mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-22 04:10:15 +08:00
Merge branch 'comfyanonymous:master' into optimize/maskeditor
This commit is contained in:
commit
c8de61dcb8
44
comfy/sd.py
44
comfy/sd.py
@ -544,6 +544,19 @@ class VAE:
|
|||||||
/ 3.0) / 2.0, min=0.0, max=1.0)
|
/ 3.0) / 2.0, min=0.0, max=1.0)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||||
|
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||||
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||||
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||||
|
pbar = utils.ProgressBar(steps)
|
||||||
|
|
||||||
|
encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample() * self.scale_factor
|
||||||
|
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||||
|
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||||
|
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||||
|
samples /= 3.0
|
||||||
|
return samples
|
||||||
|
|
||||||
def decode(self, samples_in):
|
def decode(self, samples_in):
|
||||||
model_management.unload_model()
|
model_management.unload_model()
|
||||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||||
@ -574,28 +587,29 @@ class VAE:
|
|||||||
def encode(self, pixel_samples):
|
def encode(self, pixel_samples):
|
||||||
model_management.unload_model()
|
model_management.unload_model()
|
||||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||||
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
|
pixel_samples = pixel_samples.movedim(-1,1)
|
||||||
samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor
|
try:
|
||||||
|
free_memory = model_management.get_free_memory(self.device)
|
||||||
|
batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
|
||||||
|
batch_number = max(1, batch_number)
|
||||||
|
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
|
||||||
|
for x in range(0, pixel_samples.shape[0], batch_number):
|
||||||
|
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
|
||||||
|
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu() * self.scale_factor
|
||||||
|
|
||||||
|
except model_management.OOM_EXCEPTION as e:
|
||||||
|
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
|
||||||
|
samples = self.encode_tiled_(pixel_samples)
|
||||||
|
|
||||||
self.first_stage_model = self.first_stage_model.cpu()
|
self.first_stage_model = self.first_stage_model.cpu()
|
||||||
samples = samples.cpu()
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||||
model_management.unload_model()
|
model_management.unload_model()
|
||||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||||
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
|
pixel_samples = pixel_samples.movedim(-1,1)
|
||||||
|
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
|
||||||
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
|
||||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
|
||||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
|
||||||
pbar = utils.ProgressBar(steps)
|
|
||||||
|
|
||||||
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
|
||||||
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
|
||||||
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
|
||||||
samples /= 3.0
|
|
||||||
self.first_stage_model = self.first_stage_model.cpu()
|
self.first_stage_model = self.first_stage_model.cpu()
|
||||||
samples = samples.cpu()
|
|
||||||
return samples
|
return samples
|
||||||
|
|
||||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||||
|
|||||||
22
nodes.py
22
nodes.py
@ -1192,6 +1192,26 @@ class ImageScale:
|
|||||||
s = s.movedim(1,-1)
|
s = s.movedim(1,-1)
|
||||||
return (s,)
|
return (s,)
|
||||||
|
|
||||||
|
class ImageScaleBy:
|
||||||
|
upscale_methods = ["nearest-exact", "bilinear", "area"]
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
||||||
|
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
|
||||||
|
RETURN_TYPES = ("IMAGE",)
|
||||||
|
FUNCTION = "upscale"
|
||||||
|
|
||||||
|
CATEGORY = "image/upscaling"
|
||||||
|
|
||||||
|
def upscale(self, image, upscale_method, scale_by):
|
||||||
|
samples = image.movedim(-1,1)
|
||||||
|
width = round(samples.shape[3] * scale_by)
|
||||||
|
height = round(samples.shape[2] * scale_by)
|
||||||
|
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
||||||
|
s = s.movedim(1,-1)
|
||||||
|
return (s,)
|
||||||
|
|
||||||
class ImageInvert:
|
class ImageInvert:
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@ -1290,6 +1310,7 @@ NODE_CLASS_MAPPINGS = {
|
|||||||
"LoadImage": LoadImage,
|
"LoadImage": LoadImage,
|
||||||
"LoadImageMask": LoadImageMask,
|
"LoadImageMask": LoadImageMask,
|
||||||
"ImageScale": ImageScale,
|
"ImageScale": ImageScale,
|
||||||
|
"ImageScaleBy": ImageScaleBy,
|
||||||
"ImageInvert": ImageInvert,
|
"ImageInvert": ImageInvert,
|
||||||
"ImagePadForOutpaint": ImagePadForOutpaint,
|
"ImagePadForOutpaint": ImagePadForOutpaint,
|
||||||
"ConditioningAverage ": ConditioningAverage ,
|
"ConditioningAverage ": ConditioningAverage ,
|
||||||
@ -1371,6 +1392,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
|||||||
"LoadImage": "Load Image",
|
"LoadImage": "Load Image",
|
||||||
"LoadImageMask": "Load Image (as Mask)",
|
"LoadImageMask": "Load Image (as Mask)",
|
||||||
"ImageScale": "Upscale Image",
|
"ImageScale": "Upscale Image",
|
||||||
|
"ImageScaleBy": "Upscale Image By",
|
||||||
"ImageUpscaleWithModel": "Upscale Image (using Model)",
|
"ImageUpscaleWithModel": "Upscale Image (using Model)",
|
||||||
"ImageInvert": "Invert Image",
|
"ImageInvert": "Invert Image",
|
||||||
"ImagePadForOutpaint": "Pad Image for Outpainting",
|
"ImagePadForOutpaint": "Pad Image for Outpainting",
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user