Support video tiny VAEs

This commit is contained in:
kijai 2025-11-25 20:21:49 +02:00
parent 015a0599d0
commit c6084f93b1
2 changed files with 191 additions and 0 deletions

View File

@ -59,6 +59,8 @@ import comfy.lora_convert
import comfy.hooks
import comfy.t2i_adapter.adapter
import comfy.taesd.taesd
import comfy.taesd.taehv
import comfy.latent_formats
import comfy.ldm.flux.redux
@ -315,6 +317,32 @@ class VAE:
elif "taesd_decoder.1.weight" in sd:
self.latent_channels = sd["taesd_decoder.1.weight"].shape[1]
self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels)
elif "decoder.22.bias" in sd: # taehv, taew and lighttae
self.latent_channels = sd["decoder.1.weight"].shape[1]
self.latent_dim = 3
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
if self.latent_channels == 48: # Wan 2.2
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=None) # doesn't need scaling
self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently"))
self.process_output = lambda image: image
self.memory_used_decode = lambda shape, dtype: (1800 * (max(1, (shape[-3] ** 0.7 * 0.1)) * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype))
elif self.latent_channels == 32 and sd["decoder.22.bias"].shape[0] == 12: # lighttae_hv15
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=comfy.latent_formats.HunyuanVideo15)
self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently"))
self.memory_used_decode = lambda shape, dtype: (1200 * (max(1, (shape[-3] ** 0.7 * 0.05)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype))
else:
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, vae_scaling_factor=comfy.latent_formats.HunyuanVideo)
self.process_input = self.process_output = lambda image: image
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.memory_used_encode = lambda shape, dtype: (700 * (max(1, (shape[-3] ** 0.66 * 0.11)) * shape[-2] * shape[-1]) * model_management.dtype_size(dtype))
self.memory_used_decode = lambda shape, dtype: (50 * (max(1, (shape[-3] ** 0.65 * 0.26)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype))
elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade
self.first_stage_model = StageA()
self.downscale_ratio = 4

