merge upstream

This commit is contained in:
doctorpangloss 2023-08-29 13:36:53 -07:00
commit db673f7728
22 changed files with 1418 additions and 1082 deletions

View File

@ -54,7 +54,8 @@ fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
fpvae_group = parser.add_mutually_exclusive_group()
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16, might lower quality.")
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")

View File

@ -2,14 +2,28 @@ from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPIm
from .utils import load_torch_file, transformers_convert
import os
import torch
import contextlib
from . import ops
import comfy.ops
import comfy.model_patcher
import comfy.model_management
class ClipVisionModel():
def __init__(self, json_config):
config = CLIPVisionConfig.from_json_file(json_config)
with ops.use_comfy_ops():
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = torch.float32
if comfy.model_management.should_use_fp16(self.load_device, prioritize_performance=False):
self.dtype = torch.float16
with ops.use_comfy_ops(offload_device, self.dtype):
with modeling_utils.no_init_weights():
self.model = CLIPVisionModelWithProjection(config)
self.model.to(self.dtype)
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.processor = CLIPImageProcessor(crop_size=224,
do_center_crop=True,
do_convert_rgb=True,
@ -27,7 +41,21 @@ class ClipVisionModel():
img = torch.clip((255. * image), 0, 255).round().int()
img = list(map(lambda a: a, img))
inputs = self.processor(images=img, return_tensors="pt")
outputs = self.model(**inputs)
comfy.model_management.load_model_gpu(self.patcher)
pixel_values = inputs['pixel_values'].to(self.load_device)
if self.dtype != torch.float32:
precision_scope = torch.autocast
else:
precision_scope = lambda a, b: contextlib.nullcontext(a)
with precision_scope(comfy.model_management.get_autocast_device(self.load_device), torch.float32):
outputs = self.model(pixel_values=pixel_values)
for k in outputs:
t = outputs[k]
if t is not None:
outputs[k] = t.cpu()
return outputs
def convert_to_transformers(sd, prefix):

View File

@ -1,5 +1,6 @@
from __future__ import annotations
import asyncio
import traceback
import glob
import struct
import sys
@ -7,6 +8,7 @@ import shutil
from urllib.parse import quote
from PIL import Image, ImageOps
from PIL.PngImagePlugin import PngInfo
from io import BytesIO
import json
@ -98,7 +100,7 @@ class PromptServer():
if args.enable_cors_header:
middlewares.append(create_cors_middleware(args.enable_cors_header))
self.app = web.Application(client_max_size=20971520, handler_args={'max_field_size': 16380},
self.app = web.Application(client_max_size=104857600, handler_args={'max_field_size': 16380},
middlewares=middlewares)
self.sockets = dict()
web_root_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../web")
@ -111,6 +113,8 @@ class PromptServer():
self.last_node_id = None
self.client_id = None
self.on_prompt_handlers = []
@routes.get('/ws')
async def websocket_handler(request):
ws = web.WebSocketResponse()
@ -252,13 +256,17 @@ class PromptServer():
if os.path.isfile(file):
with Image.open(file) as original_pil:
metadata = PngInfo()
if hasattr(original_pil,'text'):
for key in original_pil.text:
metadata.add_text(key, original_pil.text[key])
original_pil = original_pil.convert('RGBA')
mask_pil = Image.open(image.file).convert('RGBA')
# alpha copy
new_alpha = mask_pil.getchannel('A')
original_pil.putalpha(new_alpha)
original_pil.save(filepath, compress_level=4)
original_pil.save(filepath, compress_level=4, pnginfo=metadata)
return image_upload(post, image_save_function)
@ -463,6 +471,7 @@ class PromptServer():
resp_code = 200
out_string = ""
json_data = await request.json()
json_data = self.trigger_on_prompt(json_data)
if "number" in json_data:
number = float(json_data['number'])
@ -761,6 +770,19 @@ class PromptServer():
if call_on_start is not None:
call_on_start(address, port)
def add_on_prompt_handler(self, handler):
self.on_prompt_handlers.append(handler)
def trigger_on_prompt(self, json_data):
for handler in self.on_prompt_handlers:
try:
json_data = handler(json_data)
except Exception as e:
print(f"[ERROR] An error occurred during the on_prompt_handler processing")
traceback.print_exc()
return json_data
@classmethod
def get_output_path(cls, subfolder: str | None = None, filename: str | None = None):
paths = [path for path in ["output", subfolder, filename] if path is not None and path != ""]

