Merge branch 'master' of github.com:comfyanonymous/ComfyUI

This commit is contained in:
doctorpangloss 2025-08-22 13:24:52 -07:00
commit dfc47e0611
73 changed files with 4955 additions and 2263 deletions

View File

@ -22,7 +22,7 @@ body:
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: true
required: false
- type: textarea
attributes:
label: Expected Behavior

View File

@ -18,7 +18,7 @@ body:
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: true
required: false
- type: textarea
attributes:
label: Your question

View File

@ -5,20 +5,21 @@
# Inlined the team members for now.
# Maintainers
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
# Python web server
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
# Node developers
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
/comfy_api_nodes/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill

View File

@ -44,6 +44,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
- [HiDream E1.1](https://comfyanonymous.github.io/ComfyUI_examples/hidream/#hidream-e11)
- [Qwen Image Edit](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/#edit-model)
- Video Models
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.3.49"
__version__ = "0.3.51"

View File

@ -363,10 +363,17 @@ class UserManager():
if not overwrite and os.path.exists(path):
return web.Response(status=409, text="File already exists")
body = await request.read()
try:
body = await request.read()
with open(path, "wb") as f:
f.write(body)
with open(path, "wb") as f:
f.write(body)
except OSError as e:
logging.warning(f"Error saving file '{path}': {e}")
return web.Response(
status=400,
reason="Invalid filename. Please avoid special characters like :\\/*?\"<>|"
)
user_path = self.get_request_user_filepath(request, None)
if full_info:

View File

@ -127,6 +127,7 @@ def _create_parser() -> EnhancedConfigArgParser:
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.")
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
parser.add_argument("--disable-smart-memory", action="store_true",
help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")

View File

@ -155,6 +155,7 @@ class Configuration(dict):
cache_classic (bool): WARNING: Unused. Use the old style (aggressive) caching.
cache_none (bool): Reduced RAM/VRAM usage at the expense of executing every node for each run.
async_offload (bool): Use async weight offloading.
force_non_blocking (bool): Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.
default_hashing_function (str): Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.
mmap_torch_files (bool): Use mmap when loading ckpt/pt files.
disable_mmap (bool): Don't use mmap when loading safetensors.
@ -274,6 +275,7 @@ class Configuration(dict):
self.cache_classic: bool = False
self.cache_none: bool = False
self.async_offload: bool = False
self.force_non_blocking: bool = False
self.default_hashing_function: str = 'sha256'
self.mmap_torch_files: bool = False
self.disable_mmap: bool = False

View File

@ -98,7 +98,7 @@ class CLIPTextModel_(torch.nn.Module):
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32, embeds_info=[]):
if embeds is not None:
x = embeds + ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
else:

View File

@ -756,6 +756,13 @@ class PromptExecutor:
if ex is not None and self.raise_exceptions:
raise ex
def execute(self, prompt, prompt_id, extra_data=None, execute_outputs=None):
if execute_outputs is None:
execute_outputs = []
if extra_data is None:
extra_data = {}
asyncio.run(self.execute_async(prompt, prompt_id, extra_data, execute_outputs))
async def execute_async(self, prompt, prompt_id, extra_data={}, execute_outputs=[]):
# torchao and potentially other optimization approaches break when the models are created in inference mode
# todo: this should really be backpropagated to code which creates ModelPatchers via lazy evaluation rather than globally checked here
@ -1109,7 +1116,7 @@ def full_type_name(klass):
@tracer.start_as_current_span("Validate Prompt")
async def validate_prompt(prompt_id: typing.Any, prompt: typing.Mapping[str, typing.Any], partial_execution_list: typing.Union[list[str], None]=None) -> ValidationTuple:
async def validate_prompt(prompt_id: typing.Any, prompt: typing.Mapping[str, typing.Any], partial_execution_list: typing.Union[list[str], None] = None) -> ValidationTuple:
# todo: partial_execution_list=None, because nobody uses these features
res = await _validate_prompt(prompt_id, prompt, partial_execution_list)
if not res.valid:
@ -1132,7 +1139,7 @@ async def validate_prompt(prompt_id: typing.Any, prompt: typing.Mapping[str, typ
return res
async def _validate_prompt(prompt_id: typing.Any, prompt: typing.Mapping[str, typing.Any], partial_execution_list: typing.Union[list[str], None]=None) -> ValidationTuple:
async def _validate_prompt(prompt_id: typing.Any, prompt: typing.Mapping[str, typing.Any], partial_execution_list: typing.Union[list[str], None] = None) -> ValidationTuple:
outputs = set()
for x in prompt:
if 'class_type' not in prompt[x]:

View File

@ -109,6 +109,7 @@ def init_default_paths(folder_names_and_paths: FolderNames, configuration: Optio
ModelPaths(["photomaker"], supported_extensions=set(supported_pt_extensions)),
ModelPaths(["classifiers"], supported_extensions=set()),
ModelPaths(["huggingface"], supported_extensions=set()),
ModelPaths(["model_patches"], supported_extensions=set(supported_pt_extensions)),
hf_cache_paths,
hf_xet,
]

540
comfy/context_windows.py Normal file
View File

@ -0,0 +1,540 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Callable
import torch
import numpy as np
import collections
from dataclasses import dataclass
from abc import ABC, abstractmethod
import logging
import comfy.model_management
import comfy.patcher_extension
if TYPE_CHECKING:
from comfy.model_base import BaseModel
from comfy.model_patcher import ModelPatcher
from comfy.controlnet import ControlBase
class ContextWindowABC(ABC):
def __init__(self):
...
@abstractmethod
def get_tensor(self, full: torch.Tensor) -> torch.Tensor:
"""
Get torch.Tensor applicable to current window.
"""
raise NotImplementedError("Not implemented.")
@abstractmethod
def add_window(self, full: torch.Tensor, to_add: torch.Tensor) -> torch.Tensor:
"""
Apply torch.Tensor of window to the full tensor, in place. Returns reference to updated full tensor, not a copy.
"""
raise NotImplementedError("Not implemented.")
class ContextHandlerABC(ABC):
def __init__(self):
...
@abstractmethod
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
raise NotImplementedError("Not implemented.")
@abstractmethod
def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: ContextWindowABC, device=None) -> list:
raise NotImplementedError("Not implemented.")
@abstractmethod
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
raise NotImplementedError("Not implemented.")
class IndexListContextWindow(ContextWindowABC):
def __init__(self, index_list: list[int], dim: int=0):
self.index_list = index_list
self.context_length = len(index_list)
self.dim = dim
def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
if dim == 0 and full.shape[dim] == 1:
return full
idx = [slice(None)] * dim + [self.index_list]
return full[idx].to(device)
def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
idx = [slice(None)] * dim + [self.index_list]
full[idx] += to_add
return full
class IndexListCallbacks:
EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results"
EXECUTE_START = "execute_start"
EXECUTE_CLEANUP = "execute_cleanup"
def init_callbacks(self):
return {}
@dataclass
class ContextSchedule:
name: str
func: Callable
@dataclass
class ContextFuseMethod:
name: str
func: Callable
ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
class IndexListContextHandler(ContextHandlerABC):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
self.context_schedule = context_schedule
self.fuse_method = fuse_method
self.context_length = context_length
self.context_overlap = context_overlap
self.context_stride = context_stride
self.closed_loop = closed_loop
self.dim = dim
self._step = 0
self.callbacks = {}
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
if x_in.size(self.dim) > self.context_length:
logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
return True
return False
def prepare_control_objects(self, control: ControlBase, device=None) -> ControlBase:
if control.previous_controlnet is not None:
self.prepare_control_objects(control.previous_controlnet, device)
return control
def get_resized_cond(self, cond_in: list[dict], x_in: torch.Tensor, window: IndexListContextWindow, device=None) -> list:
if cond_in is None:
return None
# reuse or resize cond items to match context requirements
resized_cond = []
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond_in:
resized_actual_cond = actual_cond.copy()
# now we are in the inner dict - "pooled_output" is a tensor, "control" is a ControlBase object, "model_conds" is dictionary
for key in actual_cond:
try:
cond_item = actual_cond[key]
if isinstance(cond_item, torch.Tensor):
