
class MoonvalleyImageToVideoRequest(MoonvalleyTextToVideoRequest):
keyframes: Optional[Dict[str, Keyframes]] = None
class MoonvalleyResizeVideoRequest(MoonvalleyVideoToVideoRequest):
frame_position: Optional[List[int]] = Field(None, max_length=2, min_length=2)
frame_resolution: Optional[List[int]] = Field(None, max_length=2, min_length=2)
scale: Optional[List[int]] = Field(None, max_length=2, min_length=2)
class MoonvalleyTextToImageRequest(BaseModel):
image_url: Optional[str] = None
inference_params: Optional[MoonvalleyTextToVideoInferenceParams] = None
prompt_text: Optional[str] = None
webhook_url: Optional[str] = None
class OutputContent(RootModel[Union[OutputTextContent, OutputAudioContent]]):
root: Union[OutputTextContent, OutputAudioContent]

View File

@ -0,0 +1,639 @@
import logging
from typing import Any, Callable, Optional, TypeVar
import random
import torch
from comfy_api_nodes.util.validation_utils import get_image_dimensions, validate_image_dimensions, validate_video_dimensions
from comfy_api_nodes.apis import (
MoonvalleyTextToVideoRequest,
MoonvalleyTextToVideoInferenceParams,
MoonvalleyVideoToVideoInferenceParams,
MoonvalleyVideoToVideoRequest,
MoonvalleyPromptResponse
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
download_url_to_video_output,
upload_images_to_comfyapi,
upload_video_to_comfyapi,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input
from comfy_api.input.video_types import VideoInput
from comfy.comfy_types.node_typing import IO
from comfy_api.input_impl import VideoFromFile
import av
import io
API_UPLOADS_ENDPOINT = "/proxy/moonvalley/uploads"
API_PROMPTS_ENDPOINT = "/proxy/moonvalley/prompts"
API_VIDEO2VIDEO_ENDPOINT = "/proxy/moonvalley/prompts/video-to-video"
API_TXT2VIDEO_ENDPOINT = "/proxy/moonvalley/prompts/text-to-video"
API_IMG2VIDEO_ENDPOINT = "/proxy/moonvalley/prompts/image-to-video"
MIN_WIDTH = 300
MIN_HEIGHT = 300
MAX_WIDTH = 10000
MAX_HEIGHT = 10000
MIN_VID_WIDTH = 300
MIN_VID_HEIGHT = 300
MAX_VID_WIDTH = 10000
MAX_VID_HEIGHT = 10000
MAX_VIDEO_SIZE = 1024 * 1024 * 1024 # 1 GB max for in-memory video processing
MOONVALLEY_MAREY_MAX_PROMPT_LENGTH = 5000
R = TypeVar("R")
class MoonvalleyApiError(Exception):
"""Base exception for Moonvalley API errors."""
pass
def is_valid_task_creation_response(response: MoonvalleyPromptResponse) -> bool:
"""Verifies that the initial response contains a task ID."""
return bool(response.id)
def validate_task_creation_response(response) -> None:
if not is_valid_task_creation_response(response):
error_msg = f"Moonvalley Marey API: Initial request failed. Code: {response.code}, Message: {response.message}, Data: {response}"
logging.error(error_msg)
raise MoonvalleyApiError(error_msg)
def get_video_from_response(response):
video = response.output_url
logging.info(
"Moonvalley Marey API: Task %s succeeded. Video URL: %s", response.id, video
)
return video
def get_video_url_from_response(response) -> Optional[str]:
"""Returns the first video url from the Moonvalley video generation task result.
Will not raise an error if the response is not valid.
"""
if response:
return str(get_video_from_response(response))
else:
return None
def poll_until_finished(
auth_kwargs: dict[str, str],
api_endpoint: ApiEndpoint[Any, R],
result_url_extractor: Optional[Callable[[R], str]] = None,
node_id: Optional[str] = None,
) -> R:
"""Polls the Moonvalley API endpoint until the task reaches a terminal state, then returns the response."""
return PollingOperation(
poll_endpoint=api_endpoint,
completed_statuses=[
"completed",
],
max_poll_attempts=240, # 64 minutes with 16s interval
poll_interval=16.0,
failed_statuses=["error"],
status_extractor=lambda response: (
response.status
if response and response.status
else None
),
auth_kwargs=auth_kwargs,
result_url_extractor=result_url_extractor,
node_id=node_id,
).execute()
def validate_prompts(prompt:str, negative_prompt: str, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH):
"""Verifies that the prompt isn't empty and that neither prompt is too long."""
if not prompt:
raise ValueError("Positive prompt is empty")
if len(prompt) > max_length:
raise ValueError(f"Positive prompt is too long: {len(prompt)} characters")
if negative_prompt and len(negative_prompt) > max_length:
raise ValueError(
f"Negative prompt is too long: {len(negative_prompt)} characters"
)
return True
def validate_input_media(width, height, with_frame_conditioning, num_frames_in=None):
# inference validation
# T = num_frames
# in all cases, the following must be true: T divisible by 16 and H,W by 8. in addition...
# with image conditioning: H*W must be divisible by 8192
# without image conditioning: T divisible by 32
if num_frames_in and not num_frames_in % 16 == 0 :
return False, (
"The input video total frame count must be divisible by 16!"
)
if height % 8 != 0 or width % 8 != 0:
return False, (