480
comfy/controlnet.py Normal file
View File

@ -0,0 +1,480 @@
import torch
import math
import os
import comfy.utils
import comfy.model_management
import comfy.model_detection
import comfy.model_patcher
import comfy.cldm.cldm
import comfy.t2i_adapter.adapter
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
#print(current_batch_size, target_batch_size)
if current_batch_size == 1:
return tensor
per_batch = target_batch_size // batched_number
tensor = tensor[:per_batch]
if per_batch > tensor.shape[0]:
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
current_batch_size = tensor.shape[0]
if current_batch_size == target_batch_size:
return tensor
else:
return torch.cat([tensor] * batched_number, dim=0)
class ControlBase:
def __init__(self, device=None):
self.cond_hint_original = None
self.cond_hint = None
self.strength = 1.0
self.timestep_percent_range = (1.0, 0.0)
self.timestep_range = None
if device is None:
device = comfy.model_management.get_torch_device()
self.device = device
self.previous_controlnet = None
self.global_average_pooling = False
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
self.cond_hint_original = cond_hint
self.strength = strength
self.timestep_percent_range = timestep_percent_range
return self
def pre_run(self, model, percent_to_timestep_function):
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
if self.previous_controlnet is not None:
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
def set_previous_controlnet(self, controlnet):
self.previous_controlnet = controlnet
return self
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.timestep_range = None
def get_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
def inference_memory_requirements(self, dtype):
if self.previous_controlnet is not None:
return self.previous_controlnet.inference_memory_requirements(dtype)
return 0
def control_merge(self, control_input, control_output, control_prev, output_dtype):
out = {'input':[], 'middle':[], 'output': []}
if control_input is not None:
for i in range(len(control_input)):
key = 'input'
x = control_input[i]
if x is not None:
x *= self.strength
if x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].insert(0, x)
if control_output is not None:
for i in range(len(control_output)):
if i == (len(control_output) - 1):
key = 'middle'
index = 0
else:
key = 'output'
index = i
x = control_output[i]
if x is not None:
if self.global_average_pooling:
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
x *= self.strength
if x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].append(x)
if control_prev is not None:
for x in ['input', 'middle', 'output']:
o = out[x]
for i in range(len(control_prev[x])):
prev_val = control_prev[x][i]
if i >= len(o):
o.append(prev_val)
elif prev_val is not None:
if o[i] is None:
o[i] = prev_val
else:
o[i] += prev_val
return out
class ControlNet(ControlBase):
def __init__(self, control_model, global_average_pooling=False, device=None):
super().__init__(device)
self.control_model = control_model
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
self.global_average_pooling = global_average_pooling
def get_control(self, x_noisy, t, cond, batched_number):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return {}
output_dtype = x_noisy.dtype
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
context = torch.cat(cond['c_crossattn'], 1)
y = cond.get('c_adm', None)
if y is not None:
y = y.to(self.control_model.dtype)
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y)
return self.control_merge(None, control, control_prev, output_dtype)
def copy(self):
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model_wrapped)
return out
class ControlLoraOps:
class Linear(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = None
self.up = None
self.down = None
self.bias = None
def forward(self, input):
if self.up is not None:
return torch.nn.functional.linear(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias)
else:
return torch.nn.functional.linear(input, self.weight.to(input.device), self.bias)
class Conv2d(torch.nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode='zeros',
device=None,
dtype=None
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = False
self.output_padding = 0
self.groups = groups
self.padding_mode = padding_mode
self.weight = None
self.bias = None
self.up = None
self.down = None
def forward(self, input):
if self.up is not None:
return torch.nn.functional.conv2d(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias, self.stride, self.padding, self.dilation, self.groups)
else:
return torch.nn.functional.conv2d(input, self.weight.to(input.device), self.bias, self.stride, self.padding, self.dilation, self.groups)
def conv_nd(self, dims, *args, **kwargs):
if dims == 2:
return self.Conv2d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")
class ControlLora(ControlNet):
def __init__(self, control_weights, global_average_pooling=False, device=None):
ControlBase.__init__(self, device)
self.control_weights = control_weights
self.global_average_pooling = global_average_pooling
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
controlnet_config = model.model_config.unet_config.copy()
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
controlnet_config["operations"] = ControlLoraOps()
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
dtype = model.get_dtype()
self.control_model.to(dtype)
self.control_model.to(comfy.model_management.get_torch_device())
diffusion_model = model.diffusion_model
sd = diffusion_model.state_dict()
cm = self.control_model.state_dict()
for k in sd:
weight = comfy.model_management.resolve_lowvram_weight(sd[k], diffusion_model, k)
try:
comfy.utils.set_attr(self.control_model, k, weight)
except:
pass
for k in self.control_weights:
if k not in {"lora_controlnet"}:
comfy.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
def copy(self):
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
return c
def cleanup(self):
del self.control_model
self.control_model = None
super().cleanup()
def get_models(self):
out = ControlBase.get_models(self)
return out
def inference_memory_requirements(self, dtype):
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
def load_controlnet(ckpt_path, model=None):
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
if "lora_controlnet" in controlnet_data:
return ControlLora(controlnet_data)
controlnet_config = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
use_fp16 = comfy.model_management.should_use_fp16()
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_down_blocks.{}{}".format(count, s)
k_out = "zero_convs.{}.0{}".format(count, s)
if k_in not in controlnet_data:
loop = False
break
diffusers_keys[k_in] = k_out
count += 1
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
if count == 0:
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
else:
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
k_out = "input_hint_block.{}{}".format(count * 2, s)
if k_in not in controlnet_data:
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
loop = False
diffusers_keys[k_in] = k_out
count += 1
new_sd = {}
for k in diffusers_keys:
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
print("leftover keys:", leftover_keys)
controlnet_data = new_sd
pth_key = 'control_model.zero_convs.0.0.weight'
pth = False
key = 'zero_convs.0.0.weight'
if pth_key in controlnet_data:
pth = True
key = pth_key
prefix = "control_model."
elif key in controlnet_data:
prefix = ""
else:
net = load_t2i_adapter(controlnet_data)
if net is None:
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
return net
if controlnet_config is None:
use_fp16 = comfy.model_management.should_use_fp16()
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
if pth:
if 'difference' in controlnet_data:
if model is not None:
comfy.model_management.load_models_gpu([model])
model_sd = model.model_state_dict()
for x in controlnet_data:
c_m = "control_model."
if x.startswith(c_m):
sd_key = "diffusion_model.{}".format(x[len(c_m):])
if sd_key in model_sd:
cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
else:
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.control_model = control_model
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
print(missing, unexpected)
if use_fp16:
control_model = control_model.half()
global_average_pooling = False
filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
global_average_pooling = True
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
return control
class T2IAdapter(ControlBase):
def __init__(self, t2i_model, channels_in, device=None):
super().__init__(device)
self.t2i_model = t2i_model
self.channels_in = channels_in
self.control_input = None
def scale_image_to(self, width, height):
unshuffle_amount = self.t2i_model.unshuffle_amount
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
return width, height
def get_control(self, x_noisy, t, cond, batched_number):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return {}
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.control_input = None
self.cond_hint = None
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
if self.control_input is None:
self.t2i_model.to(x_noisy.dtype)
self.t2i_model.to(self.device)
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
self.t2i_model.cpu()
control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
mid = None
if self.t2i_model.xl == True:
mid = control_input[-1:]
control_input = control_input[:-1]
return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
def copy(self):
c = T2IAdapter(self.t2i_model, self.channels_in)
self.copy_to(c)
return c
def load_t2i_adapter(t2i_data):
keys = t2i_data.keys()
if 'adapter' in keys:
t2i_data = t2i_data['adapter']
keys = t2i_data.keys()
if "body.0.in_conv.weight" in keys:
cin = t2i_data['body.0.in_conv.weight'].shape[1]
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
elif 'conv_in.weight' in keys:
cin = t2i_data['conv_in.weight'].shape[1]
channel = t2i_data['conv_in.weight'].shape[0]
ksize = t2i_data['body.0.block2.weight'].shape[2]
use_conv = False
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
if len(down_opts) > 0:
use_conv = True
xl = False
if cin == 256:
xl = True
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
else:
return None
missing, unexpected = model_ad.load_state_dict(t2i_data)
if len(missing) > 0:
print("t2i missing", missing)
if len(unexpected) > 0:
print("t2i unexpected", unexpected)
return T2IAdapter(model_ad, model_ad.input_channels)

