Merge branch 'comfyanonymous:master' into master

This commit is contained in:
patientx 2025-05-13 01:06:19 +03:00 committed by GitHub
commit d15ce39530
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 521 additions and 100 deletions

View File

@ -8,11 +8,7 @@ from typing import Callable, Tuple, List
import numpy as np import numpy as np
import torch.nn.functional as F import torch.nn.functional as F
from torch.nn.utils import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations as remove_weight_norm from torch.nn.utils.parametrize import remove_parametrizations as remove_weight_norm
# from diffusers.models.modeling_utils import ModelMixin
# from diffusers.loaders import FromOriginalModelMixin
# from diffusers.configuration_utils import ConfigMixin, register_to_config
from .music_log_mel import LogMelSpectrogram from .music_log_mel import LogMelSpectrogram
@ -259,7 +255,7 @@ class ResBlock1(torch.nn.Module):
self.convs1 = nn.ModuleList( self.convs1 = nn.ModuleList(
[ [
weight_norm( torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d( ops.Conv1d(
channels, channels,
channels, channels,
@ -269,7 +265,7 @@ class ResBlock1(torch.nn.Module):
padding=get_padding(kernel_size, dilation[0]), padding=get_padding(kernel_size, dilation[0]),
) )
), ),
weight_norm( torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d( ops.Conv1d(
channels, channels,
channels, channels,
@ -279,7 +275,7 @@ class ResBlock1(torch.nn.Module):
padding=get_padding(kernel_size, dilation[1]), padding=get_padding(kernel_size, dilation[1]),
) )
), ),
weight_norm( torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d( ops.Conv1d(
channels, channels,
channels, channels,
@ -294,7 +290,7 @@ class ResBlock1(torch.nn.Module):
self.convs2 = nn.ModuleList( self.convs2 = nn.ModuleList(
[ [
weight_norm( torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d( ops.Conv1d(
channels, channels,
channels, channels,
@ -304,7 +300,7 @@ class ResBlock1(torch.nn.Module):
padding=get_padding(kernel_size, 1), padding=get_padding(kernel_size, 1),
) )
), ),
weight_norm( torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d( ops.Conv1d(
channels, channels,
channels, channels,
@ -314,7 +310,7 @@ class ResBlock1(torch.nn.Module):
padding=get_padding(kernel_size, 1), padding=get_padding(kernel_size, 1),
) )
), ),
weight_norm( torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d( ops.Conv1d(
channels, channels,
channels, channels,
@ -366,7 +362,7 @@ class HiFiGANGenerator(nn.Module):
prod(upsample_rates) == hop_length prod(upsample_rates) == hop_length
), f"hop_length must be {prod(upsample_rates)}" ), f"hop_length must be {prod(upsample_rates)}"
self.conv_pre = weight_norm( self.conv_pre = torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d( ops.Conv1d(
num_mels, num_mels,
upsample_initial_channel, upsample_initial_channel,
@ -386,7 +382,7 @@ class HiFiGANGenerator(nn.Module):
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
c_cur = upsample_initial_channel // (2 ** (i + 1)) c_cur = upsample_initial_channel // (2 ** (i + 1))
self.ups.append( self.ups.append(
weight_norm( torch.nn.utils.parametrizations.weight_norm(
ops.ConvTranspose1d( ops.ConvTranspose1d(
upsample_initial_channel // (2**i), upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)), upsample_initial_channel // (2 ** (i + 1)),
@ -421,7 +417,7 @@ class HiFiGANGenerator(nn.Module):
self.resblocks.append(ResBlock1(ch, k, d)) self.resblocks.append(ResBlock1(ch, k, d))
self.activation_post = post_activation() self.activation_post = post_activation()
self.conv_post = weight_norm( self.conv_post = torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d( ops.Conv1d(
ch, ch,
1, 1,

View File

@ -75,16 +75,10 @@ class SnakeBeta(nn.Module):
return x return x
def WNConv1d(*args, **kwargs): def WNConv1d(*args, **kwargs):
try: return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
except:
return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older
def WNConvTranspose1d(*args, **kwargs): def WNConvTranspose1d(*args, **kwargs):
try: return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
except:
return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module: def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
if activation == "elu": if activation == "elu":

View File

@ -671,7 +671,6 @@ class KlingImage2VideoNode(KlingNodeBase):
negative_prompt=negative_prompt if negative_prompt else None, negative_prompt=negative_prompt if negative_prompt else None,
cfg_scale=cfg_scale, cfg_scale=cfg_scale,
mode=KlingVideoGenMode(mode), mode=KlingVideoGenMode(mode),
aspect_ratio=KlingVideoGenAspectRatio(aspect_ratio),
duration=KlingVideoGenDuration(duration), duration=KlingVideoGenDuration(duration),
camera_control=camera_control, camera_control=camera_control,
), ),

