Add transpose and rotate nodes

This commit is contained in:
missionfloyd 2023-04-08 20:43:43 -06:00 committed by GitHub
parent 90581684b4
commit d36ad5d958
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,7 +1,8 @@
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from PIL import Image, ImageColor
import re
import comfy.utils
@ -202,9 +203,128 @@ class Sharpen:
return (result,)
class Transpose:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"method": ([
"Flip horizontal",
"Flip vertical",
"Rotate 90°",
"Rotate 180°",
"Rotate 270°",
"Transpose",
"Transverse",
],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "transpose"
CATEGORY = "image/postprocessing"
def transpose(self, image: torch.Tensor, method: str):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
methods = {
"Flip horizontal": Image.Transpose.FLIP_LEFT_RIGHT,
"Flip vertical": Image.Transpose.FLIP_TOP_BOTTOM,
"Rotate 90°": Image.Transpose.ROTATE_90,
"Rotate 180°": Image.Transpose.ROTATE_180,
"Rotate 270°": Image.Transpose.ROTATE_270,
"Transpose": Image.Transpose.TRANSPOSE,
"Transverse": Image.Transpose.TRANSVERSE,
}
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
transposed_image = pil_image.transpose(methods[method])
transposed_array = torch.tensor(np.array(transposed_image.convert("RGB"))).float() / 255
result[b] = transposed_array
return (result,)
class Rotate:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"angle": ("FLOAT", {
"default": 0,
"min": 0,
"max": 360,
"step": 0.1
}),
"resample": ([
"Nearest Neighbor",
"Bilinear",
"Bicubic",
],),
"fill_color": ("STRING", {"default": "#000000"}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "rotate"
CATEGORY = "image/postprocessing"
def rotate(self, image: torch.Tensor, angle: int, resample: str, fill_color: str):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
resamplers = {
"Nearest Neighbor": Image.Resampling.NEAREST,
"Bilinear": Image.Resampling.BILINEAR,
"Bicubic": Image.Resampling.BICUBIC,
}
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
fill_color = fill_color or "#000000"
def parse_palette(color_str):
if re.match(r'^#[a-fA-F0-9]{6}$', color_str) or color_str.lower() in ImageColor.colormap:
return ImageColor.getrgb(color_str)
color_rgb = re.match(r'^\(?(\d{1,3}),(\d{1,3}),(\d{1,3})\)?$', color_str)
if color_rgb and int(color_rgb.group(1)) <= 255 and int(color_rgb.group(2)) <= 255 and int(color_rgb.group(3)) <= 255:
return tuple(map(int, re.findall(r'\d{1,3}', color_str)))
else:
raise ValueError(f"Invalid color format: {color_str}")
color = fill_color.replace(" ", "")
color = parse_palette(color)
rotated_image = pil_image.rotate(angle=angle, resample=resamplers[resample], expand=False, fillcolor=color)
rotated_array = torch.tensor(np.array(rotated_image.convert("RGB"))).float() / 255
result[b] = rotated_array
return (result,)
NODE_CLASS_MAPPINGS = {
"ImageBlend": Blend,
"ImageBlur": Blur,
"ImageQuantize": Quantize,
"ImageSharpen": Sharpen,
"ImageTranspose": Transpose,
"ImageRotate": Rotate,
}