mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-09 13:50:49 +08:00
Merge a19cb1a13b into 532e285079
This commit is contained in:
commit
c40df62921
@ -365,7 +365,9 @@ def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
|
||||
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
||||
del s2
|
||||
break
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
except Exception as e:
|
||||
if not model_management.is_oom_exception(e):
|
||||
raise
|
||||
if first_op_done == False:
|
||||
model_management.soft_empty_cache(True)
|
||||
if cleared_cache == False:
|
||||
|
||||
@ -267,7 +267,9 @@ def slice_attention(q, k, v):
|
||||
r1[:, :, i:end] = torch.bmm(v, s2)
|
||||
del s2
|
||||
break
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
except Exception as e:
|
||||
if not model_management.is_oom_exception(e):
|
||||
raise
|
||||
model_management.soft_empty_cache(True)
|
||||
steps *= 2
|
||||
if steps > 128:
|
||||
@ -323,7 +325,9 @@ def pytorch_attention(q, k, v):
|
||||
try:
|
||||
out = comfy.ops.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
out = out.transpose(2, 3).reshape(orig_shape)
|
||||
except model_management.OOM_EXCEPTION:
|
||||
except Exception as ex:
|
||||
if not model_management.is_oom_exception(ex):
|
||||
raise
|
||||
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
|
||||
oom_fallback = True
|
||||
if oom_fallback:
|
||||
|
||||
@ -169,7 +169,9 @@ def _get_attention_scores_no_kv_chunking(
|
||||
try:
|
||||
attn_probs = attn_scores.softmax(dim=-1)
|
||||
del attn_scores
|
||||
except model_management.OOM_EXCEPTION:
|
||||
except Exception as ex:
|
||||
if not model_management.is_oom_exception(ex):
|
||||
raise
|
||||
logging.warning("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
|
||||
attn_scores -= attn_scores.max(dim=-1, keepdim=True).values # noqa: F821 attn_scores is not defined
|
||||
torch.exp(attn_scores, out=attn_scores)
|
||||
|
||||
@ -253,6 +253,14 @@ try:
|
||||
except:
|
||||
OOM_EXCEPTION = Exception
|
||||
|
||||
|
||||
def is_oom_exception(ex):
|
||||
if isinstance(ex, OOM_EXCEPTION):
|
||||
return True
|
||||
# handle also other kinds of oom, e.g. "HIP error: out of memory"
|
||||
msg = str(ex)
|
||||
return "out of memory" in msg
|
||||
|
||||
XFORMERS_VERSION = ""
|
||||
XFORMERS_ENABLED_VAE = True
|
||||
if args.disable_xformers:
|
||||
|
||||
@ -804,7 +804,9 @@ class VAE:
|
||||
if pixel_samples is None:
|
||||
pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
|
||||
pixel_samples[x:x+batch_number] = out
|
||||
except model_management.OOM_EXCEPTION:
|
||||
except Exception as ex:
|
||||
if not model_management.is_oom_exception(ex):
|
||||
raise
|
||||
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
|
||||
#NOTE: We don't know what tensors were allocated to stack variables at the time of the
|
||||
#exception and the exception itself refs them all until we get out of this except block.
|
||||
@ -878,8 +880,9 @@ class VAE:
|
||||
if samples is None:
|
||||
samples = torch.empty((pixel_samples.shape[0],) + tuple(out.shape[1:]), device=self.output_device)
|
||||
samples[x:x + batch_number] = out
|
||||
|
||||
except model_management.OOM_EXCEPTION:
|
||||
except Exception as ex:
|
||||
if not model_management.is_oom_exception(ex):
|
||||
raise
|
||||
logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
||||
#NOTE: We don't know what tensors were allocated to stack variables at the time of the
|
||||
#exception and the exception itself refs them all until we get out of this except block.
|
||||
|
||||
@ -84,7 +84,9 @@ class ImageUpscaleWithModel(io.ComfyNode):
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
|
||||
oom = False
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
except Exception as e:
|
||||
if not model_management.is_oom_exception(e):
|
||||
raise
|
||||
tile //= 2
|
||||
if tile < 128:
|
||||
raise e
|
||||
|
||||
@ -597,7 +597,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
|
||||
logging.error(traceback.format_exc())
|
||||
tips = ""
|
||||
|
||||
if isinstance(ex, comfy.model_management.OOM_EXCEPTION):
|
||||
if comfy.model_management.is_oom_exception(ex):
|
||||
tips = "This error means you ran out of memory on your GPU.\n\nTIPS: If the workflow worked before you might have accidentally set the batch_size to a large number."
|
||||
logging.error("Got an OOM, unloading all loaded models.")
|
||||
comfy.model_management.unload_all_models()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user