Merge remote-tracking branch 'upstream/master' into addBatchIndex

This commit is contained in:
flyingshutter 2023-05-05 16:52:46 +02:00
commit cab97a50b4
45 changed files with 1198 additions and 442 deletions

View File

@ -1,65 +0,0 @@
import pygit2
from datetime import datetime
import sys
def pull(repo, remote_name='origin', branch='master'):
for remote in repo.remotes:
if remote.name == remote_name:
remote.fetch()
remote_master_id = repo.lookup_reference('refs/remotes/origin/%s' % (branch)).target
merge_result, _ = repo.merge_analysis(remote_master_id)
# Up to date, do nothing
if merge_result & pygit2.GIT_MERGE_ANALYSIS_UP_TO_DATE:
return
# We can just fastforward
elif merge_result & pygit2.GIT_MERGE_ANALYSIS_FASTFORWARD:
repo.checkout_tree(repo.get(remote_master_id))
try:
master_ref = repo.lookup_reference('refs/heads/%s' % (branch))
master_ref.set_target(remote_master_id)
except KeyError:
repo.create_branch(branch, repo.get(remote_master_id))
repo.head.set_target(remote_master_id)
elif merge_result & pygit2.GIT_MERGE_ANALYSIS_NORMAL:
repo.merge(remote_master_id)
if repo.index.conflicts is not None:
for conflict in repo.index.conflicts:
print('Conflicts found in:', conflict[0].path)
raise AssertionError('Conflicts, ahhhhh!!')
user = repo.default_signature
tree = repo.index.write_tree()
commit = repo.create_commit('HEAD',
user,
user,
'Merge!',
tree,
[repo.head.target, remote_master_id])
# We need to do this or git CLI will think we are still merging.
repo.state_cleanup()
else:
raise AssertionError('Unknown merge analysis result')
repo = pygit2.Repository(str(sys.argv[1]))
ident = pygit2.Signature('comfyui', 'comfy@ui')
try:
print("stashing current changes")
repo.stash(ident)
except KeyError:
print("nothing to stash")
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
print("creating backup branch: {}".format(backup_branch_name))
repo.branches.local.create(backup_branch_name, repo.head.peel())
print("checking out master branch")
branch = repo.lookup_branch('master')
ref = repo.lookup_reference(branch.name)
repo.checkout(ref)
print("pulling latest changes")
pull(repo)
print("Done!")

View File

@ -1,2 +0,0 @@
..\python_embeded\python.exe .\update.py ..\ComfyUI\
pause

View File

@ -1,3 +1,3 @@
..\python_embeded\python.exe .\update.py ..\ComfyUI\
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 -r ../ComfyUI/requirements.txt pygit2
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2
pause

View File

@ -1,27 +0,0 @@
HOW TO RUN:
if you have a NVIDIA gpu:
run_nvidia_gpu.bat
To run it in slow CPU mode:
run_cpu.bat
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
You can download the stable diffusion 1.5 one from: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt
RECOMMENDED WAY TO UPDATE:
To update the ComfyUI code: update\update_comfyui.bat
To update ComfyUI with the python dependencies:
update\update_comfyui_and_python_dependencies.bat

View File

@ -1,2 +0,0 @@
.\python_embeded\python.exe -s ComfyUI\main.py --cpu --windows-standalone-build
pause

View File

@ -17,7 +17,7 @@ jobs:
- shell: bash
run: |
python -m pip wheel --no-cache-dir torch torchvision torchaudio xformers==0.0.19.dev516 --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
python -m pip wheel --no-cache-dir torch torchvision torchaudio xformers --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
python -m pip install --no-cache-dir ./temp_wheel_dir/*
echo installed basic
ls -lah temp_wheel_dir

View File

@ -19,21 +19,21 @@ jobs:
fetch-depth: 0
- uses: actions/setup-python@v4
with:
python-version: '3.10.9'
python-version: '3.11.3'
- shell: bash
run: |
cd ..
cp -r ComfyUI ComfyUI_copy
curl https://www.python.org/ftp/python/3.10.9/python-3.10.9-embed-amd64.zip -o python_embeded.zip
curl https://www.python.org/ftp/python/3.11.3/python-3.11.3-embed-amd64.zip -o python_embeded.zip
unzip python_embeded.zip -d python_embeded
cd python_embeded
echo 'import site' >> ./python310._pth
echo 'import site' >> ./python311._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu118 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
ls ../temp_wheel_dir
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
sed -i '1i../ComfyUI' ./python310._pth
sed -i '1i../ComfyUI' ./python311._pth
cd ..
@ -46,6 +46,8 @@ jobs:
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp -r ComfyUI/.ci/nightly/update_windows/* ./update/
cp -r ComfyUI/.ci/nightly/windows_base_files/* ./
cd ..

View File

@ -7,6 +7,8 @@ A powerful and modular stable diffusion GUI and backend.
This ui will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. For some workflow examples and see what ComfyUI can do you can check out:
### [ComfyUI Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
### [Installing ComfyUI](#installing)
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Fully supports SD1.x and SD2.x
@ -17,6 +19,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
- Can load ckpt, safetensors and diffusers models/checkpoints. Standalone VAEs and CLIP models.
- Embeddings/Textual inversion
- [Loras (regular, locon and loha)](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
- [Hypernetworks](https://comfyanonymous.github.io/ComfyUI_examples/hypernetworks/)
- Loading full workflows (with seeds) from generated PNG files.
- Saving/Loading workflows as Json files.
- Nodes interface can be used to create complex workflows like one for [Hires fix](https://comfyanonymous.github.io/ComfyUI_examples/2_pass_txt2img/) or much more advanced ones.

View File

@ -5,17 +5,17 @@ import torch
import torch as th
import torch.nn as nn
from ldm.modules.diffusionmodules.util import (
from ..ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.util import log_txt_as_img, exists, instantiate_from_config
from ..ldm.modules.attention import SpatialTransformer
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ..ldm.models.diffusion.ddpm import LatentDiffusion
from ..ldm.util import log_txt_as_img, exists, instantiate_from_config
class ControlledUnetModel(UNetModel):

View File

@ -10,6 +10,7 @@ parser.add_argument("--output-directory", type=str, default=None, help="Set the
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
parser.add_argument("--dont-upcast-attention", action="store_true", help="Disable upcasting of attention. Can boost speed but increase the chances of black images.")
parser.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used.")

View File

@ -712,7 +712,7 @@ class UniPC:
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
atol=0.0078, rtol=0.05, corrector=False,
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
):
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
t_T = self.noise_schedule.T if t_start is None else t_start
@ -723,7 +723,7 @@ class UniPC:
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
assert timesteps.shape[0] - 1 == steps
# with torch.no_grad():
for step_index in trange(steps):
for step_index in trange(steps, disable=disable_pbar):
if self.noise_mask is not None:
x = x * self.noise_mask + (1. - self.noise_mask) * (self.masked_image * self.noise_schedule.marginal_alpha(timesteps[step_index]) + self.noise * self.noise_schedule.marginal_std(timesteps[step_index]))
if step_index == 0:
@ -766,6 +766,8 @@ class UniPC:
if model_x is None:
model_x = self.model_fn(x, vec_t)
model_prev_list[-1] = model_x
if callback is not None:
callback(step_index, model_prev_list[-1], x, steps)
else:
raise NotImplementedError()
if denoise_to_zero:
@ -833,7 +835,7 @@ def expand_dims(v, dims):
def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=None, noise_mask=None, variant='bh1'):
def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'):
to_zero = False
if sigmas[-1] == 0:
timesteps = torch.nn.functional.interpolate(sigmas[None,None,:-1], size=(len(sigmas),), mode='linear')[0][0]
@ -877,7 +879,7 @@ def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, ex
order = min(3, len(timesteps) - 1)
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant)
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True)
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
if not to_zero:
x /= ns.marginal_alpha(timesteps[-1])
return x

View File

@ -1,6 +1,6 @@
import torch
from torch import nn, einsum
from ldm.modules.attention import CrossAttention
from .ldm.modules.attention import CrossAttention
from inspect import isfunction

View File

@ -3,11 +3,11 @@ import torch
import torch.nn.functional as F
from contextlib import contextmanager
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from comfy.ldm.modules.diffusionmodules.model import Encoder, Decoder
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from ldm.util import instantiate_from_config
from ldm.modules.ema import LitEma
from comfy.ldm.util import instantiate_from_config
from comfy.ldm.modules.ema import LitEma
# class AutoencoderKL(pl.LightningModule):
class AutoencoderKL(torch.nn.Module):