f"Height ({height}) and width ({width}) must be " "divisible by 8"
)
if with_frame_conditioning:
if (height * width) % 8192 != 0:
return False, (
f"Height * width ({height * width}) must be "
"divisible by 8192 for frame conditioning"
)
else:
if num_frames_in and not num_frames_in % 32 == 0 :
return False, (
"The input video total frame count must be divisible by 32!"
)
def validate_input_image(image: torch.Tensor, with_frame_conditioning: bool=False) -> None:
"""
Validates the input image adheres to the expectations of the API:
- The image resolution should not be less than 300*300px
- The aspect ratio of the image should be between 1:2.5 ~ 2.5:1
"""
height, width = get_image_dimensions(image)
validate_input_media(width, height, with_frame_conditioning )
validate_image_dimensions(image, min_width=300, min_height=300, max_height=MAX_HEIGHT, max_width=MAX_WIDTH)
def validate_input_video(video: VideoInput, num_frames_out: int, with_frame_conditioning: bool=False):
try:
width, height = video.get_dimensions()
except Exception as e:
logging.error("Error getting dimensions of video: %s", e)
raise ValueError(f"Cannot get video dimensions: {e}") from e
validate_input_media(width, height, with_frame_conditioning)
validate_video_dimensions(video, min_width=MIN_VID_WIDTH, min_height=MIN_VID_HEIGHT, max_width=MAX_VID_WIDTH, max_height=MAX_VID_HEIGHT)
trimmed_video = validate_input_video_length(video, num_frames_out)
return trimmed_video
def validate_input_video_length(video: VideoInput, num_frames: int):
if video.get_duration() > 60:
raise MoonvalleyApiError("Input Video lenth should be less than 1min. Please trim.")
if num_frames == 128:
if video.get_duration() < 5:
raise MoonvalleyApiError("Input Video length is less than 5s. Please use a video longer than or equal to 5s.")
if video.get_duration() > 5:
# trim video to 5s
video = trim_video(video, 5)
if num_frames == 256:
if video.get_duration() < 10:
raise MoonvalleyApiError("Input Video length is less than 10s. Please use a video longer than or equal to 10s.")
if video.get_duration() > 10:
# trim video to 10s
video = trim_video(video, 10)
return video
def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
"""
Returns a new VideoInput object trimmed from the beginning to the specified duration,
using av to avoid loading entire video into memory.
Args:
video: Input video to trim
duration_sec: Duration in seconds to keep from the beginning
Returns:
VideoFromFile object that owns the output buffer
"""
output_buffer = io.BytesIO()
input_container = None
output_container = None
try:
# Get the stream source - this avoids loading entire video into memory
# when the source is already a file path
input_source = video.get_stream_source()
# Open containers
input_container = av.open(input_source, mode='r')
output_container = av.open(output_buffer, mode='w', format='mp4')
# Set up output streams for re-encoding
video_stream = None
audio_stream = None
for stream in input_container.streams:
logging.info(f"Found stream: type={stream.type}, class={type(stream)}")
if isinstance(stream, av.VideoStream):
# Create output video stream with same parameters
video_stream = output_container.add_stream('h264', rate=stream.average_rate)
video_stream.width = stream.width
video_stream.height = stream.height
video_stream.pix_fmt = 'yuv420p'
logging.info(f"Added video stream: {stream.width}x{stream.height} @ {stream.average_rate}fps")
elif isinstance(stream, av.AudioStream):
# Create output audio stream with same parameters
audio_stream = output_container.add_stream('aac', rate=stream.sample_rate)
audio_stream.sample_rate = stream.sample_rate
audio_stream.layout = stream.layout
logging.info(f"Added audio stream: {stream.sample_rate}Hz, {stream.channels} channels")
# Calculate target frame count that's divisible by 32
fps = input_container.streams.video[0].average_rate
estimated_frames = int(duration_sec * fps)
target_frames = (estimated_frames // 32) * 32 # Round down to nearest multiple of 32
if target_frames == 0:
raise ValueError("Video too short: need at least 32 frames for Moonvalley")
frame_count = 0
audio_frame_count = 0
# Decode and re-encode video frames
if video_stream:
for frame in input_container.decode(video=0):
if frame_count >= target_frames:
break
# Re-encode frame
for packet in video_stream.encode(frame):
output_container.mux(packet)
frame_count += 1
# Flush encoder
for packet in video_stream.encode():
output_container.mux(packet)
logging.info(f"Encoded {frame_count} video frames (target: {target_frames})")
# Decode and re-encode audio frames
if audio_stream:
input_container.seek(0) # Reset to beginning for audio
for frame in input_container.decode(audio=0):
if frame.time >= duration_sec:
break
# Re-encode frame
for packet in audio_stream.encode(frame):
output_container.mux(packet)
audio_frame_count += 1
# Flush encoder
for packet in audio_stream.encode():
