mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-10 06:10:50 +08:00
Merge branch 'master' of github.com:comfyanonymous/ComfyUI
This commit is contained in:
commit
bd5073caf2
@ -1,6 +1,9 @@
|
||||
import pygit2
|
||||
from datetime import datetime
|
||||
import sys
|
||||
import os
|
||||
import shutil
|
||||
import filecmp
|
||||
|
||||
def pull(repo, remote_name='origin', branch='master'):
|
||||
for remote in repo.remotes:
|
||||
@ -42,7 +45,8 @@ def pull(repo, remote_name='origin', branch='master'):
|
||||
raise AssertionError('Unknown merge analysis result')
|
||||
|
||||
pygit2.option(pygit2.GIT_OPT_SET_OWNER_VALIDATION, 0)
|
||||
repo = pygit2.Repository(str(sys.argv[1]))
|
||||
repo_path = str(sys.argv[1])
|
||||
repo = pygit2.Repository(repo_path)
|
||||
ident = pygit2.Signature('comfyui', 'comfy@ui')
|
||||
try:
|
||||
print("stashing current changes")
|
||||
@ -51,7 +55,10 @@ except KeyError:
|
||||
print("nothing to stash")
|
||||
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
|
||||
print("creating backup branch: {}".format(backup_branch_name))
|
||||
repo.branches.local.create(backup_branch_name, repo.head.peel())
|
||||
try:
|
||||
repo.branches.local.create(backup_branch_name, repo.head.peel())
|
||||
except:
|
||||
pass
|
||||
|
||||
print("checking out master branch")
|
||||
branch = repo.lookup_branch('master')
|
||||
@ -63,3 +70,41 @@ pull(repo)
|
||||
|
||||
print("Done!")
|
||||
|
||||
self_update = True
|
||||
if len(sys.argv) > 2:
|
||||
self_update = '--skip_self_update' not in sys.argv
|
||||
|
||||
update_py_path = os.path.realpath(__file__)
|
||||
repo_update_py_path = os.path.join(repo_path, ".ci/update_windows/update.py")
|
||||
|
||||
cur_path = os.path.dirname(update_py_path)
|
||||
|
||||
|
||||
req_path = os.path.join(cur_path, "current_requirements.txt")
|
||||
repo_req_path = os.path.join(repo_path, "requirements.txt")
|
||||
|
||||
|
||||
def files_equal(file1, file2):
|
||||
try:
|
||||
return filecmp.cmp(file1, file2, shallow=False)
|
||||
except:
|
||||
return False
|
||||
|
||||
def file_size(f):
|
||||
try:
|
||||
return os.path.getsize(f)
|
||||
except:
|
||||
return 0
|
||||
|
||||
|
||||
if self_update and not files_equal(update_py_path, repo_update_py_path) and file_size(repo_update_py_path) > 10:
|
||||
shutil.copy(repo_update_py_path, os.path.join(cur_path, "update_new.py"))
|
||||
exit()
|
||||
|
||||
if not os.path.exists(req_path) or not files_equal(repo_req_path, req_path):
|
||||
import subprocess
|
||||
try:
|
||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', repo_req_path])
|
||||
shutil.copy(repo_req_path, req_path)
|
||||
except:
|
||||
pass
|
||||
|
||||
@ -1,2 +1,8 @@
|
||||
@echo off
|
||||
..\python_embeded\python.exe .\update.py ..\ComfyUI\
|
||||
pause
|
||||
if exist update_new.py (
|
||||
move /y update_new.py update.py
|
||||
echo Running updater again since it got updated.
|
||||
..\python_embeded\python.exe .\update.py ..\ComfyUI\ --skip_self_update
|
||||
)
|
||||
if "%~1"=="" pause
|
||||
|
||||
@ -1,3 +0,0 @@
|
||||
..\python_embeded\python.exe .\update.py ..\ComfyUI\
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 xformers -r ../ComfyUI/requirements.txt pygit2
|
||||
pause
|
||||
@ -1,11 +0,0 @@
|
||||
@echo off
|
||||
..\python_embeded\python.exe .\update.py ..\ComfyUI\
|
||||
echo
|
||||
echo This will try to update pytorch and all python dependencies, if you get an error wait for pytorch/xformers to fix their stuff
|
||||
echo You should not be running this anyways unless you really have to
|
||||
echo
|
||||
echo If you just want to update normally, close this and run update_comfyui.bat instead.
