mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-02 17:50:19 +08:00
Merge c03a90ecfc into 26c5bbb875
This commit is contained in:
commit
c29a53bcfe
@ -222,6 +222,7 @@ class Flux2(LatentFormat):
|
||||
|
||||
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
|
||||
self.latent_rgb_factors_reshape = lambda t: t.reshape(t.shape[0], 32, 2, 2, t.shape[-2], t.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(t.shape[0], 32, t.shape[-2] * 2, t.shape[-1] * 2)
|
||||
self.taesd_decoder_name = "taef2_decoder"
|
||||
|
||||
def process_in(self, latent):
|
||||
return latent
|
||||
|
||||
@ -451,7 +451,7 @@ class VAE:
|
||||
decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
|
||||
elif "taesd_decoder.1.weight" in sd:
|
||||
self.latent_channels = sd["taesd_decoder.1.weight"].shape[1]
|
||||
self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels)
|
||||
self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels, use_midblock_gn = True if "taesd_decoder.3.pool.0.weight" in sd else False)
|
||||
elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade
|
||||
self.first_stage_model = StageA()
|
||||
self.downscale_ratio = 4
|
||||
|
||||
@ -17,28 +17,36 @@ class Clamp(nn.Module):
|
||||
return torch.tanh(x / 3) * 3
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(self, n_in, n_out):
|
||||
def __init__(self, n_in, n_out, use_midblock_gn=False):
|
||||
super().__init__()
|
||||
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
|
||||
self.skip = comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
|
||||
self.fuse = nn.ReLU()
|
||||
self.pool = None
|
||||
if use_midblock_gn:
|
||||
conv1x1, n_gn = lambda n_in, n_out: comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False), n_in*4
|
||||
self.pool = nn.Sequential(conv1x1(n_in, n_gn), comfy.ops.disable_weight_init.GroupNorm(4, n_gn), nn.ReLU(inplace=True), conv1x1(n_gn, n_in))
|
||||
def forward(self, x):
|
||||
if self.pool is not None:
|
||||
x = x + self.pool(x)
|
||||
return self.fuse(self.conv(x) + self.skip(x))
|
||||
|
||||
def Encoder(latent_channels=4):
|
||||
def Encoder(latent_channels=4, use_midblock_gn=False):
|
||||
mb_kw = dict(use_midblock_gn=use_midblock_gn)
|
||||
return nn.Sequential(
|
||||
conv(3, 64), Block(64, 64),
|
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
||||
conv(64, 64, stride=2, bias=False), Block(64, 64, **mb_kw), Block(64, 64, **mb_kw), Block(64, 64, **mb_kw),
|
||||
conv(64, latent_channels),
|
||||
)
|
||||
|
||||
|
||||
def Decoder(latent_channels=4):
|
||||
def Decoder(latent_channels=4, use_midblock_gn=False):
|
||||
mb_kw = dict(use_midblock_gn=use_midblock_gn)
|
||||
return nn.Sequential(
|
||||
Clamp(), conv(latent_channels, 64), nn.ReLU(),
|
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
||||
Block(64, 64, **mb_kw), Block(64, 64, **mb_kw), Block(64, 64, **mb_kw), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
|
||||
Block(64, 64), conv(64, 3),
|
||||
@ -48,17 +56,30 @@ class TAESD(nn.Module):
|
||||
latent_magnitude = 3
|
||||
latent_shift = 0.5
|
||||
|
||||
def __init__(self, encoder_path=None, decoder_path=None, latent_channels=4):
|
||||
def __init__(self, encoder_path=None, decoder_path=None, latent_channels=4, use_midblock_gn=False):
|
||||
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
|
||||
super().__init__()
|
||||
self.taesd_encoder = Encoder(latent_channels=latent_channels)
|
||||
self.taesd_decoder = Decoder(latent_channels=latent_channels)
|
||||
|
||||
self.latent_channels = latent_channels
|
||||
self.use_midblock_gn = use_midblock_gn
|
||||
self.taesd_encoder = Encoder(latent_channels=latent_channels, use_midblock_gn=use_midblock_gn)
|
||||
self.taesd_decoder = Decoder(latent_channels=latent_channels, use_midblock_gn=use_midblock_gn)
|
||||
|
||||
if encoder_path is not None:
|
||||
self.taesd_encoder, self.latent_channels = self._load_model(encoder_path, Encoder)
|
||||
if decoder_path is not None:
|
||||
self.taesd_decoder, self.latent_channels = self._load_model(decoder_path, Decoder)
|
||||
|
||||
self.vae_scale = torch.nn.Parameter(torch.tensor(1.0))
|
||||
self.vae_shift = torch.nn.Parameter(torch.tensor(0.0))
|
||||
if encoder_path is not None:
|
||||
self.taesd_encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True))
|
||||
if decoder_path is not None:
|
||||
self.taesd_decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True))
|
||||
|
||||
def _load_model(self, path, model_class):
|
||||
"""Load a TAESD encoder or decoder from a file."""