View File

@ -4,7 +4,7 @@ import torch
import numpy as np
from tqdm import tqdm
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
from comfy.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
class DDIMSampler(object):
@ -81,6 +81,7 @@ class DDIMSampler(object):
extra_args=None,
to_zero=True,
end_step=None,
disable_pbar=False,
**kwargs
):
self.make_schedule_timesteps(ddim_timesteps=ddim_timesteps, ddim_eta=eta, verbose=verbose)
@ -103,7 +104,8 @@ class DDIMSampler(object):
denoise_function=denoise_function,
extra_args=extra_args,
to_zero=to_zero,
end_step=end_step
end_step=end_step,
disable_pbar=disable_pbar
)
return samples, intermediates
@ -185,7 +187,7 @@ class DDIMSampler(object):
mask=None, x0=None, img_callback=None, log_every_t=100,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None):
ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None, disable_pbar=False):
device = self.model.betas.device
b = shape[0]
if x_T is None:
@ -204,7 +206,7 @@ class DDIMSampler(object):
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
# print(f"Running DDIM Sampling with {total_steps} timesteps")
iterator = tqdm(time_range[:end_step], desc='DDIM Sampler', total=end_step)
iterator = tqdm(time_range[:end_step], desc='DDIM Sampler', total=end_step, disable=disable_pbar)
for i, step in enumerate(iterator):
index = total_steps - i - 1

View File

@ -19,12 +19,12 @@ from tqdm import tqdm
from torchvision.utils import make_grid
# from pytorch_lightning.utilities.distributed import rank_zero_only
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from ldm.modules.ema import LitEma
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from ldm.models.diffusion.ddim import DDIMSampler
from comfy.ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from comfy.ldm.modules.ema import LitEma
from comfy.ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
from ..autoencoder import IdentityFirstStage, AutoencoderKL
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from .ddim import DDIMSampler
__conditioning_keys__ = {'concat': 'c_concat',

View File

@ -6,7 +6,7 @@ from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any
from ldm.modules.diffusionmodules.util import checkpoint
from .diffusionmodules.util import checkpoint
from .sub_quadratic_attention import efficient_dot_product_attention
from comfy import model_management
@ -21,7 +21,7 @@ if model_management.xformers_enabled():
import os
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
from cli_args import args
from comfy.cli_args import args
def exists(val):
return val is not None
@ -163,13 +163,17 @@ class CrossAttentionBirchSan(nn.Module):
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
query = self.to_q(x)
context = default(context, x)
key = self.to_k(context)
value = self.to_v(context)
if value is not None:
value = self.to_v(value)
else:
value = self.to_v(context)
del context, x
query = query.unflatten(-1, (self.heads, -1)).transpose(1,2).flatten(end_dim=1)
@ -256,13 +260,17 @@ class CrossAttentionDoggettx(nn.Module):
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
k_in = self.to_k(context)
v_in = self.to_v(context)
if value is not None:
v_in = self.to_v(value)
del value
else:
v_in = self.to_v(context)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
@ -350,13 +358,17 @@ class CrossAttention(nn.Module):
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
@ -402,11 +414,15 @@ class MemoryEfficientCrossAttention(nn.Module):
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
@ -447,19 +463,19 @@ class CrossAttentionPytorch(nn.Module):
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, mask=None):
def forward(self, x, context=None, value=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if value is not None:
v = self.to_v(value)
del value
else:
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
lambda t: t.view(b, -1, self.heads, self.dim_head).transpose(1, 2),
(q, k, v),
)
@ -468,10 +484,7 @@ class CrossAttentionPytorch(nn.Module):
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
out.transpose(1, 2).reshape(b, -1, self.heads * self.dim_head)
)
return self.to_out(out)
@ -519,11 +532,25 @@ class BasicTransformerBlock(nn.Module):
transformer_patches = {}
n = self.norm1(x)
if self.disable_self_attn:
context_attn1 = context
else:
context_attn1 = None
value_attn1 = None
if "attn1_patch" in transformer_patches:
patch = transformer_patches["attn1_patch"]
if context_attn1 is None:
context_attn1 = n
value_attn1 = context_attn1
for p in patch:
n, context_attn1, value_attn1 = p(current_index, n, context_attn1, value_attn1)
if "tomesd" in transformer_options:
m, u = tomesd.get_functions(x, transformer_options["tomesd"]["ratio"], transformer_options["original_shape"])
n = u(self.attn1(m(n), context=context if self.disable_self_attn else None))
n = u(self.attn1(m(n), context=context_attn1, value=value_attn1))
else:
n = self.attn1(n, context=context if self.disable_self_attn else None)
n = self.attn1(n, context=context_attn1, value=value_attn1)
x += n
if "middle_patch" in transformer_patches:
@ -532,7 +559,16 @@ class BasicTransformerBlock(nn.Module):
x = p(current_index, x)
n = self.norm2(x)
n = self.attn2(n, context=context)
context_attn2 = context
value_attn2 = None
if "attn2_patch" in transformer_patches:
patch = transformer_patches["attn2_patch"]
value_attn2 = context_attn2
for p in patch:
n, context_attn2, value_attn2 = p(current_index, n, context_attn2, value_attn2)
n = self.attn2(n, context=context_attn2, value=value_attn2)
x += n
x = self.ff(self.norm3(x)) + x

View File

@ -6,7 +6,7 @@ import numpy as np
from einops import rearrange
from typing import Optional, Any
from ldm.modules.attention import MemoryEfficientCrossAttention
from ..attention import MemoryEfficientCrossAttention
from comfy import model_management
if model_management.xformers_enabled_vae():

View File

@ -6,7 +6,7 @@ import torch as th
import torch.nn as nn
import torch.nn.functional as F
from ldm.modules.diffusionmodules.util import (
from .util import (
checkpoint,
conv_nd,
linear,
@ -15,8 +15,8 @@ from ldm.modules.diffusionmodules.util import (
normalization,
timestep_embedding,
)
from ldm.modules.attention import SpatialTransformer
from ldm.util import exists
from ..attention import SpatialTransformer
from comfy.ldm.util import exists
# dummy replace
@ -76,12 +76,14 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
support it as an extra input.
"""
def forward(self, x, emb, context=None, transformer_options={}):
def forward(self, x, emb, context=None, transformer_options={}, output_shape=None):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context, transformer_options)
elif isinstance(layer, Upsample):
x = layer(x, output_shape=output_shape)
else:
x = layer(x)
return x
@ -105,14 +107,20 @@ class Upsample(nn.Module):
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
def forward(self, x):
def forward(self, x, output_shape=None):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
if output_shape is not None:
shape[1] = output_shape[3]
shape[2] = output_shape[4]
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
shape = [x.shape[2] * 2, x.shape[3] * 2]
if output_shape is not None:
shape[0] = output_shape[2]
shape[1] = output_shape[3]
x = F.interpolate(x, size=shape, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
@ -813,9 +821,14 @@ class UNetModel(nn.Module):
ctrl = control['output'].pop()
if ctrl is not None:
hsp += ctrl
h = th.cat([h, hsp], dim=1)
del hsp
h = module(h, emb, context, transformer_options)
if len(hs) > 0:
output_shape = hs[-1].shape
else:
output_shape = None
h = module(h, emb, context, transformer_options, output_shape)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)

View File

@ -3,8 +3,8 @@ import torch.nn as nn
import numpy as np
from functools import partial
from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
from ldm.util import default
from .util import extract_into_tensor, make_beta_schedule
from comfy.ldm.util import default
class AbstractLowScaleModel(nn.Module):

View File

@ -15,7 +15,7 @@ import torch.nn as nn
import numpy as np
from einops import repeat
from ldm.util import instantiate_from_config
from comfy.ldm.util import instantiate_from_config
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):

View File

@ -1,5 +1,5 @@
from ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
from ldm.modules.diffusionmodules.openaimodel import Timestep
from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
from ..diffusionmodules.openaimodel import Timestep
import torch
class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):

