From 20ae48515e423c102a8845079cf05d530ffdb84d Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Sun, 26 Mar 2023 15:01:34 +0100 Subject: [PATCH 01/24] Add setting to save menu position Add anchoring to side when resizing Fix losing menu when resizing --- web/scripts/ui.js | 170 ++++++++++++++++++++++++++++++++++++---------- 1 file changed, 136 insertions(+), 34 deletions(-) diff --git a/web/scripts/ui.js b/web/scripts/ui.js index 94f3c528a..d92e2cfa7 100644 --- a/web/scripts/ui.js +++ b/web/scripts/ui.js @@ -35,21 +35,92 @@ function $el(tag, propsOrChildren, children) { return element; } -function dragElement(dragEl) { +function dragElement(dragEl, settings) { var posDiffX = 0, posDiffY = 0, posStartX = 0, posStartY = 0, newPosX = 0, newPosY = 0; - if (dragEl.getElementsByClassName('drag-handle')[0]) { + if (dragEl.getElementsByClassName("drag-handle")[0]) { // if present, the handle is where you move the DIV from: - dragEl.getElementsByClassName('drag-handle')[0].onmousedown = dragMouseDown; + dragEl.getElementsByClassName("drag-handle")[0].onmousedown = dragMouseDown; } else { // otherwise, move the DIV from anywhere inside the DIV: dragEl.onmousedown = dragMouseDown; } + function ensureInBounds() { + newPosX = Math.min(document.body.clientWidth - dragEl.clientWidth, Math.max(0, dragEl.offsetLeft)); + newPosY = Math.min(document.body.clientHeight - dragEl.clientHeight, Math.max(0, dragEl.offsetTop)); + + console.log(newPosX, newPosY) + + positionElement(); + } + + function positionElement() { + const halfWidth = document.body.clientWidth / 2; + const halfHeight = document.body.clientHeight / 2; + + const anchorRight = newPosX + dragEl.clientWidth / 2 > halfWidth; + const anchorBottom = newPosY + dragEl.clientHeight / 2 > halfHeight; + + // set the element's new position: + if (anchorRight) { + dragEl.style.left = "unset"; + dragEl.style.right = document.body.clientWidth - newPosX - dragEl.clientWidth + "px"; + } else { + dragEl.style.left = newPosX + "px"; + dragEl.style.right = "unset"; + } + if (anchorBottom) { + dragEl.style.top = "unset"; + dragEl.style.bottom = document.body.clientHeight - newPosY - dragEl.clientHeight + "px"; + } else { + dragEl.style.top = newPosY + "px"; + dragEl.style.bottom = "unset"; + } + + if (savePos) { + localStorage.setItem( + "Comfy.MenuPosition", + JSON.stringify({ + left: dragEl.style.left, + right: dragEl.style.right, + top: dragEl.style.top, + bottom: dragEl.style.bottom, + }) + ); + } + } + + function restorePos() { + let pos = localStorage.getItem("Comfy.MenuPosition"); + if (pos) { + pos = JSON.parse(pos); + dragEl.style.left = pos.left; + dragEl.style.right = pos.right; + dragEl.style.top = pos.top; + dragEl.style.bottom = pos.bottom; + ensureInBounds(); + } + } + + let savePos = undefined; + settings.addSetting({ + id: "Comfy.MenuPosition", + name: "Save menu position", + type: "boolean", + defaultValue: savePos, + onChange(value) { + if (savePos === undefined && value) { + restorePos(); + } + savePos = value; + }, + }); + function dragMouseDown(e) { e = e || window.event; e.preventDefault(); @@ -64,18 +135,27 @@ function dragElement(dragEl) { function elementDrag(e) { e = e || window.event; e.preventDefault(); + + dragEl.classList.add("comfy-menu-manual-pos"); + // calculate the new cursor position: posDiffX = e.clientX - posStartX; posDiffY = e.clientY - posStartY; posStartX = e.clientX; posStartY = e.clientY; - newPosX = Math.min((document.body.clientWidth - dragEl.clientWidth), Math.max(0, (dragEl.offsetLeft + posDiffX))); - newPosY = Math.min((document.body.clientHeight - dragEl.clientHeight), Math.max(0, (dragEl.offsetTop + posDiffY))); - // set the element's new position: - dragEl.style.top = newPosY + "px"; - dragEl.style.left = newPosX + "px"; + + newPosX = Math.min(document.body.clientWidth - dragEl.clientWidth, Math.max(0, dragEl.offsetLeft + posDiffX)); + newPosY = Math.min(document.body.clientHeight - dragEl.clientHeight, Math.max(0, dragEl.offsetTop + posDiffY)); + + positionElement(); } + window.addEventListener("resize", () => { + if (dragEl.classList.contains("comfy-menu-manual-pos")) { + ensureInBounds(); + } + }); + function closeDragElement() { // stop moving when mouse button is released: document.onmouseup = null; @@ -305,34 +385,52 @@ export class ComfyUI { $el("span", { $: (q) => (this.queueSize = q) }), $el("button.comfy-settings-btn", { textContent: "⚙️", onclick: () => this.settings.show() }), ]), - $el("button.comfy-queue-btn", { textContent: "Queue Prompt", onclick: () => app.queuePrompt(0, this.batchCount) }), + $el("button.comfy-queue-btn", { + textContent: "Queue Prompt", + onclick: () => app.queuePrompt(0, this.batchCount), + }), $el("div", {}, [ - $el("label", { innerHTML: "Extra options"}, [ - $el("input", { type: "checkbox", - onchange: (i) => { - document.getElementById('extraOptions').style.display = i.srcElement.checked ? "block" : "none"; - this.batchCount = i.srcElement.checked ? document.getElementById('batchCountInputRange').value : 1; - document.getElementById('autoQueueCheckbox').checked = false; - } - }) - ]) - ]), - $el("div", { id: "extraOptions", style: { width: "100%", display: "none" }}, [ - $el("label", { innerHTML: "Batch count" }, [ - $el("input", { id: "batchCountInputNumber", type: "number", value: this.batchCount, min: "1", style: { width: "35%", "margin-left": "0.4em" }, - oninput: (i) => { - this.batchCount = i.target.value; - document.getElementById('batchCountInputRange').value = this.batchCount; - } + $el("label", { innerHTML: "Extra options" }, [ + $el("input", { + type: "checkbox", + onchange: (i) => { + document.getElementById("extraOptions").style.display = i.srcElement.checked ? "block" : "none"; + this.batchCount = i.srcElement.checked ? document.getElementById("batchCountInputRange").value : 1; + document.getElementById("autoQueueCheckbox").checked = false; + }, }), - $el("input", { id: "batchCountInputRange", type: "range", min: "1", max: "100", value: this.batchCount, + ]), + ]), + $el("div", { id: "extraOptions", style: { width: "100%", display: "none" } }, [ + $el("label", { innerHTML: "Batch count" }, [ + $el("input", { + id: "batchCountInputNumber", + type: "number", + value: this.batchCount, + min: "1", + style: { width: "35%", "margin-left": "0.4em" }, + oninput: (i) => { + this.batchCount = i.target.value; + document.getElementById("batchCountInputRange").value = this.batchCount; + }, + }), + $el("input", { + id: "batchCountInputRange", + type: "range", + min: "1", + max: "100", + value: this.batchCount, oninput: (i) => { this.batchCount = i.srcElement.value; - document.getElementById('batchCountInputNumber').value = i.srcElement.value; - } + document.getElementById("batchCountInputNumber").value = i.srcElement.value; + }, + }), + $el("input", { + id: "autoQueueCheckbox", + type: "checkbox", + checked: false, + title: "automatically queue prompt when the queue size hits 0", }), - $el("input", { id: "autoQueueCheckbox", type: "checkbox", checked: false, title: "automatically queue prompt when the queue size hits 0", - }) ]), ]), $el("div.comfy-menu-btns", [ @@ -380,7 +478,7 @@ export class ComfyUI { $el("button", { textContent: "Load Default", onclick: () => app.loadGraphData() }), ]); - dragElement(this.menuContainer); + dragElement(this.menuContainer, this.settings); this.setStatus({ exec_info: { queue_remaining: "X" } }); } @@ -388,10 +486,14 @@ export class ComfyUI { setStatus(status) { this.queueSize.textContent = "Queue size: " + (status ? status.exec_info.queue_remaining : "ERR"); if (status) { - if (this.lastQueueSize != 0 && status.exec_info.queue_remaining == 0 && document.getElementById('autoQueueCheckbox').checked) { + if ( + this.lastQueueSize != 0 && + status.exec_info.queue_remaining == 0 && + document.getElementById("autoQueueCheckbox").checked + ) { app.queuePrompt(0, this.batchCount); } - this.lastQueueSize = status.exec_info.queue_remaining + this.lastQueueSize = status.exec_info.queue_remaining; } } } From 716d8e746af6f7ce24f18f7641f055713fb32a42 Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Sun, 26 Mar 2023 15:03:57 +0100 Subject: [PATCH 02/24] Remove log --- web/scripts/ui.js | 2 -- 1 file changed, 2 deletions(-) diff --git a/web/scripts/ui.js b/web/scripts/ui.js index d92e2cfa7..117f4369e 100644 --- a/web/scripts/ui.js +++ b/web/scripts/ui.js @@ -54,8 +54,6 @@ function dragElement(dragEl, settings) { newPosX = Math.min(document.body.clientWidth - dragEl.clientWidth, Math.max(0, dragEl.offsetLeft)); newPosY = Math.min(document.body.clientHeight - dragEl.clientHeight, Math.max(0, dragEl.offsetTop)); - console.log(newPosX, newPosY) - positionElement(); } From 0b1e85fbea14b3a9ed6269b53ec921dc4eb02668 Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Sun, 26 Mar 2023 15:10:38 +0100 Subject: [PATCH 03/24] Add manual flag when restoring pos --- web/scripts/ui.js | 1 + 1 file changed, 1 insertion(+) diff --git a/web/scripts/ui.js b/web/scripts/ui.js index 117f4369e..404aae26d 100644 --- a/web/scripts/ui.js +++ b/web/scripts/ui.js @@ -101,6 +101,7 @@ function dragElement(dragEl, settings) { dragEl.style.right = pos.right; dragEl.style.top = pos.top; dragEl.style.bottom = pos.bottom; + dragEl.classList.add("comfy-menu-manual-pos"); ensureInBounds(); } } From 04b42bad87c2ec91a247f63378cc97718ebd9dbc Mon Sep 17 00:00:00 2001 From: hnmr293 Date: Thu, 30 Mar 2023 21:50:35 +0900 Subject: [PATCH 04/24] allow converting optional widgets to inputs --- web/extensions/core/widgetInputs.js | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/web/extensions/core/widgetInputs.js b/web/extensions/core/widgetInputs.js index ff9227d28..7e6688261 100644 --- a/web/extensions/core/widgetInputs.js +++ b/web/extensions/core/widgetInputs.js @@ -101,7 +101,7 @@ app.registerExtension({ callback: () => convertToWidget(this, w), }); } else { - const config = nodeData?.input?.required[w.name] || [w.type, w.options || {}]; + const config = nodeData?.input?.required[w.name] || nodeData?.input?.optional?.[w.name] || [w.type, w.options || {}]; if (isConvertableWidget(w, config)) { toInput.push({ content: `Convert ${w.name} to input`, From c93dc2fb89d83ef04837d6a4a712870a2a13eac7 Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Thu, 30 Mar 2023 20:14:01 +0100 Subject: [PATCH 05/24] Remove bottom anchor --- web/scripts/ui.js | 30 ++++++++++++------------------ 1 file changed, 12 insertions(+), 18 deletions(-) diff --git a/web/scripts/ui.js b/web/scripts/ui.js index fc37fd3dd..8c7f096d1 100644 --- a/web/scripts/ui.js +++ b/web/scripts/ui.js @@ -50,19 +50,24 @@ function dragElement(dragEl, settings) { dragEl.onmousedown = dragMouseDown; } + // When the element resizes (e.g. view queue) ensure it is still in the windows bounds + const resizeObserver = new ResizeObserver(() => { + ensureInBounds(); + }).observe(dragEl); + function ensureInBounds() { + if (dragEl.classList.contains("comfy-menu-manual-pos")) { newPosX = Math.min(document.body.clientWidth - dragEl.clientWidth, Math.max(0, dragEl.offsetLeft)); newPosY = Math.min(document.body.clientHeight - dragEl.clientHeight, Math.max(0, dragEl.offsetTop)); positionElement(); } + } function positionElement() { const halfWidth = document.body.clientWidth / 2; - const halfHeight = document.body.clientHeight / 2; const anchorRight = newPosX + dragEl.clientWidth / 2 > halfWidth; - const anchorBottom = newPosY + dragEl.clientHeight / 2 > halfHeight; // set the element's new position: if (anchorRight) { @@ -72,22 +77,15 @@ function dragElement(dragEl, settings) { dragEl.style.left = newPosX + "px"; dragEl.style.right = "unset"; } - if (anchorBottom) { - dragEl.style.top = "unset"; - dragEl.style.bottom = document.body.clientHeight - newPosY - dragEl.clientHeight + "px"; - } else { dragEl.style.top = newPosY + "px"; dragEl.style.bottom = "unset"; - } if (savePos) { localStorage.setItem( "Comfy.MenuPosition", JSON.stringify({ - left: dragEl.style.left, - right: dragEl.style.right, - top: dragEl.style.top, - bottom: dragEl.style.bottom, + x: dragEl.offsetLeft, + y: dragEl.offsetTop, }) ); } @@ -97,11 +95,9 @@ function dragElement(dragEl, settings) { let pos = localStorage.getItem("Comfy.MenuPosition"); if (pos) { pos = JSON.parse(pos); - dragEl.style.left = pos.left; - dragEl.style.right = pos.right; - dragEl.style.top = pos.top; - dragEl.style.bottom = pos.bottom; - dragEl.classList.add("comfy-menu-manual-pos"); + newPosX = pos.x; + newPosY = pos.y; + positionElement(); ensureInBounds(); } } @@ -150,9 +146,7 @@ function dragElement(dragEl, settings) { } window.addEventListener("resize", () => { - if (dragEl.classList.contains("comfy-menu-manual-pos")) { ensureInBounds(); - } }); function closeDragElement() { From 3a5bcdf8b9a141f7e629ac3a7174f20af3aac5a1 Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Thu, 30 Mar 2023 20:15:12 +0100 Subject: [PATCH 06/24] Formatting --- web/scripts/ui.js | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/web/scripts/ui.js b/web/scripts/ui.js index 8c7f096d1..194d8e2dd 100644 --- a/web/scripts/ui.js +++ b/web/scripts/ui.js @@ -57,11 +57,11 @@ function dragElement(dragEl, settings) { function ensureInBounds() { if (dragEl.classList.contains("comfy-menu-manual-pos")) { - newPosX = Math.min(document.body.clientWidth - dragEl.clientWidth, Math.max(0, dragEl.offsetLeft)); - newPosY = Math.min(document.body.clientHeight - dragEl.clientHeight, Math.max(0, dragEl.offsetTop)); + newPosX = Math.min(document.body.clientWidth - dragEl.clientWidth, Math.max(0, dragEl.offsetLeft)); + newPosY = Math.min(document.body.clientHeight - dragEl.clientHeight, Math.max(0, dragEl.offsetTop)); - positionElement(); - } + positionElement(); + } } function positionElement() { From 722801ed2da85478863a1fb9950450897eb7b0b6 Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Thu, 30 Mar 2023 20:15:48 +0100 Subject: [PATCH 07/24] Formatting --- web/scripts/ui.js | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/web/scripts/ui.js b/web/scripts/ui.js index 194d8e2dd..587f4e529 100644 --- a/web/scripts/ui.js +++ b/web/scripts/ui.js @@ -66,7 +66,6 @@ function dragElement(dragEl, settings) { function positionElement() { const halfWidth = document.body.clientWidth / 2; - const anchorRight = newPosX + dragEl.clientWidth / 2 > halfWidth; // set the element's new position: @@ -77,8 +76,9 @@ function dragElement(dragEl, settings) { dragEl.style.left = newPosX + "px"; dragEl.style.right = "unset"; } - dragEl.style.top = newPosY + "px"; - dragEl.style.bottom = "unset"; + + dragEl.style.top = newPosY + "px"; + dragEl.style.bottom = "unset"; if (savePos) { localStorage.setItem( From 61ec3c9d5d3e11f94682170be1454221512899c2 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Fri, 31 Mar 2023 13:04:39 -0400 Subject: [PATCH 08/24] Add a way to pass options to the transformers blocks. --- comfy/ldm/models/diffusion/ddim.py | 14 +++++++------- comfy/ldm/models/diffusion/ddpm.py | 18 +++++++++--------- comfy/ldm/modules/attention.py | 10 +++++----- .../modules/diffusionmodules/openaimodel.py | 13 +++++++------ comfy/samplers.py | 7 +++++-- 5 files changed, 33 insertions(+), 29 deletions(-) diff --git a/comfy/ldm/models/diffusion/ddim.py b/comfy/ldm/models/diffusion/ddim.py index 5e2d73645..e00ffd3f5 100644 --- a/comfy/ldm/models/diffusion/ddim.py +++ b/comfy/ldm/models/diffusion/ddim.py @@ -78,7 +78,7 @@ class DDIMSampler(object): dynamic_threshold=None, ucg_schedule=None, denoise_function=None, - cond_concat=None, + extra_args=None, to_zero=True, end_step=None, **kwargs @@ -101,7 +101,7 @@ class DDIMSampler(object): dynamic_threshold=dynamic_threshold, ucg_schedule=ucg_schedule, denoise_function=denoise_function, - cond_concat=cond_concat, + extra_args=extra_args, to_zero=to_zero, end_step=end_step ) @@ -174,7 +174,7 @@ class DDIMSampler(object): dynamic_threshold=dynamic_threshold, ucg_schedule=ucg_schedule, denoise_function=None, - cond_concat=None + extra_args=None ) return samples, intermediates @@ -185,7 +185,7 @@ class DDIMSampler(object): mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, - ucg_schedule=None, denoise_function=None, cond_concat=None, to_zero=True, end_step=None): + ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None): device = self.model.betas.device b = shape[0] if x_T is None: @@ -225,7 +225,7 @@ class DDIMSampler(object): corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, - dynamic_threshold=dynamic_threshold, denoise_function=denoise_function, cond_concat=cond_concat) + dynamic_threshold=dynamic_threshold, denoise_function=denoise_function, extra_args=extra_args) img, pred_x0 = outs if callback: callback(i) if img_callback: img_callback(pred_x0, i) @@ -249,11 +249,11 @@ class DDIMSampler(object): def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, - dynamic_threshold=None, denoise_function=None, cond_concat=None): + dynamic_threshold=None, denoise_function=None, extra_args=None): b, *_, device = *x.shape, x.device if denoise_function is not None: - model_output = denoise_function(self.model.apply_model, x, t, unconditional_conditioning, c, unconditional_guidance_scale, cond_concat) + model_output = denoise_function(self.model.apply_model, x, t, **extra_args) elif unconditional_conditioning is None or unconditional_guidance_scale == 1.: model_output = self.model.apply_model(x, t, c) else: diff --git a/comfy/ldm/models/diffusion/ddpm.py b/comfy/ldm/models/diffusion/ddpm.py index 42ed2add7..6af961242 100644 --- a/comfy/ldm/models/diffusion/ddpm.py +++ b/comfy/ldm/models/diffusion/ddpm.py @@ -1317,12 +1317,12 @@ class DiffusionWrapper(torch.nn.Module): self.conditioning_key = conditioning_key assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm'] - def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None, control=None): + def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None, control=None, transformer_options={}): if self.conditioning_key is None: - out = self.diffusion_model(x, t, control=control) + out = self.diffusion_model(x, t, control=control, transformer_options=transformer_options) elif self.conditioning_key == 'concat': xc = torch.cat([x] + c_concat, dim=1) - out = self.diffusion_model(xc, t, control=control) + out = self.diffusion_model(xc, t, control=control, transformer_options=transformer_options) elif self.conditioning_key == 'crossattn': if not self.sequential_cross_attn: cc = torch.cat(c_crossattn, 1) @@ -1332,25 +1332,25 @@ class DiffusionWrapper(torch.nn.Module): # TorchScript changes names of the arguments # with argument cc defined as context=cc scripted model will produce # an error: RuntimeError: forward() is missing value for argument 'argument_3'. - out = self.scripted_diffusion_model(x, t, cc, control=control) + out = self.scripted_diffusion_model(x, t, cc, control=control, transformer_options=transformer_options) else: - out = self.diffusion_model(x, t, context=cc, control=control) + out = self.diffusion_model(x, t, context=cc, control=control, transformer_options=transformer_options) elif self.conditioning_key == 'hybrid': xc = torch.cat([x] + c_concat, dim=1) cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(xc, t, context=cc, control=control) + out = self.diffusion_model(xc, t, context=cc, control=control, transformer_options=transformer_options) elif self.conditioning_key == 'hybrid-adm': assert c_adm is not None xc = torch.cat([x] + c_concat, dim=1) cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(xc, t, context=cc, y=c_adm, control=control) + out = self.diffusion_model(xc, t, context=cc, y=c_adm, control=control, transformer_options=transformer_options) elif self.conditioning_key == 'crossattn-adm': assert c_adm is not None cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(x, t, context=cc, y=c_adm, control=control) + out = self.diffusion_model(x, t, context=cc, y=c_adm, control=control, transformer_options=transformer_options) elif self.conditioning_key == 'adm': cc = c_crossattn[0] - out = self.diffusion_model(x, t, y=cc, control=control) + out = self.diffusion_model(x, t, y=cc, control=control, transformer_options=transformer_options) else: raise NotImplementedError() diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index 23b047342..25051b339 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -504,10 +504,10 @@ class BasicTransformerBlock(nn.Module): self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint - def forward(self, x, context=None): - return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) + def forward(self, x, context=None, transformer_options={}): + return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint) - def _forward(self, x, context=None): + def _forward(self, x, context=None, transformer_options={}): x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x @@ -557,7 +557,7 @@ class SpatialTransformer(nn.Module): self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) self.use_linear = use_linear - def forward(self, x, context=None): + def forward(self, x, context=None, transformer_options={}): # note: if no context is given, cross-attention defaults to self-attention if not isinstance(context, list): context = [context] @@ -570,7 +570,7 @@ class SpatialTransformer(nn.Module): if self.use_linear: x = self.proj_in(x) for i, block in enumerate(self.transformer_blocks): - x = block(x, context=context[i]) + x = block(x, context=context[i], transformer_options=transformer_options) if self.use_linear: x = self.proj_out(x) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() diff --git a/comfy/ldm/modules/diffusionmodules/openaimodel.py b/comfy/ldm/modules/diffusionmodules/openaimodel.py index 09ab1a066..7b2f5b531 100644 --- a/comfy/ldm/modules/diffusionmodules/openaimodel.py +++ b/comfy/ldm/modules/diffusionmodules/openaimodel.py @@ -76,12 +76,12 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock): support it as an extra input. """ - def forward(self, x, emb, context=None): + def forward(self, x, emb, context=None, transformer_options={}): for layer in self: if isinstance(layer, TimestepBlock): x = layer(x, emb) elif isinstance(layer, SpatialTransformer): - x = layer(x, context) + x = layer(x, context, transformer_options) else: x = layer(x) return x @@ -753,7 +753,7 @@ class UNetModel(nn.Module): self.middle_block.apply(convert_module_to_f32) self.output_blocks.apply(convert_module_to_f32) - def forward(self, x, timesteps=None, context=None, y=None, control=None, **kwargs): + def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): """ Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. @@ -762,6 +762,7 @@ class UNetModel(nn.Module): :param y: an [N] Tensor of labels, if class-conditional. :return: an [N x C x ...] Tensor of outputs. """ + transformer_options["original_shape"] = list(x.shape) assert (y is not None) == ( self.num_classes is not None ), "must specify y if and only if the model is class-conditional" @@ -775,13 +776,13 @@ class UNetModel(nn.Module): h = x.type(self.dtype) for id, module in enumerate(self.input_blocks): - h = module(h, emb, context) + h = module(h, emb, context, transformer_options) if control is not None and 'input' in control and len(control['input']) > 0: ctrl = control['input'].pop() if ctrl is not None: h += ctrl hs.append(h) - h = self.middle_block(h, emb, context) + h = self.middle_block(h, emb, context, transformer_options) if control is not None and 'middle' in control and len(control['middle']) > 0: h += control['middle'].pop() @@ -793,7 +794,7 @@ class UNetModel(nn.Module): hsp += ctrl h = th.cat([h, hsp], dim=1) del hsp - h = module(h, emb, context) + h = module(h, emb, context, transformer_options) h = h.type(x.dtype) if self.predict_codebook_ids: return self.id_predictor(h) diff --git a/comfy/samplers.py b/comfy/samplers.py index 66218f887..40d5d332b 100644 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -26,7 +26,7 @@ class CFGDenoiser(torch.nn.Module): #The main sampling function shared by all the samplers #Returns predicted noise -def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None): +def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}): def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in): area = (x_in.shape[2], x_in.shape[3], 0, 0) strength = 1.0 @@ -169,6 +169,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con if control is not None: c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond)) + if 'transformer_options' in model_options: + c['transformer_options'] = model_options['transformer_options'] + output = model_function(input_x, timestep_, cond=c).chunk(batch_chunks) del input_x @@ -467,7 +470,7 @@ class KSampler: x_T=z_enc, x0=latent_image, denoise_function=sampling_function, - cond_concat=cond_concat, + extra_args=extra_args, mask=noise_mask, to_zero=sigmas[-1]==0, end_step=sigmas.shape[0] - 1) From 1716aaa7a6823f3eb7542fefac3257e8f2d8191c Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Fri, 31 Mar 2023 18:04:53 +0100 Subject: [PATCH 09/24] Swap order to prevent being cleared --- web/scripts/ui.js | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/web/scripts/ui.js b/web/scripts/ui.js index 2aabd29e7..2d55e885e 100644 --- a/web/scripts/ui.js +++ b/web/scripts/ui.js @@ -225,10 +225,10 @@ class ComfyList { $el("button", { textContent: "Load", onclick: () => { + app.loadGraphData(item.prompt[3].extra_pnginfo.workflow); if (item.outputs) { app.nodeOutputs = item.outputs; } - app.loadGraphData(item.prompt[3].extra_pnginfo.workflow); }, }), $el("button", { From 06c2c19b5a2db59dc28ff48a817d399c9148576e Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Fri, 31 Mar 2023 20:35:26 +0100 Subject: [PATCH 10/24] Clone default graph before using --- web/scripts/app.js | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/web/scripts/app.js b/web/scripts/app.js index b29981091..501c7ea65 100644 --- a/web/scripts/app.js +++ b/web/scripts/app.js @@ -802,7 +802,7 @@ class ComfyApp { this.clean(); if (!graphData) { - graphData = defaultGraph; + graphData = structuredClone(defaultGraph); } // Patch T2IAdapterLoader to ControlNetLoader since they are the same node now From 18a6c1db3335c6898181920aa6c9bb5b060fd85f Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Fri, 31 Mar 2023 17:19:58 -0400 Subject: [PATCH 11/24] Add a TomePatchModel node to the _for_testing section. Tome increases sampling speed at the expense of quality. --- comfy/ldm/modules/attention.py | 15 ++++- comfy/ldm/modules/tomesd.py | 117 +++++++++++++++++++++++++++++++++ comfy/samplers.py | 17 ++--- comfy/sd.py | 9 +++ nodes.py | 19 +++++- 5 files changed, 166 insertions(+), 11 deletions(-) create mode 100644 comfy/ldm/modules/tomesd.py diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index 25051b339..07553627c 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -11,6 +11,7 @@ from .sub_quadratic_attention import efficient_dot_product_attention import model_management +from . import tomesd if model_management.xformers_enabled(): import xformers @@ -508,8 +509,18 @@ class BasicTransformerBlock(nn.Module): return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint) def _forward(self, x, context=None, transformer_options={}): - x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x - x = self.attn2(self.norm2(x), context=context) + x + n = self.norm1(x) + if "tomesd" in transformer_options: + m, u = tomesd.get_functions(x, transformer_options["tomesd"]["ratio"], transformer_options["original_shape"]) + n = u(self.attn1(m(n), context=context if self.disable_self_attn else None)) + else: + n = self.attn1(n, context=context if self.disable_self_attn else None) + + x += n + n = self.norm2(x) + n = self.attn2(n, context=context) + + x += n x = self.ff(self.norm3(x)) + x return x diff --git a/comfy/ldm/modules/tomesd.py b/comfy/ldm/modules/tomesd.py new file mode 100644 index 000000000..5bf1acec9 --- /dev/null +++ b/comfy/ldm/modules/tomesd.py @@ -0,0 +1,117 @@ + + +import torch +from typing import Tuple, Callable +import math + +def do_nothing(x: torch.Tensor, mode:str=None): + return x + + +def bipartite_soft_matching_random2d(metric: torch.Tensor, + w: int, h: int, sx: int, sy: int, r: int, + no_rand: bool = False) -> Tuple[Callable, Callable]: + """ + Partitions the tokens into src and dst and merges r tokens from src to dst. + Dst tokens are partitioned by choosing one randomy in each (sx, sy) region. + + Args: + - metric [B, N, C]: metric to use for similarity + - w: image width in tokens + - h: image height in tokens + - sx: stride in the x dimension for dst, must divide w + - sy: stride in the y dimension for dst, must divide h + - r: number of tokens to remove (by merging) + - no_rand: if true, disable randomness (use top left corner only) + """ + B, N, _ = metric.shape + + if r <= 0: + return do_nothing, do_nothing + + with torch.no_grad(): + + hsy, wsx = h // sy, w // sx + + # For each sy by sx kernel, randomly assign one token to be dst and the rest src + idx_buffer = torch.zeros(1, hsy, wsx, sy*sx, 1, device=metric.device) + + if no_rand: + rand_idx = torch.zeros(1, hsy, wsx, 1, 1, device=metric.device, dtype=torch.int64) + else: + rand_idx = torch.randint(sy*sx, size=(1, hsy, wsx, 1, 1), device=metric.device) + + idx_buffer.scatter_(dim=3, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=idx_buffer.dtype)) + idx_buffer = idx_buffer.view(1, hsy, wsx, sy, sx, 1).transpose(2, 3).reshape(1, N, 1) + rand_idx = idx_buffer.argsort(dim=1) + + num_dst = int((1 / (sx*sy)) * N) + a_idx = rand_idx[:, num_dst:, :] # src + b_idx = rand_idx[:, :num_dst, :] # dst + + def split(x): + C = x.shape[-1] + src = x.gather(dim=1, index=a_idx.expand(B, N - num_dst, C)) + dst = x.gather(dim=1, index=b_idx.expand(B, num_dst, C)) + return src, dst + + metric = metric / metric.norm(dim=-1, keepdim=True) + a, b = split(metric) + scores = a @ b.transpose(-1, -2) + + # Can't reduce more than the # tokens in src + r = min(a.shape[1], r) + + node_max, node_idx = scores.max(dim=-1) + edge_idx = node_max.argsort(dim=-1, descending=True)[..., None] + + unm_idx = edge_idx[..., r:, :] # Unmerged Tokens + src_idx = edge_idx[..., :r, :] # Merged Tokens + dst_idx = node_idx[..., None].gather(dim=-2, index=src_idx) + + def merge(x: torch.Tensor, mode="mean") -> torch.Tensor: + src, dst = split(x) + n, t1, c = src.shape + + unm = src.gather(dim=-2, index=unm_idx.expand(n, t1 - r, c)) + src = src.gather(dim=-2, index=src_idx.expand(n, r, c)) + dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode) + + return torch.cat([unm, dst], dim=1) + + def unmerge(x: torch.Tensor) -> torch.Tensor: + unm_len = unm_idx.shape[1] + unm, dst = x[..., :unm_len, :], x[..., unm_len:, :] + _, _, c = unm.shape + + src = dst.gather(dim=-2, index=dst_idx.expand(B, r, c)) + + # Combine back to the original shape + out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype) + out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst) + out.scatter_(dim=-2, index=a_idx.expand(B, a_idx.shape[1], 1).gather(dim=1, index=unm_idx).expand(B, unm_len, c), src=unm) + out.scatter_(dim=-2, index=a_idx.expand(B, a_idx.shape[1], 1).gather(dim=1, index=src_idx).expand(B, r, c), src=src) + + return out + + return merge, unmerge + + +def get_functions(x, ratio, original_shape): + b, c, original_h, original_w = original_shape + original_tokens = original_h * original_w + downsample = int(math.sqrt(original_tokens // x.shape[1])) + stride_x = 2 + stride_y = 2 + max_downsample = 1 + + if downsample <= max_downsample: + w = original_w // downsample + h = original_h // downsample + r = int(x.shape[1] * ratio) + no_rand = True + m, u = bipartite_soft_matching_random2d(x, w, h, stride_x, stride_y, r, no_rand) + return m, u + + nothing = lambda y: y + return nothing, nothing diff --git a/comfy/samplers.py b/comfy/samplers.py index 40d5d332b..15e78bbd7 100644 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -104,7 +104,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con out['c_concat'] = [torch.cat(c_concat)] return out - def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in): + def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options): out_cond = torch.zeros_like(x_in) out_count = torch.ones_like(x_in)/100000.0 @@ -195,7 +195,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con max_total_area = model_management.maximum_batch_area() - cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat) + cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options) return uncond + (cond - uncond) * cond_scale @@ -212,8 +212,8 @@ class CFGNoisePredictor(torch.nn.Module): super().__init__() self.inner_model = model self.alphas_cumprod = model.alphas_cumprod - def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None): - out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat) + def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}): + out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options) return out @@ -221,11 +221,11 @@ class KSamplerX0Inpaint(torch.nn.Module): def __init__(self, model): super().__init__() self.inner_model = model - def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None): + def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}): if denoise_mask is not None: latent_mask = 1. - denoise_mask x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask - out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat) + out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options) if denoise_mask is not None: out *= denoise_mask @@ -333,7 +333,7 @@ class KSampler: "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_2m", "ddim", "uni_pc", "uni_pc_bh2"] - def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None): + def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): self.model = model self.model_denoise = CFGNoisePredictor(self.model) if self.model.parameterization == "v": @@ -353,6 +353,7 @@ class KSampler: self.sigma_max=float(self.model_wrap.sigma_max) self.set_steps(steps, denoise) self.denoise = denoise + self.model_options = model_options def _calculate_sigmas(self, steps): sigmas = None @@ -421,7 +422,7 @@ class KSampler: else: precision_scope = contextlib.nullcontext - extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg} + extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options} cond_concat = None if hasattr(self.model, 'concat_keys'): diff --git a/comfy/sd.py b/comfy/sd.py index 2e1ae8409..2a38ceb15 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -1,5 +1,6 @@ import torch import contextlib +import copy import sd1_clip import sd2_clip @@ -274,12 +275,20 @@ class ModelPatcher: self.model = model self.patches = [] self.backup = {} + self.model_options = {"transformer_options":{}} def clone(self): n = ModelPatcher(self.model) n.patches = self.patches[:] + n.model_options = copy.deepcopy(self.model_options) return n + def set_model_tomesd(self, ratio): + self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio} + + def model_dtype(self): + return self.model.diffusion_model.dtype + def add_patches(self, patches, strength=1.0): p = {} model_sd = self.model.state_dict() diff --git a/nodes.py b/nodes.py index 6fb7f0175..e69832c56 100644 --- a/nodes.py +++ b/nodes.py @@ -254,6 +254,22 @@ class LoraLoader: model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip) return (model_lora, clip_lora) +class TomePatchModel: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "_for_testing" + + def patch(self, model, ratio): + m = model.clone() + m.set_model_tomesd(ratio) + return (m, ) + class VAELoader: @classmethod def INPUT_TYPES(s): @@ -646,7 +662,7 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, model_management.load_controlnet_gpu(control_net_models) if sampler_name in comfy.samplers.KSampler.SAMPLERS: - sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise) + sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) else: #other samplers pass @@ -1016,6 +1032,7 @@ NODE_CLASS_MAPPINGS = { "CLIPVisionLoader": CLIPVisionLoader, "VAEDecodeTiled": VAEDecodeTiled, "VAEEncodeTiled": VAEEncodeTiled, + "TomePatchModel": TomePatchModel, } def load_custom_node(module_path): From 0d972b85e616979c5832a15341972ba861197b4e Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Fri, 31 Mar 2023 18:36:18 -0400 Subject: [PATCH 12/24] This seems to give better quality in tome. --- comfy/ldm/modules/tomesd.