View File

@ -56,7 +56,18 @@ class Upsample(nn.Module):
padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
try:
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
except: #operation not implemented for bf16
b, c, h, w = x.shape
out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
split = 8
l = out.shape[1] // split
for i in range(0, out.shape[1], l):
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
del x
x = out
if self.with_conv:
x = self.conv(x)
return x
@ -74,11 +85,10 @@ class Downsample(nn.Module):
stride=2,
padding=0)
def forward(self, x, already_padded=False):
def forward(self, x):
if self.with_conv:
if not already_padded:
pad = (0,1,0,1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
pad = (0,1,0,1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
@ -275,25 +285,17 @@ class MemoryEfficientAttnBlock(nn.Module):
# compute attention
B, C, H, W = q.shape
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(B, t.shape[1], 1, C)
.permute(0, 2, 1, 3)
.reshape(B * 1, t.shape[1], C)
.contiguous(),
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
out = (
out.unsqueeze(0)
.reshape(B, 1, out.shape[1], C)
.permute(0, 2, 1, 3)
.reshape(B, out.shape[1], C)
)
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
try:
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
out = out.transpose(1, 2).reshape(B, C, H, W)
except NotImplementedError as e:
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
out = self.proj_out(out)
return x+out
@ -603,9 +605,6 @@ class Encoder(nn.Module):
def forward(self, x):
# timestep embedding
temb = None
pad = (0,1,0,1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
already_padded = True
# downsampling
h = self.conv_in(x)
for i_level in range(self.num_resolutions):
@ -614,8 +613,7 @@ class Encoder(nn.Module):
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if i_level != self.num_resolutions-1:
h = self.down[i_level].downsample(h, already_padded)
already_padded = False
h = self.down[i_level].downsample(h)
# middle
h = self.mid.block_1(h, temb)