View File

@ -1,6 +1,6 @@
import psutil
from enum import Enum
from cli_args import args
from comfy.cli_args import args
class VRAMState(Enum):
CPU = 0
@ -20,15 +20,30 @@ total_vram_available_mb = -1
accelerate_enabled = False
xpu_available = False
directml_enabled = False
if args.directml is not None:
import torch_directml
directml_enabled = True
device_index = args.directml
if device_index < 0:
directml_device = torch_directml.device()
else:
directml_device = torch_directml.device(device_index)
print("Using directml with device:", torch_directml.device_name(device_index))
# torch_directml.disable_tiled_resources(True)
try:
import torch
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
except:
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
if directml_enabled:
total_vram = 4097 #TODO
else:
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
except:
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
if not args.normalvram and not args.cpu:
if total_vram <= 4096:
@ -133,6 +148,7 @@ def unload_model():
#never unload models from GPU on high vram
if vram_state != VRAMState.HIGH_VRAM:
current_loaded_model.model.cpu()
current_loaded_model.model_patches_to("cpu")
current_loaded_model.unpatch_model()
current_loaded_model = None
@ -156,6 +172,8 @@ def load_model_gpu(model):
except Exception as e:
model.unpatch_model()
raise e
model.model_patches_to(get_torch_device())
current_loaded_model = model
if vram_state == VRAMState.CPU:
pass
@ -214,6 +232,10 @@ def unload_if_low_vram(model):
def get_torch_device():
global xpu_available
global directml_enabled
if directml_enabled:
global directml_device
return directml_device
if vram_state == VRAMState.MPS:
return torch.device("mps")
if vram_state == VRAMState.CPU:
@ -231,8 +253,14 @@ def get_autocast_device(dev):
def xformers_enabled():
global xpu_available
global directml_enabled
if vram_state == VRAMState.CPU:
return False
if xpu_available:
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
@ -248,6 +276,7 @@ def pytorch_attention_enabled():
def get_free_memory(dev=None, torch_free_too=False):
global xpu_available
global directml_enabled
if dev is None:
dev = get_torch_device()
@ -255,7 +284,10 @@ def get_free_memory(dev=None, torch_free_too=False):
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
if xpu_available:
if directml_enabled:
mem_free_total = 1024 * 1024 * 1024 #TODO
mem_free_torch = mem_free_total
elif xpu_available:
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
mem_free_torch = mem_free_total
else:
@ -290,9 +322,14 @@ def mps_mode():
def should_use_fp16():
global xpu_available
global directml_enabled
if FORCE_FP32:
return False
if directml_enabled:
return False
if cpu_mode() or mps_mode() or xpu_available:
return False #TODO ?

83
comfy/sample.py Normal file
View File

@ -0,0 +1,83 @@
import torch
import comfy.model_management
import comfy.samplers
import math
def prepare_noise(latent_image, seed, skip=0):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
generator = torch.manual_seed(seed)
for _ in range(skip):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
return noise
def prepare_mask(noise_mask, shape, device):
"""ensures noise mask is of proper dimensions"""
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
noise_mask = noise_mask.round()
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
if noise_mask.shape[0] < shape[0]:
noise_mask = noise_mask.repeat(math.ceil(shape[0] / noise_mask.shape[0]), 1, 1, 1)[:shape[0]]
noise_mask = noise_mask.to(device)
return noise_mask
def broadcast_cond(cond, batch, device):
"""broadcasts conditioning to the batch size"""
copy = []
for p in cond:
t = p[0]
if t.shape[0] < batch:
t = torch.cat([t] * batch)
t = t.to(device)
copy += [[t] + p[1:]]
return copy
def get_models_from_cond(cond, model_type):
models = []
for c in cond:
if model_type in c[1]:
models += [c[1][model_type]]
return models
def load_additional_models(positive, negative):
"""loads additional models in positive and negative conditioning"""
control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
gligen = [x[1] for x in gligen]
models = control_nets + gligen
comfy.model_management.load_controlnet_gpu(models)
return models
def cleanup_additional_models(models):
"""cleanup additional models that were loaded"""
for m in models:
m.cleanup()
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False):
device = comfy.model_management.get_torch_device()
if noise_mask is not None:
noise_mask = prepare_mask(noise_mask, noise.shape, device)
real_model = None
comfy.model_management.load_model_gpu(model)
real_model = model.model
noise = noise.to(device)
latent_image = latent_image.to(device)
positive_copy = broadcast_cond(positive, noise.shape[0], device)
negative_copy = broadcast_cond(negative, noise.shape[0], device)
models = load_additional_models(positive, negative)
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar)
samples = samples.cpu()
cleanup_additional_models(models)
return samples

View File

@ -23,21 +23,36 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
adm_cond = cond[1]['adm_encoded']
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
mult = torch.ones_like(input_x) * strength
if 'mask' in cond[1]:
# Scale the mask to the size of the input
# The mask should have been resized as we began the sampling process
mask_strength = 1.0
if "mask_strength" in cond[1]:
mask_strength = cond[1]["mask_strength"]
mask = cond[1]['mask']
assert(mask.shape[1] == x_in.shape[2])
assert(mask.shape[2] == x_in.shape[3])
mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
else:
mask = torch.ones_like(input_x)
mult = mask * strength
if 'mask' not in cond[1]:
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))
conditionning = {}
conditionning['c_crossattn'] = cond[0]
if cond_concat_in is not None and len(cond_concat_in) > 0:
@ -197,7 +212,15 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
transformer_options = model_options['transformer_options'].copy()
if patches is not None:
transformer_options["patches"] = patches
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
else:
transformer_options["patches"] = patches
c['transformer_options'] = transformer_options
@ -293,6 +316,71 @@ def blank_inpaint_image_like(latent_image):
blank_image[:,3] *= 0.1380
return blank_image
def get_mask_aabb(masks):
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
b = masks.shape[0]
bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
for i in range(b):
mask = masks[i]
if mask.numel() == 0:
continue
if torch.max(mask != 0) == False:
is_empty[i] = True
continue
y, x = torch.where(mask)
bounding_boxes[i, 0] = torch.min(x)
bounding_boxes[i, 1] = torch.min(y)
bounding_boxes[i, 2] = torch.max(x)
bounding_boxes[i, 3] = torch.max(y)
return bounding_boxes, is_empty
def resolve_cond_masks(conditions, h, w, device):
# We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
# While we're doing this, we can also resolve the mask device and scaling for performance reasons
for i in range(len(conditions)):
c = conditions[i]
if 'mask' in c[1]:
mask = c[1]['mask']
mask = mask.to(device=device)
modified = c[1].copy()
if len(mask.shape) == 2:
mask = mask.unsqueeze(0)
if mask.shape[2] != h or mask.shape[3] != w:
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)
if modified.get("set_area_to_bounds", False):
bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
boxes, is_empty = get_mask_aabb(bounds)
if is_empty[0]:
# Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
modified['area'] = (8, 8, 0, 0)
else:
box = boxes[0]
H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
# Make sure the height and width are divisible by 8
if X % 8 != 0:
newx = X // 8 * 8
W = W + (X - newx)
X = newx
if Y % 8 != 0:
newy = Y // 8 * 8
H = H + (Y - newy)
Y = newy
if H % 8 != 0:
H = H + (8 - (H % 8))
if W % 8 != 0:
W = W + (8 - (W % 8))
area = (int(H), int(W), int(Y), int(X))
modified['area'] = area
modified['mask'] = mask
conditions[i] = [c[0], modified]
def create_cond_with_same_area_if_none(conds, c):
if 'area' not in c[1]:
return
@ -421,7 +509,7 @@ class KSampler:
self.denoise = denoise
self.model_options = model_options
def _calculate_sigmas(self, steps):
def calculate_sigmas(self, steps):
sigmas = None
discard_penultimate_sigma = False
@ -430,13 +518,13 @@ class KSampler:
discard_penultimate_sigma = True
if self.scheduler == "karras":
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
elif self.scheduler == "normal":
sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
sigmas = self.model_wrap.get_sigmas(steps)
elif self.scheduler == "simple":
sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
sigmas = simple_scheduler(self.model_wrap, steps)
elif self.scheduler == "ddim_uniform":
sigmas = ddim_scheduler(self.model_wrap, steps).to(self.device)
sigmas = ddim_scheduler(self.model_wrap, steps)
else:
print("error invalid scheduler", self.scheduler)
@ -447,15 +535,15 @@ class KSampler:
def set_steps(self, steps, denoise=None):
self.steps = steps
if denoise is None or denoise > 0.9999:
self.sigmas = self._calculate_sigmas(steps)
self.sigmas = self.calculate_sigmas(steps).to(self.device)
else:
new_steps = int(steps/denoise)
sigmas = self._calculate_sigmas(new_steps)
sigmas = self.calculate_sigmas(new_steps).to(self.device)
self.sigmas = sigmas[-(steps + 1):]
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None):
sigmas = self.sigmas
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False):
if sigmas is None:
sigmas = self.sigmas
sigma_min = self.sigma_min
if last_step is not None and last_step < (len(sigmas) - 1):
@ -475,6 +563,10 @@ class KSampler:
positive = positive[:]
negative = negative[:]
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
#make sure each cond area has an opposite one with the same area
for c in positive:
create_cond_with_same_area_if_none(negative, c)
@ -518,9 +610,9 @@ class KSampler:
with precision_scope(model_management.get_autocast_device(self.device)):
if self.sampler == "uni_pc":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask)
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
elif self.sampler == "uni_pc_bh2":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, variant='bh2')
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
elif self.sampler == "ddim":
timesteps = []
for s in range(sigmas.shape[0]):
@ -528,6 +620,12 @@ class KSampler:
noise_mask = None
if denoise_mask is not None:
noise_mask = 1.0 - denoise_mask
ddim_callback = None
if callback is not None:
total_steps = len(timesteps) - 1
ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
sampler = DDIMSampler(self.model, device=self.device)
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
@ -541,11 +639,13 @@ class KSampler:
eta=0.0,
x_T=z_enc,
x0=latent_image,
img_callback=ddim_callback,
denoise_function=sampling_function,
extra_args=extra_args,
mask=noise_mask,
to_zero=sigmas[-1]==0,
end_step=sigmas.shape[0] - 1)
end_step=sigmas.shape[0] - 1,
disable_pbar=disable_pbar)
else:
extra_args["denoise_mask"] = denoise_mask
@ -554,13 +654,18 @@ class KSampler:
noise = noise * sigmas[0]
k_callback = None
total_steps = len(sigmas) - 1
if callback is not None:
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
if latent_image is not None:
noise += latent_image
if self.sampler == "dpm_fast":
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args)
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
elif self.sampler == "dpm_adaptive":
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args)
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
else:
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args)
samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
return samples.to(torch.float32)