|
||||
echo
|
||||
pause
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 xformers -r ../ComfyUI/requirements.txt pygit2
|
||||
pause
|
||||
@ -1,71 +0,0 @@
|
||||
name: "Windows Release cu118 dependencies"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
jobs:
|
||||
build_dependencies:
|
||||
env:
|
||||
# you need at least cuda 5.0 for some of the stuff compiled here.
|
||||
TORCH_CUDA_ARCH_LIST: "5.0+PTX 6.0 6.1 7.0 7.5 8.0 8.6 8.9"
|
||||
FORCE_CUDA: 1
|
||||
MAX_JOBS: 1 # will crash otherwise
|
||||
DISTUTILS_USE_SDK: 1 # otherwise distutils will complain on windows about multiple versions of msvc
|
||||
XFORMERS_BUILD_TYPE: "Release"
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- name: Cache Built Dependencies
|
||||
uses: actions/cache@v3
|
||||
id: cache-cu118_python_stuff
|
||||
with:
|
||||
path: cu118_python_deps.tar
|
||||
key: ${{ runner.os }}-build-cu118
|
||||
|
||||
- if: steps.cache-cu118_python_stuff.outputs.cache-hit != 'true'
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- if: steps.cache-cu118_python_stuff.outputs.cache-hit != 'true'
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10.9'
|
||||
|
||||
- if: steps.cache-cu118_python_stuff.outputs.cache-hit != 'true'
|
||||
uses: comfyanonymous/cuda-toolkit@test
|
||||
id: cuda-toolkit
|
||||
with:
|
||||
cuda: '11.8.0'
|
||||
# copied from xformers github
|
||||
- name: Setup MSVC
|
||||
uses: ilammy/msvc-dev-cmd@v1
|
||||
- name: Configure Pagefile
|
||||
# windows runners will OOM with many CUDA architectures
|
||||
# we cheat here with a page file
|
||||
uses: al-cheb/configure-pagefile-action@v1.3
|
||||
with:
|
||||
minimum-size: 2GB
|
||||
# really unfortunate: https://github.com/ilammy/msvc-dev-cmd#name-conflicts-with-shell-bash
|
||||
- name: Remove link.exe
|
||||
shell: bash
|
||||
run: rm /usr/bin/link
|
||||
|
||||
- if: steps.cache-cu118_python_stuff.outputs.cache-hit != 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
git clone --recurse-submodules https://github.com/facebookresearch/xformers.git
|
||||
cd xformers
|
||||
python -m pip install --no-cache-dir wheel setuptools twine
|
||||
echo building xformers
|
||||
python setup.py bdist_wheel -d ../temp_wheel_dir/
|
||||
cd ..
|
||||
rm -rf xformers
|
||||
ls -lah temp_wheel_dir
|
||||
mv temp_wheel_dir cu118_python_deps
|
||||
tar cf cu118_python_deps.tar cu118_python_deps
|
||||
|
||||
|
||||
@ -1,37 +0,0 @@
|
||||
name: "Windows Release cu118 dependencies 2"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
xformers:
|
||||
description: 'xformers version'
|
||||
required: true
|
||||
type: string
|
||||
default: "xformers"
|
||||
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
jobs:
|
||||
build_dependencies:
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10.9'
|
||||
|
||||
- shell: bash
|
||||
run: |
|
||||
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
|
||||
python -m pip install --no-cache-dir ./temp_wheel_dir/*
|
||||
echo installed basic
|
||||
ls -lah temp_wheel_dir
|
||||
mv temp_wheel_dir cu118_python_deps
|
||||
tar cf cu118_python_deps.tar cu118_python_deps
|
||||
|
||||
- uses: actions/cache/save@v3
|
||||
with:
|
||||
path: cu118_python_deps.tar
|
||||
key: ${{ runner.os }}-build-cu118
|
||||
@ -1,79 +0,0 @@
|
||||
name: "Windows Release cu118 packaging"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
|
||||
jobs:
|
||||
package_comfyui:
|
||||
permissions:
|
||||
contents: "write"
|
||||
packages: "write"
|
||||
pull-requests: "read"
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/cache/restore@v3
|
||||
id: cache
|
||||
with:
|
||||
path: cu118_python_deps.tar
|
||||
key: ${{ runner.os }}-build-cu118
|
||||
- shell: bash
|
||||
run: |
|
||||
mv cu118_python_deps.tar ../
|
||||
cd ..