199
comfy/lora.py Normal file
View File

@ -0,0 +1,199 @@
import comfy.utils
LORA_CLIP_MAP = {
"mlp.fc1": "mlp_fc1",
"mlp.fc2": "mlp_fc2",
"self_attn.k_proj": "self_attn_k_proj",
"self_attn.q_proj": "self_attn_q_proj",
"self_attn.v_proj": "self_attn_v_proj",
"self_attn.out_proj": "self_attn_out_proj",
}
def load_lora(lora, to_load):
patch_dict = {}
loaded_keys = set()
for x in to_load:
alpha_name = "{}.alpha".format(x)
alpha = None
if alpha_name in lora.keys():
alpha = lora[alpha_name].item()
loaded_keys.add(alpha_name)
regular_lora = "{}.lora_up.weight".format(x)
diffusers_lora = "{}_lora.up.weight".format(x)
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
A_name = None
if regular_lora in lora.keys():
A_name = regular_lora
B_name = "{}.lora_down.weight".format(x)
mid_name = "{}.lora_mid.weight".format(x)
elif diffusers_lora in lora.keys():
A_name = diffusers_lora
B_name = "{}_lora.down.weight".format(x)
mid_name = None
elif transformers_lora in lora.keys():
A_name = transformers_lora
B_name ="{}.lora_linear_layer.down.weight".format(x)
mid_name = None
if A_name is not None:
mid = None
if mid_name is not None and mid_name in lora.keys():
mid = lora[mid_name]
loaded_keys.add(mid_name)
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
loaded_keys.add(A_name)
loaded_keys.add(B_name)
######## loha
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
hada_w2_b_name = "{}.hada_w2_b".format(x)
hada_t1_name = "{}.hada_t1".format(x)
hada_t2_name = "{}.hada_t2".format(x)
if hada_w1_a_name in lora.keys():
hada_t1 = None
hada_t2 = None
if hada_t1_name in lora.keys():
hada_t1 = lora[hada_t1_name]
hada_t2 = lora[hada_t2_name]
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
######## lokr
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
w_norm_name = "{}.w_norm".format(x)
b_norm_name = "{}.b_norm".format(x)
w_norm = lora.get(w_norm_name, None)
b_norm = lora.get(b_norm_name, None)
if w_norm is not None:
loaded_keys.add(w_norm_name)
patch_dict[to_load[x]] = (w_norm,)
if b_norm is not None:
loaded_keys.add(b_norm_name)
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = (b_norm,)
for x in lora.keys():
if x not in loaded_keys:
print("lora key not loaded", x)
return patch_dict
def model_lora_keys_clip(model, key_map={}):
sdk = model.state_dict().keys()
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
clip_l_present = False
for b in range(32):
for c in LORA_CLIP_MAP:
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
key_map[lora_key] = k
clip_l_present = True
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
if clip_l_present:
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
key_map[lora_key] = k
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
else:
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
key_map[lora_key] = k
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
return key_map
def model_lora_keys_unet(model, key_map={}):
sdk = model.state_dict().keys()
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = k
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
for k in diffusers_keys:
if k.endswith(".weight"):
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
key_lora = k[:-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = unet_key
diffusers_lora_prefix = ["", "unet."]
for p in diffusers_lora_prefix:
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
if diffusers_lora_key.endswith(".to_out.0"):
diffusers_lora_key = diffusers_lora_key[:-2]
key_map[diffusers_lora_key] = unet_key
return key_map

View File

@ -3,6 +3,7 @@ from .ldm.modules.diffusionmodules.openaimodel import UNetModel
from .ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from .ldm.modules.diffusionmodules.util import make_beta_schedule
from .ldm.modules.diffusionmodules.openaimodel import Timestep
import comfy.model_management
import numpy as np
from enum import Enum
from . import utils
@ -93,7 +94,11 @@ class BaseModel(torch.nn.Module):
def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
unet_state_dict = self.diffusion_model.state_dict()
unet_sd = self.diffusion_model.state_dict()
unet_state_dict = {}
for k in unet_sd:
unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
if self.get_dtype() == torch.float16:

View File

@ -1,6 +1,7 @@
import psutil
from enum import Enum
from .cli_args import args
import comfy.utils
import torch
import sys
@ -111,9 +112,6 @@ if not args.normalvram and not args.cpu:
if lowvram_available and total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
elif total_vram > total_ram * 1.1 and total_vram > 14336:
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
vram_state = VRAMState.HIGH_VRAM
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
@ -150,15 +148,27 @@ def is_nvidia():
return True
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
VAE_DTYPE = torch.float32
if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
try:
if is_nvidia():
torch_version = torch.version.__version__
if int(torch_version[0]) >= 2:
try:
if is_nvidia():
torch_version = torch.version.__version__
if int(torch_version[0]) >= 2:
if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
ENABLE_PYTORCH_ATTENTION = True
except:
pass
if torch.cuda.is_bf16_supported():
VAE_DTYPE = torch.bfloat16
except:
pass
if args.fp16_vae:
VAE_DTYPE = torch.float16
elif args.bf16_vae:
VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
VAE_DTYPE = torch.float32
if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_math_sdp(True)
@ -230,6 +240,7 @@ try:
except:
print("Could not pick default device.")
print("VAE dtype:", VAE_DTYPE)
current_loaded_models = []
@ -302,16 +313,15 @@ def unload_model_clones(model):
def free_memory(memory_required, device, keep_loaded=[]):
unloaded_model = False
for i in range(len(current_loaded_models) -1, -1, -1):
if DISABLE_SMART_MEMORY:
current_free_mem = 0
else:
current_free_mem = get_free_memory(device)
if current_free_mem > memory_required:
break
if not DISABLE_SMART_MEMORY:
if get_free_memory(device) > memory_required:
break
shift_model = current_loaded_models[i]
if shift_model.device == device:
if shift_model not in keep_loaded:
current_loaded_models.pop(i).model_unload()
m = current_loaded_models.pop(i)
m.model_unload()
del m
unloaded_model = True
if unloaded_model:
@ -394,6 +404,12 @@ def cleanup_models():
x.model_unload()
del x
def dtype_size(dtype):
dtype_size = 4
if dtype == torch.float16 or dtype == torch.bfloat16:
dtype_size = 2
return dtype_size
def unet_offload_device():
if vram_state == VRAMState.HIGH_VRAM:
return get_torch_device()
@ -409,11 +425,7 @@ def unet_inital_load_device(parameters, dtype):
if DISABLE_SMART_MEMORY:
return cpu_dev
dtype_size = 4
if dtype == torch.float16 or dtype == torch.bfloat16:
dtype_size = 2
model_size = dtype_size * parameters
model_size = dtype_size(dtype) * parameters
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
@ -432,8 +444,7 @@ def text_encoder_device():
if args.gpu_only:
return get_torch_device()
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
#NOTE: on a Ryzen 5 7600X with 4080 it's faster to shift to GPU
if torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
if should_use_fp16(prioritize_performance=False):
return get_torch_device()
else:
return torch.device("cpu")
@ -450,12 +461,8 @@ def vae_offload_device():
return torch.device("cpu")
def vae_dtype():
if args.fp16_vae:
return torch.float16
elif args.bf16_vae:
return torch.bfloat16
else:
return torch.float32
global VAE_DTYPE
return VAE_DTYPE
def get_autocast_device(dev):
if hasattr(dev, 'type'):
@ -569,15 +576,19 @@ def is_device_mps(device):
return True
return False
def should_use_fp16(device=None, model_params=0):
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
global xpu_available
global directml_enabled
if device is not None:
if is_device_cpu(device):
return False
if FORCE_FP16:
return True
if device is not None: #TODO
if is_device_cpu(device) or is_device_mps(device):
if is_device_mps(device):
return False
if FORCE_FP32:
@ -610,7 +621,7 @@ def should_use_fp16(device=None, model_params=0):
if fp16_works:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
if model_params * 4 > free_model_memory:
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
if props.major < 7:
@ -636,6 +647,13 @@ def soft_empty_cache():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def resolve_lowvram_weight(weight, model, key):
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
key_split = key.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device.
op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
weight = op._hf_hook.weights_map[key_split[-1]]
return weight
#TODO: might be cleaner to put this somewhere else
import threading

