Merge branch 'comfyanonymous:master' into master

This commit is contained in:
patientx 2024-08-22 23:36:58 +03:00 committed by GitHub
commit dec75f11e4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 24 additions and 14 deletions

View File

@ -575,7 +575,9 @@ def loaded_models(only_currently_used=False):
def cleanup_models(keep_clone_weights_loaded=False):
to_delete = []
for i in range(len(current_loaded_models)):
if sys.getrefcount(current_loaded_models[i].model) <= 2:
#TODO: very fragile function needs improvement
num_refs = sys.getrefcount(current_loaded_models[i].model) - current_loaded_models[i].model.lowvram_patch_counter()
if num_refs <= 2:
if not keep_clone_weights_loaded:
to_delete = [i] + to_delete
#TODO: find a less fragile way to do this.
@ -898,7 +900,8 @@ def pytorch_attention_flash_attention():
def force_upcast_attention_dtype():
upcast = args.force_upcast_attention
try:
if platform.mac_ver()[0] in ['14.5']: #black image bug on OSX Sonoma 14.5
macos_version = tuple(int(n) for n in platform.mac_ver()[0].split("."))
if (14, 5) <= macos_version < (14, 7): # black image bug on recent versions of MacOS
upcast = True
except:
pass

View File

@ -20,31 +20,36 @@ import torch
import comfy.model_management
from comfy.cli_args import args
def cast_to(weight, dtype=None, device=None, non_blocking=False):
if (dtype is None or weight.dtype == dtype) and (device is None or weight.device == device):
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=True):
if not copy and (dtype is None or weight.dtype == dtype) and (device is None or weight.device == device):
return weight
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
return r
def cast_to_input(weight, input, non_blocking=False):
return cast_to(weight, input.dtype, input.device, non_blocking=non_blocking)
def cast_to_input(weight, input, non_blocking=False, copy=True):
return cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
def cast_bias_weight(s, input=None, dtype=None, device=None):
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
bias = None
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if s.bias is not None:
bias = cast_to(s.bias, dtype, device, non_blocking=non_blocking)
if s.bias_function is not None:
has_function = s.bias_function is not None
bias = cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function:
bias = s.bias_function(bias)
weight = cast_to(s.weight, dtype, device, non_blocking=non_blocking)
if s.weight_function is not None:
has_function = s.weight_function is not None
weight = cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
if has_function:
weight = s.weight_function(weight)
return weight, bias
@ -252,7 +257,8 @@ def fp8_linear(self, input):
if len(input.shape) == 3:
inn = input.reshape(-1, input.shape[2]).to(dtype)
non_blocking = comfy.model_management.device_supports_non_blocking(input.device)
w = cast_to(self.weight, device=input.device, non_blocking=non_blocking).t()
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input.dtype)
w = w.t()
scale_weight = self.scale_weight
scale_input = self.scale_input
@ -263,8 +269,8 @@ def fp8_linear(self, input):
if scale_input is None:
scale_input = torch.ones((1), device=input.device, dtype=torch.float32)
if self.bias is not None:
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, bias=cast_to_input(self.bias, input, non_blocking=non_blocking), scale_a=scale_input, scale_b=scale_weight)
if bias is not None:
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
else:
o = torch._scaled_mm(inn, w, out_dtype=input.dtype, scale_a=scale_input, scale_b=scale_weight)

View File

@ -654,6 +654,7 @@ class Flux(supported_models_base.BASE):
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_key = "{}t5xxl.transformer.encoder.final_layer_norm.weight".format(pref)
dtype_t5 = None
if t5_key in state_dict:
dtype_t5 = state_dict[t5_key].dtype
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(dtype_t5=dtype_t5))