|
||||
tar xf cu118_python_deps.tar
|
||||
pwd
|
||||
ls
|
||||
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: false
|
||||
- shell: bash
|
||||
run: |
|
||||
cd ..
|
||||
cp -r ComfyUI ComfyUI_copy
|
||||
curl https://www.python.org/ftp/python/3.10.9/python-3.10.9-embed-amd64.zip -o python_embeded.zip
|
||||
unzip python_embeded.zip -d python_embeded
|
||||
cd python_embeded
|
||||
echo 'import site' >> ./python310._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
./python.exe -s -m pip install ../cu118_python_deps/*
|
||||
sed -i '1i../ComfyUI' ./python310._pth
|
||||
cd ..
|
||||
|
||||
git clone https://github.com/comfyanonymous/taesd
|
||||
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
mv python_embeded ComfyUI_windows_portable
|
||||
mv ComfyUI_copy ComfyUI_windows_portable/ComfyUI
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
|
||||
mkdir update
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/update_windows_cu118/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
|
||||
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z
|
||||
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
uses: svenstaro/upload-release-action@v2
|
||||
with:
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: new_ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z
|
||||
tag: "latest"
|
||||
overwrite: true
|
||||
|
||||
@ -41,10 +41,9 @@ jobs:
|
||||
- shell: bash
|
||||
run: |
|
||||
echo "@echo off
|
||||
..\python_embeded\python.exe .\update.py ..\ComfyUI\\
|
||||
call update_comfyui.bat nopause
|
||||
echo -
|
||||
echo This will try to update pytorch and all python dependencies, if you get an error wait for pytorch/xformers to fix their stuff
|
||||
echo You should not be running this anyways unless you really have to
|
||||
echo This will try to update pytorch and all python dependencies.
|
||||
echo -
|
||||
echo If you just want to update normally, close this and run update_comfyui.bat instead.
|
||||
echo -
|
||||
|
||||
@ -68,7 +68,7 @@ jobs:
|
||||
cp -r ComfyUI/.ci/update_windows/* ./update/
|
||||
cp -r ComfyUI/.ci/windows_base_files/* ./
|
||||
|
||||
echo "..\python_embeded\python.exe .\update.py ..\ComfyUI\\
|
||||
echo "call update_comfyui.bat nopause
|
||||
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
|
||||
pause" > ./update/update_comfyui_and_python_dependencies.bat
|
||||
cd ..
|
||||
|
||||
@ -119,6 +119,9 @@ class CLIPTextModel(torch.nn.Module):
|
||||
super().__init__()
|
||||
self.num_layers = config_dict["num_hidden_layers"]
|
||||
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
||||
self.text_projection.weight.copy_(torch.eye(embed_dim))
|
||||
self.dtype = dtype
|
||||
|
||||
def get_input_embeddings(self):
|
||||
@ -128,7 +131,10 @@ class CLIPTextModel(torch.nn.Module):
|
||||
self.text_model.embeddings.token_embedding = embeddings
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.text_model(*args, **kwargs)
|
||||
x = self.text_model(*args, **kwargs)
|
||||
out = self.text_projection(x[2])
|
||||
return (x[0], x[1], out, x[2])
|
||||
|
||||
|
||||
class CLIPVisionEmbeddings(torch.nn.Module):
|
||||
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None):
|
||||
|
||||
@ -712,11 +712,11 @@ class PromptServer(ExecutorToClientProgress):
|
||||
|
||||
for name, dir in nodes.EXTENSION_WEB_DIRS.items():
|
||||
self.app.add_routes([
|
||||
web.static('/extensions/' + quote(name), dir, follow_symlinks=True),
|
||||
web.static('/extensions/' + quote(name), dir),
|
||||
])
|
||||
|
||||
self.app.add_routes([
|
||||
web.static('/', self.web_root, follow_symlinks=True),
|
||||
web.static('/', self.web_root),
|
||||
])
|
||||
|
||||
def get_queue_info(self):
|
||||
|
||||
@ -358,9 +358,6 @@ class UniPC:
|
||||
thresholding=False,
|
||||
max_val=1.,
|
||||
variant='bh1',
|
||||
noise_mask=None,
|
||||
masked_image=None,
|
||||
noise=None,
|
||||
):
|
||||
"""Construct a UniPC.