270
comfy/model_patcher.py Normal file
View File

@ -0,0 +1,270 @@
import torch
import copy
import inspect
import comfy.utils
class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0, current_device=None):
self.size = size
self.model = model
self.patches = {}
self.backup = {}
self.model_options = {"transformer_options":{}}
self.model_size()
self.load_device = load_device
self.offload_device = offload_device
if current_device is None:
self.current_device = self.offload_device
else:
self.current_device = current_device
def model_size(self):
if self.size > 0:
return self.size
model_sd = self.model.state_dict()
size = 0
for k in model_sd:
t = model_sd[k]
size += t.nelement() * t.element_size()
self.size = size
self.model_keys = set(model_sd.keys())
return size
def clone(self):
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
n.model_options = copy.deepcopy(self.model_options)
n.model_keys = self.model_keys
return n
def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model:
return True
return False
def set_model_sampler_cfg_function(self, sampler_cfg_function):
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
else:
self.model_options["sampler_cfg_function"] = sampler_cfg_function
def set_model_unet_function_wrapper(self, unet_wrapper_function):
self.model_options["model_function_wrapper"] = unet_wrapper_function
def set_model_patch(self, patch, name):
to = self.model_options["transformer_options"]
if "patches" not in to:
to["patches"] = {}
to["patches"][name] = to["patches"].get(name, []) + [patch]
def set_model_patch_replace(self, patch, name, block_name, number):
to = self.model_options["transformer_options"]
if "patches_replace" not in to:
to["patches_replace"] = {}
if name not in to["patches_replace"]:
to["patches_replace"][name] = {}
to["patches_replace"][name][(block_name, number)] = patch
def set_model_attn1_patch(self, patch):
self.set_model_patch(patch, "attn1_patch")
def set_model_attn2_patch(self, patch):
self.set_model_patch(patch, "attn2_patch")
def set_model_attn1_replace(self, patch, block_name, number):
self.set_model_patch_replace(patch, "attn1", block_name, number)
def set_model_attn2_replace(self, patch, block_name, number):
self.set_model_patch_replace(patch, "attn2", block_name, number)
def set_model_attn1_output_patch(self, patch):
self.set_model_patch(patch, "attn1_output_patch")
def set_model_attn2_output_patch(self, patch):
self.set_model_patch(patch, "attn2_output_patch")
def model_patches_to(self, device):
to = self.model_options["transformer_options"]
if "patches" in to:
patches = to["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"):
patch_list[i] = patch_list[i].to(device)
if "patches_replace" in to:
patches = to["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
if hasattr(patch_list[k], "to"):
patch_list[k] = patch_list[k].to(device)
def model_dtype(self):
if hasattr(self.model, "get_dtype"):
return self.model.get_dtype()
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
p = set()
for k in patches:
if k in self.model_keys:
p.add(k)
current_patches = self.patches.get(k, [])
current_patches.append((strength_patch, patches[k], strength_model))
self.patches[k] = current_patches
return list(p)
def get_key_patches(self, filter_prefix=None):
model_sd = self.model_state_dict()
p = {}
for k in model_sd:
if filter_prefix is not None:
if not k.startswith(filter_prefix):
continue
if k in self.patches:
p[k] = [model_sd[k]] + self.patches[k]
else:
p[k] = (model_sd[k],)
return p
def model_state_dict(self, filter_prefix=None):
sd = self.model.state_dict()
keys = list(sd.keys())
if filter_prefix is not None:
for k in keys:
if not k.startswith(filter_prefix):
sd.pop(k)
return sd
def patch_model(self, device_to=None):
model_sd = self.model_state_dict()
for key in self.patches:
if key not in model_sd:
print("could not patch. key doesn't exist in model:", k)
continue
weight = model_sd[key]
if key not in self.backup:
self.backup[key] = weight.to(self.offload_device)
if device_to is not None:
temp_weight = weight.float().to(device_to, copy=True)
else:
temp_weight = weight.to(torch.float32, copy=True)
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
comfy.utils.set_attr(self.model, key, out_weight)
del temp_weight
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
return self.model
def calculate_weight(self, patches, weight, key):
for p in patches:
alpha = p[0]
v = p[1]
strength_model = p[2]
if strength_model != 1.0:
weight *= strength_model
if isinstance(v, list):
v = (self.calculate_weight(v[1:], v[0].clone(), key), )
if len(v) == 1:
w1 = v[0]
if alpha != 0.0:
if w1.shape != weight.shape:
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += alpha * w1.type(weight.dtype).to(weight.device)
elif len(v) == 4: #lora/locon
mat1 = v[0].float().to(weight.device)
mat2 = v[1].float().to(weight.device)
if v[2] is not None:
alpha *= v[2] / mat2.shape[0]
if v[3] is not None:
#locon mid weights, hopefully the math is fine because I didn't properly test it
mat3 = v[3].float().to(weight.device)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif len(v) == 8: #lokr
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(w1_a.float(), w1_b.float())
else:
w1 = w1.float().to(weight.device)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(w2_a.float().to(weight.device), w2_b.float().to(weight.device))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2_b.float().to(weight.device), w2_a.float().to(weight.device))
else:
w2 = w2.float().to(weight.device)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha *= v[2] / dim
try:
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
else: #loha
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha *= v[2] / w1b.shape[0]
w2a = v[3]
w2b = v[4]
if v[5] is not None: #cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float().to(weight.device), w1b.float().to(weight.device), w1a.float().to(weight.device))
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2b.float().to(weight.device), w2a.float().to(weight.device))
else:
m1 = torch.mm(w1a.float().to(weight.device), w1b.float().to(weight.device))
m2 = torch.mm(w2a.float().to(weight.device), w2b.float().to(weight.device))
try:
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
return weight
def unpatch_model(self, device_to=None):
keys = list(self.backup.keys())
for k in keys:
comfy.utils.set_attr(self.model, k, self.backup[k])
self.backup = {}
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to

