Add encoded dataset caching mechanism

This commit is contained in:
Kohaku-Blueleaf 2025-10-29 12:02:52 +08:00
parent c5a8ec3f67
commit d5aea27817
2 changed files with 212 additions and 9 deletions

View File

@ -1,5 +1,6 @@
import logging
import os
import pickle
import numpy as np
import torch
@ -50,7 +51,7 @@ class LoadImageDataSetFromFolderNode:
RETURN_TYPES = ("IMAGE_LIST",)
FUNCTION = "load_images"
CATEGORY = "loaders"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Loads a batch of images from a directory for training."
@ -77,7 +78,7 @@ class LoadImageTextDataSetFromFolderNode:
RETURN_TYPES = ("IMAGE_LIST", "TEXT_LIST",)
FUNCTION = "load_images"
CATEGORY = "loaders"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Loads a batch of images and caption from a directory for training."
@ -115,8 +116,6 @@ class LoadImageTextDataSetFromFolderNode:
else:
captions.append("")
width = width if width != -1 else None
height = height if height != -1 else None
output_tensor = load_and_process_images(image_files, sub_input_dir)
logging.info(f"Loaded {len(output_tensor)} images from {sub_input_dir}.")
@ -181,7 +180,7 @@ class SaveImageDataSetToFolderNode:
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "save_images"
CATEGORY = "loaders"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Saves a batch of images to a directory."
@ -208,7 +207,7 @@ class SaveImageTextDataSetToFolderNode:
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "save_images"
CATEGORY = "loaders"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Saves a batch of images and captions to a directory."
@ -232,7 +231,7 @@ class SaveImageTextDataSetToFolderNode:
class ImageProcessingNode:
"""Base class for image processing nodes that operate on IMAGE_LIST."""
CATEGORY = "image/transforms"
CATEGORY = "dataset/image"
EXPERIMENTAL = True
RETURN_TYPES = ("IMAGE_LIST",)
FUNCTION = "process"
@ -269,7 +268,7 @@ class ImageProcessingNode:
class TextProcessingNode:
"""Base class for text processing nodes that operate on TEXT_LIST."""
CATEGORY = "text/transforms"
CATEGORY = "dataset/text"
EXPERIMENTAL = True
RETURN_TYPES = ("TEXT_LIST",)
FUNCTION = "process"
@ -518,7 +517,7 @@ class ShuffleDatasetNode(ImageProcessingNode):
class ShuffleImageTextDatasetNode:
"""Special node that shuffles both images and texts together (doesn't inherit from base class)."""
CATEGORY = "image/transforms"
CATEGORY = "dataset/image"
EXPERIMENTAL = True
RETURN_TYPES = ("IMAGE_LIST", "TEXT_LIST")
FUNCTION = "process"
@ -620,6 +619,201 @@ class StripWhitespaceNode(TextProcessingNode):
return [text.strip() for text in texts]
# ========== Training Dataset Nodes ==========
class MakeTrainingDataset:
"""Encode images with VAE and texts with CLIP to create a training dataset."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE_LIST", {"tooltip": "List of images to encode."}),
"vae": ("VAE", {"tooltip": "VAE model for encoding images to latents."}),
"clip": ("CLIP", {"tooltip": "CLIP model for encoding text to conditioning."}),
},
"optional": {
"texts": ("TEXT_LIST", {"tooltip": "List of text captions. Can be length n (matching images), 1 (repeated for all), or omitted (uses empty string)."}),
},
}
RETURN_TYPES = ("LATENT_LIST", "CONDITIONING")
RETURN_NAMES = ("latents", "conditioning")
FUNCTION = "make_dataset"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Encodes images with VAE and texts with CLIP to create a training dataset. Returns a list of latents and a flat conditioning list."
def make_dataset(self, images, vae, clip, texts=None):
# Handle text list
num_images = len(images)
if texts is None or len(texts) == 0:
# Treat as [""] for unconditional training
texts = [""]
if len(texts) == 1 and num_images > 1:
# Repeat single text for all images
texts = texts * num_images
elif len(texts) != num_images:
raise ValueError(
f"Number of texts ({len(texts)}) does not match number of images ({num_images}). "
f"Text list should have length {num_images}, 1, or 0."
)
# Encode images with VAE
logging.info(f"Encoding {num_images} images with VAE...")
latents = []
for img_tensor in images:
# img_tensor is [1, H, W, 3]
t = vae.encode(img_tensor[:,:,:,:3])
latents.append({"samples": t})
# Encode texts with CLIP
logging.info(f"Encoding {len(texts)} texts with CLIP...")
conditions = []
empty_cond = clip.encode_from_tokens_scheduled(clip.tokenize(""))
for text in texts:
if text == "":
conditions.extend(empty_cond)
else:
tokens = clip.tokenize(text)
cond = clip.encode_from_tokens_scheduled(tokens)
conditions.extend(cond)
logging.info(f"Created dataset with {len(latents)} latents and {len(conditions)} conditions.")
return (latents, conditions)
class SaveTrainingDataset:
"""Save encoded training dataset (latents + conditioning) to disk."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"latents": ("LATENT_LIST", {"tooltip": "List of latent tensors from MakeTrainingDataset."}),