|
||||
|
||||
@ -372,9 +369,6 @@ class UniPC:
|
||||
self.predict_x0 = predict_x0
|
||||
self.thresholding = thresholding
|
||||
self.max_val = max_val
|
||||
self.noise_mask = noise_mask
|
||||
self.masked_image = masked_image
|
||||
self.noise = noise
|
||||
|
||||
def dynamic_thresholding_fn(self, x0, t=None):
|
||||
"""
|
||||
@ -391,10 +385,7 @@ class UniPC:
|
||||
"""
|
||||
Return the noise prediction model.
|
||||
"""
|
||||
if self.noise_mask is not None:
|
||||
return self.model(x, t) * self.noise_mask
|
||||
else:
|
||||
return self.model(x, t)
|
||||
return self.model(x, t)
|
||||
|
||||
def data_prediction_fn(self, x, t):
|
||||
"""
|
||||
@ -409,8 +400,6 @@ class UniPC:
|
||||
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
||||
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
||||
x0 = torch.clamp(x0, -s, s) / s
|
||||
if self.noise_mask is not None:
|
||||
x0 = x0 * self.noise_mask + (1. - self.noise_mask) * self.masked_image
|
||||
return x0
|
||||
|
||||
def model_fn(self, x, t):
|
||||
@ -723,8 +712,6 @@ class UniPC:
|
||||
assert timesteps.shape[0] - 1 == steps
|
||||
# with torch.no_grad():
|
||||
for step_index in trange(steps, disable=disable_pbar):
|
||||
if self.noise_mask is not None:
|
||||
x = x * self.noise_mask + (1. - self.noise_mask) * (self.masked_image * self.noise_schedule.marginal_alpha(timesteps[step_index]) + self.noise * self.noise_schedule.marginal_std(timesteps[step_index]))
|
||||
if step_index == 0:
|
||||
vec_t = timesteps[0].expand((x.shape[0]))
|
||||
model_prev_list = [self.model_fn(x, vec_t)]
|
||||
@ -766,7 +753,7 @@ class UniPC:
|
||||
model_x = self.model_fn(x, vec_t)
|
||||
model_prev_list[-1] = model_x
|
||||
if callback is not None:
|
||||
callback(step_index, model_prev_list[-1], x, steps)
|
||||
callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]})
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
# if denoise_to_zero:
|
||||
@ -858,7 +845,7 @@ def predict_eps_sigma(model, input, sigma_in, **kwargs):
|
||||
return (input - model(input, sigma_in, **kwargs)) / sigma
|
||||
|
||||
|
||||
def sample_unipc(model, noise, image, sigmas, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'):
|
||||
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
|
||||
timesteps = sigmas.clone()
|
||||
if sigmas[-1] == 0:
|
||||
timesteps = sigmas[:]
|
||||
@ -867,16 +854,7 @@ def sample_unipc(model, noise, image, sigmas, max_denoise, extra_args=None, call
|
||||
timesteps = sigmas.clone()
|
||||
ns = SigmaConvert()
|
||||
|
||||
if image is not None:
|
||||
img = image * ns.marginal_alpha(timesteps[0])
|
||||
if max_denoise:
|
||||
noise_mult = 1.0
|
||||
else:
|
||||
noise_mult = ns.marginal_std(timesteps[0])
|
||||
img += noise * noise_mult
|
||||
else:
|
||||
img = noise
|
||||
|
||||
noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0)
|
||||
model_type = "noise"
|
||||
|
||||
model_fn = model_wrapper(
|
||||
@ -888,7 +866,10 @@ def sample_unipc(model, noise, image, sigmas, max_denoise, extra_args=None, call
|
||||
)
|
||||
|
||||
order = min(3, len(timesteps) - 2)
|
||||
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant)
|
||||
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
|
||||
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant)
|
||||
x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
|
||||
x /= ns.marginal_alpha(timesteps[-1])
|
||||
return x
|
||||
|
||||
def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False):
|
||||
return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2')
|
||||
@ -197,6 +197,15 @@ def model_lora_keys_clip(model, key_map={}):
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
|
||||
key_map[lora_key] = k
|
||||
|
||||
|
||||
k = "clip_g.transformer.text_projection.weight"
|
||||
if k in sdk:
|
||||
key_map["lora_prior_te_text_projection"] = k #cascade lora?