View File

@ -22,7 +22,7 @@ from ..cli_args import args
from ..cmd import folder_paths, latent_preview
from ..nodes.common import MAX_RESOLUTION
import comfy.controlnet
class CLIPTextEncode:
@classmethod
@ -226,14 +226,16 @@ class VAEDecode:
class VAEDecodeTiled:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
"tile_size": ("INT", {"default": 512, "min": 192, "max": 4096, "step": 64})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "_for_testing"
def decode(self, vae, samples):
return (vae.decode_tiled(samples["samples"]), )
def decode(self, vae, samples, tile_size):
return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
class VAEEncode:
@classmethod
@ -262,15 +264,17 @@ class VAEEncode:
class VAEEncodeTiled:
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "_for_testing"
def encode(self, vae, pixels):
def encode(self, vae, pixels, tile_size):
pixels = VAEEncode.vae_encode_crop_pixels(pixels)
t = vae.encode_tiled(pixels[:,:,:,:3])
t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
return ({"samples":t}, )
class VAEEncodeForInpaint:
@ -552,7 +556,7 @@ class ControlNetLoader:
def load_controlnet(self, control_net_name):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = sd.load_controlnet(controlnet_path)
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
return (controlnet,)
class DiffControlNetLoader:
@ -568,7 +572,7 @@ class DiffControlNetLoader:
def load_controlnet(self, model, control_net_name):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = sd.load_controlnet(controlnet_path, model)
controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
return (controlnet,)
@ -1292,7 +1296,7 @@ class LoadImage:
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(files), )},
{"image": (sorted(files), {"image_upload": True})},
}
CATEGORY = "image"
@ -1335,7 +1339,7 @@ class LoadImageMask:
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(files), ),
{"image": (sorted(files), {"image_upload": True}),
"channel": (s._color_channels, ), }
}

View File

@ -28,9 +28,18 @@ def conv_nd(dims, *args, **kwargs):
raise ValueError(f"unsupported dimensions: {dims}")
@contextmanager
def use_comfy_ops(): # Kind of an ugly hack but I can't think of a better way
def use_comfy_ops(device=None, dtype=None): # Kind of an ugly hack but I can't think of a better way
old_torch_nn_linear = torch.nn.Linear
torch.nn.Linear = Linear
force_device = device
force_dtype = dtype
def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None):
if force_device is not None:
device = force_device
if force_dtype is not None:
dtype = force_dtype
return Linear(in_features, out_features, bias=bias, device=device, dtype=dtype)
torch.nn.Linear = linear_with_dtype
try:
yield
finally:

View File

@ -51,18 +51,20 @@ def get_models_from_cond(cond, model_type):
models += [c[1][model_type]]
return models
def get_additional_models(positive, negative):
def get_additional_models(positive, negative, dtype):
"""loads additional models in positive and negative conditioning"""
control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
inference_memory = 0
control_models = []
for m in control_nets:
control_models += m.get_models()
inference_memory += m.inference_memory_requirements(dtype)
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
gligen = [x[1] for x in gligen]
models = control_models + gligen
return models
return models, inference_memory
def cleanup_additional_models(models):
"""cleanup additional models that were loaded"""
@ -77,8 +79,8 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
noise_mask = prepare_mask(noise_mask, noise.shape, device)
real_model = None
models = get_additional_models(positive, negative)
model_management.load_models_gpu([model] + models, model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]))
models, inference_memory = get_additional_models(positive, negative, model.model_dtype())
model_management.load_models_gpu([model] + models, model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory)
real_model = model.model
noise = noise.to(device)