"conditioning": ("CONDITIONING", {"tooltip": "Conditioning list from MakeTrainingDataset."}),
"folder_name": ("STRING", {"default": "training_dataset", "tooltip": "Name of folder to save dataset (inside output directory)."}),
"shard_size": ("INT", {"default": 1000, "min": 1, "max": 100000, "step": 1, "tooltip": "Number of samples per shard file."}),
},
}
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "save_dataset"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Saves a training dataset to disk in sharded pickle files. Each shard contains (latent, conditioning) pairs."
def save_dataset(self, latents, conditioning, folder_name, shard_size):
# Validate lengths match
if len(latents) != len(conditioning):
raise ValueError(
f"Number of latents ({len(latents)}) does not match number of conditions ({len(conditioning)}). "
f"Something went wrong in dataset preparation."
)
# Create output directory
output_dir = os.path.join(folder_paths.get_output_directory(), folder_name)
os.makedirs(output_dir, exist_ok=True)
# Prepare data pairs
num_samples = len(latents)
num_shards = (num_samples + shard_size - 1) // shard_size # Ceiling division
logging.info(f"Saving {num_samples} samples to {num_shards} shards in {output_dir}...")
# Save data in shards
for shard_idx in range(num_shards):
start_idx = shard_idx * shard_size
end_idx = min(start_idx + shard_size, num_samples)
# Get shard data
shard_data = {
"latents": latents[start_idx:end_idx],
"conditioning": conditioning[start_idx:end_idx],
}
# Save shard
shard_filename = f"shard_{shard_idx:04d}.pkl"
shard_path = os.path.join(output_dir, shard_filename)
with open(shard_path, "wb") as f:
pickle.dump(shard_data, f, protocol=pickle.HIGHEST_PROTOCOL)
logging.info(f"Saved shard {shard_idx + 1}/{num_shards}: {shard_filename} ({end_idx - start_idx} samples)")
# Save metadata
metadata = {
"num_samples": num_samples,
"num_shards": num_shards,
"shard_size": shard_size,
}
metadata_path = os.path.join(output_dir, "metadata.json")
with open(metadata_path, "w") as f:
import json
json.dump(metadata, f, indent=2)
logging.info(f"Successfully saved {num_samples} samples to {output_dir}.")
return {}
class LoadTrainingDataset:
"""Load encoded training dataset from disk."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"folder_name": ("STRING", {"default": "training_dataset", "tooltip": "Name of folder containing the saved dataset (inside output directory)."}),
},
}
RETURN_TYPES = ("LATENT_LIST", "CONDITIONING")
RETURN_NAMES = ("latents", "conditioning")
FUNCTION = "load_dataset"
CATEGORY = "dataset"
EXPERIMENTAL = True
DESCRIPTION = "Loads a training dataset from disk. Returns a list of latents and a flat conditioning list."
def load_dataset(self, folder_name):
# Get dataset directory
dataset_dir = os.path.join(folder_paths.get_output_directory(), folder_name)
if not os.path.exists(dataset_dir):
raise ValueError(f"Dataset directory not found: {dataset_dir}")
# Find all shard files
shard_files = sorted([
f for f in os.listdir(dataset_dir)
if f.startswith("shard_") and f.endswith(".pkl")
])
if not shard_files:
raise ValueError(f"No shard files found in {dataset_dir}")
logging.info(f"Loading {len(shard_files)} shards from {dataset_dir}...")
# Load all shards
all_latents = []
all_conditioning = []
for shard_file in shard_files:
shard_path = os.path.join(dataset_dir, shard_file)
with open(shard_path, "rb") as f:
shard_data = pickle.load(f)
all_latents.extend(shard_data["latents"])
all_conditioning.extend(shard_data["conditioning"])
logging.info(f"Loaded {shard_file}: {len(shard_data['latents'])} samples")
logging.info(f"Successfully loaded {len(all_latents)} samples from {dataset_dir}.")
return (all_latents, all_conditioning)
NODE_CLASS_MAPPINGS = {
"LoadImageDataSetFromFolderNode": LoadImageDataSetFromFolderNode,
"LoadImageTextDataSetFromFolderNode": LoadImageTextDataSetFromFolderNode,
@ -645,6 +839,10 @@ NODE_CLASS_MAPPINGS = {
"AddTextSuffixNode": AddTextSuffixNode,
"ReplaceTextNode": ReplaceTextNode,
"StripWhitespaceNode": StripWhitespaceNode,
# Training dataset nodes
"MakeTrainingDataset": MakeTrainingDataset,
"SaveTrainingDataset": SaveTrainingDataset,
"LoadTrainingDataset": LoadTrainingDataset,
}
NODE_DISPLAY_NAME_MAPPINGS = {
@ -672,4 +870,8 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"AddTextSuffixNode": "Add Text Suffix",
"ReplaceTextNode": "Replace Text",
"StripWhitespaceNode": "Strip Whitespace",
# Training dataset nodes
"MakeTrainingDataset": "Make Training Dataset",
"SaveTrainingDataset": "Save Training Dataset",
"LoadTrainingDataset": "Load Training Dataset",
}

View File

@ -2275,6 +2275,7 @@ async def init_builtin_extra_nodes():
"nodes_images.py",
"nodes_video_model.py",
"nodes_train.py",
"nodes_dataset.py",
"nodes_sag.py",
"nodes_perpneg.py",
"nodes_stable3d.py",