|
||||
# key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too
|
||||
# key_map["lora_te_text_projection"] = k
|
||||
|
||||
return key_map
|
||||
|
||||
@ -207,6 +216,7 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = k
|
||||
key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config
|
||||
|
||||
diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
|
||||
@ -987,7 +987,7 @@ class GLIGENTextBoxApply:
|
||||
|
||||
def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
|
||||
c = []
|
||||
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
|
||||
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled="unprojected")
|
||||
for t in conditioning_to:
|
||||
n = [t[0], t[1].copy()]
|
||||
position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
|
||||
|
||||
@ -211,6 +211,7 @@ def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
|
||||
cur_patches[p] = cur_patches[p] + patches[p]
|
||||
else:
|
||||
cur_patches[p] = patches[p]
|
||||
transformer_options["patches"] = cur_patches
|
||||
else:
|
||||
transformer_options["patches"] = patches
|
||||
|
||||
@ -516,14 +517,9 @@ class Sampler:
|
||||
sigma = float(sigmas[0])
|
||||
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
|
||||
|
||||
class UNIPC(Sampler):
|
||||
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
|
||||
return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
|
||||
|
||||
class UNIPCBH2(Sampler):
|
||||
def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
|
||||
return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
|
||||
|
||||
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
@ -638,9 +634,9 @@ def calculate_sigmas_scheduler(model, scheduler_name, steps):
|
||||
|
||||
def sampler_object(name):
|
||||
if name == "uni_pc":
|
||||
sampler = UNIPC()
|
||||
sampler = KSAMPLER(uni_pc.sample_unipc)
|
||||
elif name == "uni_pc_bh2":
|
||||
sampler = UNIPCBH2()
|
||||
sampler = KSAMPLER(uni_pc.sample_unipc_bh2)
|
||||
elif name == "ddim":
|
||||
sampler = ksampler("euler", inpaint_options={"random": True})
|
||||
else:
|
||||
|
||||
16
comfy/sd.py
16
comfy/sd.py
@ -52,7 +52,7 @@ def load_clip_weights(model, sd):
|
||||
if ids.dtype == torch.float32:
|
||||
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
||||
|
||||
sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
sd = utils.clip_text_transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.")
