mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-17 01:52:59 +08:00
convert nodes_latent.py to V3 schema (#10160)
This commit is contained in:
parent
6732014a0a
commit
cbee7d3390
@ -2,6 +2,8 @@ import comfy.utils
|
|||||||
import comfy_extras.nodes_post_processing
|
import comfy_extras.nodes_post_processing
|
||||||
import torch
|
import torch
|
||||||
import nodes
|
import nodes
|
||||||
|
from typing_extensions import override
|
||||||
|
from comfy_api.latest import ComfyExtension, io
|
||||||
|
|
||||||
|
|
||||||
def reshape_latent_to(target_shape, latent, repeat_batch=True):
|
def reshape_latent_to(target_shape, latent, repeat_batch=True):
|
||||||
@ -13,17 +15,23 @@ def reshape_latent_to(target_shape, latent, repeat_batch=True):
|
|||||||
return latent
|
return latent
|
||||||
|
|
||||||
|
|
||||||
class LatentAdd:
|
class LatentAdd(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
return io.Schema(
|
||||||
|
node_id="LatentAdd",
|
||||||
|
category="latent/advanced",
|
||||||
|
inputs=[
|
||||||
|
io.Latent.Input("samples1"),
|
||||||
|
io.Latent.Input("samples2"),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Latent.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT",)
|
@classmethod
|
||||||
FUNCTION = "op"
|
def execute(cls, samples1, samples2) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/advanced"
|
|
||||||
|
|
||||||
def op(self, samples1, samples2):
|
|
||||||
samples_out = samples1.copy()
|
samples_out = samples1.copy()
|
||||||
|
|
||||||
s1 = samples1["samples"]
|
s1 = samples1["samples"]
|
||||||
@ -31,19 +39,25 @@ class LatentAdd:
|
|||||||
|
|
||||||
s2 = reshape_latent_to(s1.shape, s2)
|
s2 = reshape_latent_to(s1.shape, s2)
|
||||||
samples_out["samples"] = s1 + s2
|
samples_out["samples"] = s1 + s2
|
||||||
return (samples_out,)
|
return io.NodeOutput(samples_out)
|
||||||
|
|
||||||
class LatentSubtract:
|
class LatentSubtract(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
return io.Schema(
|
||||||
|
node_id="LatentSubtract",
|
||||||
|
category="latent/advanced",
|
||||||
|
inputs=[
|
||||||
|
io.Latent.Input("samples1"),
|
||||||
|
io.Latent.Input("samples2"),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Latent.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT",)
|
@classmethod
|
||||||
FUNCTION = "op"
|
def execute(cls, samples1, samples2) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/advanced"
|
|
||||||
|
|
||||||
def op(self, samples1, samples2):
|
|
||||||
samples_out = samples1.copy()
|
samples_out = samples1.copy()
|
||||||
|
|
||||||
s1 = samples1["samples"]
|
s1 = samples1["samples"]
|
||||||
@ -51,41 +65,49 @@ class LatentSubtract:
|
|||||||
|
|
||||||
s2 = reshape_latent_to(s1.shape, s2)
|
s2 = reshape_latent_to(s1.shape, s2)
|
||||||
samples_out["samples"] = s1 - s2
|
samples_out["samples"] = s1 - s2
|
||||||
return (samples_out,)
|
return io.NodeOutput(samples_out)
|
||||||
|
|
||||||
class LatentMultiply:
|
class LatentMultiply(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": { "samples": ("LATENT",),
|
return io.Schema(
|
||||||
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
node_id="LatentMultiply",
|
||||||
}}
|
category="latent/advanced",
|
||||||
|
inputs=[
|
||||||
|
io.Latent.Input("samples"),
|
||||||
|
io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Latent.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT",)
|
@classmethod
|
||||||
FUNCTION = "op"
|
def execute(cls, samples, multiplier) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/advanced"
|
|
||||||
|
|
||||||
def op(self, samples, multiplier):
|
|
||||||
samples_out = samples.copy()
|
samples_out = samples.copy()
|
||||||
|
|
||||||
s1 = samples["samples"]
|
s1 = samples["samples"]
|
||||||
samples_out["samples"] = s1 * multiplier
|
samples_out["samples"] = s1 * multiplier
|
||||||
return (samples_out,)
|
return io.NodeOutput(samples_out)
|
||||||
|
|
||||||
class LatentInterpolate:
|
class LatentInterpolate(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": { "samples1": ("LATENT",),
|
return io.Schema(
|
||||||
"samples2": ("LATENT",),
|
node_id="LatentInterpolate",
|
||||||
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
category="latent/advanced",
|
||||||
}}
|
inputs=[
|
||||||
|
io.Latent.Input("samples1"),
|
||||||
|
io.Latent.Input("samples2"),
|
||||||
|