output_container.mux(packet)
logging.info(f"Encoded {audio_frame_count} audio frames")
# Close containers
output_container.close()
input_container.close()
# Return as VideoFromFile using the buffer
output_buffer.seek(0)
return VideoFromFile(output_buffer)
except Exception as e:
# Clean up on error
if input_container is not None:
input_container.close()
if output_container is not None:
output_container.close()
raise RuntimeError(f"Failed to trim video: {str(e)}") from e
# --- BaseMoonvalleyVideoNode ---
class BaseMoonvalleyVideoNode:
def parseWidthHeightFromRes(self, resolution: str):
# Accepts a string like "16:9 (1920 x 1080)" and returns width, height as a dict
res_map = {
"16:9 (1920 x 1080)": {"width": 1920, "height": 1080},
"9:16 (1080 x 1920)": {"width": 1080, "height": 1920},
"1:1 (1152 x 1152)": {"width": 1152, "height": 1152},
"4:3 (1440 x 1080)": {"width": 1440, "height": 1080},
"3:4 (1080 x 1440)": {"width": 1080, "height": 1440},
"21:9 (2560 x 1080)": {"width": 2560, "height": 1080},
}
if resolution in res_map:
return res_map[resolution]
else:
# Default to 1920x1080 if unknown
return {"width": 1920, "height": 1080}
def parseControlParameter(self, value):
control_map = {
"Motion Transfer": "motion_control",
"Canny": "canny_control",
"Pose Transfer": "pose_control",
"Depth": "depth_control"
}
if value in control_map:
return control_map[value]
else:
return control_map["Motion Transfer"]
def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> MoonvalleyPromptResponse:
return poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{API_PROMPTS_ENDPOINT}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MoonvalleyPromptResponse,
),
result_url_extractor=get_video_url_from_response,
node_id=node_id,
)
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING, MoonvalleyTextToVideoRequest, "prompt_text",
multiline=True
),
"negative_prompt": model_field_to_node_input(
IO.STRING,
MoonvalleyTextToVideoInferenceParams,
"negative_prompt",
multiline=True,
default="gopro, bright, contrast, static, overexposed, bright, vignette, artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, flare, saturation, distorted, warped, wide angle, contrast, saturated, vibrant, glowing, cross dissolve, texture, videogame, saturation, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, blown out, horrible, blurry, worst quality, bad, transition, dissolve, cross-dissolve, melt, fade in, fade out, wobbly, weird, low quality, plastic, stock footage, video camera, boring, static",
),
"resolution": (IO.COMBO, {
"options": ["16:9 (1920 x 1080)",
"9:16 (1080 x 1920)",
"1:1 (1152 x 1152)",
"4:3 (1440 x 1080)",
"3:4 (1080 x 1440)",
"21:9 (2560 x 1080)"],
"default": "16:9 (1920 x 1080)",
"tooltip": "Resolution of the output video",
}),
# "length": (IO.COMBO,{"options":['5s','10s'], "default": '5s'}),
"prompt_adherence": model_field_to_node_input(IO.FLOAT,MoonvalleyTextToVideoInferenceParams,"guidance_scale",default=7.0, step=1, min=1, max=20),
"seed": model_field_to_node_input(IO.INT,MoonvalleyTextToVideoInferenceParams, "seed", default=random.randint(0, 2**32 - 1), min=0, max=4294967295, step=1, display="number", tooltip="Random seed value", control_after_generate=True),
"steps": model_field_to_node_input(IO.INT, MoonvalleyTextToVideoInferenceParams, "steps", default=100, min=1, max=100),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
"optional": {
"image": model_field_to_node_input(
IO.IMAGE,
MoonvalleyTextToVideoRequest,
"image_url",
tooltip="The reference image used to generate the video",
),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "generate"
CATEGORY = "api node/video/Moonvalley Marey"
API_NODE = True
def generate(self, **kwargs):
return None
# --- MoonvalleyImg2VideoNode ---
class MoonvalleyImg2VideoNode(BaseMoonvalleyVideoNode):
@classmethod
def INPUT_TYPES(cls):
return super().INPUT_TYPES()
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video",)
DESCRIPTION = "Moonvalley Marey Image to Video Node"
def generate(self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs):
image = kwargs.get("image", None)
if (image is None):
raise MoonvalleyApiError("image is required")
total_frames = get_total_frames_from_length()
validate_input_image(image,True)
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
width_height = self.parseWidthHeightFromRes(kwargs.get("resolution"))
inference_params=MoonvalleyTextToVideoInferenceParams(
negative_prompt=negative_prompt,
steps=kwargs.get("steps"),
seed=kwargs.get("seed"),
guidance_scale=kwargs.get("prompt_adherence"),
num_frames=total_frames,
width=width_height.get("width"),
height=width_height.get("height"),
use_negative_prompts=True
)
"""Upload image to comfy backend to have a URL available for further processing"""
# Get MIME type from tensor - assuming PNG format for image tensors
mime_type = "image/png"