|
||||
return load_model_weights(model, sd)
|
||||
|
||||
|
||||
@ -123,10 +123,13 @@ class CLIP:
|
||||
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
|
||||
|
||||
def encode_from_tokens(self, tokens, return_pooled=False):
|
||||
self.cond_stage_model.reset_clip_options()
|
||||
|
||||
if self.layer_idx is not None:
|
||||
self.cond_stage_model.clip_layer(self.layer_idx)
|
||||
else:
|
||||
self.cond_stage_model.reset_clip_layer()
|
||||
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
|
||||
|
||||
if return_pooled == "unprojected":
|
||||
self.cond_stage_model.set_clip_options({"projected_pooled": False})
|
||||
|
||||
self.load_model()
|
||||
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
|
||||
@ -361,7 +364,10 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
|
||||
|
||||
for i in range(len(clip_data)):
|
||||
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
|
||||
clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
||||
clip_data[i] = utils.clip_text_transformers_convert(clip_data[i], "", "")
|
||||
else:
|
||||
if "text_projection" in clip_data[i]:
|
||||
clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node
|
||||
|
||||
clip_target = EmptyClass()
|
||||
clip_target.params = {}
|
||||
|
||||
@ -68,7 +68,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
]
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=clip_model.CLIPTextModel,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False): # clip-vit-base-patch32
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, return_projected_pooled=True): # clip-vit-base-patch32
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
|
||||
@ -89,16 +89,18 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
self.layer = layer
|
||||
self.layer_idx = None
|
||||
self.special_tokens = special_tokens
|
||||
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
|
||||
|
||||
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
||||
self.enable_attention_masks = enable_attention_masks
|
||||
|
||||
self.layer_norm_hidden_state = layer_norm_hidden_state
|
||||
self.return_projected_pooled = return_projected_pooled
|
||||
|
||||
if layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
assert abs(layer_idx) < self.num_layers
|
||||
self.clip_layer(layer_idx)
|
||||
self.layer_default = (self.layer, self.layer_idx)
|
||||
self.set_clip_options({"layer": layer_idx})
|
||||
self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
@ -106,16 +108,19 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
if abs(layer_idx) > self.num_layers:
|
||||
def set_clip_options(self, options):
|
||||
layer_idx = options.get("layer", self.layer_idx)
|
||||
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
|
||||
if layer_idx is None or abs(layer_idx) > self.num_layers:
|
||||
self.layer = "last"
|
||||
else:
|
||||
self.layer = "hidden"
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
def reset_clip_layer(self):
|
||||
self.layer = self.layer_default[0]
|
||||
self.layer_idx = self.layer_default[1]
|
||||
def reset_clip_options(self):
|
||||
self.layer = self.options_default[0]
|
||||
self.layer_idx = self.options_default[1]
|
||||
self.return_projected_pooled = self.options_default[2]
|
||||
|
||||
def set_up_textual_embeddings(self, tokens, current_embeds):
|
||||
out_tokens = []
|
||||
@ -180,23 +185,19 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
else:
|
||||
z = outputs[1]
|
||||
|
||||
if outputs[2] is not None:
|
||||
pooled_output = outputs[2].float()
|
||||
else:
|
||||
pooled_output = None
|
||||
pooled_output = None
|
||||
if len(outputs) >= 3:
|
||||
if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
|
||||
pooled_output = outputs[3].float()
|
||||
elif outputs[2] is not None:
|
||||
pooled_output = outputs[2].float()
|
||||
|
||||
if self.text_projection is not None and pooled_output is not None:
|
||||
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
|
||||
return z.float(), pooled_output
|
||||
|
||||
def encode(self, tokens):
|
||||
return self(tokens)
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_projection" in sd:
|
||||
self.text_projection[:] = sd.pop("text_projection")
|
||||
if "text_projection.weight" in sd:
|
||||
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
|
||||
return self.transformer.load_state_dict(sd, strict=False)
|
||||
|
||||
def parse_parentheses(string):
|
||||
@ -515,11 +516,11 @@ class SD1ClipModel(torch.nn.Module):
|
||||
self.clip = "clip_{}".format(self.clip_name)
|
||||
setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
getattr(self, self.clip).clip_layer(layer_idx)
|
||||
def set_clip_options(self, options):
|
||||
getattr(self, self.clip).set_clip_options(options)
|
||||
|
||||
def reset_clip_layer(self):
|
||||
getattr(self, self.clip).reset_clip_layer()
|
||||
def reset_clip_options(self):
|
||||
getattr(self, self.clip).reset_clip_options()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs = token_weight_pairs[self.clip_name]
|
||||
|
||||
@ -40,13 +40,13 @@ class SDXLClipModel(torch.nn.Module):
|
||||
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False)
|
||||
self.clip_g = SDXLClipG(device=device, dtype=dtype)
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
self.clip_l.clip_layer(layer_idx)
|
||||
self.clip_g.clip_layer(layer_idx)
|
||||
def set_clip_options(self, options):
|
||||
self.clip_l.set_clip_options(options)
|
||||
self.clip_g.set_clip_options(options)
|
||||
|
||||
def reset_clip_layer(self):
|
||||
self.clip_g.reset_clip_layer()
|
||||
self.clip_l.reset_clip_layer()
|
||||
def reset_clip_options(self):
|
||||
self.clip_g.reset_clip_options()
|
||||
self.clip_l.reset_clip_options()
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
token_weight_pairs_g = token_weight_pairs["g"]
|
||||
|
||||
@ -75,7 +75,7 @@ class SD20(supported_models_base.BASE):
|
||||
replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format
|
||||
replace_prefix["cond_stage_model.model."] = "clip_h."