io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Latent.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT",)
|
@classmethod
|
||||||
FUNCTION = "op"
|
def execute(cls, samples1, samples2, ratio) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/advanced"
|
|
||||||
|
|
||||||
def op(self, samples1, samples2, ratio):
|
|
||||||
samples_out = samples1.copy()
|
samples_out = samples1.copy()
|
||||||
|
|
||||||
s1 = samples1["samples"]
|
s1 = samples1["samples"]
|
||||||
@ -104,19 +126,26 @@ class LatentInterpolate:
|
|||||||
st = torch.nan_to_num(t / mt)
|
st = torch.nan_to_num(t / mt)
|
||||||
|
|
||||||
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
|
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
|
||||||
return (samples_out,)
|
return io.NodeOutput(samples_out)
|
||||||
|
|
||||||
class LatentConcat:
|
class LatentConcat(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",), "dim": (["x", "-x", "y", "-y", "t", "-t"], )}}
|
return io.Schema(
|
||||||
|
node_id="LatentConcat",
|
||||||
|
category="latent/advanced",
|
||||||
|
inputs=[
|
||||||
|
io.Latent.Input("samples1"),
|
||||||
|
io.Latent.Input("samples2"),
|
||||||
|
io.Combo.Input("dim", options=["x", "-x", "y", "-y", "t", "-t"]),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Latent.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT",)
|
@classmethod
|
||||||
FUNCTION = "op"
|
def execute(cls, samples1, samples2, dim) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/advanced"
|
|
||||||
|
|
||||||
def op(self, samples1, samples2, dim):
|
|
||||||
samples_out = samples1.copy()
|
samples_out = samples1.copy()
|
||||||
|
|
||||||
s1 = samples1["samples"]
|
s1 = samples1["samples"]
|
||||||
@ -136,22 +165,27 @@ class LatentConcat:
|
|||||||
dim = -3
|
dim = -3
|
||||||
|
|
||||||
samples_out["samples"] = torch.cat(c, dim=dim)
|
samples_out["samples"] = torch.cat(c, dim=dim)
|
||||||
return (samples_out,)
|
return io.NodeOutput(samples_out)
|
||||||
|
|
||||||
class LatentCut:
|
class LatentCut(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": {"samples": ("LATENT",),
|
return io.Schema(
|
||||||
"dim": (["x", "y", "t"], ),
|
node_id="LatentCut",
|
||||||
"index": ("INT", {"default": 0, "min": -nodes.MAX_RESOLUTION, "max": nodes.MAX_RESOLUTION, "step": 1}),
|
category="latent/advanced",
|
||||||
"amount": ("INT", {"default": 1, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 1})}}
|
inputs=[
|
||||||
|
io.Latent.Input("samples"),
|
||||||
|
io.Combo.Input("dim", options=["x", "y", "t"]),
|
||||||
|
io.Int.Input("index", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1),
|
||||||
|
io.Int.Input("amount", default=1, min=1, max=nodes.MAX_RESOLUTION, step=1),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Latent.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT",)
|
@classmethod
|
||||||
FUNCTION = "op"
|
def execute(cls, samples, dim, index, amount) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/advanced"
|
|
||||||
|
|
||||||
def op(self, samples, dim, index, amount):
|
|
||||||
samples_out = samples.copy()
|
samples_out = samples.copy()
|
||||||
|
|
||||||
s1 = samples["samples"]
|
s1 = samples["samples"]
|
||||||
@ -171,19 +205,25 @@ class LatentCut:
|
|||||||
amount = min(-index, amount)
|
amount = min(-index, amount)
|
||||||
|
|
||||||
samples_out["samples"] = torch.narrow(s1, dim, index, amount)
|
samples_out["samples"] = torch.narrow(s1, dim, index, amount)
|
||||||
return (samples_out,)
|
return io.NodeOutput(samples_out)
|
||||||
|
|
||||||
class LatentBatch:
|
class LatentBatch(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
return io.Schema(
|
||||||
|
node_id="LatentBatch",
|
||||||
|
category="latent/batch",
|
||||||
|
inputs=[
|
||||||
|
io.Latent.Input("samples1"),
|
||||||
|
io.Latent.Input("samples2"),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Latent.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT",)
|
@classmethod
|
||||||
FUNCTION = "batch"
|
def execute(cls, samples1, samples2) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/batch"
|
|
||||||
|
|
||||||
def batch(self, samples1, samples2):
|
|
||||||
samples_out = samples1.copy()
|
samples_out = samples1.copy()
|
||||||
s1 = samples1["samples"]
|
s1 = samples1["samples"]
|
||||||
s2 = samples2["samples"]
|
s2 = samples2["samples"]
|
||||||
@ -192,20 +232,25 @@ class LatentBatch:
|
|||||||
