Create zluda.py (custom zluda for miopen-triton)

This commit is contained in:
patientx 2025-05-02 17:44:26 +03:00 committed by GitHub
parent 2fc3745a83
commit bc1fa6e013
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

326
comfy/customzluda/zluda.py Normal file
View File

@ -0,0 +1,326 @@
# ------------------- Hide ROCm/HIP -------------------
import sys
import os
os.environ.pop("ROCM_HOME", None)
os.environ.pop("HIP_HOME", None)
os.environ.pop("ROCM_VERSION", None)
paths = os.environ["PATH"].split(";")
paths_no_rocm = [p for p in paths if "rocm" not in p.lower()]
os.environ["PATH"] = ";".join(paths_no_rocm)
# ------------------- End ROCm/HIP Hiding -------------
# Fix for cublasLt errors on newer ZLUDA (if no hipblaslt)
os.environ['DISABLE_ADDMM_CUDA_LT'] = '1'
# ------------------- main imports -------------------
# main imports
import torch
import ctypes
import shutil
import subprocess
import importlib.metadata
from functools import wraps
from typing import Union, List
from enum import Enum
# ------------------- main imports -------------------
# ------------------- ComfyUI Frontend Version Check -------------------
def get_package_version(package_name):
try:
from importlib.metadata import version
return version(package_name)
except ImportError:
from importlib_metadata import version
return version(package_name)
# Check and install/update comfyui-frontend-package
required_frontend_version = "1.18.5"
frontend_package_name = "comfyui-frontend-package"
try:
installed_version = get_package_version(frontend_package_name)
# print(f"\nInstalled version of {frontend_package_name}: {installed_version}")
from packaging import version
if version.parse(installed_version) < version.parse(required_frontend_version):
import subprocess
import sys
subprocess.check_call([sys.executable, '-m', 'pip', 'install', f'{frontend_package_name}=={required_frontend_version}', '--quiet', '--upgrade'])
print(f"\nComfyUI Frontend Package outdated. Upgraded to {required_frontend_version}.")
except Exception:
import subprocess
import sys
subprocess.check_call([sys.executable, '-m', 'pip', 'install', f'{frontend_package_name}=={required_frontend_version}', '--quiet'])
print("\nComfyUI Frontend Package was missing. Installed it.")
# Check and install/update comfyui-workflow-templates
required_templates_version = "0.1.1"
templates_package_name = "comfyui-workflow-templates"
try:
installed_version = get_package_version(templates_package_name)
# print(f"Installed version of {templates_package_name}: {installed_version}")
from packaging import version
if version.parse(installed_version) < version.parse(required_templates_version):
import subprocess
import sys
subprocess.check_call([sys.executable, '-m', 'pip', 'install', f'{templates_package_name}=={required_templates_version}', '--quiet', '--upgrade'])
print(f"\nComfyUI Workflow Templates outdated. Upgraded to {required_templates_version}.")
except Exception:
import subprocess
import sys
subprocess.check_call([sys.executable, '-m', 'pip', 'install', f'{templates_package_name}=={required_templates_version}', '--quiet'])
print("\nComfyUI Workflow Templates was missing. Installed it.")
# ------------------- End Frontend Version Check -------------------
# ------------------- Triton Setup -------------------
print("\n :: ------------------------ ZLUDA ----------------------- :: ")
try:
import triton
import triton.language as tl
print(" :: Triton core imported successfully")
@triton.jit
def _zluda_kernel_test(x_ptr, y_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
pid = tl.program_id(axis=0)
offsets = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(x_ptr + offsets, mask=mask)
tl.store(y_ptr + offsets, x + 1, mask=mask)
def _verify_triton() -> bool:
try:
print(" :: Running Triton kernel test...")