# check that tensor is the expected length - x.size(0)
if self.dim < cond_item.ndim and cond_item.size(self.dim) == x_in.size(self.dim):
# if so, it's subsetting time - tell controls the expected indeces so they can handle them
actual_cond_item = window.get_tensor(cond_item)
resized_actual_cond[key] = actual_cond_item.to(device)
else:
resized_actual_cond[key] = cond_item.to(device)
# look for control
elif key == "control":
resized_actual_cond[key] = self.prepare_control_objects(cond_item, device)
elif isinstance(cond_item, dict):
new_cond_item = cond_item.copy()
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
for cond_key, cond_value in new_cond_item.items():
if isinstance(cond_value, torch.Tensor):
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
# if has cond that is a Tensor, check if needs to be subset
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
elif cond_key == "num_video_frames": # for SVD
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
new_cond_item[cond_key].cond = window.context_length
resized_actual_cond[key] = new_cond_item
else:
resized_actual_cond[key] = cond_item
finally:
del cond_item # just in case to prevent VRAM issues
resized_cond.append(resized_actual_cond)
return resized_cond
def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
matches = torch.nonzero(mask)
if torch.numel(matches) == 0:
raise Exception("No sample_sigmas matched current timestep; something went wrong.")
self._step = int(matches[0].item())
def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
full_length = x_in.size(self.dim) # TODO: choose dim based on model
context_windows = self.context_schedule.func(full_length, self, model_options)
context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
return context_windows
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
self.set_step(timestep, model_options)
context_windows = self.get_context_windows(model, x_in, model_options)
enumerated_context_windows = list(enumerate(context_windows))
conds_final = [torch.zeros_like(x_in) for _ in conds]
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
counts_final = [torch.ones(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
else:
counts_final = [torch.zeros(get_shape_for_dim(x_in, self.dim), device=x_in.device) for _ in conds]
biases_final = [([0.0] * x_in.shape[self.dim]) for _ in conds]
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_START, self.callbacks):
callback(self, model, x_in, conds, timestep, model_options)
for enum_window in enumerated_context_windows:
results = self.evaluate_context_windows(calc_cond_batch, model, x_in, conds, timestep, [enum_window], model_options)
for result in results:
self.combine_context_window_results(x_in, result.sub_conds_out, result.sub_conds, result.window, result.window_idx, len(enumerated_context_windows), timestep,
conds_final, counts_final, biases_final)
try:
# finalize conds
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
# relative is already normalized, so return as is
del counts_final
return conds_final
else:
# normalize conds via division by context usage counts
for i in range(len(conds_final)):
conds_final[i] /= counts_final[i]
del counts_final
return conds_final
finally:
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EXECUTE_CLEANUP, self.callbacks):
callback(self, model, x_in, conds, timestep, model_options)
def evaluate_context_windows(self, calc_cond_batch: Callable, model: BaseModel, x_in: torch.Tensor, conds, timestep: torch.Tensor, enumerated_context_windows: list[tuple[int, IndexListContextWindow]],
model_options, device=None, first_device=None):
results: list[ContextResults] = []
for window_idx, window in enumerated_context_windows:
# allow processing to end between context window executions for faster Cancel
comfy.model_management.throw_exception_if_processing_interrupted()
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.EVALUATE_CONTEXT_WINDOWS, self.callbacks):
callback(self, model, x_in, conds, timestep, model_options, window_idx, window, model_options, device, first_device)