s = torch.cat((s1, s2), dim=0)
|
s = torch.cat((s1, s2), dim=0)
|
||||||
samples_out["samples"] = s
|
samples_out["samples"] = s
|
||||||
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
|
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
|
||||||
return (samples_out,)
|
return io.NodeOutput(samples_out)
|
||||||
|
|
||||||
class LatentBatchSeedBehavior:
|
class LatentBatchSeedBehavior(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": { "samples": ("LATENT",),
|
return io.Schema(
|
||||||
"seed_behavior": (["random", "fixed"],{"default": "fixed"}),}}
|
node_id="LatentBatchSeedBehavior",
|
||||||
|
category="latent/advanced",
|
||||||
|
inputs=[
|
||||||
|
io.Latent.Input("samples"),
|
||||||
|
io.Combo.Input("seed_behavior", options=["random", "fixed"], default="fixed"),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Latent.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT",)
|
@classmethod
|
||||||
FUNCTION = "op"
|
def execute(cls, samples, seed_behavior) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/advanced"
|
|
||||||
|
|
||||||
def op(self, samples, seed_behavior):
|
|
||||||
samples_out = samples.copy()
|
samples_out = samples.copy()
|
||||||
latent = samples["samples"]
|
latent = samples["samples"]
|
||||||
if seed_behavior == "random":
|
if seed_behavior == "random":
|
||||||
@ -215,41 +260,50 @@ class LatentBatchSeedBehavior:
|
|||||||
batch_number = samples_out.get("batch_index", [0])[0]
|
batch_number = samples_out.get("batch_index", [0])[0]
|
||||||
samples_out["batch_index"] = [batch_number] * latent.shape[0]
|
samples_out["batch_index"] = [batch_number] * latent.shape[0]
|
||||||
|
|
||||||
return (samples_out,)
|
return io.NodeOutput(samples_out)
|
||||||
|
|
||||||
class LatentApplyOperation:
|
class LatentApplyOperation(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": { "samples": ("LATENT",),
|
return io.Schema(
|
||||||
"operation": ("LATENT_OPERATION",),
|
node_id="LatentApplyOperation",
|
||||||
}}
|
category="latent/advanced/operations",
|
||||||
|
is_experimental=True,
|
||||||
|
inputs=[
|
||||||
|
io.Latent.Input("samples"),
|
||||||
|
io.LatentOperation.Input("operation"),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Latent.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT",)
|
@classmethod
|
||||||
FUNCTION = "op"
|
def execute(cls, samples, operation) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/advanced/operations"
|
|
||||||
EXPERIMENTAL = True
|
|
||||||
|
|
||||||
def op(self, samples, operation):
|
|
||||||
samples_out = samples.copy()
|
samples_out = samples.copy()
|
||||||
|
|
||||||
s1 = samples["samples"]
|
s1 = samples["samples"]
|
||||||
samples_out["samples"] = operation(latent=s1)
|
samples_out["samples"] = operation(latent=s1)
|
||||||
return (samples_out,)
|
return io.NodeOutput(samples_out)
|
||||||
|
|
||||||
class LatentApplyOperationCFG:
|
class LatentApplyOperationCFG(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": { "model": ("MODEL",),
|
return io.Schema(
|
||||||
"operation": ("LATENT_OPERATION",),
|
node_id="LatentApplyOperationCFG",
|
||||||
}}
|
category="latent/advanced/operations",
|
||||||
RETURN_TYPES = ("MODEL",)
|
is_experimental=True,
|
||||||
FUNCTION = "patch"
|
inputs=[
|
||||||
|
io.Model.Input("model"),
|
||||||
|
io.LatentOperation.Input("operation"),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.Model.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
CATEGORY = "latent/advanced/operations"
|
@classmethod
|
||||||
EXPERIMENTAL = True
|
def execute(cls, model, operation) -> io.NodeOutput:
|
||||||
|
|
||||||
def patch(self, model, operation):
|
|
||||||
m = model.clone()
|
m = model.clone()
|
||||||
|
|
||||||
def pre_cfg_function(args):
|
def pre_cfg_function(args):
|
||||||
@ -261,21 +315,25 @@ class LatentApplyOperationCFG:
|
|||||||
return conds_out
|
return conds_out
|
||||||
|
|
||||||
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
|
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
|
||||||
return (m, )
|
return io.NodeOutput(m)
|
||||||
|
|
||||||
class LatentOperationTonemapReinhard:
|
class LatentOperationTonemapReinhard(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": { "multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
|
return io.Schema(
|
||||||
}}
|
node_id="LatentOperationTonemapReinhard",
|
||||||
|