163
comfy/taesd/taehv.py Normal file
View File

@ -0,0 +1,163 @@
# Tiny AutoEncoder for HunyuanVideo and WanVideo https://github.com/madebyollin/taehv
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm.auto import tqdm
from collections import namedtuple, deque
import comfy.ops
operations=comfy.ops.disable_weight_init
DecoderResult = namedtuple("DecoderResult", ("frame", "memory"))
TWorkItem = namedtuple("TWorkItem", ("input_tensor", "block_index"))
def conv(n_in, n_out, **kwargs):
return operations.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
class Clamp(nn.Module):
def forward(self, x):
return torch.tanh(x / 3) * 3
class MemBlock(nn.Module):
def __init__(self, n_in, n_out, act_func):
super().__init__()
self.conv = nn.Sequential(conv(n_in * 2, n_out), act_func, conv(n_out, n_out), act_func, conv(n_out, n_out))
self.skip = operations.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
self.act = act_func
def forward(self, x, past):
return self.act(self.conv(torch.cat([x, past], 1)) + self.skip(x))
class TPool(nn.Module):
def __init__(self, n_f, stride):
super().__init__()
self.stride = stride
self.conv = operations.Conv2d(n_f*stride,n_f, 1, bias=False)
def forward(self, x):
_NT, C, H, W = x.shape
return self.conv(x.reshape(-1, self.stride * C, H, W))
class TGrow(nn.Module):
def __init__(self, n_f, stride):
super().__init__()
self.stride = stride
self.conv = operations.Conv2d(n_f, n_f*stride, 1, bias=False)
def forward(self, x):
_NT, C, H, W = x.shape
x = self.conv(x)
return x.reshape(-1, C, H, W)
def apply_model_with_memblocks(model, x, parallel, show_progress_bar):
B, T, C, H, W = x.shape
if parallel:
x = x.reshape(B*T, C, H, W)
# parallel over input timesteps, iterate over blocks
for b in tqdm(model, disable=not show_progress_bar):
if isinstance(b, MemBlock):
BT, C, H, W = x.shape
T = BT // B
_x = x.reshape(B, T, C, H, W)
mem = F.pad(_x, (0,0,0,0,0,0,1,0), value=0)[:,:T].reshape(x.shape)
x = b(x, mem)
else:
x = b(x)
BT, C, H, W = x.shape
T = BT // B
x = x.view(B, T, C, H, W)
else:
out = []
work_queue = deque([TWorkItem(xt, 0) for t, xt in enumerate(x.reshape(B, T * C, H, W).chunk(T, dim=1))])
progress_bar = tqdm(range(T), disable=not show_progress_bar)
mem = [None] * len(model)
while work_queue:
xt, i = work_queue.popleft()
if i == 0:
progress_bar.update(1)
if i == len(model):
out.append(xt)
del xt
else:
b = model[i]
if isinstance(b, MemBlock):
if mem[i] is None:
xt_new = b(xt, xt * 0)
mem[i] = xt.detach().clone()
else:
xt_new = b(xt, mem[i])
mem[i] = xt.detach().clone()
del xt
work_queue.appendleft(TWorkItem(xt_new, i+1))
elif isinstance(b, TPool):
if mem[i] is None:
mem[i] = []
mem[i].append(xt.detach().clone())
if len(mem[i]) == b.stride:
B, C, H, W = xt.shape
xt = b(torch.cat(mem[i], 1).view(B*b.stride, C, H, W))
mem[i] = []
work_queue.appendleft(TWorkItem(xt, i+1))
elif isinstance(b, TGrow):
xt = b(xt)
NT, C, H, W = xt.shape
for xt_next in reversed(xt.view(B, b.stride*C, H, W).chunk(b.stride, 1)):
work_queue.appendleft(TWorkItem(xt_next, i+1))
del xt
else:
xt = b(xt)
work_queue.appendleft(TWorkItem(xt, i+1))
progress_bar.close()
x = torch.stack(out, 1)
return x
class TAEHV(nn.Module):
def __init__(self, latent_channels, parallel=False, decoder_time_upscale=(True, True), decoder_space_upscale=(True, True, True), latent_format=None):
super().__init__()
self.image_channels = 3
self.patch_size = 1
self.latent_channels = latent_channels
self.parallel = parallel
self.latent_format = latent_format
self.process_in = latent_format().process_in if latent_format is not None else (lambda x: x)
self.process_out = latent_format().process_out if latent_format is not None else (lambda x: x)
if self.latent_channels in [48, 32]: # Wan 2.2 and HunyuanVideo1.5
self.patch_size = 2
if self.latent_channels == 32: # HunyuanVideo1.5
act_func = nn.LeakyReLU(0.2, inplace=True)
else: # HunyuanVideo, Wan 2.1
act_func = nn.ReLU(inplace=True)
self.encoder = nn.Sequential(
conv(self.image_channels*self.patch_size**2, 64), act_func,
TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func),
TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func),
TPool(64, 1), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func),
conv(64, self.latent_channels),
)
n_f = [256, 128, 64, 64]
self.frames_to_trim = 2**sum(decoder_time_upscale) - 1
self.decoder = nn.Sequential(
Clamp(), conv(self.latent_channels, n_f[0]), act_func,
MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[0] else 1), TGrow(n_f[0], 1), conv(n_f[0], n_f[1], bias=False),
MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[1] else 1), TGrow(n_f[1], 2 if decoder_time_upscale[0] else 1), conv(n_f[1], n_f[2], bias=False),
MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[2] else 1), TGrow(n_f[2], 2 if decoder_time_upscale[1] else 1), conv(n_f[2], n_f[3], bias=False),
act_func, conv(n_f[3], self.image_channels*self.patch_size**2),
)
def encode(self, x, show_progress_bar=True, **kwargs):
if self.patch_size > 1: x = F.pixel_unshuffle(x, self.patch_size)
x = x.movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W]
if x.shape[1] % 4 != 0:
# pad at end to multiple of 4
n_pad = 4 - x.shape[1] % 4
padding = x[:, -1:].repeat_interleave(n_pad, dim=1)
x = torch.cat([x, padding], 1)
x = apply_model_with_memblocks(self.encoder, x, self.parallel, show_progress_bar).movedim(2, 1)
return self.process_out(x)
def decode(self, x, show_progress_bar=True, **kwargs):
x = self.process_in(x).movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W]
x = apply_model_with_memblocks(self.decoder, x, self.parallel, show_progress_bar)
if self.patch_size > 1: x = F.pixel_shuffle(x, self.patch_size)
return x[:, self.frames_to_trim:].movedim(2, 1)