File diff suppressed because it is too large Load Diff

View File

@ -44,7 +44,7 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
"hidden"
]
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None): # clip-vit-base-patch32
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
self.num_layers = 12
@ -57,17 +57,21 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
textmodel_json_config = resource_filename('comfy', 'sd1_clip_config.json')
config = CLIPTextConfig.from_json_file(textmodel_json_config)
self.num_layers = config.num_hidden_layers
with ops.use_comfy_ops():
with ops.use_comfy_ops(device, dtype):
with modeling_utils.no_init_weights():
self.transformer = CLIPTextModel(config)
if dtype is not None:
self.transformer.to(dtype)
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = None
self.empty_tokens = [[49406] + [49407] * 76]
self.text_projection = None
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.layer_norm_hidden_state = True
if layer == "hidden":
assert layer_idx is not None
@ -140,9 +144,9 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if backup_embeds.weight.dtype != torch.float32:
precision_scope = torch.autocast
else:
precision_scope = contextlib.nullcontext
precision_scope = lambda a, b: contextlib.nullcontext(a)
with precision_scope(model_management.get_autocast_device(device)):
with precision_scope(model_management.get_autocast_device(device), torch.float32):
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
self.transformer.set_input_embeddings(backup_embeds)
@ -157,13 +161,17 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
pooled_output = outputs.pooler_output
if self.text_projection is not None:
pooled_output = pooled_output.to(self.text_projection.device) @ self.text_projection
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
return z.float(), pooled_output.float()
def encode(self, tokens):
return self(tokens)
def load_sd(self, sd):
if "text_projection" in sd:
self.text_projection[:] = sd.pop("text_projection")
if "text_projection.weight" in sd:
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
return self.transformer.load_state_dict(sd, strict=False)
def parse_parentheses(string):

View File

@ -1,11 +1,10 @@
from pkg_resources import resource_filename
from . import sd1_clip
import torch
import os
class SD2ClipModel(sd1_clip.SD1ClipModel):
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None):
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
if layer == "penultimate":
layer="hidden"
layer_idx=23
@ -13,7 +12,7 @@ class SD2ClipModel(sd1_clip.SD1ClipModel):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json")
if not os.path.exists(textmodel_json_config):
textmodel_json_config = resource_filename('comfy', 'sd2_clip_config.json')
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path)
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
self.empty_tokens = [[49406] + [49407] + [0] * 75]
def clip_layer(self, layer_idx):

View File

@ -17,7 +17,7 @@
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 1,
"projection_dim": 512,
"projection_dim": 1024,
"torch_dtype": "float32",
"vocab_size": 49408
}

View File

@ -3,23 +3,17 @@ import torch
import os
class SDXLClipG(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
if layer == "penultimate":
layer="hidden"
layer_idx=-2
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path)
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
self.empty_tokens = [[49406] + [49407] + [0] * 75]
self.text_projection = torch.nn.Parameter(torch.empty(1280, 1280))
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.layer_norm_hidden_state = False
def load_sd(self, sd):
if "text_projection" in sd:
self.text_projection[:] = sd.pop("text_projection")
if "text_projection.weight" in sd:
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
return super().load_sd(sd)
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer):
@ -42,11 +36,11 @@ class SDXLTokenizer(sd1_clip.SD1Tokenizer):
return self.clip_g.untokenize(token_weight_pair)
class SDXLClipModel(torch.nn.Module):
def __init__(self, device="cpu"):
def __init__(self, device="cpu", dtype=None):
super().__init__()
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device)
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device, dtype=dtype)
self.clip_l.layer_norm_hidden_state = False
self.clip_g = SDXLClipG(device=device)
self.clip_g = SDXLClipG(device=device, dtype=dtype)
def clip_layer(self, layer_idx):
self.clip_l.clip_layer(layer_idx)
@ -70,9 +64,9 @@ class SDXLClipModel(torch.nn.Module):
return self.clip_l.load_sd(sd)
class SDXLRefinerClipModel(torch.nn.Module):
def __init__(self, device="cpu"):
def __init__(self, device="cpu", dtype=None):
super().__init__()
self.clip_g = SDXLClipG(device=device)
self.clip_g = SDXLClipG(device=device, dtype=dtype)
def clip_layer(self, layer_idx):
self.clip_g.clip_layer(layer_idx)

View File

@ -101,17 +101,30 @@ class ResnetBlock(nn.Module):
class Adapter(nn.Module):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, xl=True):
super(Adapter, self).__init__()
self.unshuffle = nn.PixelUnshuffle(8)
self.unshuffle_amount = 8
resblock_no_downsample = []
resblock_downsample = [3, 2, 1]
self.xl = xl
if self.xl:
self.unshuffle_amount = 16
resblock_no_downsample = [1]
resblock_downsample = [2]
self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
for i in range(len(channels)):
for j in range(nums_rb):
if (i != 0) and (j == 0):
if (i in resblock_downsample) and (j == 0):
self.body.append(
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
elif (i in resblock_no_downsample) and (j == 0):
self.body.append(
ResnetBlock(channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
else:
self.body.append(
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
@ -128,8 +141,16 @@ class Adapter(nn.Module):
for j in range(self.nums_rb):
idx = i * self.nums_rb + j
x = self.body[idx](x)
features.append(None)
features.append(None)
if self.xl:
features.append(None)
if i == 0:
features.append(None)
features.append(None)
if i == 2:
features.append(None)
else:
features.append(None)
features.append(None)
features.append(x)
return features
@ -243,10 +264,14 @@ class extractor(nn.Module):
class Adapter_light(nn.Module):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
super(Adapter_light, self).__init__()
self.unshuffle = nn.PixelUnshuffle(8)
self.unshuffle_amount = 8
self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
self.xl = False
for i in range(len(channels)):
if i == 0:
self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False))

