mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-17 01:52:59 +08:00
convert nodes_latent.py to V3 schema (#10160)
This commit is contained in:
parent
6732014a0a
commit
cbee7d3390
@ -2,6 +2,8 @@ import comfy.utils
|
||||
import comfy_extras.nodes_post_processing
|
||||
import torch
|
||||
import nodes
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
|
||||
def reshape_latent_to(target_shape, latent, repeat_batch=True):
|
||||
@ -13,17 +15,23 @@ def reshape_latent_to(target_shape, latent, repeat_batch=True):
|
||||
return latent
|
||||
|
||||
|
||||
class LatentAdd:
|
||||
class LatentAdd(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentAdd",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples1"),
|
||||
io.Latent.Input("samples2"),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced"
|
||||
|
||||
def op(self, samples1, samples2):
|
||||
@classmethod
|
||||
def execute(cls, samples1, samples2) -> io.NodeOutput:
|
||||
samples_out = samples1.copy()
|
||||
|
||||
s1 = samples1["samples"]
|
||||
@ -31,19 +39,25 @@ class LatentAdd:
|
||||
|
||||
s2 = reshape_latent_to(s1.shape, s2)
|
||||
samples_out["samples"] = s1 + s2
|
||||
return (samples_out,)
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
class LatentSubtract:
|
||||
class LatentSubtract(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentSubtract",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples1"),
|
||||
io.Latent.Input("samples2"),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced"
|
||||
|
||||
def op(self, samples1, samples2):
|
||||
@classmethod
|
||||
def execute(cls, samples1, samples2) -> io.NodeOutput:
|
||||
samples_out = samples1.copy()
|
||||
|
||||
s1 = samples1["samples"]
|
||||
@ -51,41 +65,49 @@ class LatentSubtract:
|
||||
|
||||
s2 = reshape_latent_to(s1.shape, s2)
|
||||
samples_out["samples"] = s1 - s2
|
||||
return (samples_out,)
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
class LatentMultiply:
|
||||
class LatentMultiply(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples": ("LATENT",),
|
||||
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentMultiply",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples"),
|
||||
io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced"
|
||||
|
||||
def op(self, samples, multiplier):
|
||||
@classmethod
|
||||
def execute(cls, samples, multiplier) -> io.NodeOutput:
|
||||
samples_out = samples.copy()
|
||||
|
||||
s1 = samples["samples"]
|
||||
samples_out["samples"] = s1 * multiplier
|
||||
return (samples_out,)
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
class LatentInterpolate:
|
||||
class LatentInterpolate(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples1": ("LATENT",),
|
||||
"samples2": ("LATENT",),
|
||||
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentInterpolate",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples1"),
|
||||
io.Latent.Input("samples2"),
|
||||
io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced"
|
||||
|
||||
def op(self, samples1, samples2, ratio):
|
||||
@classmethod
|
||||
def execute(cls, samples1, samples2, ratio) -> io.NodeOutput:
|
||||
samples_out = samples1.copy()
|
||||
|
||||
s1 = samples1["samples"]
|
||||
@ -104,19 +126,26 @@ class LatentInterpolate:
|
||||
st = torch.nan_to_num(t / mt)
|
||||
|
||||
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
|
||||
return (samples_out,)
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
class LatentConcat:
|
||||
class LatentConcat(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",), "dim": (["x", "-x", "y", "-y", "t", "-t"], )}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentConcat",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples1"),
|
||||
io.Latent.Input("samples2"),
|
||||
io.Combo.Input("dim", options=["x", "-x", "y", "-y", "t", "-t"]),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced"
|
||||
|
||||
def op(self, samples1, samples2, dim):
|
||||
@classmethod
|
||||
def execute(cls, samples1, samples2, dim) -> io.NodeOutput:
|
||||
samples_out = samples1.copy()
|
||||
|
||||
s1 = samples1["samples"]
|
||||
@ -136,22 +165,27 @@ class LatentConcat:
|
||||
dim = -3
|
||||
|
||||
samples_out["samples"] = torch.cat(c, dim=dim)
|
||||
return (samples_out,)
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
class LatentCut:
|
||||