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/ldm/modules/tomesd.py b/comfy/ldm/modules/tomesd.py index 5bf1acec9..1eafcd0aa 100644 --- a/comfy/ldm/modules/tomesd.py +++ b/comfy/ldm/modules/tomesd.py @@ -109,7 +109,7 @@ def get_functions(x, ratio, original_shape): w = original_w // downsample h = original_h // downsample r = int(x.shape[1] * ratio) - no_rand = True + no_rand = False m, u = bipartite_soft_matching_random2d(x, w, h, stride_x, stride_y, r, no_rand) return m, u From 313f1f83a6f41ccff589663850c22c4e71e2819f Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Sat, 1 Apr 2023 12:44:29 +0100 Subject: [PATCH 13/24] Tweak server/custom node load order - Load custom nodes after creating server - Add routes after loading custom nodes Custom nodes can now add routes via PromptServer.instance --- main.py | 4 +++- nodes.py | 6 +++--- server.py | 6 ++++-- 3 files changed, 10 insertions(+), 6 deletions(-) diff --git a/main.py b/main.py index c9809137a..824530fb1 100644 --- a/main.py +++ b/main.py @@ -40,6 +40,7 @@ if __name__ == "__main__": except: pass +from nodes import init_custom_nodes import execution import server import folder_paths @@ -98,6 +99,8 @@ if __name__ == "__main__": server = server.PromptServer(loop) q = execution.PromptQueue(server) + init_custom_nodes() + server.add_routes() hijack_progress(server) threading.Thread(target=prompt_worker, daemon=True, args=(q,server,)).start() @@ -113,7 +116,6 @@ if __name__ == "__main__": except: address = '127.0.0.1' - dont_print = False if '--dont-print-server' in sys.argv: dont_print = True diff --git a/nodes.py b/nodes.py index 6fb7f0175..b422f2cbb 100644 --- a/nodes.py +++ b/nodes.py @@ -1050,6 +1050,6 @@ def load_custom_nodes(): if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue load_custom_node(module_path) -load_custom_nodes() - -load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py")) \ No newline at end of file +def init_custom_nodes(): + load_custom_nodes() + load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py")) \ No newline at end of file diff --git a/server.py b/server.py index 80fb2dc72..963daefff 100644 --- a/server.py +++ b/server.py @@ -42,6 +42,7 @@ class PromptServer(): self.web_root = os.path.join(os.path.dirname( os.path.realpath(__file__)), "web") routes = web.RouteTableDef() + self.routes = routes self.last_node_id = None self.client_id = None @@ -239,8 +240,9 @@ class PromptServer(): self.prompt_queue.delete_history_item(id_to_delete) return web.Response(status=200) - - self.app.add_routes(routes) + + def add_routes(self): + self.app.add_routes(self.routes) self.app.add_routes([ web.static('/', self.web_root), ]) From 9586de9dc8eccb7f9c4934b7661a90fb208a81a8 Mon Sep 17 00:00:00 2001 From: flyingshutter Date: Sat, 1 Apr 2023 17:30:47 +0200 Subject: [PATCH 14/24] fix client freeze on connect reroutes in a circle --- web/extensions/core/rerouteNode.js | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/web/extensions/core/rerouteNode.js b/web/extensions/core/rerouteNode.js index 7188dfd26..1342cae92 100644 --- a/web/extensions/core/rerouteNode.js +++ b/web/extensions/core/rerouteNode.js @@ -43,8 +43,15 @@ app.registerExtension({ const node = app.graph.getNodeById(link.origin_id); const type = node.constructor.type; if (type === "Reroute") { + if (node === this) { + // We've found a circle + currentNode.disconnectInput(link.target_slot); + currentNode = null; + } + else { // Move the previous node - currentNode = node; + currentNode = node; + } } else { // We've found the end inputNode = currentNode; From 178fc763635fc6784a6c1cb00ee08012c7bd72fe Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Sat, 1 Apr 2023 18:46:05 +0100 Subject: [PATCH 15/24] Added a queue for the queue action --- web/scripts/app.js | 63 ++++++++++++++++++++++++++++++++-------------- 1 file changed, 44 insertions(+), 19 deletions(-) diff --git a/web/scripts/app.js b/web/scripts/app.js index 501c7ea65..5af6d5fc0 100644 --- a/web/scripts/app.js +++ b/web/scripts/app.js @@ -5,6 +5,15 @@ import { defaultGraph } from "./defaultGraph.js"; import { getPngMetadata, importA1111 } from "./pnginfo.js"; class ComfyApp { + /** + * List of {number, batchCount} entries to queue + */ + #queueItems = []; + /** + * If the queue is currently being processed + */ + #processingQueue = false; + constructor() { this.ui = new ComfyUI(this); this.extensions = []; @@ -915,31 +924,47 @@ class ComfyApp { } async queuePrompt(number, batchCount = 1) { - for (let i = 0; i < batchCount; i++) { - const p = await this.graphToPrompt(); + this.#queueItems.push({ number, batchCount }); - try { - await api.queuePrompt(number, p); - } catch (error) { - this.ui.dialog.show(error.response || error.toString()); - return; - } + // Only have one action process the items so each one gets a unique seed correctly + if (this.#processingQueue) { + return; + } + + this.#processingQueue = true; + try { + while (this.#queueItems.length) { + ({ number, batchCount } = this.#queueItems.pop()); - for (const n of p.workflow.nodes) { - const node = graph.getNodeById(n.id); - if (node.widgets) { - for (const widget of node.widgets) { - // Allow widgets to run callbacks after a prompt has been queued - // e.g. random seed after every gen - if (widget.afterQueued) { - widget.afterQueued(); + for (let i = 0; i < batchCount; i++) { + const p = await this.graphToPrompt(); + + try { + await api.queuePrompt(number, p); + } catch (error) { + this.ui.dialog.show(error.response || error.toString()); + break; + } + + for (const n of p.workflow.nodes) { + const node = graph.getNodeById(n.id); + if (node.widgets) { + for (const widget of node.widgets) { + // Allow widgets to run callbacks after a prompt has been queued + // e.g. random seed after every gen + if (widget.afterQueued) { + widget.afterQueued(); + } + } } } + + this.canvas.draw(true, true); + await this.ui.queue.update(); } } - - this.canvas.draw(true, true); - await this.ui.queue.update(); + } finally { + this.#processingQueue = false; } } From 809bcc8cebba6d53565fd6acaac4dd0314054373 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Sat, 1 Apr 2023 23:19:15 -0400 Subject: [PATCH 16/24] Add support for unCLIP SD2.x models. See _for_testing/unclip in the UI for the new nodes. unCLIPCheckpointLoader is used to load them. unCLIPConditioning is used to add the image cond and takes as input a CLIPVisionEncode output which has been moved to the conditioning section. --- comfy/clip_vision.py | 62 +++++++++ comfy/clip_vision_config_h.json | 18 +++ .../clip_vision_config_vitl.json | 7 +- comfy/ldm/models/diffusion/ddpm.py | 72 ++++++++++ .../models/diffusion/dpm_solver/dpm_solver.py | 11 +- .../models/diffusion/dpm_solver/sampler.py | 24 ++-- .../modules/diffusionmodules/openaimodel.py | 19 +++ comfy/ldm/modules/diffusionmodules/util.py | 10 +- .../ldm/modules/encoders/kornia_functions.py | 59 +++++++++ comfy/ldm/modules/encoders/modules.py | 125 ++++++++++++++++-- .../ldm/modules/encoders/noise_aug_modules.py | 35 +++++ comfy/samplers.py | 45 ++++++- comfy/sd.py | 93 +++++++------ comfy/utils.py | 42 ++++++ comfy_extras/clip_vision.py | 32 ----- comfy_extras/nodes_upscale_model.py | 3 +- nodes.py | 49 ++++++- 17 files changed, 593 insertions(+), 113 deletions(-) create mode 100644 comfy/clip_vision.py create mode 100644 comfy/clip_vision_config_h.json rename comfy_extras/clip_vision_config.json => comfy/clip_vision_config_vitl.json (70%) create mode 100644 comfy/ldm/modules/encoders/kornia_functions.py create mode 100644 comfy/ldm/modules/encoders/noise_aug_modules.py delete mode 100644 comfy_extras/clip_vision.py diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py new file mode 100644 index 000000000..cb29df432 --- /dev/null +++ b/comfy/clip_vision.py @@ -0,0 +1,62 @@ +from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor +from .utils import load_torch_file, transformers_convert +import os + +class ClipVisionModel(): + def __init__(self, json_config): + config = CLIPVisionConfig.from_json_file(json_config) + self.model = CLIPVisionModelWithProjection(config) + self.processor = CLIPImageProcessor(crop_size=224, + do_center_crop=True, + do_convert_rgb=True, + do_normalize=True, + do_resize=True, + image_mean=[ 0.48145466,0.4578275,0.40821073], + image_std=[0.26862954,0.26130258,0.27577711], + resample=3, #bicubic + size=224) + + def load_sd(self, sd): + self.model.load_state_dict(sd, strict=False) + + def encode_image(self, image): + inputs = self.processor(images=[image[0]], return_tensors="pt") + outputs = self.model(**inputs) + return outputs + +def convert_to_transformers(sd): + sd_k = sd.keys() + if "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight" in sd_k: + keys_to_replace = { + "embedder.model.visual.class_embedding": "vision_model.embeddings.class_embedding", + "embedder.model.visual.conv1.weight": "vision_model.embeddings.patch_embedding.weight", + "embedder.model.visual.positional_embedding": "vision_model.embeddings.position_embedding.weight", + "embedder.model.visual.ln_post.bias": "vision_model.post_layernorm.bias", + "embedder.model.visual.ln_post.weight": "vision_model.post_layernorm.weight", + "embedder.model.visual.ln_pre.bias": "vision_model.pre_layrnorm.bias", + "embedder.model.visual.ln_pre.weight": "vision_model.pre_layrnorm.weight", + } + + for x in keys_to_replace: + if x in sd_k: + sd[keys_to_replace[x]] = sd.pop(x) + + if "embedder.model.visual.proj" in sd_k: + sd['visual_projection.weight'] = sd.pop("embedder.model.visual.proj").transpose(0, 1) + + sd = transformers_convert(sd, "embedder.model.visual", "vision_model", 32) + return sd + +def load_clipvision_from_sd(sd): + sd = convert_to_transformers(sd) + if "vision_model.encoder.layers.30.layer_norm1.weight" in sd: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") + else: + json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") + clip = ClipVisionModel(json_config) + clip.load_sd(sd) + return clip + +def load(ckpt_path): + sd = load_torch_file(ckpt_path) + return load_clipvision_from_sd(sd) diff --git a/comfy/clip_vision_config_h.json b/comfy/clip_vision_config_h.json new file mode 100644 index 000000000..bb71be419 --- /dev/null +++ b/comfy/clip_vision_config_h.json @@ -0,0 +1,18 @@ +{ + "attention_dropout": 0.0, + "dropout": 0.0, + "hidden_act": "gelu", + "hidden_size": 1280, + "image_size": 224, + "initializer_factor": 1.0, + "initializer_range": 0.02, + "intermediate_size": 5120, + "layer_norm_eps": 1e-05, + "model_type": "clip_vision_model", + "num_attention_heads": 16, + "num_channels": 3, + "num_hidden_layers": 32, + "patch_size": 14, + "projection_dim": 1024, + "torch_dtype": "float32" +} diff --git a/comfy_extras/clip_vision_config.json b/comfy/clip_vision_config_vitl.json similarity index 70% rename from comfy_extras/clip_vision_config.json rename to comfy/clip_vision_config_vitl.json index 0e4db13d9..c59b8ed5a 100644 --- a/comfy_extras/clip_vision_config.json +++ b/comfy/clip_vision_config_vitl.json @@ -1,8 +1,4 @@ { - "_name_or_path": "openai/clip-vit-large-patch14", - "architectures": [ - "CLIPVisionModel" - ], "attention_dropout": 0.0, "dropout": 0.0, "hidden_act": "quick_gelu", @@ -18,6 +14,5 @@ "num_hidden_layers": 24, "patch_size": 14, "projection_dim": 768, - "torch_dtype": "float32", - "transformers_version": "4.24.0" + "torch_dtype": "float32" } diff --git a/comfy/ldm/models/diffusion/ddpm.py b/comfy/ldm/models/diffusion/ddpm.py index 6af961242..d3f0eb2b2 100644 --- a/comfy/ldm/models/diffusion/ddpm.py +++ b/comfy/ldm/models/diffusion/ddpm.py @@ -1801,3 +1801,75 @@ class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion): log = super().log_images(*args, **kwargs) log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w') return log + + +class ImageEmbeddingConditionedLatentDiffusion(LatentDiffusion): + def __init__(self, embedder_config=None, embedding_key="jpg", embedding_dropout=0.5, + freeze_embedder=True, noise_aug_config=None, *args, **kwargs): + super().