View File

@ -1,5 +1,6 @@
from __future__ import annotations from __future__ import annotations
import av
import torchaudio import torchaudio
import torch import torch
import comfy.model_management import comfy.model_management
@ -7,7 +8,6 @@ import folder_paths
import os import os
import io import io
import json import json
import struct
import random import random
import hashlib import hashlib
import node_helpers import node_helpers
@ -90,60 +90,118 @@ class VAEDecodeAudio:
return ({"waveform": audio, "sample_rate": 44100}, ) return ({"waveform": audio, "sample_rate": 44100}, )
def create_vorbis_comment_block(comment_dict, last_block): def save_audio(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None, quality="128k"):
vendor_string = b'ComfyUI'
vendor_length = len(vendor_string)
comments = [] filename_prefix += self.prefix_append
for key, value in comment_dict.items(): full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
comment = f"{key}={value}".encode('utf-8') results: list[FileLocator] = []
comments.append(struct.pack('<I', len(comment)) + comment)
user_comment_list_length = len(comments) # Prepare metadata dictionary
user_comments = b''.join(comments) metadata = {}
if not args.disable_metadata:
if prompt is not None:
metadata["prompt"] = json.dumps(prompt)
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
comment_data = struct.pack('<I', vendor_length) + vendor_string + struct.pack('<I', user_comment_list_length) + user_comments # Opus supported sample rates
if last_block: OPUS_RATES = [8000, 12000, 16000, 24000, 48000]
id = b'\x84'
else:
id = b'\x04'
comment_block = id + struct.pack('>I', len(comment_data))[1:] + comment_data
return comment_block for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.{format}"
output_path = os.path.join(full_output_folder, file)
def insert_or_replace_vorbis_comment(flac_io, comment_dict): # Use original sample rate initially
if len(comment_dict) == 0: sample_rate = audio["sample_rate"]
return flac_io
flac_io.seek(4) # Handle Opus sample rate requirements
if format == "opus":
if sample_rate > 48000:
sample_rate = 48000
elif sample_rate not in OPUS_RATES:
# Find the next highest supported rate
for rate in sorted(OPUS_RATES):
if rate > sample_rate:
sample_rate = rate
break
if sample_rate not in OPUS_RATES: # Fallback if still not supported
sample_rate = 48000
blocks = [] # Resample if necessary
last_block = False if sample_rate != audio["sample_rate"]:
waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)
while not last_block: # Create in-memory WAV buffer
header = flac_io.read(4) wav_buffer = io.BytesIO()
last_block = (header[0] & 0x80) != 0 torchaudio.save(wav_buffer, waveform, sample_rate, format="WAV")
block_type = header[0] & 0x7F wav_buffer.seek(0) # Rewind for reading
block_length = struct.unpack('>I', b'\x00' + header[1:])[0]
block_data = flac_io.read(block_length)
if block_type == 4 or block_type == 1: # Use PyAV to convert and add metadata
pass input_container = av.open(wav_buffer)
else:
header = bytes([(header[0] & (~0x80))]) + header[1:]
blocks.append(header + block_data)
blocks.append(create_vorbis_comment_block(comment_dict, last_block=True)) # Create output with specified format
output_buffer = io.BytesIO()
output_container = av.open(output_buffer, mode='w', format=format)
new_flac_io = io.BytesIO() # Set metadata on the container
new_flac_io.write(b'fLaC') for key, value in metadata.items():
for block in blocks: output_container.metadata[key] = value
new_flac_io.write(block)
new_flac_io.write(flac_io.read()) # Set up the output stream with appropriate properties
return new_flac_io input_container.streams.audio[0]
if format == "opus":
out_stream = output_container.add_stream("libopus", rate=sample_rate)
if quality == "64k":
out_stream.bit_rate = 64000
elif quality == "96k":
out_stream.bit_rate = 96000
elif quality == "128k":
out_stream.bit_rate = 128000
elif quality == "192k":
out_stream.bit_rate = 192000
elif quality == "320k":
out_stream.bit_rate = 320000
elif format == "mp3":
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate)
if quality == "V0":
#TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
out_stream.codec_context.qscale = 1
elif quality == "128k":
out_stream.bit_rate = 128000
elif quality == "320k":