View File

@ -34,6 +34,13 @@ def save_torch_file(sd, ckpt, metadata=None):
else:
safetensors.torch.save_file(sd, ckpt)
def calculate_parameters(sd, prefix=""):
params = 0
for k in sd.keys():
if k.startswith(prefix):
params += sd[k].nelement()
return params
def transformers_convert(sd, prefix_from, prefix_to, number):
keys_to_replace = {
"{}positional_embedding": "{}embeddings.position_embedding.weight",
@ -232,6 +239,20 @@ def safetensors_header(safetensors_path, max_size=100*1024*1024):
return None
return f.read(length_of_header)
def set_attr(obj, attr, value):
attrs = attr.split(".")
for name in attrs[:-1]:
obj = getattr(obj, name)
prev = getattr(obj, attrs[-1])
setattr(obj, attrs[-1], torch.nn.Parameter(value))
del prev
def get_attr(obj, attr):
attrs = attr.split(".")
for name in attrs:
obj = getattr(obj, name)
return obj
def bislerp(samples, width, height):
def slerp(b1, b2, r):
'''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''

View File

@ -0,0 +1,167 @@
import {app} from "../../scripts/app.js";
function setNodeMode(node, mode) {
node.mode = mode;
node.graph.change();
}
app.registerExtension({
name: "Comfy.GroupOptions",
setup() {
const orig = LGraphCanvas.prototype.getCanvasMenuOptions;
// graph_mouse
LGraphCanvas.prototype.getCanvasMenuOptions = function () {
const options = orig.apply(this, arguments);
const group = this.graph.getGroupOnPos(this.graph_mouse[0], this.graph_mouse[1]);
if (!group) {
return options;
}
// Group nodes aren't recomputed until the group is moved, this ensures the nodes are up-to-date
group.recomputeInsideNodes();
const nodesInGroup = group._nodes;
// No nodes in group, return default options
if (nodesInGroup.length === 0) {
return options;
} else {
// Add a separator between the default options and the group options
options.push(null);
}
// Check if all nodes are the same mode
let allNodesAreSameMode = true;
for (let i = 1; i < nodesInGroup.length; i++) {
if (nodesInGroup[i].mode !== nodesInGroup[0].mode) {
allNodesAreSameMode = false;
break;
}
}
// Modes
// 0: Always
// 1: On Event
// 2: Never
// 3: On Trigger
// 4: Bypass
// If all nodes are the same mode, add a menu option to change the mode
if (allNodesAreSameMode) {
const mode = nodesInGroup[0].mode;
switch (mode) {
case 0:
// All nodes are always, option to disable, and bypass
options.push({
content: "Set Group Nodes to Never",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 2);
}
}
});
options.push({
content: "Bypass Group Nodes",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 4);
}
}
});
break;
case 2:
// All nodes are never, option to enable, and bypass
options.push({
content: "Set Group Nodes to Always",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 0);
}
}
});
options.push({
content: "Bypass Group Nodes",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 4);
}
}
});
break;
case 4:
// All nodes are bypass, option to enable, and disable
options.push({
content: "Set Group Nodes to Always",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 0);
}
}
});
options.push({
content: "Set Group Nodes to Never",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 2);
}
}
});
break;
default:
// All nodes are On Trigger or On Event(Or other?), option to disable, set to always, or bypass
options.push({
content: "Set Group Nodes to Always",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 0);
}
}
});
options.push({
content: "Set Group Nodes to Never",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 2);
}
}
});
options.push({
content: "Bypass Group Nodes",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 4);
}
}
});
break;
}
} else {
// Nodes are not all the same mode, add a menu option to change the mode to always, never, or bypass
options.push({
content: "Set Group Nodes to Always",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 0);
}
}
});
options.push({
content: "Set Group Nodes to Never",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 2);
}
}
});
options.push({
content: "Bypass Group Nodes",
callback: () => {
for (const node of nodesInGroup) {
setNodeMode(node, 4);
}
}
});
}
return options
}
}
});

View File

@ -5,7 +5,7 @@ import { app } from "../../scripts/app.js";
app.registerExtension({
name: "Comfy.UploadImage",
async beforeRegisterNodeDef(nodeType, nodeData, app) {
if (nodeData.name === "LoadImage" || nodeData.name === "LoadImageMask") {
if (nodeData?.input?.required?.image?.[1]?.image_upload === true) {
nodeData.input.required.upload = ["IMAGEUPLOAD"];
}
},

View File

@ -299,11 +299,17 @@ export const ComfyWidgets = {
const defaultVal = inputData[1].default || "";
const multiline = !!inputData[1].multiline;
let res;
if (multiline) {
return addMultilineWidget(node, inputName, { defaultVal, ...inputData[1] }, app);
res = addMultilineWidget(node, inputName, { defaultVal, ...inputData[1] }, app);
} else {
return { widget: node.addWidget("text", inputName, defaultVal, () => {}, {}) };
res = { widget: node.addWidget("text", inputName, defaultVal, () => {}, {}) };
}
if(inputData[1].dynamicPrompts != undefined)
res.widget.dynamicPrompts = inputData[1].dynamicPrompts;
return res;
},
COMBO(node, inputName, inputData) {
const type = inputData[0];