# update exposed params
model_options["transformer_options"]["context_window"] = window
# get subsections of x, timestep, conds
sub_x = window.get_tensor(x_in, device)
sub_timestep = window.get_tensor(timestep, device, dim=0)
sub_conds = [self.get_resized_cond(cond, x_in, window, device) for cond in conds]
sub_conds_out = calc_cond_batch(model, sub_conds, sub_x, sub_timestep, model_options)
if device is not None:
for i in range(len(sub_conds_out)):
sub_conds_out[i] = sub_conds_out[i].to(x_in.device)
results.append(ContextResults(window_idx, sub_conds_out, sub_conds, window))
return results
def combine_context_window_results(self, x_in: torch.Tensor, sub_conds_out, sub_conds, window: IndexListContextWindow, window_idx: int, total_windows: int, timestep: torch.Tensor,
conds_final: list[torch.Tensor], counts_final: list[torch.Tensor], biases_final: list[torch.Tensor]):
if self.fuse_method.name == ContextFuseMethods.RELATIVE:
for pos, idx in enumerate(window.index_list):
# bias is the influence of a specific index in relation to the whole context window
bias = 1 - abs(idx - (window.index_list[0] + window.index_list[-1]) / 2) / ((window.index_list[-1] - window.index_list[0] + 1e-2) / 2)
bias = max(1e-2, bias)
# take weighted average relative to total bias of current idx
for i in range(len(sub_conds_out)):
bias_total = biases_final[i][idx]
prev_weight = (bias_total / (bias_total + bias))
new_weight = (bias / (bias_total + bias))
# account for dims of tensors
idx_window = [slice(None)] * self.dim + [idx]
pos_window = [slice(None)] * self.dim + [pos]
# apply new values
conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
biases_final[i][idx] = bias_total + bias
else:
# add conds and counts based on weights of fuse method
weights = get_context_weights(window.context_length, x_in.shape[self.dim], window.index_list, self, sigma=timestep)
weights_tensor = match_weights_to_dim(weights, x_in, self.dim, device=x_in.device)
for i in range(len(sub_conds_out)):
window.add_window(conds_final[i], sub_conds_out[i] * weights_tensor)
window.add_window(counts_final[i], weights_tensor)
for callback in comfy.patcher_extension.get_all_callbacks(IndexListCallbacks.COMBINE_CONTEXT_WINDOW_RESULTS, self.callbacks):
callback(self, x_in, sub_conds_out, sub_conds, window, window_idx, total_windows, timestep, conds_final, counts_final, biases_final)
def _prepare_sampling_wrapper(executor, model, noise_shape: torch.Tensor, *args, **kwargs):
# limit noise_shape length to context_length for more accurate vram use estimation
model_options = kwargs.get("model_options", None)
if model_options is None:
raise Exception("model_options not found in prepare_sampling_wrapper; this should never happen, something went wrong.")
handler: IndexListContextHandler = model_options.get("context_handler", None)
if handler is not None:
noise_shape = list(noise_shape)
noise_shape[handler.dim] = min(noise_shape[handler.dim], handler.context_length)
return executor(model, noise_shape, *args, **kwargs)
def create_prepare_sampling_wrapper(model: ModelPatcher):
model.add_wrapper_with_key(
comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING,
"ContextWindows_prepare_sampling",
_prepare_sampling_wrapper
)
def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
total_dims = len(x_in.shape)
weights_tensor = torch.Tensor(weights).to(device=device)
for _ in range(dim):
weights_tensor = weights_tensor.unsqueeze(0)
for _ in range(total_dims - dim - 1):
weights_tensor = weights_tensor.unsqueeze(-1)
return weights_tensor
def get_shape_for_dim(x_in: torch.Tensor, dim: int) -> list[int]:
total_dims = len(x_in.shape)
shape = []
for _ in range(dim):
shape.append(1)
shape.append(x_in.shape[dim])
for _ in range(total_dims - dim - 1):
shape.append(1)
return shape
class ContextSchedules:
UNIFORM_LOOPED = "looped_uniform"
UNIFORM_STANDARD = "standard_uniform"
STATIC_STANDARD = "standard_static"
BATCHED = "batched"
# from https://github.com/neggles/animatediff-cli/blob/main/src/animatediff/pipelines/context.py
def create_windows_uniform_looped(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