View File

@ -2,8 +2,8 @@ import torch
import contextlib
import copy
import sd1_clip
import sd2_clip
from . import sd1_clip
from . import sd2_clip
from comfy import model_management
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
@ -111,6 +111,8 @@ def load_lora(path, to_load):
loaded_keys.add(A_name)
loaded_keys.add(B_name)
######## loha
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
@ -132,6 +134,54 @@ def load_lora(path, to_load):
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
######## lokr
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
for x in lora.keys():
if x not in loaded_keys:
print("lora key not loaded", x)
@ -254,6 +304,29 @@ class ModelPatcher:
def set_model_sampler_cfg_function(self, sampler_cfg_function):
self.model_options["sampler_cfg_function"] = sampler_cfg_function
def set_model_patch(self, patch, name):
to = self.model_options["transformer_options"]
if "patches" not in to:
to["patches"] = {}
to["patches"][name] = to["patches"].get(name, []) + [patch]
def set_model_attn1_patch(self, patch):
self.set_model_patch(patch, "attn1_patch")
def set_model_attn2_patch(self, patch):
self.set_model_patch(patch, "attn2_patch")
def model_patches_to(self, device):
to = self.model_options["transformer_options"]
if "patches" in to:
patches = to["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"):
patch_list[i] = patch_list[i].to(device)
def model_dtype(self):
return self.model.diffusion_model.dtype
@ -292,6 +365,33 @@ class ModelPatcher:
final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
elif len(v) == 8: #lokr
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(w1_a.float(), w1_b.float())
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(w2_a.float(), w2_b.float())
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha *= v[2] / dim
weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
else: #loha
w1a = v[0]
w1b = v[1]
@ -346,10 +446,10 @@ class CLIP:
else:
params = {}
if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder":
if self.target_clip.endswith("FrozenOpenCLIPEmbedder"):
clip = sd2_clip.SD2ClipModel
tokenizer = sd2_clip.SD2Tokenizer
elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder":
elif self.target_clip.endswith("FrozenCLIPEmbedder"):
clip = sd1_clip.SD1ClipModel
tokenizer = sd1_clip.SD1Tokenizer
@ -414,11 +514,16 @@ class VAE:
self.device = device
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = utils.ProgressBar(steps)
decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
output = torch.clamp((
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8) +
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8) +
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8))
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
/ 3.0) / 2.0, min=0.0, max=1.0)
return output
@ -462,9 +567,15 @@ class VAE:
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4)
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = utils.ProgressBar(steps)
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples /= 3.0
self.first_stage_model = self.first_stage_model.cpu()
samples = samples.cpu()
@ -785,9 +896,9 @@ def load_clip(ckpt_path, embedding_directory=None):
clip_data = utils.load_torch_file(ckpt_path)
config = {}
if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
else:
config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip = CLIP(config=config, embedding_directory=embedding_directory)
clip.load_from_state_dict(clip_data)
return clip
@ -863,9 +974,9 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if output_clip:
clip_config = {}
if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys:
clip_config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
else:
clip_config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w]
@ -886,7 +997,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0]
noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2"
params["noise_schedule_config"] = noise_schedule_config
noise_aug_config['target'] = "ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
noise_aug_config['target'] = "comfy.ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
if size == 1280: #h
params["timestep_dim"] = 1024
elif size == 1024: #l
@ -938,19 +1049,19 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1]
unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]
sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
model_config = {"target": "comfy.ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
if noise_aug_config is not None: #SD2.x unclip model
sd_config["noise_aug_config"] = noise_aug_config
sd_config["image_size"] = 96
sd_config["embedding_dropout"] = 0.25
sd_config["conditioning_key"] = 'crossattn-adm'
model_config["target"] = "ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
elif unet_config["in_channels"] > 4: #inpainting model
sd_config["conditioning_key"] = "hybrid"
sd_config["finetune_keys"] = None
model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
else:
sd_config["conditioning_key"] = "crossattn"

View File

@ -191,11 +191,20 @@ def safe_load_embed_zip(embed_path):
del embed
return out
def expand_directory_list(directories):
dirs = set()
for x in directories:
dirs.add(x)
for root, subdir, file in os.walk(x, followlinks=True):
dirs.add(root)
return list(dirs)
def load_embed(embedding_name, embedding_directory):
if isinstance(embedding_directory, str):
embedding_directory = [embedding_directory]
embedding_directory = expand_directory_list(embedding_directory)
valid_file = None
for embed_dir in embedding_directory:
embed_path = os.path.join(embed_dir, embedding_name)

View File

@ -1,11 +1,15 @@
import torch
import math
def load_torch_file(ckpt):
def load_torch_file(ckpt, safe_load=False):
if ckpt.lower().endswith(".safetensors"):
import safetensors.torch
sd = safetensors.torch.load_file(ckpt, device="cpu")
else:
pl_sd = torch.load(ckpt, map_location="cpu")
if safe_load:
pl_sd = torch.load(ckpt, map_location="cpu", weights_only=True)
else:
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
@ -59,8 +63,11 @@ def common_upscale(samples, width, height, upscale_method, crop):
s = samples
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
@torch.inference_mode()
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3):
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, pbar = None):
output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device="cpu")
for b in range(samples.shape[0]):
s = samples[b:b+1]
@ -80,6 +87,33 @@ def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_am
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
if pbar is not None:
pbar.update(1)
output[b:b+1] = out/out_div
return output
PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
global PROGRESS_BAR_HOOK
PROGRESS_BAR_HOOK = function
class ProgressBar:
def __init__(self, total):
global PROGRESS_BAR_HOOK
self.total = total
self.current = 0
self.hook = PROGRESS_BAR_HOOK
def update_absolute(self, value, total=None):
if total is not None:
self.total = total
if value > self.total:
value = self.total
self.current = value
if self.hook is not None:
self.hook(self.current, self.total)
def update(self, value):
self.update_absolute(self.current + value)

View File

@ -4,7 +4,10 @@
from __future__ import annotations
from collections import OrderedDict
from typing import Literal
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
import torch
import torch.nn as nn