out_stream.bit_rate = 320000
else: #format == "flac":
out_stream = output_container.add_stream("flac", rate=sample_rate)
# Copy frames from input to output
for frame in input_container.decode(audio=0):
frame.pts = None # Let PyAV handle timestamps
output_container.mux(out_stream.encode(frame))
# Flush encoder
output_container.mux(out_stream.encode(None))
# Close containers
output_container.close()
input_container.close()
# Write the output to file
output_buffer.seek(0)
with open(output_path, 'wb') as f:
f.write(output_buffer.getbuffer())
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
return { "ui": { "audio": results } }
class SaveAudio: class SaveAudio:
def __init__(self): def __init__(self):
self.output_dir = folder_paths.get_output_directory() self.output_dir = folder_paths.get_output_directory()
@ -153,50 +211,70 @@ class SaveAudio:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "audio": ("AUDIO", ), return {"required": { "audio": ("AUDIO", ),
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"})}, "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
} }
RETURN_TYPES = () RETURN_TYPES = ()
FUNCTION = "save_audio" FUNCTION = "save_flac"
OUTPUT_NODE = True OUTPUT_NODE = True
CATEGORY = "audio" CATEGORY = "audio"
def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): def save_flac(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo)
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
results: list[FileLocator] = []
metadata = {} class SaveAudioMP3:
if not args.disable_metadata: def __init__(self):
if prompt is not None: self.output_dir = folder_paths.get_output_directory()
metadata["prompt"] = json.dumps(prompt) self.type = "output"
if extra_pnginfo is not None: self.prefix_append = ""
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()): @classmethod
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) def INPUT_TYPES(s):
file = f"{filename_with_batch_num}_{counter:05}_.flac" return {"required": { "audio": ("AUDIO", ),
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
"quality": (["V0", "128k", "320k"], {"default": "V0"}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
buff = io.BytesIO() RETURN_TYPES = ()
torchaudio.save(buff, waveform, audio["sample_rate"], format="FLAC") FUNCTION = "save_mp3"
buff = insert_or_replace_vorbis_comment(buff, metadata) OUTPUT_NODE = True
with open(os.path.join(full_output_folder, file), 'wb') as f: CATEGORY = "audio"
f.write(buff.getbuffer())
results.append({ def save_mp3(self, audio, filename_prefix="ComfyUI", format="mp3", prompt=None, extra_pnginfo=None, quality="128k"):
"filename": file, return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality)
"subfolder": subfolder,
"type": self.type
})
counter += 1
return { "ui": { "audio": results } } class SaveAudioOpus:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
@classmethod
def INPUT_TYPES(s):
return {"required": { "audio": ("AUDIO", ),
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
"quality": (["64k", "96k", "128k", "192k", "320k"], {"default": "128k"}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_opus"
OUTPUT_NODE = True
CATEGORY = "audio"
def save_opus(self, audio, filename_prefix="ComfyUI", format="opus", prompt=None, extra_pnginfo=None, quality="V3"):
return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality)
class PreviewAudio(SaveAudio): class PreviewAudio(SaveAudio):
def __init__(self): def __init__(self):
@ -248,7 +326,20 @@ NODE_CLASS_MAPPINGS = {
"VAEEncodeAudio": VAEEncodeAudio, "VAEEncodeAudio": VAEEncodeAudio,
"VAEDecodeAudio": VAEDecodeAudio, "VAEDecodeAudio": VAEDecodeAudio,
"SaveAudio": SaveAudio, "SaveAudio": SaveAudio,
"SaveAudioMP3": SaveAudioMP3,
"SaveAudioOpus": SaveAudioOpus,
"LoadAudio": LoadAudio, "LoadAudio": LoadAudio,
"PreviewAudio": PreviewAudio, "PreviewAudio": PreviewAudio,
"ConditioningStableAudio": ConditioningStableAudio, "ConditioningStableAudio": ConditioningStableAudio,
} }
NODE_DISPLAY_NAME_MAPPINGS = {
"EmptyLatentAudio": "Empty Latent Audio",
"VAEEncodeAudio": "VAE Encode Audio",
"VAEDecodeAudio": "VAE Decode Audio",
"PreviewAudio": "Preview Audio",
"LoadAudio": "Load Audio",
"SaveAudio": "Save Audio (FLAC)",
"SaveAudioMP3": "Save Audio (MP3)",
"SaveAudioOpus": "Save Audio (Opus)",
}