windows = []
if num_frames < handler.context_length:
windows.append(list(range(num_frames)))
return windows
context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
# obtain uniform windows as normal, looping and all
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(handler._step)))
for j in range(
int(ordered_halving(handler._step) * context_step) + pad,
num_frames + pad + (0 if handler.closed_loop else -handler.context_overlap),
(handler.context_length * context_step - handler.context_overlap),
):
windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])
return windows
def create_windows_uniform_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
# unlike looped, uniform_straight does NOT allow windows that loop back to the beginning;
# instead, they get shifted to the corresponding end of the frames.
# in the case that a window (shifted or not) is identical to the previous one, it gets skipped.
windows = []
if num_frames <= handler.context_length:
windows.append(list(range(num_frames)))
return windows
context_stride = min(handler.context_stride, int(np.ceil(np.log2(num_frames / handler.context_length))) + 1)
# first, obtain uniform windows as normal, looping and all
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(handler._step)))
for j in range(
int(ordered_halving(handler._step) * context_step) + pad,
num_frames + pad + (-handler.context_overlap),
(handler.context_length * context_step - handler.context_overlap),
):
windows.append([e % num_frames for e in range(j, j + handler.context_length * context_step, context_step)])
# now that windows are created, shift any windows that loop, and delete duplicate windows
delete_idxs = []
win_i = 0
while win_i < len(windows):
# if window is rolls over itself, need to shift it
is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
if is_roll:
roll_val = windows[win_i][roll_idx] # roll_val might not be 0 for windows of higher strides
shift_window_to_end(windows[win_i], num_frames=num_frames)
# check if next window (cyclical) is missing roll_val
if roll_val not in windows[(win_i+1) % len(windows)]:
# need to insert new window here - just insert window starting at roll_val
windows.insert(win_i+1, list(range(roll_val, roll_val + handler.context_length)))
# delete window if it's not unique
for pre_i in range(0, win_i):
if windows[win_i] == windows[pre_i]:
delete_idxs.append(win_i)
break
win_i += 1
# reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
delete_idxs.reverse()
for i in delete_idxs:
windows.pop(i)
return windows
def create_windows_static_standard(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
windows = []
if num_frames <= handler.context_length:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows
delta = handler.context_length - handler.context_overlap
for start_idx in range(0, num_frames, delta):
# if past the end of frames, move start_idx back to allow same context_length
ending = start_idx + handler.context_length
if ending >= num_frames:
final_delta = ending - num_frames
final_start_idx = start_idx - final_delta
windows.append(list(range(final_start_idx, final_start_idx + handler.context_length)))
break
windows.append(list(range(start_idx, start_idx + handler.context_length)))
return windows
def create_windows_batched(num_frames: int, handler: IndexListContextHandler, model_options: dict[str]):
windows = []
if num_frames <= handler.context_length:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows;
# no overlap, just cut up based on context_length;
# last window size will be different if num_frames % opts.context_length != 0
for start_idx in range(0, num_frames, handler.context_length):
windows.append(list(range(start_idx, min(start_idx + handler.context_length, num_frames))))
return windows
def create_windows_default(num_frames: int, handler: IndexListContextHandler):
return [list(range(num_frames))]
CONTEXT_MAPPING = {
ContextSchedules.UNIFORM_LOOPED: create_windows_uniform_looped,
