mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 14:50:49 +08:00
Merge branch 'comfyanonymous:master' into master
This commit is contained in:
commit
da173f67b3
2
.github/workflows/stable-release.yml
vendored
2
.github/workflows/stable-release.yml
vendored
@ -91,6 +91,8 @@ jobs:
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
python_embeded/python.exe -s ./update/update.py ComfyUI/
|
||||
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
|
||||
@ -88,6 +88,8 @@ jobs:
|
||||
cd ComfyUI_windows_portable
|
||||
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
|
||||
|
||||
python_embeded/python.exe -s ./update/update.py ComfyUI/
|
||||
|
||||
ls
|
||||
|
||||
- name: Upload binaries to release
|
||||
|
||||
183
comfy/ldm/chroma/layers.py
Normal file
183
comfy/ldm/chroma/layers.py
Normal file
@ -0,0 +1,183 @@
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from comfy.ldm.flux.math import attention
|
||||
from comfy.ldm.flux.layers import (
|
||||
MLPEmbedder,
|
||||
RMSNorm,
|
||||
QKNorm,
|
||||
SelfAttention,
|
||||
ModulationOut,
|
||||
)
|
||||
|
||||
|
||||
|
||||
class ChromaModulationOut(ModulationOut):
|
||||
@classmethod
|
||||
def from_offset(cls, tensor: torch.Tensor, offset: int = 0) -> ModulationOut:
|
||||
return cls(
|
||||
shift=tensor[:, offset : offset + 1, :],
|
||||
scale=tensor[:, offset + 1 : offset + 2, :],
|
||||
gate=tensor[:, offset + 2 : offset + 3, :],
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
class Approximator(nn.Module):
|
||||
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 5, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
|
||||
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
|
||||
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
# Get the device of the module (assumes all parameters are on the same device)
|
||||
return next(self.parameters()).device
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
x = self.in_proj(x)
|
||||
|
||||
for layer, norms in zip(self.layers, self.norms):
|
||||
x = x + layer(norms(x))
|
||||
|
||||
x = self.out_proj(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
|
||||
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
# run actual attention
|
||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||
torch.cat((txt_k, img_k), dim=2),
|
||||
torch.cat((txt_v, img_v), dim=2),
|
||||
pe=pe, mask=attn_mask)
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
return img, txt
|
||||
|
||||
|
||||
class SingleStreamBlock(nn.Module):
|
||||
"""
|
||||
A DiT block with parallel linear layers as described in
|
||||
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_size
|
||||
self.num_heads = num_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
# qkv and mlp_in
|
||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||
# proj and mlp_out
|
||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
|
||||
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
|
||||
mod = vec
|
||||
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += mod.gate * output
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(hidden_size, out_channels, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||
shift, scale = vec
|
||||
shift = shift.squeeze(1)
|
||||
scale = scale.squeeze(1)
|
||||
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||
x = self.linear(x)
|
||||
return x
|
||||
271
comfy/ldm/chroma/model.py
Normal file
271
comfy/ldm/chroma/model.py
Normal file
@ -0,0 +1,271 @@
|
||||
#Original code can be found on: https://github.com/black-forest-labs/flux
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
from comfy.ldm.flux.layers import (
|
||||
EmbedND,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
from .layers import (
|
||||
DoubleStreamBlock,
|
||||
LastLayer,
|
||||
SingleStreamBlock,
|
||||
Approximator,
|
||||
ChromaModulationOut,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChromaParams:
|
||||
in_channels: int
|
||||
out_channels: int
|
||||
context_in_dim: int
|
||||
hidden_size: int
|
||||
mlp_ratio: float
|
||||
num_heads: int
|
||||
depth: int
|
||||
depth_single_blocks: int
|
||||
axes_dim: list
|
||||
theta: int
|
||||
patch_size: int
|
||||
qkv_bias: bool
|
||||
in_dim: int
|
||||
out_dim: int
|
||||
hidden_dim: int
|
||||
n_layers: int
|
||||
|
||||
|
||||
|
||||
|
||||
class Chroma(nn.Module):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
params = ChromaParams(**kwargs)
|
||||
self.params = params
|
||||
self.patch_size = params.patch_size
|
||||
self.in_channels = params.in_channels
|
||||
self.out_channels = params.out_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||
)
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
if sum(params.axes_dim) != pe_dim:
|
||||
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.in_dim = params.in_dim
|
||||
self.out_dim = params.out_dim
|
||||
self.hidden_dim = params.hidden_dim
|
||||
self.n_layers = params.n_layers
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||
# set as nn identity for now, will overwrite it later.
|
||||
self.distilled_guidance_layer = Approximator(
|
||||
in_dim=self.in_dim,
|
||||
hidden_dim=self.hidden_dim,
|
||||
out_dim=self.out_dim,
|
||||
n_layers=self.n_layers,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.skip_mmdit = []
|
||||
self.skip_dit = []
|
||||
self.lite = False
|
||||
|
||||
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
|
||||
# This function slices up the modulations tensor which has the following layout:
|
||||
# single : num_single_blocks * 3 elements
|
||||
# double_img : num_double_blocks * 6 elements
|
||||
# double_txt : num_double_blocks * 6 elements
|
||||
# final : 2 elements
|
||||
if block_type == "final":
|
||||
return (tensor[:, -2:-1, :], tensor[:, -1:, :])
|
||||
single_block_count = self.params.depth_single_blocks
|
||||
double_block_count = self.params.depth
|
||||
offset = 3 * idx
|
||||
if block_type == "single":
|
||||
return ChromaModulationOut.from_offset(tensor, offset)
|
||||
# Double block modulations are 6 elements so we double 3 * idx.
|
||||
offset *= 2
|
||||
if block_type in {"double_img", "double_txt"}:
|
||||
# Advance past the single block modulations.
|
||||
offset += 3 * single_block_count
|
||||
if block_type == "double_txt":
|
||||
# Advance past the double block img modulations.
|
||||
offset += 6 * double_block_count
|
||||
return (
|
||||
ChromaModulationOut.from_offset(tensor, offset),
|
||||
ChromaModulationOut.from_offset(tensor, offset + 3),
|
||||
)
|
||||
raise ValueError("Bad block_type")
|
||||
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control = None,
|
||||
transformer_options={},
|
||||
attn_mask: Tensor = None,
|
||||
) -> Tensor:
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
|
||||
# distilled vector guidance
|
||||
mod_index_length = 344
|
||||
distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype)
|
||||
# guidance = guidance *
|
||||
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
|
||||
|
||||
# get all modulation index
|
||||
modulation_index = timestep_embedding(torch.arange(mod_index_length), 32).to(img.device, img.dtype)
|
||||
# we need to broadcast the modulation index here so each batch has all of the index
|
||||
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
|
||||
# and we need to broadcast timestep and guidance along too
|
||||
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
|
||||
# then and only then we could concatenate it together
|
||||
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
|
||||
|
||||
mod_vectors = self.distilled_guidance_layer(input_vec)
|
||||
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
if i not in self.skip_mmdit:
|
||||
double_mod = (
|
||||
self.get_modulations(mod_vectors, "double_img", idx=i),
|
||||
self.get_modulations(mod_vectors, "double_txt", idx=i),
|
||||
)
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"], out["txt"] = block(img=args["img"],
|
||||
txt=args["txt"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("double_block", i)]({"img": img,
|
||||
"txt": txt,
|
||||
"vec": double_mod,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
{"original_block": block_wrap})
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
else:
|
||||
img, txt = block(img=img,
|
||||
txt=txt,
|
||||
vec=double_mod,
|
||||
pe=pe,
|
||||
attn_mask=attn_mask)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
if i < len(control_i):
|
||||
add = control_i[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
for i, block in enumerate(self.single_blocks):
|
||||
if i not in self.skip_dit:
|
||||
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
|
||||
if ("single_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"],
|
||||
vec=args["vec"],
|
||||
pe=args["pe"],
|
||||
attn_mask=args.get("attn_mask"))
|
||||
return out
|
||||
|
||||
out = blocks_replace[("single_block", i)]({"img": img,
|
||||
"vec": single_mod,
|
||||
"pe": pe,
|
||||
"attn_mask": attn_mask},
|
||||
{"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, txt.shape[1] :, ...] += add
|
||||
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
final_mod = self.get_modulations(mod_vectors, "final")
|
||||
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
||||
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
@ -1,7 +1,6 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import comfy.ldm.modules.attention
|
||||
from comfy.ldm.genmo.joint_model.layers import RMSNorm
|
||||
import comfy.ldm.common_dit
|
||||
from einops import rearrange
|
||||
import math
|
||||
@ -262,8 +261,8 @@ class CrossAttention(nn.Module):
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.q_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
self.k_norm = operations.RMSNorm(inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
@ -38,6 +38,7 @@ import comfy.ldm.lumina.model
|
||||
import comfy.ldm.wan.model
|
||||
import comfy.ldm.hunyuan3d.model
|
||||
import comfy.ldm.hidream.model
|
||||