x = torch.ones(64, device='cuda')
y = torch.empty_like(x)
_zluda_kernel_test[(1,)](x, y, x.numel(), BLOCK_SIZE=64)
if torch.allclose(y, x + 1):
print(" :: Triton kernel test passed successfully")
return True
print(" :: Triton kernel test failed (incorrect output)")
return False
except Exception as e:
print(f" :: Triton test failed: {str(e)}")
return False
triton_available = _verify_triton()
if triton_available:
print(" :: Triton initialized successfully")
os.environ['FLASH_ATTENTION_TRITON_AMD_AUTOTUNE'] = 'TRUE'
else:
print(" :: Triton available but failed verification")
except ImportError:
print(" :: Triton not installed")
triton_available = False
except Exception as e:
print(f" :: Triton initialization failed: {str(e)}")
triton_available = False
# ------------------- End Triton Verification -------------------
# ------------------- ZLUDA Detection -------------------
zluda_device_name = torch.cuda.get_device_name() if torch.cuda.is_available() else ""
is_zluda = zluda_device_name.endswith("[ZLUDA]")
# ------------------- End Detection --------------------
# # ------------------- ZLUDA Core Implementation -------------------
MEM_BUS_WIDTH = {
"AMD Radeon RX 9070 XT": 256,
"AMD Radeon RX 9070": 256,
"AMD Radeon RX 9060 XT": 192,
"AMD Radeon RX 7900 XTX": 384,
"AMD Radeon RX 7900 XT": 320,
"AMD Radeon RX 7900 GRE": 256,
"AMD Radeon RX 7800 XT": 256,
"AMD Radeon RX 7700 XT": 192,
"AMD Radeon RX 7700": 192,
"AMD Radeon RX 7650 GRE": 128,
"AMD Radeon RX 7600 XT": 128,
"AMD Radeon RX 7600": 128,
"AMD Radeon RX 7500 XT": 96,
"AMD Radeon RX 6950 XT": 256,
"AMD Radeon RX 6900 XT": 256,
"AMD Radeon RX 6800 XT": 256,
"AMD Radeon RX 6800": 256,
"AMD Radeon RX 6750 XT": 192,
"AMD Radeon RX 6700 XT": 192,
"AMD Radeon RX 6700": 160,
"AMD Radeon RX 6650 XT": 128,
"AMD Radeon RX 6600 XT": 128,
"AMD Radeon RX 6600": 128,
"AMD Radeon RX 6500 XT": 64,
"AMD Radeon RX 6400": 64,
}
# ------------------- Device Properties Implementation -------------------
class DeviceProperties:
PROPERTIES_OVERRIDE = {"regs_per_multiprocessor": 65535, "gcnArchName": "UNKNOWN ARCHITECTURE"}
internal: torch._C._CudaDeviceProperties
def __init__(self, props: torch._C._CudaDeviceProperties):
self.internal = props
def __getattr__(self, name):
if name in DeviceProperties.PROPERTIES_OVERRIDE:
return DeviceProperties.PROPERTIES_OVERRIDE[name]
return getattr(self.internal, name)
# ------------------- Audio Ops Patch -------------------
if is_zluda:
_torch_stft = torch.stft
_torch_istft = torch.istft
def z_stft(input: torch.Tensor, window: torch.Tensor, *args, **kwargs):
return _torch_stft(input=input.cpu(), window=window.cpu(), *args, **kwargs).to(input.device)
def z_istft(input: torch.Tensor, window: torch.Tensor, *args, **kwargs):
return _torch_istft(input=input.cpu(), window=window.cpu(), *args, **kwargs).to(input.device)
def z_jit(f, *_, **__):
f.graph = torch._C.Graph()
return f
torch._dynamo.config.suppress_errors = True
torch.stft = z_stft
torch.istft = z_istft
torch.jit.script = z_jit
# ------------------- End Audio Patch -------------------
# ------------------- Top-K Fallback Patch -------------------
if is_zluda:
_topk = torch.topk
def safe_topk(input: torch.Tensor, *args, **kwargs):
device = input.device
values, indices = _topk(input.cpu(), *args, **kwargs)
return torch.return_types.topk((values.to(device), indices.to(device),))
torch.topk = safe_topk
# ------------------- End Top-K Patch -------------------
# ------------------- ONNX Runtime Patch -------------------
try:
import onnxruntime as ort
if is_zluda:
print(" :: Patching ONNX Runtime for ZLUDA — disabling CUDA EP.")