View File

@ -0,0 +1,110 @@
import comfy.utils
import folder_paths
import torch
def load_hypernetwork_patch(path, strength):
sd = comfy.utils.load_torch_file(path, safe_load=True)
activation_func = sd.get('activation_func', 'linear')
is_layer_norm = sd.get('is_layer_norm', False)
use_dropout = sd.get('use_dropout', False)
activate_output = sd.get('activate_output', False)
last_layer_dropout = sd.get('last_layer_dropout', False)
valid_activation = {
"linear": torch.nn.Identity,
"relu": torch.nn.ReLU,
"leakyrelu": torch.nn.LeakyReLU,
"elu": torch.nn.ELU,
"swish": torch.nn.Hardswish,
"tanh": torch.nn.Tanh,
"sigmoid": torch.nn.Sigmoid,
"softsign": torch.nn.Softsign,
}
if activation_func not in valid_activation:
print("Unsupported Hypernetwork format, if you report it I might implement it.", path, " ", activation_func, is_layer_norm, use_dropout, activate_output, last_layer_dropout)
return None
out = {}
for d in sd:
try:
dim = int(d)
except:
continue
output = []
for index in [0, 1]:
attn_weights = sd[dim][index]
keys = attn_weights.keys()
linears = filter(lambda a: a.endswith(".weight"), keys)
linears = list(map(lambda a: a[:-len(".weight")], linears))
layers = []
for i in range(len(linears)):
lin_name = linears[i]
last_layer = (i == (len(linears) - 1))
penultimate_layer = (i == (len(linears) - 2))
lin_weight = attn_weights['{}.weight'.format(lin_name)]
lin_bias = attn_weights['{}.bias'.format(lin_name)]
layer = torch.nn.Linear(lin_weight.shape[1], lin_weight.shape[0])
layer.load_state_dict({"weight": lin_weight, "bias": lin_bias})
layers.append(layer)
if activation_func != "linear":
if (not last_layer) or (activate_output):
layers.append(valid_activation[activation_func]())
if is_layer_norm:
layers.append(torch.nn.LayerNorm(lin_weight.shape[0]))
if use_dropout:
if (not last_layer) and (not penultimate_layer or last_layer_dropout):
layers.append(torch.nn.Dropout(p=0.3))
output.append(torch.nn.Sequential(*layers))
out[dim] = torch.nn.ModuleList(output)
class hypernetwork_patch:
def __init__(self, hypernet, strength):
self.hypernet = hypernet
self.strength = strength
def __call__(self, current_index, q, k, v):
dim = k.shape[-1]
if dim in self.hypernet:
hn = self.hypernet[dim]
k = k + hn[0](k) * self.strength
v = v + hn[1](v) * self.strength
return q, k, v
def to(self, device):
for d in self.hypernet.keys():
self.hypernet[d] = self.hypernet[d].to(device)
return self
return hypernetwork_patch(out, strength)
class HypernetworkLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"hypernetwork_name": (folder_paths.get_filename_list("hypernetworks"), ),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_hypernetwork"
CATEGORY = "loaders"
def load_hypernetwork(self, model, hypernetwork_name, strength):
hypernetwork_path = folder_paths.get_full_path("hypernetworks", hypernetwork_name)
model_hypernetwork = model.clone()
patch = load_hypernetwork_patch(hypernetwork_path, strength)
if patch is not None:
model_hypernetwork.set_model_attn1_patch(patch)
model_hypernetwork.set_model_attn2_patch(patch)
return (model_hypernetwork,)
NODE_CLASS_MAPPINGS = {
"HypernetworkLoader": HypernetworkLoader
}

View File

@ -37,7 +37,12 @@ class ImageUpscaleWithModel:
device = model_management.get_torch_device()
upscale_model.to(device)
in_img = image.movedim(-1,-3).to(device)
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=128 + 64, tile_y=128 + 64, overlap = 8, upscale_amount=upscale_model.scale)
tile = 128 + 64
overlap = 8
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
pbar = comfy.utils.ProgressBar(steps)
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
upscale_model.cpu()
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
return (s,)

View File

@ -40,15 +40,13 @@ def get_input_data(inputs, class_def, unique_id, outputs={}, prompt={}, extra_da
input_data_all[x] = unique_id
return input_data_all
def recursive_execute(server, prompt, outputs, current_item, extra_data={}):
def recursive_execute(server, prompt, outputs, current_item, extra_data, executed):
unique_id = current_item
inputs = prompt[unique_id]['inputs']
class_type = prompt[unique_id]['class_type']
class_def = nodes.NODE_CLASS_MAPPINGS[class_type]
if unique_id in outputs:
return []
executed = []
return
for x in inputs:
input_data = inputs[x]
@ -57,7 +55,7 @@ def recursive_execute(server, prompt, outputs, current_item, extra_data={}):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
executed += recursive_execute(server, prompt, outputs, input_unique_id, extra_data)
recursive_execute(server, prompt, outputs, input_unique_id, extra_data, executed)
input_data_all = get_input_data(inputs, class_def, unique_id, outputs, prompt, extra_data)
if server.client_id is not None:
@ -72,7 +70,7 @@ def recursive_execute(server, prompt, outputs, current_item, extra_data={}):
server.send_sync("executed", { "node": unique_id, "output": outputs[unique_id]["ui"] }, server.client_id)
if "result" in outputs[unique_id]:
outputs[unique_id] = outputs[unique_id]["result"]
return executed + [unique_id]
executed.add(unique_id)
def recursive_will_execute(prompt, outputs, current_item):
unique_id = current_item
@ -99,40 +97,44 @@ def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item
is_changed_old = ''
is_changed = ''
to_delete = False
if hasattr(class_def, 'IS_CHANGED'):
if unique_id in old_prompt and 'is_changed' in old_prompt[unique_id]:
is_changed_old = old_prompt[unique_id]['is_changed']
if 'is_changed' not in prompt[unique_id]:
input_data_all = get_input_data(inputs, class_def, unique_id, outputs)
if input_data_all is not None:
is_changed = class_def.IS_CHANGED(**input_data_all)
prompt[unique_id]['is_changed'] = is_changed
try:
is_changed = class_def.IS_CHANGED(**input_data_all)
prompt[unique_id]['is_changed'] = is_changed
except:
to_delete = True
else:
is_changed = prompt[unique_id]['is_changed']
if unique_id not in outputs:
return True
to_delete = False
if is_changed != is_changed_old:
to_delete = True
elif unique_id not in old_prompt:
to_delete = True
elif inputs == old_prompt[unique_id]['inputs']:
for x in inputs:
input_data = inputs[x]
if not to_delete:
if is_changed != is_changed_old:
to_delete = True
elif unique_id not in old_prompt:
to_delete = True
elif inputs == old_prompt[unique_id]['inputs']:
for x in inputs:
input_data = inputs[x]
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id in outputs:
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
else:
to_delete = True
if to_delete:
break
else:
to_delete = True
if isinstance(input_data, list):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id in outputs:
to_delete = recursive_output_delete_if_changed(prompt, old_prompt, outputs, input_unique_id)
else:
to_delete = True
if to_delete:
break
else:
to_delete = True
if to_delete:
d = outputs.pop(unique_id)
@ -154,11 +156,20 @@ class PromptExecutor:
self.server.client_id = None
with torch.inference_mode():
#delete cached outputs if nodes don't exist for them
to_delete = []
for o in self.outputs:
if o not in prompt:
to_delete += [o]
for o in to_delete:
d = self.outputs.pop(o)
del d
for x in prompt:
recursive_output_delete_if_changed(prompt, self.old_prompt, self.outputs, x)
current_outputs = set(self.outputs.keys())
executed = []
executed = set()
try:
to_execute = []
for x in prompt:
@ -181,12 +192,12 @@ class PromptExecutor:
except:
valid = False
if valid:
executed += recursive_execute(self.server, prompt, self.outputs, x, extra_data)
recursive_execute(self.server, prompt, self.outputs, x, extra_data, executed)
except Exception as e:
print(traceback.format_exc())
to_delete = []
for o in self.outputs:
if o not in current_outputs:
if (o not in current_outputs) and (o not in executed):
to_delete += [o]
if o in self.old_prompt:
d = self.old_prompt.pop(o)
@ -194,11 +205,9 @@ class PromptExecutor:
for o in to_delete:
d = self.outputs.pop(o)
del d
else:
executed = set(executed)
finally:
for x in executed:
self.old_prompt[x] = copy.deepcopy(prompt[x])
finally:
self.server.last_node_id = None
if self.server.client_id is not None:
self.server.send_sync("executing", { "node": None }, self.server.client_id)
@ -249,9 +258,15 @@ def validate_inputs(prompt, item):
if "max" in info[1] and val > info[1]["max"]:
return (False, "Value bigger than max. {}, {}".format(class_type, x))
if isinstance(type_input, list):
if val not in type_input:
return (False, "Value not in list. {}, {}: {} not in {}".format(class_type, x, val, type_input))
if hasattr(obj_class, "VALIDATE_INPUTS"):
input_data_all = get_input_data(inputs, obj_class, unique_id)
ret = obj_class.VALIDATE_INPUTS(**input_data_all)
if ret != True:
return (False, "{}, {}".format(class_type, ret))
else:
if isinstance(type_input, list):
if val not in type_input:
return (False, "Value not in list. {}, {}: {} not in {}".format(class_type, x, val, type_input))
return (True, "")
def validate_prompt(prompt):
@ -273,7 +288,8 @@ def validate_prompt(prompt):
m = validate_inputs(prompt, o)
valid = m[0]
reason = m[1]
except:
except Exception as e:
print(traceback.format_exc())
valid = False
reason = "Parsing error"