import comfy.ldm.chroma.model
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
@ -786,8 +787,8 @@ class PixArt(BaseModel):
|
||||
return out
|
||||
|
||||
class Flux(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
|
||||
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.flux.model.Flux):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
try:
|
||||
@ -1108,3 +1109,15 @@ class HiDream(BaseModel):
|
||||
if image_cond is not None:
|
||||
out['image_cond'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_cond))
|
||||
return out
|
||||
|
||||
class Chroma(Flux):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma.model.Chroma)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
|
||||
guidance = kwargs.get("guidance", 0)
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
return out
|
||||
|
||||
@ -164,7 +164,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
if in_key in state_dict_keys:
|
||||
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size)
|
||||
dit_config["out_channels"] = 16
|
||||
dit_config["vec_in_dim"] = 768
|
||||
vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix)
|
||||
if vec_in_key in state_dict_keys:
|
||||
dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1]
|
||||
dit_config["context_in_dim"] = 4096
|
||||
dit_config["hidden_size"] = 3072
|
||||
dit_config["mlp_ratio"] = 4.0
|
||||
@ -174,7 +176,16 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["axes_dim"] = [16, 56, 56]
|
||||
dit_config["theta"] = 10000
|
||||
dit_config["qkv_bias"] = True
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
|
||||
dit_config["image_model"] = "chroma"
|
||||
dit_config["in_channels"] = 64
|
||||
dit_config["out_channels"] = 64
|
||||
dit_config["in_dim"] = 64
|
||||
dit_config["out_dim"] = 3072
|
||||
dit_config["hidden_dim"] = 5120
|
||||
dit_config["n_layers"] = 5
|
||||
else:
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
return dit_config
|
||||
|
||||
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview
|
||||
|
||||
@ -714,6 +714,7 @@ class CLIPType(Enum):
|
||||
LUMINA2 = 12
|
||||
WAN = 13
|
||||
HIDREAM = 14
|
||||
CHROMA = 15
|
||||
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
@ -818,7 +819,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif clip_type == CLIPType.LTXV:
|
||||
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
|
||||
elif clip_type == CLIPType.PIXART:
|
||||
elif clip_type == CLIPType.PIXART or clip_type == CLIPType.CHROMA:
|
||||
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
|
||||
elif clip_type == CLIPType.WAN:
|
||||
|
||||
@ -1068,7 +1068,34 @@ class HiDream(supported_models_base.BASE):
|
||||
def clip_target(self, state_dict={}):
|
||||
return None # TODO
|
||||
|
||||
class Chroma(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "chroma",
|
||||
}
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream]
|
||||
unet_extra_config = {
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"multiplier": 1.0,
|
||||
}
|
||||
|
||||
latent_format = comfy.latent_formats.Flux
|
||||
|
||||
memory_usage_factor = 3.2
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Chroma(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.pixart_t5.PixArtTokenizer, comfy.text_encoders.pixart_t5.pixart_te(**t5_detect))
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
||||
@ -297,6 +297,10 @@ class SynchronousOperation(Generic[T, R]):
|
||||
|
||||
# Convert request model to dict, but use None for EmptyRequest
|
||||
request_dict = None if isinstance(self.request, EmptyRequest) else self.request.model_dump(exclude_none=True)
|
||||
if request_dict:
|
||||
for key, value in request_dict.items():
|
||||
if isinstance(value, Enum):
|
||||
request_dict[key] = value.value
|
||||
|
||||
# Debug log for request
|
||||
logging.debug(f"[DEBUG] API Request: {self.endpoint.method.value} {self.endpoint.path}")
|
||||
|
||||
@ -20,13 +20,14 @@ def loglinear_interp(t_steps, num_steps):
|
||||
|
||||
NOISE_LEVELS = {"FLUX": [0.9968, 0.9886, 0.9819, 0.975, 0.966, 0.9471, 0.9158, 0.8287, 0.5512, 0.2808, 0.001],
|
||||
"Wan":[1.0, 0.997, 0.995, 0.993, 0.991, 0.989, 0.987, 0.985, 0.98, 0.975, 0.973, 0.968, 0.96, 0.946, 0.927, 0.902, 0.864, 0.776, 0.539, 0.208, 0.001],
|
||||
"Chroma": [0.992, 0.99, 0.988, 0.985, 0.982, 0.978, 0.973, 0.968, 0.961, 0.953, 0.943, 0.931, 0.917, 0.9, 0.881, 0.858, 0.832, 0.802, 0.769, 0.731, 0.69, 0.646, 0.599, 0.55, 0.501, 0.451, 0.402, 0.355, 0.311, 0.27, 0.232, 0.199, 0.169, 0.143, 0.12, 0.101, 0.084, 0.07, 0.058, 0.048, 0.001],
|
||||
}
|
||||
|
||||
class OptimalStepsScheduler:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"model_type": (["FLUX", "Wan"], ),
|
||||
{"model_type": (["FLUX", "Wan", "Chroma"], ),
|
||||
"steps": ("INT", {"default": 20, "min": 3, "max": 1000}),
|
||||
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}
|
||||
|
||||
2
nodes.py
2
nodes.py
@ -917,7 +917,7 @@ class CLIPLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
|
||||
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream"], ),
|
||||
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma"], ),
|
||||
},
|
||||
"optional": {
|
||||
"device": (["default", "cpu"], {"advanced": True}),
|
||||
|
||||
Loading…
Reference in New Issue
Block a user