class LatentCut(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"samples": ("LATENT",),
|
||||
"dim": (["x", "y", "t"], ),
|
||||
"index": ("INT", {"default": 0, "min": -nodes.MAX_RESOLUTION, "max": nodes.MAX_RESOLUTION, "step": 1}),
|
||||
"amount": ("INT", {"default": 1, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 1})}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentCut",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples"),
|
||||
io.Combo.Input("dim", options=["x", "y", "t"]),
|
||||
io.Int.Input("index", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1),
|
||||
io.Int.Input("amount", default=1, min=1, max=nodes.MAX_RESOLUTION, step=1),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced"
|
||||
|
||||
def op(self, samples, dim, index, amount):
|
||||
@classmethod
|
||||
def execute(cls, samples, dim, index, amount) -> io.NodeOutput:
|
||||
samples_out = samples.copy()
|
||||
|
||||
s1 = samples["samples"]
|
||||
@ -171,19 +205,25 @@ class LatentCut:
|
||||
amount = min(-index, amount)
|
||||
|
||||
samples_out["samples"] = torch.narrow(s1, dim, index, amount)
|
||||
return (samples_out,)
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
class LatentBatch:
|
||||
class LatentBatch(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentBatch",
|
||||
category="latent/batch",
|
||||
inputs=[
|
||||
io.Latent.Input("samples1"),
|
||||
io.Latent.Input("samples2"),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "batch"
|
||||
|
||||
CATEGORY = "latent/batch"
|
||||
|
||||
def batch(self, samples1, samples2):
|
||||
@classmethod
|
||||
def execute(cls, samples1, samples2) -> io.NodeOutput:
|
||||
samples_out = samples1.copy()
|
||||
s1 = samples1["samples"]
|
||||
s2 = samples2["samples"]
|
||||
@ -192,20 +232,25 @@ class LatentBatch:
|
||||
s = torch.cat((s1, s2), dim=0)
|
||||
samples_out["samples"] = s
|
||||
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
|
||||
return (samples_out,)
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
class LatentBatchSeedBehavior:
|
||||
class LatentBatchSeedBehavior(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples": ("LATENT",),
|
||||
"seed_behavior": (["random", "fixed"],{"default": "fixed"}),}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentBatchSeedBehavior",
|
||||
category="latent/advanced",
|
||||
inputs=[
|
||||
io.Latent.Input("samples"),
|
||||
io.Combo.Input("seed_behavior", options=["random", "fixed"], default="fixed"),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced"
|
||||
|
||||
def op(self, samples, seed_behavior):
|
||||
@classmethod
|
||||
def execute(cls, samples, seed_behavior) -> io.NodeOutput:
|
||||
samples_out = samples.copy()
|
||||
latent = samples["samples"]
|
||||
if seed_behavior == "random":
|
||||
@ -215,41 +260,50 @@ class LatentBatchSeedBehavior:
|
||||
batch_number = samples_out.get("batch_index", [0])[0]
|
||||
samples_out["batch_index"] = [batch_number] * latent.shape[0]
|
||||
|
||||
return (samples_out,)
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
class LatentApplyOperation:
|
||||
class LatentApplyOperation(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples": ("LATENT",),
|
||||
"operation": ("LATENT_OPERATION",),
|
||||
}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentApplyOperation",
|
||||
category="latent/advanced/operations",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Latent.Input("samples"),
|
||||
io.LatentOperation.Input("operation"),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced/operations"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def op(self, samples, operation):
|
||||
@classmethod
|
||||
def execute(cls, samples, operation) -> io.NodeOutput:
|
||||
samples_out = samples.copy()
|
||||
|
||||
s1 = samples["samples"]
|
||||
samples_out["samples"] = operation(latent=s1)
|
||||
return (samples_out,)
|
||||
return io.NodeOutput(samples_out)
|
||||
|
||||
class LatentApplyOperationCFG:
|
||||
class LatentApplyOperationCFG(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"operation": ("LATENT_OPERATION",),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentApplyOperationCFG",
|
||||
category="latent/advanced/operations",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.LatentOperation.Input("operation"),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "latent/advanced/operations"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def patch(self, model, operation):