category="latent/advanced/operations",
|
||||||
|
is_experimental=True,
|
||||||
|
inputs=[
|
||||||
|
io.Float.Input("multiplier", default=1.0, min=0.0, max=100.0, step=0.01),
|
||||||
|
],
|
||||||
|
outputs=[
|
||||||
|
io.LatentOperation.Output(),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT_OPERATION",)
|
@classmethod
|
||||||
FUNCTION = "op"
|
def execute(cls, multiplier) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/advanced/operations"
|
|
||||||
EXPERIMENTAL = True
|
|
||||||
|
|
||||||
def op(self, multiplier):
|
|
||||||
def tonemap_reinhard(latent, **kwargs):
|
def tonemap_reinhard(latent, **kwargs):
|
||||||
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None]
|
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None]
|
||||||
normalized_latent = latent / latent_vector_magnitude
|
normalized_latent = latent / latent_vector_magnitude
|
||||||
@ -291,39 +349,27 @@ class LatentOperationTonemapReinhard:
|
|||||||
new_magnitude *= top
|
new_magnitude *= top
|
||||||
|
|
||||||
return normalized_latent * new_magnitude
|
return normalized_latent * new_magnitude
|
||||||
return (tonemap_reinhard,)
|
return io.NodeOutput(tonemap_reinhard)
|
||||||
|
|
||||||
class LatentOperationSharpen:
|
class LatentOperationSharpen(io.ComfyNode):
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def define_schema(cls):
|
||||||
return {"required": {
|
return io.Schema(
|
||||||
"sharpen_radius": ("INT", {
|
node_id="LatentOperationSharpen",
|
||||||
"default": 9,
|
category="latent/advanced/operations",
|
||||||
"min": 1,
|
is_experimental=True,
|
||||||
"max": 31,
|
inputs=[
|
||||||
"step": 1
|
io.Int.Input("sharpen_radius", default=9, min=1, max=31, step=1),
|
||||||
}),
|
io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.1),
|
||||||
"sigma": ("FLOAT", {
|
io.Float.Input("alpha", default=0.1, min=0.0, max=5.0, step=0.01),
|
||||||
"default": 1.0,
|
],
|
||||||
"min": 0.1,
|
outputs=[
|
||||||
"max": 10.0,
|
io.LatentOperation.Output(),
|
||||||
"step": 0.1
|
],
|
||||||
}),
|
)
|
||||||
"alpha": ("FLOAT", {
|
|
||||||
"default": 0.1,
|
|
||||||
"min": 0.0,
|
|
||||||
"max": 5.0,
|
|
||||||
"step": 0.01
|
|
||||||
}),
|
|
||||||
}}
|
|
||||||
|
|
||||||
RETURN_TYPES = ("LATENT_OPERATION",)
|
@classmethod
|
||||||
FUNCTION = "op"
|
def execute(cls, sharpen_radius, sigma, alpha) -> io.NodeOutput:
|
||||||
|
|
||||||
CATEGORY = "latent/advanced/operations"
|
|
||||||
EXPERIMENTAL = True
|
|
||||||
|
|
||||||
def op(self, sharpen_radius, sigma, alpha):
|
|
||||||
def sharpen(latent, **kwargs):
|
def sharpen(latent, **kwargs):
|
||||||
luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None]
|
luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None]
|
||||||
normalized_latent = latent / luminance
|
normalized_latent = latent / luminance
|
||||||
@ -340,19 +386,27 @@ class LatentOperationSharpen:
|
|||||||
sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
|
sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
|
||||||
|
|
||||||
return luminance * sharpened
|
return luminance * sharpened
|
||||||
return (sharpen,)
|
return io.NodeOutput(sharpen)
|
||||||
|
|
||||||
NODE_CLASS_MAPPINGS = {
|
|
||||||
"LatentAdd": LatentAdd,
|
class LatentExtension(ComfyExtension):
|
||||||
"LatentSubtract": LatentSubtract,
|
@override
|
||||||
"LatentMultiply": LatentMultiply,
|
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||||
"LatentInterpolate": LatentInterpolate,
|
return [
|
||||||
"LatentConcat": LatentConcat,
|
LatentAdd,
|
||||||
"LatentCut": LatentCut,
|
LatentSubtract,
|
||||||
"LatentBatch": LatentBatch,
|
LatentMultiply,
|
||||||
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
|
LatentInterpolate,
|
||||||
"LatentApplyOperation": LatentApplyOperation,
|
LatentConcat,
|
||||||
"LatentApplyOperationCFG": LatentApplyOperationCFG,
|
LatentCut,
|
||||||
"LatentOperationTonemapReinhard": LatentOperationTonemapReinhard,
|
LatentBatch,
|
||||||
"LatentOperationSharpen": LatentOperationSharpen,
|
LatentBatchSeedBehavior,
|
||||||
}
|
LatentApplyOperation,
|
||||||
|
LatentApplyOperationCFG,
|
||||||
|
LatentOperationTonemapReinhard,
|
||||||
|
LatentOperationSharpen,
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
async def comfy_entrypoint() -> LatentExtension:
|
||||||
|
return LatentExtension()
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user