__init__(*args, **kwargs) + self.embed_key = embedding_key + self.embedding_dropout = embedding_dropout + # self._init_embedder(embedder_config, freeze_embedder) + self._init_noise_aug(noise_aug_config) + + def _init_embedder(self, config, freeze=True): + embedder = instantiate_from_config(config) + if freeze: + self.embedder = embedder.eval() + self.embedder.train = disabled_train + for param in self.embedder.parameters(): + param.requires_grad = False + + def _init_noise_aug(self, config): + if config is not None: + # use the KARLO schedule for noise augmentation on CLIP image embeddings + noise_augmentor = instantiate_from_config(config) + assert isinstance(noise_augmentor, nn.Module) + noise_augmentor = noise_augmentor.eval() + noise_augmentor.train = disabled_train + self.noise_augmentor = noise_augmentor + else: + self.noise_augmentor = None + + def get_input(self, batch, k, cond_key=None, bs=None, **kwargs): + outputs = LatentDiffusion.get_input(self, batch, k, bs=bs, **kwargs) + z, c = outputs[0], outputs[1] + img = batch[self.embed_key][:bs] + img = rearrange(img, 'b h w c -> b c h w') + c_adm = self.embedder(img) + if self.noise_augmentor is not None: + c_adm, noise_level_emb = self.noise_augmentor(c_adm) + # assume this gives embeddings of noise levels + c_adm = torch.cat((c_adm, noise_level_emb), 1) + if self.training: + c_adm = torch.bernoulli((1. - self.embedding_dropout) * torch.ones(c_adm.shape[0], + device=c_adm.device)[:, None]) * c_adm + all_conds = {"c_crossattn": [c], "c_adm": c_adm} + noutputs = [z, all_conds] + noutputs.extend(outputs[2:]) + return noutputs + + @torch.no_grad() + def log_images(self, batch, N=8, n_row=4, **kwargs): + log = dict() + z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True, + return_original_cond=True) + log["inputs"] = x + log["reconstruction"] = xrec + assert self.model.conditioning_key is not None + assert self.cond_stage_key in ["caption", "txt"] + xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25) + log["conditioning"] = xc + uc = self.get_unconditional_conditioning(N, kwargs.get('unconditional_guidance_label', '')) + unconditional_guidance_scale = kwargs.get('unconditional_guidance_scale', 5.) + + uc_ = {"c_crossattn": [uc], "c_adm": c["c_adm"]} + ema_scope = self.ema_scope if kwargs.get('use_ema_scope', True) else nullcontext + with ema_scope(f"Sampling"): + samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=True, + ddim_steps=kwargs.get('ddim_steps', 50), eta=kwargs.get('ddim_eta', 0.), + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=uc_, ) + x_samples_cfg = self.decode_first_stage(samples_cfg) + log[f"samplescfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg + return log diff --git a/comfy/ldm/models/diffusion/dpm_solver/dpm_solver.py b/comfy/ldm/models/diffusion/dpm_solver/dpm_solver.py index 095e5ba3c..da8d41f9c 100644 --- a/comfy/ldm/models/diffusion/dpm_solver/dpm_solver.py +++ b/comfy/ldm/models/diffusion/dpm_solver/dpm_solver.py @@ -307,7 +307,16 @@ def model_wrapper( else: x_in = torch.cat([x] * 2) t_in = torch.cat([t_continuous] * 2) - c_in = torch.cat([unconditional_condition, condition]) + if isinstance(condition, dict): + assert isinstance(unconditional_condition, dict) + c_in = dict() + for k in condition: + if isinstance(condition[k], list): + c_in[k] = [torch.cat([unconditional_condition[k][i], condition[k][i]]) for i in range(len(condition[k]))] + else: + c_in[k] = torch.cat([unconditional_condition[k], condition[k]]) + else: + c_in = torch.cat([unconditional_condition, condition]) noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) return noise_uncond + guidance_scale * (noise - noise_uncond) diff --git a/comfy/ldm/models/diffusion/dpm_solver/sampler.py b/comfy/ldm/models/diffusion/dpm_solver/sampler.py index 4270c618a..e4d0d0a38 100644 --- a/comfy/ldm/models/diffusion/dpm_solver/sampler.py +++ b/comfy/ldm/models/diffusion/dpm_solver/sampler.py @@ -3,7 +3,6 @@ import torch from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver - MODEL_TYPES = { "eps": "noise", "v": "v" @@ -51,12 +50,20 @@ class DPMSolverSampler(object): ): if conditioning is not None: if isinstance(conditioning, dict): - cbs = conditioning[list(conditioning.keys())[0]].shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") + ctmp = conditioning[list(conditioning.keys())[0]] + while isinstance(ctmp, list): ctmp = ctmp[0] + if isinstance(ctmp, torch.Tensor): + cbs = ctmp.shape[0] + if cbs != batch_size: + print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") + elif isinstance(conditioning, list): + for ctmp in conditioning: + if ctmp.shape[0] != batch_size: + print(f"Warning: Got {ctmp.shape[0]} conditionings but batch-size is {batch_size}") else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") + if isinstance(conditioning, torch.Tensor): + if conditioning.shape[0] != batch_size: + print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") # sampling C, H, W = shape @@ -83,6 +90,7 @@ class DPMSolverSampler(object): ) dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False) - x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True) + x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, + lower_order_final=True) - return x.to(device), None \ No newline at end of file + return x.to(device), None diff --git a/comfy/ldm/modules/diffusionmodules/openaimodel.py b/comfy/ldm/modules/diffusionmodules/openaimodel.py index 7b2f5b531..8a4e8b3e1 100644 --- a/comfy/ldm/modules/diffusionmodules/openaimodel.py +++ b/comfy/ldm/modules/diffusionmodules/openaimodel.py @@ -409,6 +409,15 @@ class QKVAttention(nn.Module): return count_flops_attn(model, _x, y) +class Timestep(nn.Module): + def __init__(self, dim): + super().__init__() + self.dim = dim + + def forward(self, t): + return timestep_embedding(t, self.dim) + + class UNetModel(nn.Module): """ The full UNet model with attention and timestep embedding. @@ -470,6 +479,7 @@ class UNetModel(nn.Module): num_attention_blocks=None, disable_middle_self_attn=False, use_linear_in_transformer=False, + adm_in_channels=None, ): super().__init__() if use_spatial_transformer: @@ -538,6 +548,15 @@ class UNetModel(nn.Module): elif self.num_classes == "continuous": print("setting up linear c_adm embedding layer") self.label_emb = nn.Linear(1, time_embed_dim) + elif self.num_classes == "sequential": + assert adm_in_channels is not None + self.label_emb = nn.Sequential( + nn.Sequential( + linear(adm_in_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + ) else: raise ValueError() diff --git a/comfy/ldm/modules/diffusionmodules/util.py b/comfy/ldm/modules/diffusionmodules/util.py index 637363dfe..daf35da7b 100644 --- a/comfy/ldm/modules/diffusionmodules/util.py +++ b/comfy/ldm/modules/diffusionmodules/util.py @@ -34,6 +34,13 @@ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, betas = 1 - alphas[1:] / alphas[:-1] betas = np.clip(betas, a_min=0, a_max=0.999) + elif schedule == "squaredcos_cap_v2": # used for karlo prior + # return early + return betas_for_alpha_bar( + n_timestep, + lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, + ) + elif schedule == "sqrt_linear": betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) elif schedule == "sqrt": @@ -218,6 +225,7 @@ class GroupNorm32(nn.GroupNorm): def forward(self, x): return super().forward(x.float()).type(x.dtype) + def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. @@ -267,4 +275,4 @@ class HybridConditioner(nn.Module): def noise_like(shape, device, repeat=False): repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) noise = lambda: torch.randn(shape, device=device) - return repeat_noise() if repeat else noise() \ No newline at end of file + return repeat_noise() if repeat else noise() diff --git a/comfy/ldm/modules/encoders/kornia_functions.py b/comfy/ldm/modules/encoders/kornia_functions.py new file mode 100644 index 000000000..912314cd7 --- /dev/null +++ b/comfy/ldm/modules/encoders/kornia_functions.py @@ -0,0 +1,59 @@ + + +from typing import List, Tuple, Union + +import torch +import torch.nn as nn + +#from: https://github.com/kornia/kornia/blob/master/kornia/enhance/normalize.py + +def enhance_normalize(data: torch.Tensor, mean: torch.Tensor, std: torch.Tensor) -> torch.Tensor: + r"""Normalize an image/video tensor with mean and standard deviation. + .. math:: + \text{input[channel] = (input[channel] - mean[channel]) / std[channel]} + Where `mean` is :math:`(M_1, ..., M_n)` and `std` :math:`(S_1, ..., S_n)` for `n` channels, + Args: + data: Image tensor of size :math:`(B, C, *)`. + mean: Mean for each channel. + std: Standard deviations for each channel. + Return: + Normalised tensor with same size as input :math:`(B, C, *)`. + Examples: + >>> x = torch.rand(1, 4, 3, 3) + >>> out = normalize(x, torch.tensor([0.0]), torch.tensor([255.])) + >>> out.shape + torch.Size([1, 4, 3, 3]) + >>> x = torch.rand(1, 4, 3, 3) + >>> mean = torch.zeros(4) + >>> std = 255. * torch.ones(4) + >>> out = normalize(x, mean, std) + >>> out.shape + torch.Size([1, 4, 3, 3]) + """ + shape = data.shape + if len(mean.shape) == 0 or mean.shape[0] == 1: + mean = mean.expand(shape[1]) + if len(std.shape) == 0 or std.shape[0] == 1: + std = std.expand(shape[1]) + + # Allow broadcast on channel dimension + if mean.shape and mean.shape[0] != 1: + if mean.shape[0] != data.shape[1] and mean.shape[:2] != data.shape[:2]: + raise ValueError(f"mean length and number of channels do not match. Got {mean.shape} and {data.shape}.") + + # Allow broadcast on channel dimension + if std.shape and std.shape[0] != 1: + if std.shape[0] != data.shape[1] and std.shape[:2] != data.shape[:2]: + raise ValueError(f"std length and number of channels do not match. Got {std.shape} and {data.shape}.") + + mean = torch.as_tensor(mean, device=data.device, dtype=data.dtype) + std = torch.as_tensor(std, device=data.device, dtype=data.dtype) + + if mean.shape: + mean = mean[..., :, None] + if std.shape: + std = std[..., :, None] + + out: torch.Tensor = (data.view(shape[0], shape[1], -1) - mean) / std + + return out.view(shape) diff --git a/comfy/ldm/modules/encoders/modules.py b/comfy/ldm/modules/encoders/modules.py index 4edd5496b..bc9fde638 100644 --- a/comfy/ldm/modules/encoders/modules.py +++ b/comfy/ldm/modules/encoders/modules.py @@ -1,5 +1,6 @@ import torch import torch.nn as nn +from . import kornia_functions from torch.utils.checkpoint import checkpoint from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel @@ -37,7 +38,7 @@ class ClassEmbedder(nn.Module): c = batch[key][:, None] if self.ucg_rate > 0. and not disable_dropout: mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) - c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1) + c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1) c = c.long() c = self.embedding(c) return c @@ -57,18 +58,20 @@ def disabled_train(self, mode=True): class FrozenT5Embedder(AbstractEncoder): """Uses the T5 transformer encoder for text""" - def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl + + def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, + freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl super().__init__() self.tokenizer = T5Tokenizer.from_pretrained(version) self.transformer = T5EncoderModel.from_pretrained(version) self.device = device - self.max_length = max_length # TODO: typical value? + self.max_length = max_length # TODO: typical value? if freeze: self.freeze() def freeze(self): self.transformer = self.transformer.eval() - #self.train = disabled_train + # self.train = disabled_train for param in self.parameters(): param.requires_grad = False @@ -92,6 +95,7 @@ class FrozenCLIPEmbedder(AbstractEncoder): "pooled", "hidden" ] + def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 super().