Merge branch 'comfyanonymous:master' into master

This commit is contained in:
patientx 2025-04-17 01:22:11 +03:00 committed by GitHub
commit d05e9b8298
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 9 additions and 39 deletions

View File

@ -8,26 +8,12 @@ from einops import repeat
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
import torch.nn.functional as F
from comfy.ldm.flux.math import apply_rope
from comfy.ldm.flux.math import apply_rope, rope
from comfy.ldm.flux.layers import LastLayer
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
assert dim % 2 == 0, "The dimension must be even."
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
batch_size, seq_length = pos.shape
out = torch.einsum("...n,d->...nd", pos, omega)
cos_out = torch.cos(out)
sin_out = torch.sin(out)
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
return out.float()
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py
class EmbedND(nn.Module):
@ -84,23 +70,6 @@ class TimestepEmbed(nn.Module):
return t_emb
class OutEmbed(nn.Module):
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)
)
def forward(self, x, adaln_input):
shift, scale = self.adaLN_modulation(adaln_input).chunk(2, dim=1)
x = self.norm_final(x) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
x = self.linear(x)
return x
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2])
@ -663,7 +632,7 @@ class HiDreamImageTransformer2DModel(nn.Module):
]
)
self.final_layer = OutEmbed(self.inner_dim, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
self.final_layer = LastLayer(self.inner_dim, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
caption_projection = []

View File

@ -11,14 +11,15 @@ class HiDreamTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.t5xxl = sd3_clip.T5XXLTokenizer(embedding_directory=embedding_directory, min_length=128, tokenizer_data=tokenizer_data)
self.t5xxl = sd3_clip.T5XXLTokenizer(embedding_directory=embedding_directory, min_length=128, max_length=128, tokenizer_data=tokenizer_data)
self.llama = hunyuan_video.LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=128, pad_token=128009, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = [t5xxl[0]] # Use only first 128 tokens
out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids)
return out

View File

@ -32,9 +32,9 @@ def t5_xxl_detect(state_dict, prefix=""):
return out
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=77):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=77, max_length=99999999):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=min_length, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=max_length, min_length=min_length, tokenizer_data=tokenizer_data)
class SD3Tokenizer: