Finished fixes

This commit is contained in:
Hacker 17082006 2023-02-18 22:19:02 +07:00
parent c4048cc39d
commit d322bc0d67
2 changed files with 112 additions and 104 deletions

BIN
comfy/annotator.zip Normal file

Binary file not shown.

216
nodes.py
View File

@ -18,11 +18,11 @@ import comfy.samplers
import comfy.sd
import comfy.utils
from comfy.annotator import canny, hed, midas, mlsd, openpose, uniformer
from comfy.annotator.util import HWC3
import model_management
import importlib
supported_ckpt_extensions = ['.ckpt', '.pth']
supported_pt_extensions = ['.ckpt', '.pt', '.bin', '.pth']
try:
@ -43,6 +43,14 @@ def recursive_search(directory):
def filter_files_extensions(files, extensions):
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))
def img_np_to_tensor(img_np):
return torch.from_numpy(img_np.astype(np.float32) / 255.0)[None,]
def img_tensor_to_np(img_tensor):
img_tensor = img_tensor.clone()
img_tensor = img_tensor * 255.0
return img_tensor.squeeze(0).numpy().astype(np.uint8)
#Thanks ChatGPT
class CLIPTextEncode:
@classmethod
def INPUT_TYPES(s):
@ -217,109 +225,6 @@ class VAELoader:
vae = comfy.sd.VAE(ckpt_path=vae_path)
return (vae,)
class CannyPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ) ,
"low_threshold": ("INT", {"default": 100, "min": 0, "max": 255, "step": 1}),
"high_threshold": ("INT", {"default": 100, "min": 0, "max": 255, "step": 1}),
"l2gradient": (["disable", "enable"], )
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge"
CATEGORY = "preprocessor"
def detect_edge(self, image, low_threshold, high_threshold, l2gradient):
apply_canny = canny.CannyDetector()
image = apply_canny(image.numpy(), low_threshold, high_threshold, l2gradient == "enable")
image = torch.from_numpy(image)
return (image,)
class HEDPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",) }}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge"
CATEGORY = "preprocessor"
def detect_edge(self, image):
apply_hed = hed.HEDdetector()
image = torch.from_numpy(apply_hed(image.numpy()))
return (image,)
class MIDASPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ) ,
"a": ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.1}),
"bg_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.1})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "estimate_depth"
CATEGORY = "preprocessor"
def estimate_depth(self, image, a, bg_threshold):
model_midas = midas.MidasDetector()
image = model_midas(image.numpy(), a, bg_threshold)
image = torch.from_numpy(image)
return (image,)
class MLSDPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",) ,
#Idk what should be the max value here since idk much about ML
"score_threshold": ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 2.0, "step": 0.1}),
"dist_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.1})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge"
CATEGORY = "preprocessor"
def detect_edge(self, image, score_threshold, dist_threshold):
model_mlsd = mlsd.MLSDdetector()
image = model_mlsd(image.numpy(), score_threshold, dist_threshold)
image = torch.from_numpy(image)
return (image,)
class OpenPosePreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ),
"detect_hand": (["disable", "enable"],)
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "estimate_pose"
CATEGORY = "preprocessor"
def estimate_pose(self, image, detect_hand):
model_openpose = openpose.OpenposeDetector()
image = model_openpose(image.numpy(), detect_hand == "enable")
image = torch.from_numpy(image)
return (image,)
class UniformerPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", )
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "semantic_segmentate"
CATEGORY = "preprocessor"
def semantic_segmentate(self, image):
model_uniformer = uniformer.UniformerDetector()
image = torch.from_numpy(model_uniformer(image.numpy()))
return (image,)
class ControlNetLoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
controlnet_dir = os.path.join(models_dir, "controlnet")
@ -337,6 +242,109 @@ class ControlNetLoader:
controlnet = comfy.sd.load_controlnet(controlnet_path)
return (controlnet,)
class CannyPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ) ,
"low_threshold": ("INT", {"default": 100, "min": 0, "max": 255, "step": 1}),
"high_threshold": ("INT", {"default": 100, "min": 0, "max": 255, "step": 1}),
"l2gradient": (["disable", "enable"], )
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge"
CATEGORY = "preprocessor"
def detect_edge(self, image, low_threshold, high_threshold, l2gradient):
apply_canny = canny.CannyDetector()
image = apply_canny(img_tensor_to_np(image), low_threshold, high_threshold, l2gradient == "enable")
image = img_np_to_tensor(HWC3(image))
return (image,)
class HEDPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",) }}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge"
CATEGORY = "preprocessor"
def detect_edge(self, image):
apply_hed = hed.HEDdetector()
image = apply_hed(img_tensor_to_np(image))
image = img_np_to_tensor(HWC3(image))
return (image,)
class MIDASPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ) ,
"a": ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.1}),
"bg_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.1})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "estimate_depth"
CATEGORY = "preprocessor"
def estimate_depth(self, image, a, bg_threshold):
model_midas = midas.MidasDetector()
image, _ = model_midas(img_tensor_to_np(image), a, bg_threshold)
image = img_np_to_tensor(HWC3(image))
return (image,)
class MLSDPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",) ,
#Idk what should be the max value here since idk much about ML
"score_threshold": ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 2.0, "step": 0.1}),
"dist_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.1})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge"
CATEGORY = "preprocessor"
def detect_edge(self, image, score_threshold, dist_threshold):
model_mlsd = mlsd.MLSDdetector()
image = model_mlsd(img_tensor_to_np(image), score_threshold, dist_threshold)
image = img_np_to_tensor(HWC3(image))
return (image,)
class OpenPosePreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ),
"detect_hand": (["disable", "enable"],)
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "estimate_pose"
CATEGORY = "preprocessor"
def estimate_pose(self, image, detect_hand):
model_openpose = openpose.OpenposeDetector()
image, _ = model_openpose(img_tensor_to_np(image), detect_hand == "enable")
image = img_np_to_tensor(HWC3(image))
return (image,)
class UniformerPreprocessor:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", )
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "semantic_segmentate"
CATEGORY = "preprocessor"
def semantic_segmentate(self, image):
model_uniformer = uniformer.UniformerDetector()
image = model_uniformer(img_np_to_tensor(image))
image = img_np_to_tensor(HWC3(image))
return (image,)
class ControlNetApply:
@classmethod