__init__() @@ -110,7 +114,7 @@ class FrozenCLIPEmbedder(AbstractEncoder): def freeze(self): self.transformer = self.transformer.eval() - #self.train = disabled_train + # self.train = disabled_train for param in self.parameters(): param.requires_grad = False @@ -118,7 +122,7 @@ class FrozenCLIPEmbedder(AbstractEncoder): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) - outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden") + outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden") if self.layer == "last": z = outputs.last_hidden_state elif self.layer == "pooled": @@ -131,15 +135,55 @@ class FrozenCLIPEmbedder(AbstractEncoder): return self(text) +class ClipImageEmbedder(nn.Module): + def __init__( + self, + model, + jit=False, + device='cuda' if torch.cuda.is_available() else 'cpu', + antialias=True, + ucg_rate=0. + ): + super().__init__() + from clip import load as load_clip + self.model, _ = load_clip(name=model, device=device, jit=jit) + + self.antialias = antialias + + self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) + self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) + self.ucg_rate = ucg_rate + + def preprocess(self, x): + # normalize to [0,1] + # x = kornia_functions.geometry_resize(x, (224, 224), + # interpolation='bicubic', align_corners=True, + # antialias=self.antialias) + x = torch.nn.functional.interpolate(x, size=(224, 224), mode='bicubic', align_corners=True, antialias=True) + x = (x + 1.) / 2. + # re-normalize according to clip + x = kornia_functions.enhance_normalize(x, self.mean, self.std) + return x + + def forward(self, x, no_dropout=False): + # x is assumed to be in range [-1,1] + out = self.model.encode_image(self.preprocess(x)) + out = out.to(x.dtype) + if self.ucg_rate > 0. and not no_dropout: + out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out + return out + + class FrozenOpenCLIPEmbedder(AbstractEncoder): """ Uses the OpenCLIP transformer encoder for text """ LAYERS = [ - #"pooled", + # "pooled", "last", "penultimate" ] + def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, freeze=True, layer="last"): super().__init__() @@ -179,7 +223,7 @@ class FrozenOpenCLIPEmbedder(AbstractEncoder): x = self.model.ln_final(x) return x - def text_transformer_forward(self, x: torch.Tensor, attn_mask = None): + def text_transformer_forward(self, x: torch.Tensor, attn_mask=None): for i, r in enumerate(self.model.transformer.resblocks): if i == len(self.model.transformer.resblocks) - self.layer_idx: break @@ -193,14 +237,73 @@ class FrozenOpenCLIPEmbedder(AbstractEncoder): return self(text) +class FrozenOpenCLIPImageEmbedder(AbstractEncoder): + """ + Uses the OpenCLIP vision transformer encoder for images + """ + + def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, + freeze=True, layer="pooled", antialias=True, ucg_rate=0.): + super().__init__() + model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), + pretrained=version, ) + del model.transformer + self.model = model + + self.device = device + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + if self.layer == "penultimate": + raise NotImplementedError() + self.layer_idx = 1 + + self.antialias = antialias + + self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) + self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) + self.ucg_rate = ucg_rate + + def preprocess(self, x): + # normalize to [0,1] + # x = kornia.geometry.resize(x, (224, 224), + # interpolation='bicubic', align_corners=True, + # antialias=self.antialias) + x = torch.nn.functional.interpolate(x, size=(224, 224), mode='bicubic', align_corners=True, antialias=True) + x = (x + 1.) / 2. + # renormalize according to clip + x = kornia_functions.enhance_normalize(x, self.mean, self.std) + return x + + def freeze(self): + self.model = self.model.eval() + for param in self.parameters(): + param.requires_grad = False + + def forward(self, image, no_dropout=False): + z = self.encode_with_vision_transformer(image) + if self.ucg_rate > 0. and not no_dropout: + z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z + return z + + def encode_with_vision_transformer(self, img): + img = self.preprocess(img) + x = self.model.visual(img) + return x + + def encode(self, text): + return self(text) + + class FrozenCLIPT5Encoder(AbstractEncoder): def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda", clip_max_length=77, t5_max_length=77): super().__init__() self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length) self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) - print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " - f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.") + print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, " + f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.") def encode(self, text): return self(text) @@ -209,5 +312,3 @@ class FrozenCLIPT5Encoder(AbstractEncoder): clip_z = self.clip_encoder.encode(text) t5_z = self.t5_encoder.encode(text) return [clip_z, t5_z] - - diff --git a/comfy/ldm/modules/encoders/noise_aug_modules.py b/comfy/ldm/modules/encoders/noise_aug_modules.py new file mode 100644 index 000000000..f99e7920a --- /dev/null +++ b/comfy/ldm/modules/encoders/noise_aug_modules.py @@ -0,0 +1,35 @@ +from ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation +from ldm.modules.diffusionmodules.openaimodel import Timestep +import torch + +class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation): + def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs): + super().__init__(*args, **kwargs) + if clip_stats_path is None: + clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim) + else: + clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu") + self.register_buffer("data_mean", clip_mean[None, :], persistent=False) + self.register_buffer("data_std", clip_std[None, :], persistent=False) + self.time_embed = Timestep(timestep_dim) + + def scale(self, x): + # re-normalize to centered mean and unit variance + x = (x - self.data_mean) * 1. / self.data_std + return x + + def unscale(self, x): + # back to original data stats + x = (x * self.data_std) + self.data_mean + return x + + def forward(self, x, noise_level=None): + if noise_level is None: + noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() + else: + assert isinstance(noise_level, torch.Tensor) + x = self.scale(x) + z = self.q_sample(x, noise_level) + z = self.unscale(z) + noise_level = self.time_embed(noise_level) + return z, noise_level diff --git a/comfy/samplers.py b/comfy/samplers.py index 15e78bbd7..ddec99007 100644 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -35,6 +35,10 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con if 'strength' in cond[1]: strength = cond[1]['strength'] + adm_cond = None + if 'adm' in cond[1]: + adm_cond = cond[1]['adm'] + input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] mult = torch.ones_like(input_x) * strength @@ -60,6 +64,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con cropped.append(cr) conditionning['c_concat'] = torch.cat(cropped, dim=1) + if adm_cond is not None: + conditionning['c_adm'] = adm_cond + control = None if 'control' in cond[1]: control = cond[1]['control'] @@ -76,6 +83,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con if 'c_concat' in c1: if c1['c_concat'].shape != c2['c_concat'].shape: return False + if 'c_adm' in c1: + if c1['c_adm'].shape != c2['c_adm'].shape: + return False return True def can_concat_cond(c1, c2): @@ -92,16 +102,21 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con def cond_cat(c_list): c_crossattn = [] c_concat = [] + c_adm = [] for x in c_list: if 'c_crossattn' in x: c_crossattn.append(x['c_crossattn']) if 'c_concat' in x: c_concat.append(x['c_concat']) + if 'c_adm' in x: + c_adm.append(x['c_adm']) out = {} if len(c_crossattn) > 0: out['c_crossattn'] = [torch.cat(c_crossattn)] if len(c_concat) > 0: out['c_concat'] = [torch.cat(c_concat)] + if len(c_adm) > 0: + out['c_adm'] = torch.cat(c_adm) return out def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options): @@ -327,6 +342,30 @@ def apply_control_net_to_equal_area(conds, uncond): n['control'] = cond_cnets[x] uncond[temp[1]] = [o[0], n] +def encode_adm(noise_augmentor, conds, batch_size, device): + for t in range(len(conds)): + x = conds[t] + if 'adm' in x[1]: + adm_inputs = [] + weights = [] + adm_in = x[1]["adm"] + for adm_c in adm_in: + adm_cond = adm_c[0].image_embeds + weight = adm_c[1] + c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([0], device=device)) + adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight + weights.append(weight) + adm_inputs.append(adm_out) + + adm_out = torch.stack(adm_inputs).sum(0) + #TODO: Apply Noise to Embedding Mix + else: + adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device) + x[1] = x[1].copy() + x[1]["adm"] = torch.cat([adm_out] * batch_size) + + return conds + class KSampler: SCHEDULERS = ["karras", "normal", "simple", "ddim_uniform"] SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral", @@ -422,10 +461,14 @@ class KSampler: else: precision_scope = contextlib.nullcontext + if hasattr(self.model, 'noise_augmentor'): #unclip + positive = encode_adm(self.model.noise_augmentor, positive, noise.shape[0], self.device) + negative = encode_adm(self.model.noise_augmentor, negative, noise.shape[0], self.device) + extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options} cond_concat = None - if hasattr(self.model, 'concat_keys'): + if hasattr(self.model, 'concat_keys'): #inpaint cond_concat = [] for ck in self.model.concat_keys: if denoise_mask is not None: diff --git a/comfy/sd.py b/comfy/sd.py index 2a38ceb15..2d7ff5ab0 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -12,20 +12,7 @@ from .cldm import cldm from .t2i_adapter import adapter from . import utils - -def load_torch_file(ckpt): - if ckpt.lower().endswith(".safetensors"): - import safetensors.torch - sd = safetensors.torch.load_file(ckpt, device="cpu") - else: - pl_sd = torch.load(ckpt, map_location="cpu") - if "global_step" in pl_sd: - print(f"Global Step: {pl_sd['global_step']}") - if "state_dict" in pl_sd: - sd = pl_sd["state_dict"] - else: - sd = pl_sd - return sd +from . import clip_vision def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]): m, u = model.load_state_dict(sd, strict=False) @@ -53,30 +40,7 @@ def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]): if x in sd: sd[keys_to_replace[x]] = sd.pop(x) - resblock_to_replace = { - "ln_1": "layer_norm1", - "ln_2": "layer_norm2", - "mlp.c_fc": "mlp.fc1", - "mlp.c_proj": "mlp.fc2", - "attn.out_proj": "self_attn.out_proj", - } - - for resblock in range(24): - for x in resblock_to_replace: - for y in ["weight", "bias"]: - k = "cond_stage_model.model.transformer.resblocks.{}.{}.{}".format(resblock, x, y) - k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, resblock_to_replace[x], y) - if k in sd: - sd[k_to] = sd.pop(k) - - for y in ["weight", "bias"]: - k_from = "cond_stage_model.model.transformer.resblocks.