View File

@ -13,6 +13,7 @@ a111:
models/ESRGAN
models/SwinIR
embeddings: embeddings
hypernetworks: models/hypernetworks
controlnet: models/ControlNet
#other_ui:

View File

@ -32,6 +32,7 @@ folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_m
folder_names_and_paths["custom_nodes"] = ([os.path.join(base_path, "custom_nodes")], [])
folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions)
output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
@ -68,6 +69,46 @@ def get_directory_by_type(type_name):
return None
# determine base_dir rely on annotation if name is 'filename.ext [annotation]' format
# otherwise use default_path as base_dir
def annotated_filepath(name):
if name.endswith("[output]"):
base_dir = get_output_directory()
name = name[:-9]
elif name.endswith("[input]"):
base_dir = get_input_directory()
name = name[:-8]
elif name.endswith("[temp]"):
base_dir = get_temp_directory()
name = name[:-7]
else:
return name, None
return name, base_dir
def get_annotated_filepath(name, default_dir=None):
name, base_dir = annotated_filepath(name)
if base_dir is None:
if default_dir is not None:
base_dir = default_dir
else:
base_dir = get_input_directory() # fallback path
return os.path.join(base_dir, name)
def exists_annotated_filepath(name):
name, base_dir = annotated_filepath(name)
if base_dir is None:
base_dir = get_input_directory() # fallback path
filepath = os.path.join(base_dir, name)
return os.path.exists(filepath)
def add_model_folder_path(folder_name, full_folder_path):
global folder_names_and_paths
if folder_name in folder_names_and_paths:

12
main.py
View File

@ -5,6 +5,7 @@ import shutil
import threading
from comfy.cli_args import args
import comfy.utils
if os.name == "nt":
import logging
@ -39,14 +40,9 @@ async def run(server, address='', port=8188, verbose=True, call_on_start=None):
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
def hijack_progress(server):
from tqdm.auto import tqdm
orig_func = getattr(tqdm, "update")
def wrapped_func(*args, **kwargs):
pbar = args[0]
v = orig_func(*args, **kwargs)
server.send_sync("progress", { "value": pbar.n, "max": pbar.total}, server.client_id)
return v
setattr(tqdm, "update", wrapped_func)
def hook(value, total):
server.send_sync("progress", { "value": value, "max": total}, server.client_id)
comfy.utils.set_progress_bar_global_hook(hook)
def cleanup_temp():
temp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")

265
nodes.py
View File

@ -5,6 +5,7 @@ import sys
import json
import hashlib
import traceback
import math
from PIL import Image
from PIL.PngImagePlugin import PngInfo
@ -16,6 +17,7 @@ sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "co
import comfy.diffusers_convert
import comfy.samplers
import comfy.sample
import comfy.sd
import comfy.utils
@ -58,14 +60,44 @@ class ConditioningCombine:
def combine(self, conditioning_1, conditioning_2):
return (conditioning_1 + conditioning_2, )
class ConditioningAverage :
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "addWeighted"
CATEGORY = "conditioning"
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
out = []
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
t0 = cond_from[:,:t1.shape[1]]
if t0.shape[1] < t1.shape[1]:
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
n = [tw, conditioning_to[i][1].copy()]
out.append(n)
return (out, )
class ConditioningSetArea:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
@ -79,11 +111,41 @@ class ConditioningSetArea:
n = [t[0], t[1].copy()]
n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
n[1]['strength'] = strength
n[1]['set_area_to_bounds'] = False
n[1]['min_sigma'] = min_sigma
n[1]['max_sigma'] = max_sigma
c.append(n)
return (c, )
class ConditioningSetMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"mask": ("MASK", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, mask, set_cond_area, strength):
c = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
for t in conditioning:
n = [t[0], t[1].copy()]
_, h, w = mask.shape
n[1]['mask'] = mask
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
return (c, )
class VAEDecode:
def __init__(self, device="cpu"):
self.device = device
@ -126,16 +188,21 @@ class VAEEncode:
CATEGORY = "latent"
def encode(self, vae, pixels):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
@staticmethod
def vae_encode_crop_pixels(pixels):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
return pixels
def encode(self, vae, pixels):
pixels = self.vae_encode_crop_pixels(pixels)
t = vae.encode(pixels[:,:,:,:3])
return ({"samples":t}, )
class VAEEncodeTiled:
def __init__(self, device="cpu"):
self.device = device
@ -149,46 +216,51 @@ class VAEEncodeTiled:
CATEGORY = "_for_testing"
def encode(self, vae, pixels):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
pixels = VAEEncode.vae_encode_crop_pixels(pixels)
t = vae.encode_tiled(pixels[:,:,:,:3])
return ({"samples":t}, )
class VAEEncodeForInpaint:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent/inpaint"
def encode(self, vae, pixels, mask):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]
def encode(self, vae, pixels, mask, grow_mask_by=6):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
pixels = pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
pixels = pixels[:,:x,:y,:]
mask = mask[:x,:y]
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
#grow mask by a few pixels to keep things seamless in latent space
kernel_tensor = torch.ones((1, 1, 6, 6))
mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
m = (1.0 - mask.round())
if grow_mask_by == 0:
mask_erosion = mask
else:
kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
padding = math.ceil((grow_mask_by - 1) / 2)
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)
m = (1.0 - mask.round()).squeeze(1)
for i in range(3):
pixels[:,:,:,i] -= 0.5
pixels[:,:,:,i] *= m
pixels[:,:,:,i] += 0.5
t = vae.encode(pixels)
return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
class CheckpointLoader:
@classmethod
@ -542,8 +614,8 @@ class EmptyLatentImage:
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
@ -581,8 +653,8 @@ class LatentUpscale:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"crop": (s.crop_methods,)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
@ -684,8 +756,8 @@ class LatentCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
@ -710,16 +782,6 @@ class LatentCrop:
new_width = width // 8
to_x = new_width + x
to_y = new_height + y
def enforce_image_dim(d, to_d, max_d):
if to_d > max_d:
leftover = (to_d - max_d) % 8
to_d = max_d
d -= leftover
return (d, to_d)
#make sure size is always multiple of 64
x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
s['samples'] = samples[:,:,y:to_y, x:to_x]
return (s,)
@ -739,79 +801,27 @@ class SetLatentNoiseMask:
s["noise_mask"] = mask
return (s,)
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
latent_image = latent["samples"]
noise_mask = None
device = comfy.model_management.get_torch_device()
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_index = 0
if "batch_index" in latent:
batch_index = latent["batch_index"]
generator = torch.manual_seed(seed)
for i in range(batch_index):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
skip = latent["batch_index"] if "batch_index" in latent else 0
noise = comfy.sample.prepare_noise(latent_image, seed, skip)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent['noise_mask']
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
noise_mask = noise_mask.round()
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
noise_mask = torch.cat([noise_mask] * noise.shape[0])
noise_mask = noise_mask.to(device)
noise_mask = latent["noise_mask"]
real_model = None
comfy.model_management.load_model_gpu(model)
real_model = model.model
noise = noise.to(device)
latent_image = latent_image.to(device)
positive_copy = []
negative_copy = []
control_nets = []
def get_models(cond):
models = []
for c in cond:
if 'control' in c[1]:
models += [c[1]['control']]
if 'gligen' in c[1]:
models += [c[1]['gligen'][1]]
return models
for p in positive:
t = p[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
t = t.to(device)
positive_copy += [[t] + p[1:]]
for n in negative:
t = n[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
t = t.to(device)
negative_copy += [[t] + n[1:]]
models = get_models(positive) + get_models(negative)
comfy.model_management.load_controlnet_gpu(models)
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
else:
#other samplers
pass
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
samples = samples.cpu()
for m in models:
m.cleanup()
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
pbar.update_absolute(step + 1, total_steps)
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
out = latent.copy()
out["samples"] = samples
return (out, )
@ -974,8 +984,7 @@ class LoadImage:
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "load_image"
def load_image(self, image):
input_dir = folder_paths.get_input_directory()
image_path = os.path.join(input_dir, image)
image_path = folder_paths.get_annotated_filepath(image)
i = Image.open(image_path)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
@ -989,20 +998,27 @@ class LoadImage:
@classmethod
def IS_CHANGED(s, image):
input_dir = folder_paths.get_input_directory()
image_path = os.path.join(input_dir, image)
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
class LoadImageMask:
_color_channels = ["alpha", "red", "green", "blue"]
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
return {"required":
{"image": (sorted(os.listdir(input_dir)), ),
"channel": (["alpha", "red", "green", "blue"], ),}
"channel": (s._color_channels, ),}
}
CATEGORY = "mask"
@ -1010,8 +1026,7 @@ class LoadImageMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "load_image"
def load_image(self, image, channel):
input_dir = folder_paths.get_input_directory()
image_path = os.path.join(input_dir, image)
image_path = folder_paths.get_annotated_filepath(image)
i = Image.open(image_path)
if i.getbands() != ("R", "G", "B", "A"):
i = i.convert("RGBA")
@ -1028,13 +1043,22 @@ class LoadImageMask:
@classmethod
def IS_CHANGED(s, image, channel):
input_dir = folder_paths.get_input_directory()
image_path = os.path.join(input_dir, image)
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, image, channel):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
if channel not in s._color_channels:
return "Invalid color channel: {}".format(channel)
return True
class ImageScale:
upscale_methods = ["nearest-exact", "bilinear", "area"]
crop_methods = ["disabled", "center"]
@ -1079,10 +1103,10 @@ class ImagePadForOutpaint:
return {
"required": {
"image": ("IMAGE",),
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
}
}
@ -1154,8 +1178,10 @@ NODE_CLASS_MAPPINGS = {
"ImageScale": ImageScale,
"ImageInvert": ImageInvert,
"ImagePadForOutpaint": ImagePadForOutpaint,
"ConditioningAverage ": ConditioningAverage ,
"ConditioningCombine": ConditioningCombine,
"ConditioningSetArea": ConditioningSetArea,
"ConditioningSetMask": ConditioningSetMask,
"KSamplerAdvanced": KSamplerAdvanced,
"SetLatentNoiseMask": SetLatentNoiseMask,
"LatentComposite": LatentComposite,
@ -1204,7 +1230,9 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"CLIPTextEncode": "CLIP Text Encode (Prompt)",
"CLIPSetLastLayer": "CLIP Set Last Layer",
"ConditioningCombine": "Conditioning (Combine)",
"ConditioningAverage ": "Conditioning (Average)",
"ConditioningSetArea": "Conditioning (Set Area)",
"ConditioningSetMask": "Conditioning (Set Mask)",
"ControlNetApply": "Apply ControlNet",
# Latent
"VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
@ -1268,6 +1296,7 @@ def load_custom_nodes():
def init_custom_nodes():
load_custom_nodes()
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))