image_url = upload_images_to_comfyapi(image, max_images=1, auth_kwargs=kwargs, mime_type=mime_type)[0]
request = MoonvalleyTextToVideoRequest(
image_url=image_url,
prompt_text=prompt,
inference_params=inference_params
)
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(path=API_IMG2VIDEO_ENDPOINT,
method=HttpMethod.POST,
request_model=MoonvalleyTextToVideoRequest,
response_model=MoonvalleyPromptResponse
),
request=request,
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
video = download_url_to_video_output(final_response.output_url)
return (video, )
# --- MoonvalleyVid2VidNode ---
class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
def __init__(self):
super().__init__()
@classmethod
def INPUT_TYPES(cls):
input_types = super().INPUT_TYPES()
for param in ["resolution", "image"]:
if param in input_types["required"]:
del input_types["required"][param]
if param in input_types["optional"]:
del input_types["optional"][param]
input_types["optional"] = {
"video": (IO.VIDEO, {"default": "", "multiline": False, "tooltip": "The reference video used to generate the output video. Input a 5s video for 128 frames and a 10s video for 256 frames. Longer videos will be trimmed automatically."}),
"control_type": (
["Motion Transfer", "Pose Transfer"],
{"default": "Motion Transfer"},
),
"motion_intensity": (
"INT",
{
"default": 100,
"step": 1,
"min": 0,
"max": 100,
"tooltip": "Only used if control_type is 'Motion Transfer'",
},
)
}
return input_types
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video",)
def generate(self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs):
video = kwargs.get("video")
num_frames = get_total_frames_from_length()
if not video :
raise MoonvalleyApiError("video is required")
"""Validate video input"""
video_url=""
if video:
validated_video = validate_input_video(video, num_frames, False)
video_url = upload_video_to_comfyapi(validated_video, auth_kwargs=kwargs)
control_type = kwargs.get("control_type")
motion_intensity = kwargs.get("motion_intensity")
"""Validate prompts and inference input"""
validate_prompts(prompt, negative_prompt)
inference_params=MoonvalleyVideoToVideoInferenceParams(
negative_prompt=negative_prompt,
steps=kwargs.get("steps"),
seed=kwargs.get("seed"),
guidance_scale=kwargs.get("prompt_adherence"),
control_params={'motion_intensity': motion_intensity}
)
control = self.parseControlParameter(control_type)
request = MoonvalleyVideoToVideoRequest(
control_type=control,
video_url=video_url,
prompt_text=prompt,
inference_params=inference_params
)
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(path=API_VIDEO2VIDEO_ENDPOINT,
method=HttpMethod.POST,
request_model=MoonvalleyVideoToVideoRequest,
response_model=MoonvalleyPromptResponse
),
request=request,
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
video = download_url_to_video_output(final_response.output_url)
return (video, )
# --- MoonvalleyTxt2VideoNode ---
class MoonvalleyTxt2VideoNode(BaseMoonvalleyVideoNode):
def __init__(self):
super().__init__()
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video",)
@classmethod
def INPUT_TYPES(cls):
input_types = super().INPUT_TYPES()
# Remove image-specific parameters
for param in ["image"]:
if param in input_types["optional"]:
del input_types["optional"][param]
return input_types
def generate(self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs):
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
width_height = self.parseWidthHeightFromRes(kwargs.get("resolution"))
num_frames = get_total_frames_from_length()
inference_params=MoonvalleyTextToVideoInferenceParams(
negative_prompt=negative_prompt,
steps=kwargs.get("steps"),
seed=kwargs.get("seed"),
guidance_scale=kwargs.get("prompt_adherence"),
num_frames=num_frames,
width=width_height.get("width"),
height=width_height.get("height"),
)
request = MoonvalleyTextToVideoRequest(
prompt_text=prompt,
inference_params=inference_params
)
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(path=API_TXT2VIDEO_ENDPOINT,
method=HttpMethod.POST,
request_model=MoonvalleyTextToVideoRequest,
response_model=MoonvalleyPromptResponse
),
request=request,
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
video = download_url_to_video_output(final_response.output_url)
return (video, )
NODE_CLASS_MAPPINGS = {
"MoonvalleyImg2VideoNode": MoonvalleyImg2VideoNode,
"MoonvalleyTxt2VideoNode": MoonvalleyTxt2VideoNode,
# "MoonvalleyVideo2VideoNode": MoonvalleyVideo2VideoNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"MoonvalleyImg2VideoNode": "Moonvalley Marey Image to Video",
"MoonvalleyTxt2VideoNode": "Moonvalley Marey Text to Video",
# "MoonvalleyVideo2VideoNode": "Moonvalley Marey Video to Video",
}
def get_total_frames_from_length(length="5s"):
# if length == '5s':
# return 128
# elif length == '10s':
# return 256
return 128
# else:
# raise MoonvalleyApiError("length is required")