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
|
||||
state_dict = utils.transformers_convert(state_dict, "clip_h.", "clip_h.transformer.text_model.", 24)
|
||||
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_h.", "clip_h.transformer.")
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict_for_saving(self, state_dict):
|
||||
@ -134,7 +134,7 @@ class SDXLRefiner(supported_models_base.BASE):
|
||||
replace_prefix["conditioner.embedders.0.model."] = "clip_g."
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
|
||||
|
||||
state_dict = utils.transformers_convert(state_dict, "clip_g.", "clip_g.transformer.text_model.", 32)
|
||||
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
|
||||
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
|
||||
return state_dict
|
||||
|
||||
@ -182,10 +182,8 @@ class SDXL(supported_models_base.BASE):
|
||||
replace_prefix["conditioner.embedders.1.model."] = "clip_g."
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
|
||||
|
||||
state_dict = utils.transformers_convert(state_dict, "clip_g.", "clip_g.transformer.text_model.", 32)
|
||||
keys_to_replace["clip_g.text_projection.weight"] = "clip_g.text_projection"
|
||||
|
||||
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
|
||||
state_dict = utils.clip_text_transformers_convert(state_dict, "clip_g.", "clip_g.transformer.")
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict_for_saving(self, state_dict):
|
||||
@ -338,6 +336,12 @@ class Stable_Cascade_C(supported_models_base.BASE):
|
||||
state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
|
||||
return state_dict
|
||||
|
||||
def process_clip_state_dict(self, state_dict):
|
||||
state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
|
||||
if "clip_g.text_projection" in state_dict:
|
||||
state_dict["clip_g.transformer.text_projection.weight"] = state_dict.pop("clip_g.text_projection").transpose(0, 1)
|
||||
return state_dict
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.StableCascade_C(self, device=device)
|
||||
return out
|
||||
|
||||
@ -100,8 +100,22 @@ def transformers_convert(sd, prefix_from, prefix_to, number):
|
||||
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
|
||||
k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
|
||||
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
|
||||
|
||||
return sd
|
||||
|
||||
def clip_text_transformers_convert(sd, prefix_from, prefix_to):
|
||||
sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32)
|
||||
|
||||
tp = "{}text_projection.weight".format(prefix_from)
|
||||
if tp in sd:
|
||||
sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp)
|
||||
|
||||
tp = "{}text_projection".format(prefix_from)
|
||||
if tp in sd:
|
||||
sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1)
|
||||
return sd
|
||||
|
||||
|
||||
UNET_MAP_ATTENTIONS = {
|
||||
"proj_in.weight",
|
||||
"proj_in.bias",
|
||||
|
||||
@ -33,7 +33,7 @@ class PerpNeg:
|
||||
|
||||
pos = noise_pred_pos - noise_pred_nocond
|
||||
neg = noise_pred_neg - noise_pred_nocond
|
||||
perp = ((torch.mul(pos, neg).sum())/(torch.norm(neg)**2)) * neg
|
||||
perp = neg - ((torch.mul(neg, pos).sum())/(torch.norm(pos)**2)) * pos
|
||||
perp_neg = perp * neg_scale
|
||||
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg)
|
||||
cfg_result = x - cfg_result
|
||||
|
||||
@ -103,6 +103,9 @@ class Example:
|
||||
#def IS_CHANGED(s, image, string_field, int_field, float_field, print_to_screen):
|
||||
# return ""
|
||||
|
||||
# Set the web directory, any .js file in that directory will be loaded by the frontend as a frontend extension
|
||||
# WEB_DIRECTORY = "./somejs"
|
||||
|
||||
# A dictionary that contains all nodes you want to export with their names
|
||||
# NOTE: names should be globally unique
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
|
||||
Loading…
Reference in New Issue
Block a user