Merge branch 'comfyanonymous:master' into feature/settings

This commit is contained in:
Dr.Lt.Data 2023-07-18 11:32:33 +09:00 committed by GitHub
commit be20cf3b22
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 39 additions and 7 deletions

View File

@ -40,6 +40,10 @@ parser.add_argument("--extra-model-paths-config", type=str, default=None, metava
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
cm_group = parser.add_mutually_exclusive_group()
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Enable cudaMallocAsync.")
parser.add_argument("--dont-upcast-attention", action="store_true", help="Disable upcasting of attention. Can boost speed but increase the chances of black images.")
fp_group = parser.add_mutually_exclusive_group()

View File

@ -92,8 +92,8 @@ class DiscreteSchedule(nn.Module):
def predict_eps_discrete_timestep(self, input, t, **kwargs):
sigma = self.t_to_sigma(t.round())
input = input * ((sigma ** 2 + 1.0) ** 0.5)
return (input - self(input, sigma, **kwargs)) / sigma
input = input * ((utils.append_dims(sigma, input.ndim) ** 2 + 1.0) ** 0.5)
return (input - self(input, sigma, **kwargs)) / utils.append_dims(sigma, input.ndim)
class DiscreteEpsDDPMDenoiser(DiscreteSchedule):
"""A wrapper for discrete schedule DDPM models that output eps (the predicted

View File

@ -131,9 +131,9 @@ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None,
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
eps = torch.randn_like(x) * s_noise
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
@ -172,9 +172,9 @@ def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None,
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
eps = torch.randn_like(x) * s_noise
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
@ -201,9 +201,9 @@ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None,
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
eps = torch.randn_like(x) * s_noise
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)

View File

@ -204,7 +204,11 @@ print(f"Set vram state to: {vram_state.name}")
def get_torch_device_name(device):
if hasattr(device, 'type'):
if device.type == "cuda":
return "{} {}".format(device, torch.cuda.get_device_name(device))
try:
allocator_backend = torch.cuda.get_allocator_backend()
except:
allocator_backend = ""
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
else:
return "{}".format(device.type)
else:

26
main.py
View File

@ -51,7 +51,6 @@ import threading
import gc
from comfy.cli_args import args
import comfy.utils
if os.name == "nt":
import logging
@ -62,7 +61,32 @@ if __name__ == "__main__":
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
print("Set cuda device to:", args.cuda_device)
if not args.cuda_malloc:
try: #if there's a better way to check the torch version without importing it let me know
version = ""
torch_spec = importlib.util.find_spec("torch")
for folder in torch_spec.submodule_search_locations:
ver_file = os.path.join(folder, "version.py")
if os.path.isfile(ver_file):
spec = importlib.util.spec_from_file_location("torch_version_import", ver_file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
version = module.__version__
if int(version[0]) >= 2: #enable by default for torch version 2.0 and up
args.cuda_malloc = True
except:
pass
if args.cuda_malloc and not args.disable_cuda_malloc:
env_var = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', None)
if env_var is None:
env_var = "backend:cudaMallocAsync"
else:
env_var += ",backend:cudaMallocAsync"
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var
import comfy.utils
import yaml
import execution