|
||||
@classmethod
|
||||
def execute(cls, model, operation) -> io.NodeOutput:
|
||||
m = model.clone()
|
||||
|
||||
def pre_cfg_function(args):
|
||||
@ -261,21 +315,25 @@ class LatentApplyOperationCFG:
|
||||
return conds_out
|
||||
|
||||
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
|
||||
return (m, )
|
||||
return io.NodeOutput(m)
|
||||
|
||||
class LatentOperationTonemapReinhard:
|
||||
class LatentOperationTonemapReinhard(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
|
||||
}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentOperationTonemapReinhard",
|
||||
category="latent/advanced/operations",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Float.Input("multiplier", default=1.0, min=0.0, max=100.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.LatentOperation.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT_OPERATION",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced/operations"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def op(self, multiplier):
|
||||
@classmethod
|
||||
def execute(cls, multiplier) -> io.NodeOutput:
|
||||
def tonemap_reinhard(latent, **kwargs):
|
||||
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None]
|
||||
normalized_latent = latent / latent_vector_magnitude
|
||||
@ -291,39 +349,27 @@ class LatentOperationTonemapReinhard:
|
||||
new_magnitude *= top
|
||||
|
||||
return normalized_latent * new_magnitude
|
||||
return (tonemap_reinhard,)
|
||||
return io.NodeOutput(tonemap_reinhard)
|
||||
|
||||
class LatentOperationSharpen:
|
||||
class LatentOperationSharpen(io.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"sharpen_radius": ("INT", {
|
||||
"default": 9,
|
||||
"min": 1,
|
||||
"max": 31,
|
||||
"step": 1
|
||||
}),
|
||||
"sigma": ("FLOAT", {
|
||||
"default": 1.0,
|
||||
"min": 0.1,
|
||||
"max": 10.0,
|
||||
"step": 0.1
|
||||
}),
|
||||
"alpha": ("FLOAT", {
|
||||
"default": 0.1,
|
||||
"min": 0.0,
|
||||
"max": 5.0,
|
||||
"step": 0.01
|
||||
}),
|
||||
}}
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="LatentOperationSharpen",
|
||||
category="latent/advanced/operations",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Int.Input("sharpen_radius", default=9, min=1, max=31, step=1),
|
||||
io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.1),
|
||||
io.Float.Input("alpha", default=0.1, min=0.0, max=5.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
io.LatentOperation.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT_OPERATION",)
|
||||
FUNCTION = "op"
|
||||
|
||||
CATEGORY = "latent/advanced/operations"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def op(self, sharpen_radius, sigma, alpha):
|
||||
@classmethod
|
||||
def execute(cls, sharpen_radius, sigma, alpha) -> io.NodeOutput:
|
||||
def sharpen(latent, **kwargs):
|
||||
luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None]
|
||||
normalized_latent = latent / luminance
|
||||
@ -340,19 +386,27 @@ class LatentOperationSharpen:
|
||||
sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
|
||||
|
||||
return luminance * sharpened
|
||||
return (sharpen,)
|
||||
return io.NodeOutput(sharpen)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LatentAdd": LatentAdd,
|
||||
"LatentSubtract": LatentSubtract,
|
||||
"LatentMultiply": LatentMultiply,
|
||||
"LatentInterpolate": LatentInterpolate,
|
||||
"LatentConcat": LatentConcat,
|
||||
"LatentCut": LatentCut,
|
||||
"LatentBatch": LatentBatch,
|
||||
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
|
||||
"LatentApplyOperation": LatentApplyOperation,
|
||||
"LatentApplyOperationCFG": LatentApplyOperationCFG,
|
||||
"LatentOperationTonemapReinhard": LatentOperationTonemapReinhard,
|
||||
"LatentOperationSharpen": LatentOperationSharpen,
|
||||
}
|
||||
|
||||
class LatentExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
LatentAdd,
|
||||
LatentSubtract,
|
||||
LatentMultiply,
|
||||
LatentInterpolate,
|
||||
LatentConcat,
|
||||
LatentCut,
|
||||
LatentBatch,
|
||||
LatentBatchSeedBehavior,
|
||||
LatentApplyOperation,
|
||||
LatentApplyOperationCFG,
|
||||
LatentOperationTonemapReinhard,
|
||||
LatentOperationSharpen,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> LatentExtension:
|
||||
return LatentExtension()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user