{}.attn.in_proj_{}".format(resblock, y) - if k_from in sd: - weights = sd.pop(k_from) - for x in range(3): - p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"] - k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, p[x], y) - sd[k_to] = weights[1024*x:1024*(x + 1)] + sd = utils.transformers_convert(sd, "cond_stage_model.model", "cond_stage_model.transformer.text_model", 24) for x in load_state_dict_to: x.load_state_dict(sd, strict=False) @@ -123,7 +87,7 @@ LORA_UNET_MAP_RESNET = { } def load_lora(path, to_load): - lora = load_torch_file(path) + lora = utils.load_torch_file(path) patch_dict = {} loaded_keys = set() for x in to_load: @@ -599,7 +563,7 @@ class ControlNet: return out def load_controlnet(ckpt_path, model=None): - controlnet_data = load_torch_file(ckpt_path) + controlnet_data = utils.load_torch_file(ckpt_path) pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight' pth = False sd2 = False @@ -793,7 +757,7 @@ class StyleModel: def load_style_model(ckpt_path): - model_data = load_torch_file(ckpt_path) + model_data = utils.load_torch_file(ckpt_path) keys = model_data.keys() if "style_embedding" in keys: model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8) @@ -804,7 +768,7 @@ def load_style_model(ckpt_path): def load_clip(ckpt_path, embedding_directory=None): - clip_data = load_torch_file(ckpt_path) + clip_data = utils.load_torch_file(ckpt_path) config = {} if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data: config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder' @@ -847,7 +811,7 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e load_state_dict_to = [w] model = instantiate_from_config(config["model"]) - sd = load_torch_file(ckpt_path) + sd = utils.load_torch_file(ckpt_path) model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) if fp16: @@ -856,10 +820,11 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e return (ModelPatcher(model), clip, vae) -def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=None): - sd = load_torch_file(ckpt_path) +def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None): + sd = utils.load_torch_file(ckpt_path) sd_keys = sd.keys() clip = None + clipvision = None vae = None fp16 = model_management.should_use_fp16() @@ -884,6 +849,29 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, e w.cond_stage_model = clip.cond_stage_model load_state_dict_to = [w] + clipvision_key = "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight" + noise_aug_config = None + if clipvision_key in sd_keys: + size = sd[clipvision_key].shape[1] + + if output_clipvision: + clipvision = clip_vision.load_clipvision_from_sd(sd) + + noise_aug_key = "noise_augmentor.betas" + if noise_aug_key in sd_keys: + noise_aug_config = {} + params = {} + noise_schedule_config = {} + noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0] + noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2" + params["noise_schedule_config"] = noise_schedule_config + noise_aug_config['target'] = "ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation" + if size == 1280: #h + params["timestep_dim"] = 1024 + elif size == 1024: #l + params["timestep_dim"] = 768 + noise_aug_config['params'] = params + sd_config = { "linear_start": 0.00085, "linear_end": 0.012, @@ -932,7 +920,13 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, e sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config} model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config} - if unet_config["in_channels"] > 4: #inpainting model + if noise_aug_config is not None: #SD2.x unclip model + sd_config["noise_aug_config"] = noise_aug_config + sd_config["image_size"] = 96 + sd_config["embedding_dropout"] = 0.25 + sd_config["conditioning_key"] = 'crossattn-adm' + model_config["target"] = "ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion" + elif unet_config["in_channels"] > 4: #inpainting model sd_config["conditioning_key"] = "hybrid" sd_config["finetune_keys"] = None model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion" @@ -944,6 +938,11 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, e else: unet_config["num_heads"] = 8 #SD1.x + unclip = 'model.diffusion_model.label_emb.0.0.weight' + if unclip in sd_keys: + unet_config["num_classes"] = "sequential" + unet_config["adm_in_channels"] = sd[unclip].shape[1] + if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias" out = sd[k] @@ -956,4 +955,4 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, e if fp16: model = model.half() - return (ModelPatcher(model), clip, vae) + return (ModelPatcher(model), clip, vae, clipvision) diff --git a/comfy/utils.py b/comfy/utils.py index 798ac1c45..0380b91dd 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -1,5 +1,47 @@ import torch +def load_torch_file(ckpt): + if ckpt.lower().endswith(".safetensors"): + import safetensors.torch + sd = safetensors.torch.load_file(ckpt, device="cpu") + else: + pl_sd = torch.load(ckpt, map_location="cpu") + if "global_step" in pl_sd: + print(f"Global Step: {pl_sd['global_step']}") + if "state_dict" in pl_sd: + sd = pl_sd["state_dict"] + else: + sd = pl_sd + return sd + +def transformers_convert(sd, prefix_from, prefix_to, number): + resblock_to_replace = { + "ln_1": "layer_norm1", + "ln_2": "layer_norm2", + "mlp.c_fc": "mlp.fc1", + "mlp.c_proj": "mlp.fc2", + "attn.out_proj": "self_attn.out_proj", + } + + for resblock in range(number): + for x in resblock_to_replace: + for y in ["weight", "bias"]: + k = "{}.transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y) + k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y) + if k in sd: + sd[k_to] = sd.pop(k) + + for y in ["weight", "bias"]: + k_from = "{}.transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y) + if k_from in sd: + weights = sd.pop(k_from) + shape_from = weights.shape[0] // 3 + for x in range(3): + p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"] + k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y) + sd[k_to] = weights[shape_from*x:shape_from*(x + 1)] + return sd + def common_upscale(samples, width, height, upscale_method, crop): if crop == "center": old_width = samples.shape[3] diff --git a/comfy_extras/clip_vision.py b/comfy_extras/clip_vision.py deleted file mode 100644 index 58d79a83e..000000000 --- a/comfy_extras/clip_vision.py +++ /dev/null @@ -1,32 +0,0 @@ -from transformers import CLIPVisionModel, CLIPVisionConfig, CLIPImageProcessor -from comfy.sd import load_torch_file -import os - -class ClipVisionModel(): - def __init__(self): - json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config.json") - config = CLIPVisionConfig.from_json_file(json_config) - self.model = CLIPVisionModel(config) - self.processor = CLIPImageProcessor(crop_size=224, - do_center_crop=True, - do_convert_rgb=True, - do_normalize=True, - do_resize=True, - image_mean=[ 0.48145466,0.4578275,0.40821073], - image_std=[0.26862954,0.26130258,0.27577711], - resample=3, #bicubic - size=224) - - def load_sd(self, sd): - self.model.load_state_dict(sd, strict=False) - - def encode_image(self, image): - inputs = self.processor(images=[image[0]], return_tensors="pt") - outputs = self.model(**inputs) - return outputs - -def load(ckpt_path): - clip_data = load_torch_file(ckpt_path) - clip = ClipVisionModel() - clip.load_sd(clip_data) - return clip diff --git a/comfy_extras/nodes_upscale_model.py b/comfy_extras/nodes_upscale_model.py index b79b78511..6a7d0e516 100644 --- a/comfy_extras/nodes_upscale_model.py +++ b/comfy_extras/nodes_upscale_model.py @@ -1,6 +1,5 @@ import os from comfy_extras.chainner_models import model_loading -from comfy.sd import load_torch_file import model_management import torch import comfy.utils @@ -18,7 +17,7 @@ class UpscaleModelLoader: def load_model(self, model_name): model_path = folder_paths.get_full_path("upscale_models", model_name) - sd = load_torch_file(model_path) + sd = comfy.utils.load_torch_file(model_path) out = model_loading.load_state_dict(sd).eval() return (out, ) diff --git a/nodes.py b/nodes.py index e69832c56..1555c19c9 100644 --- a/nodes.py +++ b/nodes.py @@ -18,7 +18,7 @@ import comfy.samplers import comfy.sd import comfy.utils -import comfy_extras.clip_vision +import comfy.clip_vision import model_management import importlib @@ -219,6 +219,21 @@ class CheckpointLoaderSimple: out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) return out +class unCLIPCheckpointLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), + }} + RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION") + FUNCTION = "load_checkpoint" + + CATEGORY = "_for_testing/unclip" + + def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): + ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) + out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) + return out + class CLIPSetLastLayer: @classmethod def INPUT_TYPES(s): @@ -370,7 +385,7 @@ class CLIPVisionLoader: def load_clip(self, clip_name): clip_path = folder_paths.get_full_path("clip_vision", clip_name) - clip_vision = comfy_extras.clip_vision.load(clip_path) + clip_vision = comfy.clip_vision.load(clip_path) return (clip_vision,) class CLIPVisionEncode: @@ -382,7 +397,7 @@ class CLIPVisionEncode: RETURN_TYPES = ("CLIP_VISION_OUTPUT",) FUNCTION = "encode" - CATEGORY = "conditioning/style_model" + CATEGORY = "conditioning" def encode(self, clip_vision, image): output = clip_vision.encode_image(image) @@ -424,6 +439,32 @@ class StyleModelApply: c.append(n) return (c, ) +class unCLIPConditioning: + @classmethod + def INPUT_TYPES(s): + return {"required": {"conditioning": ("CONDITIONING", ), + "clip_vision_output": ("CLIP_VISION_OUTPUT", ), + "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + }} + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "apply_adm" + + CATEGORY = "_for_testing/unclip" + + def apply_adm(self, conditioning, clip_vision_output, strength): + c = [] + for t in conditioning: + o = t[1].copy() + x = (clip_vision_output, strength) + if "adm" in o: + o["adm"] = o["adm"][:] + [x] + else: + o["adm"] = [x] + n = [t[0], o] + c.append(n) + return (c, ) + + class EmptyLatentImage: def __init__(self, device="cpu"): self.device = device @@ -1025,6 +1066,7 @@ NODE_CLASS_MAPPINGS = { "CLIPLoader": CLIPLoader, "CLIPVisionEncode": CLIPVisionEncode, "StyleModelApply": StyleModelApply, + "unCLIPConditioning": unCLIPConditioning, "ControlNetApply": ControlNetApply, "ControlNetLoader": ControlNetLoader, "DiffControlNetLoader": DiffControlNetLoader, @@ -1033,6 +1075,7 @@ NODE_CLASS_MAPPINGS = { "VAEDecodeTiled": VAEDecodeTiled, "VAEEncodeTiled": VAEEncodeTiled, "TomePatchModel": TomePatchModel, + "unCLIPCheckpointLoader": unCLIPCheckpointLoader, } def load_custom_node(module_path): From 66f1f576151ba6da13ebd34a540bc1f7301fb52a Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Sun, 2 Apr 2023 01:54:44 -0400 Subject: [PATCH 17/24] Add --extra-model-paths-config to --help. --- main.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/main.py b/main.py index c9809137a..9c9fb7613 100644 --- a/main.py +++ b/main.py @@ -11,9 +11,14 @@ if os.name == "nt": if __name__ == "__main__": if '--help' in sys.argv: + print() print("Valid Command line Arguments:") print("\t--listen [ip]\t\t\tListen on ip or 0.0.0.0 if none given so the UI can be accessed from other computers.") print("\t--port 8188\t\t\tSet the listen port.") + print() + print("\t--extra-model-paths-config file.yaml\tload an extra_model_paths.yaml file.") + print() + print() print("\t--dont-upcast-attention\t\tDisable upcasting of attention \n\t\t\t\t\tcan boost speed but increase the chances of black images.\n") print("\t--use-split-cross-attention\tUse the split cross attention optimization instead of the sub-quadratic one.