|
||||
sd = comfy.utils.load_torch_file(path, safe_load=True)
|
||||
latent_channels = sd["1.weight"].shape[1]
|
||||
model = model_class(latent_channels=latent_channels, use_midblock_gn="3.pool.0.weight" in sd)
|
||||
model.load_state_dict(sd)
|
||||
return model, latent_channels
|
||||
|
||||
@staticmethod
|
||||
def scale_latents(x):
|
||||
@ -71,9 +92,15 @@ class TAESD(nn.Module):
|
||||
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
|
||||
|
||||
def decode(self, x):
|
||||
if x.shape[1] == self.latent_channels * 4:
|
||||
x = x.reshape(x.shape[0], self.latent_channels, 2, 2, x.shape[-2], x.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(x.shape[0], self.latent_channels, x.shape[-2] * 2, x.shape[-1] * 2)
|
||||
|
||||
x_sample = self.taesd_decoder((x - self.vae_shift) * self.vae_scale)
|
||||
x_sample = x_sample.sub(0.5).mul(2)
|
||||
return x_sample
|
||||
|
||||
def encode(self, x):
|
||||
return (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift
|
||||
x_sample = (self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale) + self.vae_shift
|
||||
if self.latent_channels == 32 and self.use_midblock_gn: # Only taef2 for Flux2 currently, pack latents: [B, C, H, W] -> [B, C*4, H//2, W//2]
|
||||
x_sample = x_sample.reshape(x_sample.shape[0], self.latent_channels, x_sample.shape[-2] // 2, 2, x_sample.shape[-1] // 2, 2).permute(0, 1, 3, 5, 2, 4).reshape(x_sample.shape[0], self.latent_channels * 4, x_sample.shape[-2] // 2, x_sample.shape[-1] // 2)
|
||||
return x_sample
|
||||
|
||||
13
nodes.py
13
nodes.py
@ -724,7 +724,7 @@ class LoraLoaderModelOnly(LoraLoader):
|
||||
|
||||
class VAELoader:
|
||||
video_taes = ["taehv", "lighttaew2_2", "lighttaew2_1", "lighttaehy1_5", "taeltx_2"]
|
||||
image_taes = ["taesd", "taesdxl", "taesd3", "taef1"]
|
||||
image_taes = ["taesd", "taesdxl", "taesd3", "taef1", "taef2"]
|
||||
@staticmethod
|
||||
def vae_list(s):
|
||||
vaes = folder_paths.get_filename_list("vae")
|
||||
@ -737,6 +737,8 @@ class VAELoader:
|
||||
sd3_taesd_dec = False
|
||||
f1_taesd_enc = False
|
||||
f1_taesd_dec = False
|
||||
f2_taesd_enc = False
|
||||
f2_taesd_dec = False
|
||||
|
||||
for v in approx_vaes:
|
||||
if v.startswith("taesd_decoder."):
|
||||
@ -755,6 +757,10 @@ class VAELoader:
|
||||
f1_taesd_dec = True
|
||||
elif v.startswith("taef1_decoder."):
|
||||
f1_taesd_enc = True
|
||||
elif v.startswith("taef2_encoder."):
|
||||
f2_taesd_dec = True
|
||||
elif v.startswith("taef2_decoder."):
|
||||
f2_taesd_enc = True
|
||||
else:
|
||||
for tae in s.video_taes:
|
||||
if v.startswith(tae):
|
||||
@ -768,6 +774,8 @@ class VAELoader:
|
||||
vaes.append("taesd3")
|
||||
if f1_taesd_dec and f1_taesd_enc:
|
||||
vaes.append("taef1")
|
||||
if f2_taesd_dec and f2_taesd_enc:
|
||||
vaes.append("taef2")
|
||||
vaes.append("pixel_space")
|
||||
return vaes
|
||||
|
||||
@ -799,6 +807,9 @@ class VAELoader:
|
||||
elif name == "taef1":
|
||||
sd["vae_scale"] = torch.tensor(0.3611)
|
||||
sd["vae_shift"] = torch.tensor(0.1159)
|
||||
elif name == "taef2":
|
||||
sd["vae_scale"] = torch.tensor(1.0)
|
||||
sd["vae_shift"] = torch.tensor(0.0)
|
||||
return sd
|
||||
|
||||
@classmethod
|
||||
|
||||
Loading…
Reference in New Issue
Block a user