View File

@ -2,6 +2,10 @@ import nodes
import folder_paths import folder_paths
import os import os
from comfy.comfy_types import IO
from comfy_api.input_impl import VideoFromFile
def normalize_path(path): def normalize_path(path):
return path.replace('\\', '/') return path.replace('\\', '/')
@ -21,8 +25,8 @@ class Load3D():
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), "height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
}} }}
RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "IMAGE", "LOAD3D_CAMERA") RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "IMAGE", "LOAD3D_CAMERA", IO.VIDEO)
RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "lineart", "camera_info") RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "lineart", "camera_info", "recording_video")
FUNCTION = "process" FUNCTION = "process"
EXPERIMENTAL = True EXPERIMENTAL = True
@ -41,7 +45,14 @@ class Load3D():
normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path) normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path)
lineart_image, ignore_mask3 = load_image_node.load_image(image=lineart_path) lineart_image, ignore_mask3 = load_image_node.load_image(image=lineart_path)
return output_image, output_mask, model_file, normal_image, lineart_image, image['camera_info'] video = None
if image['recording'] != "":
recording_video_path = folder_paths.get_annotated_filepath(image['recording'])
video = VideoFromFile(recording_video_path)
return output_image, output_mask, model_file, normal_image, lineart_image, image['camera_info'], video
class Load3DAnimation(): class Load3DAnimation():
@classmethod @classmethod
@ -59,8 +70,8 @@ class Load3DAnimation():
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), "height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
}} }}
RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "LOAD3D_CAMERA") RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "LOAD3D_CAMERA", IO.VIDEO)
RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "camera_info") RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "camera_info", "recording_video")
FUNCTION = "process" FUNCTION = "process"
EXPERIMENTAL = True EXPERIMENTAL = True
@ -77,7 +88,14 @@ class Load3DAnimation():
ignore_image, output_mask = load_image_node.load_image(image=mask_path) ignore_image, output_mask = load_image_node.load_image(image=mask_path)
normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path) normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path)
return output_image, output_mask, model_file, normal_image, image['camera_info'] video = None
if image['recording'] != "":
recording_video_path = folder_paths.get_annotated_filepath(image['recording'])
video = VideoFromFile(recording_video_path)
return output_image, output_mask, model_file, normal_image, image['camera_info'], video
class Preview3D(): class Preview3D():
@classmethod @classmethod