View File

@ -47,7 +47,7 @@
" !git pull\n",
"\n",
"!echo -= Install dependencies =-\n",
"!pip install xformers!=0.0.18 -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu118"
"!pip install xformers!=0.0.18 -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu118 --extra-index-url https://download.pytorch.org/whl/cu117"
]
},
{

View File

@ -112,13 +112,20 @@ class PromptServer():
@routes.post("/upload/image")
async def upload_image(request):
upload_dir = folder_paths.get_input_directory()
post = await request.post()
image = post.get("image")
if post.get("type") is None:
upload_dir = folder_paths.get_input_directory()
elif post.get("type") == "input":
upload_dir = folder_paths.get_input_directory()
elif post.get("type") == "temp":
upload_dir = folder_paths.get_temp_directory()
elif post.get("type") == "output":
upload_dir = folder_paths.get_output_directory()
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
post = await request.post()
image = post.get("image")
if image and image.file:
filename = image.filename

View File

@ -232,10 +232,27 @@ app.registerExtension({
"name": "My Color Palette",
"colors": {
"node_slot": {
},
"litegraph_base": {
},
"comfy_base": {
}
}
};
// Copy over missing keys from default color palette
const defaultColorPalette = colorPalettes[defaultColorPaletteId];
for (const key in defaultColorPalette.colors.litegraph_base) {
if (!colorPalette.colors.litegraph_base[key]) {
colorPalette.colors.litegraph_base[key] = "";
}
}
for (const key in defaultColorPalette.colors.comfy_base) {
if (!colorPalette.colors.comfy_base[key]) {
colorPalette.colors.comfy_base[key] = "";
}
}
return completeColorPalette(colorPalette);
};

View File

@ -6,6 +6,7 @@ app.registerExtension({
name: "Comfy.SlotDefaults",
suggestionsNumber: null,
init() {
LiteGraph.search_filter_enabled = true;
LiteGraph.middle_click_slot_add_default_node = true;
this.suggestionsNumber = app.ui.settings.addSetting({
id: "Comfy.NodeSuggestions.number",
@ -43,6 +44,14 @@ app.registerExtension({
}
if (this.slot_types_default_out[type].includes(nodeId)) continue;
this.slot_types_default_out[type].push(nodeId);
// Input types have to be stored as lower case
// Store each node that can handle this input type
const lowerType = type.toLocaleLowerCase();
if (!(lowerType in LiteGraph.registered_slot_in_types)) {
LiteGraph.registered_slot_in_types[lowerType] = { nodes: [] };
}
LiteGraph.registered_slot_in_types[lowerType].nodes.push(nodeType.comfyClass);
}
var outputs = nodeData["output"];
@ -53,6 +62,16 @@ app.registerExtension({
}
this.slot_types_default_in[type].push(nodeId);
// Store each node that can handle this output type
if (!(type in LiteGraph.registered_slot_out_types)) {
LiteGraph.registered_slot_out_types[type] = { nodes: [] };
}
LiteGraph.registered_slot_out_types[type].nodes.push(nodeType.comfyClass);
if(!LiteGraph.slot_types_out.includes(type)) {
LiteGraph.slot_types_out.push(type);
}
}
var maxNum = this.suggestionsNumber.value;
this.setDefaults(maxNum);

View File

@ -3628,6 +3628,18 @@
return size;
};
LGraphNode.prototype.inResizeCorner = function(canvasX, canvasY) {
var rows = this.outputs ? this.outputs.length : 1;
var outputs_offset = (this.constructor.slot_start_y || 0) + rows * LiteGraph.NODE_SLOT_HEIGHT;
return isInsideRectangle(canvasX,
canvasY,
this.pos[0] + this.size[0] - 15,
this.pos[1] + Math.max(this.size[1] - 15, outputs_offset),
20,
20
);
}
/**
* returns all the info available about a property of this node.
*
@ -5877,14 +5889,7 @@ LGraphNode.prototype.executeAction = function(action)
if ( !this.connecting_node && !node.flags.collapsed && !this.live_mode ) {
//Search for corner for resize
if ( !skip_action &&
node.resizable !== false &&
isInsideRectangle( e.canvasX,
e.canvasY,
node.pos[0] + node.size[0] - 5,
node.pos[1] + node.size[1] - 5,
10,
10
)
node.resizable !== false && node.inResizeCorner(e.canvasX, e.canvasY)
) {
this.graph.beforeChange();
this.resizing_node = node;
@ -6424,16 +6429,7 @@ LGraphNode.prototype.executeAction = function(action)
//Search for corner
if (this.canvas) {
if (
isInsideRectangle(
e.canvasX,
e.canvasY,
node.pos[0] + node.size[0] - 5,
node.pos[1] + node.size[1] - 5,
5,
5
)
) {
if (node.inResizeCorner(e.canvasX, e.canvasY)) {
this.canvas.style.cursor = "se-resize";
} else {
this.canvas.style.cursor = "crosshair";
@ -9953,11 +9949,11 @@ LGraphNode.prototype.executeAction = function(action)
}
break;
case "slider":
var range = w.options.max - w.options.min;
var old_value = w.value;
var nvalue = Math.clamp((x - 15) / (widget_width - 30), 0, 1);
if(w.options.read_only) break;
w.value = w.options.min + (w.options.max - w.options.min) * nvalue;
if (w.callback) {
if (old_value != w.value) {
setTimeout(function() {
inner_value_change(w, w.value);
}, 20);
@ -10044,7 +10040,7 @@ LGraphNode.prototype.executeAction = function(action)
if (event.click_time < 200 && delta == 0) {
this.prompt("Value",w.value,function(v) {
// check if v is a valid equation or a number
if (/^[0-9+\-*/()\s]+$/.test(v)) {
if (/^[0-9+\-*/()\s]+|\d+\.\d+$/.test(v)) {
try {//solve the equation if possible
v = eval(v);
} catch (e) { }

View File

@ -35,7 +35,7 @@ class ComfyApi extends EventTarget {
}
let opened = false;
let existingSession = sessionStorage["Comfy.SessionId"] || "";
let existingSession = window.name;
if (existingSession) {
existingSession = "?clientId=" + existingSession;
}
@ -75,7 +75,7 @@ class ComfyApi extends EventTarget {
case "status":
if (msg.data.sid) {
this.clientId = msg.data.sid;
sessionStorage["Comfy.SessionId"] = this.clientId;
window.name = this.clientId;
}
this.dispatchEvent(new CustomEvent("status", { detail: msg.data.status }));
break;