# Store original get_available_providers
original_get_available_providers = ort.get_available_providers
def filtered_providers():
return [ep for ep in original_get_available_providers() if ep != "CUDAExecutionProvider"]
# Patch ONLY the _pybind_state version (used during session creation)
ort.capi._pybind_state.get_available_providers = filtered_providers
# Wrap InferenceSession to force CPU provider when CUDA is explicitly requested
OriginalSession = ort.InferenceSession
class SafeInferenceSession(OriginalSession):
def __init__(self, *args, providers=None, **kwargs):
if providers and "CUDAExecutionProvider" in providers:
print(" :: Forcing ONNX to use CPUExecutionProvider instead of CUDA.")
providers = ["CPUExecutionProvider"]
super().__init__(*args, providers=providers, **kwargs)
ort.InferenceSession = SafeInferenceSession
except ImportError:
print(" :: ONNX Runtime not installed — skipping patch.")
except Exception as e:
print(" :: Failed to patch ONNX Runtime:", e)
# ------------------- End ONNX Patch -------------------
# ------------------- ZLUDA hijack ---------------------
do_nothing = lambda _: None
def do_hijack():
if not is_zluda:
return
print(f" :: Using ZLUDA with device: {zluda_device_name}")
print(" :: Applying core ZLUDA patches...")
# 2. Triton optimizations
if triton_available:
print(" :: Initializing Triton optimizations")
try:
# General Triton config
print(" :: Configuring Triton device properties...")
_get_props = triton.runtime.driver.active.utils.get_device_properties
def patched_props(device):
props = _get_props(device)
name = torch.cuda.get_device_name()[:-8] # Remove [ZLUDA]
props["mem_bus_width"] = MEM_BUS_WIDTH.get(name, 128)
if name not in MEM_BUS_WIDTH:
print(f' :: Using default mem_bus_width=128 for {name}')
return props
triton.runtime.driver.active.utils.get_device_properties = patched_props
print(" :: Triton device properties configured")
# Flash Attention
flash_enabled = False
try:
from comfy.flash_attn_triton_amd import interface_fa
print(" :: Flash attention components found")
original_sdpa = torch.nn.functional.scaled_dot_product_attention
def amd_flash_wrapper(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None):
try:
if (query.shape[-1] <= 128 and
not attn_mask and
query.dtype != torch.float32):
if scale is None:
scale = query.shape[-1] ** -0.5
return interface_fa.fwd(
query.transpose(1, 2),
key.transpose(1, 2),
value.transpose(1, 2),
None, None, dropout_p, scale,
is_causal, -1, -1, 0.0, False, None
)[0].transpose(1, 2)
except Exception as e:
print(f' :: Flash attention error: {str(e)}')
return original_sdpa(query=query, key=key, value=value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, scale=scale)
torch.nn.functional.scaled_dot_product_attention = amd_flash_wrapper
flash_enabled = True
print(" :: AMD flash attention enabled successfully")
except ImportError:
print(" :: Flash attention components not installed")
except Exception as e:
print(f" :: Flash attention setup failed: {str(e)}")
# Other Triton optimizations
if not flash_enabled:
print(" :: Applying basic Triton optimizations")
# Add other Triton optimizations here
# ...
except Exception as e:
print(f" :: Triton optimization failed: {str(e)}")
else:
print(" :: Triton optimizations skipped (not available)")
# 3. Common configurations
print(" :: Configuring PyTorch backends...")
torch.backends.cuda.enable_mem_efficient_sdp(False)
torch.backends.cuda.enable_mem_efficient_sdp = do_nothing
torch.backends.cudnn.enabled = True
if hasattr(torch.backends.cuda, "enable_flash_sdp"):
torch.backends.cuda.enable_flash_sdp(True)
print(" :: Disabled CUDA flash attention")
if hasattr(torch.backends.cuda, "enable_math_sdp"):
torch.backends.cuda.enable_math_sdp(True)
print(" :: Enabled math attention fallback")
print(" :: ZLUDA initialization complete")
print(" :: ------------------------ ZLUDA ----------------------- :: \n")
if is_zluda:
do_hijack()
else:
print(f" :: CUDA device detected: {zluda_device_name or 'None'}")