View File

@ -2,6 +2,7 @@ import math
import comfy.samplers
import comfy.sample
from comfy.k_diffusion import sampling as k_diffusion_sampling
from comfy.k_diffusion import sa_solver
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
import latent_preview
import torch
@ -521,6 +522,49 @@ class SamplerER_SDE(ComfyNodeABC):
return (sampler,)
class SamplerSASolver(ComfyNodeABC):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"model": (IO.MODEL, {}),
"eta": (IO.FLOAT, {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, "round": False},),
"sde_start_percent": (IO.FLOAT, {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001},),
"sde_end_percent": (IO.FLOAT, {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.001},),
"s_noise": (IO.FLOAT, {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": False},),
"predictor_order": (IO.INT, {"default": 3, "min": 1, "max": 6}),
"corrector_order": (IO.INT, {"default": 4, "min": 0, "max": 6}),
"use_pece": (IO.BOOLEAN, {}),
"simple_order_2": (IO.BOOLEAN, {}),
}
}
RETURN_TYPES = (IO.SAMPLER,)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, model, eta, sde_start_percent, sde_end_percent, s_noise, predictor_order, corrector_order, use_pece, simple_order_2):
model_sampling = model.get_model_object("model_sampling")
start_sigma = model_sampling.percent_to_sigma(sde_start_percent)
end_sigma = model_sampling.percent_to_sigma(sde_end_percent)
tau_func = sa_solver.get_tau_interval_func(start_sigma, end_sigma, eta=eta)
sampler_name = "sa_solver"
sampler = comfy.samplers.ksampler(
sampler_name,
{
"tau_func": tau_func,
"s_noise": s_noise,
"predictor_order": predictor_order,
"corrector_order": corrector_order,
"use_pece": use_pece,
"simple_order_2": simple_order_2,
},
)
return (sampler,)
class Noise_EmptyNoise:
def __init__(self):
self.seed = 0
@ -829,6 +873,7 @@ NODE_CLASS_MAPPINGS = {
"SamplerDPMPP_2S_Ancestral": SamplerDPMPP_2S_Ancestral,
"SamplerDPMAdaptative": SamplerDPMAdaptative,
"SamplerER_SDE": SamplerER_SDE,
"SamplerSASolver": SamplerSASolver,
"SplitSigmas": SplitSigmas,
"SplitSigmasDenoise": SplitSigmasDenoise,
"FlipSigmas": FlipSigmas,

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.43"
__version__ = "0.3.44"

View File

@ -2310,6 +2310,7 @@ def init_builtin_api_nodes():
"nodes_pika.py",
"nodes_runway.py",
"nodes_tripo.py",
"nodes_moonvalley.py",
"nodes_rodin.py",
"nodes_gemini.py",
]

View File

@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.3.43"
version = "0.3.44"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"

View File

@ -1,5 +1,5 @@
comfyui-frontend-package==1.23.4
comfyui-workflow-templates==0.1.34
comfyui-workflow-templates==0.1.35
comfyui-embedded-docs==0.2.4
torch
torchsde