\n\t\t\t\t\tIgnored when xformers is used.") print("\t--use-pytorch-cross-attention\tUse the new pytorch 2.0 cross attention function.") From 5aefd6cdf3504119e10132f44dd5863581dc337d Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Sun, 2 Apr 2023 15:16:08 +0100 Subject: [PATCH 18/24] Support numeric settings, tooltip, extra attrs --- web/scripts/ui.js | 86 ++++++++++++++++++++++++++++++++--------------- 1 file changed, 58 insertions(+), 28 deletions(-) diff --git a/web/scripts/ui.js b/web/scripts/ui.js index c27fbf986..679f10b20 100644 --- a/web/scripts/ui.js +++ b/web/scripts/ui.js @@ -198,7 +198,7 @@ class ComfySettingsDialog extends ComfyDialog { localStorage[settingId] = JSON.stringify(value); } - addSetting({ id, name, type, defaultValue, onChange }) { + addSetting({ id, name, type, defaultValue, onChange, attrs = {}, tooltip = "", }) { if (!id) { throw new Error("Settings must have an ID"); } @@ -225,42 +225,72 @@ class ComfySettingsDialog extends ComfyDialog { value = v; }; + let element; + if (typeof type === "function") { - return type(name, setter, value); + element = type(name, setter, value, attrs); + } else { + switch (type) { + case "boolean": + element = $el("div", [ + $el("label", { textContent: name || id }, [ + $el("input", { + type: "checkbox", + checked: !!value, + oninput: (e) => { + setter(e.target.checked); + }, + ...attrs + }), + ]), + ]); + break; + case "number": + element = $el("div", [ + $el("label", { textContent: name || id }, [ + $el("input", { + type, + value, + oninput: (e) => { + setter(e.target.value); + }, + ...attrs + }), + ]), + ]); + break; + default: + console.warn("Unsupported setting type, defaulting to text"); + element = $el("div", [ + $el("label", { textContent: name || id }, [ + $el("input", { + value, + oninput: (e) => { + setter(e.target.value); + }, + ...attrs + }), + ]), + ]); + break; + } + } + if(tooltip) { + element.title = tooltip; } - switch (type) { - case "boolean": - return $el("div", [ - $el("label", { textContent: name || id }, [ - $el("input", { - type: "checkbox", - checked: !!value, - oninput: (e) => { - setter(e.target.checked); - }, - }), - ]), - ]); - default: - console.warn("Unsupported setting type, defaulting to text"); - return $el("div", [ - $el("label", { textContent: name || id }, [ - $el("input", { - value, - oninput: (e) => { - setter(e.target.value); - }, - }), - ]), - ]); - } + return element; }, }); } show() { super.show(); + Object.assign(this.textElement.style, { + display: "flex", + flexDirection: "column", + gap: "10px" + }); this.textElement.replaceChildren(...this.settings.map((s) => s.render())); } } From 940893f92c9ba0d7ae98713e18404c623afe4789 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Sun, 2 Apr 2023 10:27:01 -0400 Subject: [PATCH 19/24] Update the example_node.py.example with RETURN_NAMES. --- custom_nodes/example_node.py.example | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/custom_nodes/example_node.py.example b/custom_nodes/example_node.py.example index 1bb1a5a37..fb8172648 100644 --- a/custom_nodes/example_node.py.example +++ b/custom_nodes/example_node.py.example @@ -11,6 +11,8 @@ class Example: ---------- RETURN_TYPES (`tuple`): The type of each element in the output tulple. + RETURN_NAMES (`tuple`): + Optional: The name of each output in the output tulple. FUNCTION (`str`): The name of the entry-point method. For example, if `FUNCTION = "execute"` then it will run Example().execute() OUTPUT_NODE ([`bool`]): @@ -61,6 +63,8 @@ class Example: } RETURN_TYPES = ("IMAGE",) + #RETURN_NAMES = ("image_output_name",) + FUNCTION = "test" #OUTPUT_NODE = False From d027ff121c904f5d21b5d9fd8607fcdb2b166ec3 Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Sun, 2 Apr 2023 15:33:34 +0100 Subject: [PATCH 20/24] Snap to grid --- web/extensions/core/snapToGrid.js | 86 +++++++++++++++++++++++++++++++ web/scripts/app.js | 8 ++- 2 files changed, 93 insertions(+), 1 deletion(-) create mode 100644 web/extensions/core/snapToGrid.js diff --git a/web/extensions/core/snapToGrid.js b/web/extensions/core/snapToGrid.js new file mode 100644 index 000000000..80e836a0b --- /dev/null +++ b/web/extensions/core/snapToGrid.js @@ -0,0 +1,86 @@ +import { app } from "/scripts/app.js"; + +// Shift + drag/resize to snap to grid + +app.registerExtension({ + name: "Comfy.SnapToGrid", + init() { + // Add setting to control grid size + app.ui.settings.addSetting({ + id: "Comfy.SnapToGrid.GridSize", + name: "Grid Size", + type: "number", + attrs: { + min: 1, + max: 500, + }, + tooltip: + "When dragging and resizing nodes while holding shift they will be aligned to the grid, this controls the size of that grid.", + defaultValue: LiteGraph.CANVAS_GRID_SIZE, + onChange(value) { + LiteGraph.CANVAS_GRID_SIZE = +value; + }, + }); + + // After moving a node, if the shift key is down align it to grid + const onNodeMoved = app.canvas.onNodeMoved; + app.canvas.onNodeMoved = function (node) { + const r = onNodeMoved?.apply(this, arguments); + + if (app.shiftDown) { + node.alignToGrid(); + } + + return r; + }; + + // When a node is added, add a resize handler to it so we can fix align the size with the grid + const onNodeAdded = app.graph.onNodeAdded; + app.graph.onNodeAdded = function (node) { + const onResize = node.onResize; + node.onResize = function () { + if(app.shiftDown) { + const w = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.size[0] / LiteGraph.CANVAS_GRID_SIZE); + const h = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.size[1] / LiteGraph.CANVAS_GRID_SIZE); + node.size[0] = w; + node.size[1] = h; + } + return onResize?.apply(this, arguments); + }; + return onNodeAdded?.apply(this, arguments); + }; + + // Draw a preview of where the node will go if holding shift + const origDrawNode = LGraphCanvas.prototype.drawNode; + LGraphCanvas.prototype.drawNode = function (node, ctx) { + if (app.shiftDown && node === this.node_dragged) { + const x = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.pos[0] / LiteGraph.CANVAS_GRID_SIZE); + const y = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.pos[1] / LiteGraph.CANVAS_GRID_SIZE); + + const shiftX = x - node.pos[0]; + let shiftY = y - node.pos[1]; + + let w, h; + if (node.flags.collapsed) { + w = node._collapsed_width; + h = LiteGraph.NODE_TITLE_HEIGHT; + shiftY -= LiteGraph.NODE_TITLE_HEIGHT; + } else { + w = node.size[0]; + h = node.size[1]; + let titleMode = node.constructor.title_mode; + if (titleMode !== LiteGraph.TRANSPARENT_TITLE && titleMode !== LiteGraph.NO_TITLE) { + h += LiteGraph.NODE_TITLE_HEIGHT; + shiftY -= LiteGraph.NODE_TITLE_HEIGHT; + } + } + const f = ctx.fillStyle; + ctx.fillStyle = "rgba(100, 100, 100, 0.5)"; + ctx.fillRect(shiftX, shiftY, w, h); + ctx.fillStyle = f; + } + + return origDrawNode.apply(this, arguments); + }; + }, +}); diff --git a/web/scripts/app.js b/web/scripts/app.js index 5af6d5fc0..6f8ac067b 100644 --- a/web/scripts/app.js +++ b/web/scripts/app.js @@ -18,6 +18,7 @@ class ComfyApp { this.ui = new ComfyUI(this); this.extensions = []; this.nodeOutputs = {}; + this.shiftDown = false; } /** @@ -538,7 +539,7 @@ class ComfyApp { color = "#0f0"; } else if (self.dragOverNode && node.id === self.dragOverNode.id) { color = "dodgerblue"; - } + } if (color) { const shape = node._shape || node.constructor.shape || LiteGraph.ROUND_SHAPE; @@ -637,11 +638,16 @@ class ComfyApp { #addKeyboardHandler() { window.addEventListener("keydown", (e) => { + this.shiftDown = e.shiftKey; + // Queue prompt using ctrl or command + enter if ((e.ctrlKey || e.metaKey) && (e.key === "Enter" || e.keyCode === 13 || e.keyCode === 10)) { this.queuePrompt(e.shiftKey ? -1 : 0); } }); + window.addEventListener("keyup", (e) => { + this.shiftDown = e.shiftKey; + }); } /** From 26dc8e3056c18bf08e83cfc868665cea25a90868 Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Sun, 2 Apr 2023 15:36:27 +0100 Subject: [PATCH 21/24] formatting --- web/scripts/app.js | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/web/scripts/app.js b/web/scripts/app.js index 6f8ac067b..8612d5a34 100644 --- a/web/scripts/app.js +++ b/web/scripts/app.js @@ -539,7 +539,7 @@ class ComfyApp { color = "#0f0"; } else if (self.dragOverNode && node.id === self.dragOverNode.id) { color = "dodgerblue"; - } + } if (color) { const shape = node._shape || node.constructor.shape || LiteGraph.ROUND_SHAPE; From 1917064b56b6c2a7206e6abfca219d742acee9ff Mon Sep 17 00:00:00 2001 From: Tomoaki Hayasaka Date: Sun, 2 Apr 2023 21:43:40 +0900 Subject: [PATCH 22/24] Fix "extra filename replacements in SaveImage is not done when prefix is supplied by Primitive". --- web/extensions/core/widgetInputs.js | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/web/extensions/core/widgetInputs.js b/web/extensions/core/widgetInputs.js index 7e6688261..865af7763 100644 --- a/web/extensions/core/widgetInputs.js +++ b/web/extensions/core/widgetInputs.js @@ -20,7 +20,7 @@ function hideWidget(node, widget, suffix = "") { if (link == null) { return undefined; } - return widget.value; + return widget.origSerializeValue ? widget.origSerializeValue() : widget.value; }; // Hide any linked widgets, e.g. seed+randomize From 519890a5cc5c09d1eabf1fbb355863db0deae17e Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Sun, 2 Apr 2023 15:57:12 +0100 Subject: [PATCH 23/24] Adds middle click for default node creation Enable two useful properties --- web/extensions/core/slotDefaults.js | 21 +++++++++++++++++++++ web/scripts/app.js | 3 +++ 2 files changed, 24 insertions(+) create mode 100644 web/extensions/core/slotDefaults.js diff --git a/web/extensions/core/slotDefaults.js b/web/extensions/core/slotDefaults.js new file mode 100644 index 000000000..0b6a0a150 --- /dev/null +++ b/web/extensions/core/slotDefaults.js @@ -0,0 +1,21 @@ +import { app } from "/scripts/app.js"; + +// Adds defaults for quickly adding nodes with middle click on the input/output + +app.registerExtension({ + name: "Comfy.SlotDefaults", + init() { + LiteGraph.middle_click_slot_add_default_node = true; + LiteGraph.slot_types_default_in = { + MODEL: "CheckpointLoaderSimple", + LATENT: "EmptyLatentImage", + VAE: "VAELoader", + }; + + LiteGraph.slot_types_default_out = { + LATENT: "VAEDecode", + IMAGE: "SaveImage", + CLIP: "CLIPTextEncode", + }; + }, +}); diff --git a/web/scripts/app.js b/web/scripts/app.js index 5af6d5fc0..c216d2614 100644 --- a/web/scripts/app.js +++ b/web/scripts/app.js @@ -676,6 +676,9 @@ class ComfyApp { const canvas = (this.canvas = new LGraphCanvas(canvasEl, this.graph)); this.ctx = canvasEl.getContext("2d"); + LiteGraph.release_link_on_empty_shows_menu = true; + LiteGraph.alt_drag_do_clone_nodes = true; + this.graph.start(); function resizeCanvas() { From 04234152c14e58cf1e09abad442b0586c5bf2339 Mon Sep 17 00:00:00 2001 From: pythongosssss <125205205+pythongosssss@users.noreply.github.com> Date: Sun, 2 Apr 2023 19:12:00 +0100 Subject: [PATCH 24/24] Add support for multiselect --- web/extensions/core/snapToGrid.js | 25 ++++++++++++++----------- 1 file changed, 14 insertions(+), 11 deletions(-) diff --git a/web/extensions/core/snapToGrid.js b/web/extensions/core/snapToGrid.js index 80e836a0b..20b245e18 100644 --- a/web/extensions/core/snapToGrid.js +++ b/web/extensions/core/snapToGrid.js @@ -1,6 +1,6 @@ import { app } from "/scripts/app.js"; -// Shift + drag/resize to snap to grid +// Shift + drag/resize to snap to grid app.registerExtension({ name: "Comfy.SnapToGrid", @@ -28,32 +28,35 @@ app.registerExtension({ const r = onNodeMoved?.apply(this, arguments); if (app.shiftDown) { - node.alignToGrid(); + // Ensure all selected nodes are realigned + for (const id in this.selected_nodes) { + this.selected_nodes[id].alignToGrid(); + } } return r; }; - // When a node is added, add a resize handler to it so we can fix align the size with the grid + // When a node is added, add a resize handler to it so we can fix align the size with the grid const onNodeAdded = app.graph.onNodeAdded; app.graph.onNodeAdded = function (node) { const onResize = node.onResize; node.onResize = function () { - if(app.shiftDown) { - const w = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.size[0] / LiteGraph.CANVAS_GRID_SIZE); - const h = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.size[1] / LiteGraph.CANVAS_GRID_SIZE); - node.size[0] = w; - node.size[1] = h; - } + if (app.shiftDown) { + const w = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.size[0] / LiteGraph.CANVAS_GRID_SIZE); + const h = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.size[1] / LiteGraph.CANVAS_GRID_SIZE); + node.size[0] = w; + node.size[1] = h; + } return onResize?.apply(this, arguments); }; return onNodeAdded?.apply(this, arguments); }; - // Draw a preview of where the node will go if holding shift + // Draw a preview of where the node will go if holding shift and the node is selected const origDrawNode = LGraphCanvas.prototype.drawNode; LGraphCanvas.prototype.drawNode = function (node, ctx) { - if (app.shiftDown && node === this.node_dragged) { + if (app.shiftDown && this.node_dragged && node.id in this.selected_nodes) { const x = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.pos[0] / LiteGraph.CANVAS_GRID_SIZE); const y = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.pos[1] / LiteGraph.CANVAS_GRID_SIZE);