View File

@ -20,6 +20,12 @@ export class ComfyApp {
*/
#processingQueue = false;
/**
* Content Clipboard
* @type {serialized node object}
*/
static clipspace = null;
constructor() {
this.ui = new ComfyUI(this);
@ -130,6 +136,83 @@ export class ComfyApp {
);
}
}
options.push(
{
content: "Copy (Clipspace)",
callback: (obj) => {
var widgets = null;
if(this.widgets) {
widgets = this.widgets.map(({ type, name, value }) => ({ type, name, value }));
}
let img = new Image();
var imgs = undefined;
if(this.imgs != undefined) {
img.src = this.imgs[0].src;
imgs = [img];
}
ComfyApp.clipspace = {
'widgets': widgets,
'imgs': imgs,
'original_imgs': imgs,
'images': this.images
};
}
});
if(ComfyApp.clipspace != null) {
options.push(
{
content: "Paste (Clipspace)",
callback: () => {
if(ComfyApp.clipspace != null) {
if(ComfyApp.clipspace.widgets != null && this.widgets != null) {
ComfyApp.clipspace.widgets.forEach(({ type, name, value }) => {
const prop = Object.values(this.widgets).find(obj => obj.type === type && obj.name === name);
if (prop) {
prop.callback(value);
}
});
}
// image paste
if(ComfyApp.clipspace.imgs != undefined && this.imgs != undefined && this.widgets != null) {
var filename = "";
if(this.images && ComfyApp.clipspace.images) {
this.images = ComfyApp.clipspace.images;
}
if(ComfyApp.clipspace.images != undefined) {
const clip_image = ComfyApp.clipspace.images[0];
if(clip_image.subfolder != '')
filename = `${clip_image.subfolder}/`;
filename += `${clip_image.filename} [${clip_image.type}]`;
}
else if(ComfyApp.clipspace.widgets != undefined) {
const index_in_clip = ComfyApp.clipspace.widgets.findIndex(obj => obj.name === 'image');
if(index_in_clip >= 0) {
filename = `${ComfyApp.clipspace.widgets[index_in_clip].value}`;
}
}
const index = this.widgets.findIndex(obj => obj.name === 'image');
if(index >= 0 && filename != "" && ComfyApp.clipspace.imgs != undefined) {
this.imgs = ComfyApp.clipspace.imgs;
this.widgets[index].value = filename;
if(this.widgets_values != undefined) {
this.widgets_values[index] = filename;
}
}
}
this.trigger('changed');
}
}
}
);
}
};
}
@ -180,6 +263,34 @@ export class ComfyApp {
*/
#addDrawBackgroundHandler(node) {
const app = this;
function getImageTop(node) {
let shiftY;
if (node.imageOffset != null) {
shiftY = node.imageOffset;
} else {
if (node.widgets?.length) {
const w = node.widgets[node.widgets.length - 1];
shiftY = w.last_y;
if (w.computeSize) {
shiftY += w.computeSize()[1] + 4;
} else {
shiftY += LiteGraph.NODE_WIDGET_HEIGHT + 4;
}
} else {
shiftY = node.computeSize()[1];
}
}
return shiftY;
}
node.prototype.setSizeForImage = function () {
const minHeight = getImageTop(this) + 220;
if (this.size[1] < minHeight) {
this.setSize([this.size[0], minHeight]);
}
};
node.prototype.onDrawBackground = function (ctx) {
if (!this.flags.collapsed) {
const output = app.nodeOutputs[this.id + ""];
@ -200,9 +311,7 @@ export class ComfyApp {
).then((imgs) => {
if (this.images === output.images) {
this.imgs = imgs.filter(Boolean);
if (this.size[1] < 100) {
this.size[1] = 250;
}
this.setSizeForImage?.();
app.graph.setDirtyCanvas(true);
}
});
@ -227,12 +336,7 @@ export class ComfyApp {
this.imageIndex = imageIndex = 0;
}
let shiftY;
if (this.imageOffset != null) {
shiftY = this.imageOffset;
} else {
shiftY = this.computeSize()[1];
}
const shiftY = getImageTop(this);
let dw = this.size[0];
let dh = this.size[1];
@ -888,8 +992,10 @@ export class ComfyApp {
loadGraphData(graphData) {
this.clean();
let reset_invalid_values = false;
if (!graphData) {
graphData = structuredClone(defaultGraph);
reset_invalid_values = true;
}
const missingNodeTypes = [];
@ -975,6 +1081,13 @@ export class ComfyApp {
}
}
}
if (reset_invalid_values) {
if (widget.type == "combo") {
if (!widget.options.values.includes(widget.value) && widget.options.values.length > 0) {
widget.value = widget.options.values[0];
}
}
}
}
}

View File

@ -136,9 +136,11 @@ function addMultilineWidget(node, name, opts, app) {
left: `${t.a * margin + t.e}px`,
top: `${t.d * (y + widgetHeight - margin - 3) + t.f}px`,
width: `${(widgetWidth - margin * 2 - 3) * t.a}px`,
background: (!node.color)?'':node.color,
height: `${(this.parent.inputHeight - margin * 2 - 4) * t.d}px`,
position: "absolute",
zIndex: 1,
color: (!node.color)?'':'white',
zIndex: app.graph._nodes.indexOf(node),
fontSize: `${t.d * 10.0}px`,
});
this.inputEl.hidden = !visible;
@ -259,17 +261,13 @@ export const ComfyWidgets = {
let uploadWidget;
function showImage(name) {
// Position the image somewhere sensible
if (!node.imageOffset) {
node.imageOffset = uploadWidget.last_y ? uploadWidget.last_y + 25 : 75;
}
const img = new Image();
img.onload = () => {
node.imgs = [img];
app.graph.setDirtyCanvas(true);
};
img.src = `/view?filename=${name}&type=input`;
node.setSizeForImage?.();
}
// Add our own callback to the combo widget to render an image when it changes

View File

@ -120,7 +120,7 @@ body {
.comfy-menu > button,
.comfy-menu-btns button,
.comfy-menu .comfy-list button,
.comfy-modal button{
.comfy-modal button {
color: var(--input-text);
background-color: var(--comfy-input-bg);
border-radius: 8px;
@ -129,6 +129,15 @@ body {
margin-top: 2px;
}
.comfy-menu > button:hover,
.comfy-menu-btns button:hover,
.comfy-menu .comfy-list button:hover,
.comfy-modal button:hover,
.comfy-settings-btn:hover {
filter: brightness(1.2);
cursor: pointer;
}
.comfy-menu span.drag-handle {
width: 10px;
height: 20px;
@ -248,8 +257,11 @@ button.comfy-queue-btn {
}
}
/* Input popup */
.graphdialog {
min-height: 1em;
background-color: var(--comfy-menu-bg);
}
.graphdialog .name {
@ -273,15 +285,66 @@ button.comfy-queue-btn {
border-radius: 12px 0 0 12px;
}
/* Context menu */
.litegraph .litemenu-entry.has_submenu {
position: relative;
padding-right: 20px;
}
}
.litemenu-entry.has_submenu::after {
.litemenu-entry.has_submenu::after {
content: ">";
position: absolute;
top: 0;
right: 2px;
}
}
.litegraph.litecontextmenu,
.litegraph.litecontextmenu.dark {
z-index: 9999 !important;
background-color: var(--comfy-menu-bg) !important;
filter: brightness(95%);
}
.litegraph.litecontextmenu .litemenu-entry:hover:not(.disabled):not(.separator) {
background-color: var(--comfy-menu-bg) !important;
filter: brightness(155%);
color: var(--input-text);
}
.litegraph.litecontextmenu .litemenu-entry.submenu,
.litegraph.litecontextmenu.dark .litemenu-entry.submenu {
background-color: var(--comfy-menu-bg) !important;
color: var(--input-text);
}
.litegraph.litecontextmenu input {
background-color: var(--comfy-input-bg) !important;
color: var(--input-text) !important;
}
/* Search box */
.litegraph.litesearchbox {
z-index: 9999 !important;
background-color: var(--comfy-menu-bg) !important;
overflow: hidden;
}
.litegraph.litesearchbox input,
.litegraph.litesearchbox select {
background-color: var(--comfy-input-bg) !important;
color: var(--input-text);
}
.litegraph.lite-search-item {
color: var(--input-text);
background-color: var(--comfy-input-bg);
filter: brightness(80%);
padding-left: 0.2em;
}
.litegraph.lite-search-item.generic_type {
color: var(--input-text);
filter: brightness(50%);
}