View File

@ -0,0 +1,322 @@
import re
from comfy.comfy_types.node_typing import IO
class StringConcatenate():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string_a": (IO.STRING, {"multiline": True}),
"string_b": (IO.STRING, {"multiline": True})
}
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string_a, string_b, **kwargs):
return string_a + string_b,
class StringSubstring():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"start": (IO.INT, {}),
"end": (IO.INT, {}),
}
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, start, end, **kwargs):
return string[start:end],
class StringLength():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True})
}
}
RETURN_TYPES = (IO.INT,)
RETURN_NAMES = ("length",)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, **kwargs):
length = len(string)
return length,
class CaseConverter():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"mode": (IO.COMBO, {"options": ["UPPERCASE", "lowercase", "Capitalize", "Title Case"]})
}
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, mode, **kwargs):
if mode == "UPPERCASE":
result = string.upper()
elif mode == "lowercase":
result = string.lower()
elif mode == "Capitalize":
result = string.capitalize()
elif mode == "Title Case":
result = string.title()
else:
result = string
return result,
class StringTrim():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"mode": (IO.COMBO, {"options": ["Both", "Left", "Right"]})
}
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, mode, **kwargs):
if mode == "Both":
result = string.strip()
elif mode == "Left":
result = string.lstrip()
elif mode == "Right":
result = string.rstrip()
else:
result = string
return result,
class StringReplace():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"find": (IO.STRING, {"multiline": True}),
"replace": (IO.STRING, {"multiline": True})
}
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, find, replace, **kwargs):
result = string.replace(find, replace)
return result,
class StringContains():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"substring": (IO.STRING, {"multiline": True}),
"case_sensitive": (IO.BOOLEAN, {"default": True})
}
}
RETURN_TYPES = (IO.BOOLEAN,)
RETURN_NAMES = ("contains",)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, substring, case_sensitive, **kwargs):
if case_sensitive:
contains = substring in string
else:
contains = substring.lower() in string.lower()
return contains,
class StringCompare():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string_a": (IO.STRING, {"multiline": True}),
"string_b": (IO.STRING, {"multiline": True}),
"mode": (IO.COMBO, {"options": ["Starts With", "Ends With", "Equal"]}),
"case_sensitive": (IO.BOOLEAN, {"default": True})
}
}
RETURN_TYPES = (IO.BOOLEAN,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string_a, string_b, mode, case_sensitive, **kwargs):
if case_sensitive:
a = string_a
b = string_b
else:
a = string_a.lower()
b = string_b.lower()
if mode == "Equal":
return a == b,
elif mode == "Starts With":
return a.startswith(b),
elif mode == "Ends With":
return a.endswith(b),
class RegexMatch():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"regex_pattern": (IO.STRING, {"multiline": True}),
"case_insensitive": (IO.BOOLEAN, {"default": True}),
"multiline": (IO.BOOLEAN, {"default": False}),
"dotall": (IO.BOOLEAN, {"default": False})
}
}
RETURN_TYPES = (IO.BOOLEAN,)
RETURN_NAMES = ("matches",)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, regex_pattern, case_insensitive, multiline, dotall, **kwargs):
flags = 0
if case_insensitive:
flags |= re.IGNORECASE
if multiline:
flags |= re.MULTILINE
if dotall:
flags |= re.DOTALL
try:
match = re.search(regex_pattern, string, flags)
result = match is not None
except re.error:
result = False
return result,
class RegexExtract():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"regex_pattern": (IO.STRING, {"multiline": True}),
"mode": (IO.COMBO, {"options": ["First Match", "All Matches", "First Group", "All Groups"]}),
"case_insensitive": (IO.BOOLEAN, {"default": True}),
"multiline": (IO.BOOLEAN, {"default": False}),
"dotall": (IO.BOOLEAN, {"default": False}),
"group_index": (IO.INT, {"default": 1, "min": 0, "max": 100})
}
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, regex_pattern, mode, case_insensitive, multiline, dotall, group_index, **kwargs):
join_delimiter = "\n"
flags = 0
if case_insensitive:
flags |= re.IGNORECASE
if multiline:
flags |= re.MULTILINE
if dotall:
flags |= re.DOTALL
try:
if mode == "First Match":
match = re.search(regex_pattern, string, flags)
if match:
result = match.group(0)
else:
result = ""
elif mode == "All Matches":
matches = re.findall(regex_pattern, string, flags)
if matches:
if isinstance(matches[0], tuple):
result = join_delimiter.join([m[0] for m in matches])
else:
result = join_delimiter.join(matches)
else:
result = ""
elif mode == "First Group":
match = re.search(regex_pattern, string, flags)
if match and len(match.groups()) >= group_index:
result = match.group(group_index)
else:
result = ""
elif mode == "All Groups":
matches = re.finditer(regex_pattern, string, flags)
results = []
for match in matches:
if match.groups() and len(match.groups()) >= group_index:
results.append(match.group(group_index))
result = join_delimiter.join(results)
else:
result = ""
except re.error:
result = ""
return result,
NODE_CLASS_MAPPINGS = {
"StringConcatenate": StringConcatenate,
"StringSubstring": StringSubstring,
"StringLength": StringLength,
"CaseConverter": CaseConverter,
"StringTrim": StringTrim,
"StringReplace": StringReplace,
"StringContains": StringContains,
"StringCompare": StringCompare,
"RegexMatch": RegexMatch,
"RegexExtract": RegexExtract
}
NODE_DISPLAY_NAME_MAPPINGS = {
"StringConcatenate": "Concatenate",
"StringSubstring": "Substring",
"StringLength": "Length",
"CaseConverter": "Case Converter",
"StringTrim": "Trim",
"StringReplace": "Replace",
"StringContains": "Contains",
"StringCompare": "Compare",
"RegexMatch": "Regex Match",
"RegexExtract": "Regex Extract"
}

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is # This file is automatically generated by the build process when version is
# updated in pyproject.toml. # updated in pyproject.toml.
__version__ = "0.3.33" __version__ = "0.3.34"

View File

@ -2263,6 +2263,7 @@ def init_builtin_extra_nodes():
"nodes_fresca.py", "nodes_fresca.py",
"nodes_preview_any.py", "nodes_preview_any.py",
"nodes_ace.py", "nodes_ace.py",
"nodes_string.py",
] ]
import_failed = [] import_failed = []

View File

@ -1,6 +1,6 @@
[project] [project]
name = "ComfyUI" name = "ComfyUI"
version = "0.3.33" version = "0.3.34"
readme = "README.md" readme = "README.md"
license = { file = "LICENSE" } license = { file = "LICENSE" }
requires-python = ">=3.9" requires-python = ">=3.9"

View File

@ -1,4 +1,4 @@
comfyui-frontend-package==1.18.10 comfyui-frontend-package==1.19.9
comfyui-workflow-templates==0.1.14 comfyui-workflow-templates==0.1.14
torch torch
torchsde torchsde