ContextSchedules.UNIFORM_STANDARD: create_windows_uniform_standard,
ContextSchedules.STATIC_STANDARD: create_windows_static_standard,
ContextSchedules.BATCHED: create_windows_batched,
}
def get_matching_context_schedule(context_schedule: str) -> ContextSchedule:
func = CONTEXT_MAPPING.get(context_schedule, None)
if func is None:
raise ValueError(f"Unknown context_schedule '{context_schedule}'.")
return ContextSchedule(context_schedule, func)
def get_context_weights(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, sigma: torch.Tensor=None):
return handler.fuse_method.func(length, sigma=sigma, handler=handler, full_length=full_length, idxs=idxs)
def create_weights_flat(length: int, **kwargs) -> list[float]:
# weight is the same for all
return [1.0] * length
def create_weights_pyramid(length: int, **kwargs) -> list[float]:
# weight is based on the distance away from the edge of the context window;
# based on weighted average concept in FreeNoise paper
if length % 2 == 0:
max_weight = length // 2
weight_sequence = list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1))
else:
max_weight = (length + 1) // 2
weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
return weight_sequence
def create_weights_overlap_linear(length: int, full_length: int, idxs: list[int], handler: IndexListContextHandler, **kwargs):
# based on code in Kijai's WanVideoWrapper: https://github.com/kijai/ComfyUI-WanVideoWrapper/blob/dbb2523b37e4ccdf45127e5ae33e31362f755c8e/nodes.py#L1302
# only expected overlap is given different weights
weights_torch = torch.ones((length))
# blend left-side on all except first window
if min(idxs) > 0:
ramp_up = torch.linspace(1e-37, 1, handler.context_overlap)
weights_torch[:handler.context_overlap] = ramp_up
# blend right-side on all except last window
if max(idxs) < full_length-1:
ramp_down = torch.linspace(1, 1e-37, handler.context_overlap)
weights_torch[-handler.context_overlap:] = ramp_down
return weights_torch
class ContextFuseMethods:
FLAT = "flat"
PYRAMID = "pyramid"
RELATIVE = "relative"
OVERLAP_LINEAR = "overlap-linear"
LIST = [PYRAMID, FLAT, OVERLAP_LINEAR]
LIST_STATIC = [PYRAMID, RELATIVE, FLAT, OVERLAP_LINEAR]
FUSE_MAPPING = {
ContextFuseMethods.FLAT: create_weights_flat,
ContextFuseMethods.PYRAMID: create_weights_pyramid,
ContextFuseMethods.RELATIVE: create_weights_pyramid,
ContextFuseMethods.OVERLAP_LINEAR: create_weights_overlap_linear,
}
def get_matching_fuse_method(fuse_method: str) -> ContextFuseMethod:
func = FUSE_MAPPING.get(fuse_method, None)
if func is None:
raise ValueError(f"Unknown fuse_method '{fuse_method}'.")
return ContextFuseMethod(fuse_method, func)
# Returns fraction that has denominator that is a power of 2
def ordered_halving(val):
# get binary value, padded with 0s for 64 bits
bin_str = f"{val:064b}"
# flip binary value, padding included
bin_flip = bin_str[::-1]
# convert binary to int
as_int = int(bin_flip, 2)
# divide by 1 << 64, equivalent to 2**64, or 18446744073709551616,
# or b10000000000000000000000000000000000000000000000000000000000000000 (1 with 64 zero's)
return as_int / (1 << 64)
def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
all_indexes = list(range(num_frames))
for w in windows:
for val in w:
try:
all_indexes.remove(val)
except ValueError:
pass
return all_indexes
def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
prev_val = -1
for i, val in enumerate(window):
val = val % num_frames
if val < prev_val:
return True, i
prev_val = val
return False, -1
def shift_window_to_start(window: list[int], num_frames: int):
start_val = window[0]
for i in range(len(window)):
# 1) subtract each element by start_val to move vals relative to the start of all frames
# 2) add num_frames and take modulus to get adjusted vals
window[i] = ((window[i] - start_val) + num_frames) % num_frames
def shift_window_to_end(window: list[int], num_frames: int):
# 1) shift window to start
shift_window_to_start(window, num_frames)
end_val = window[-1]
end_delta = num_frames - end_val - 1
for i in range(len(window)):
# 2) add end_delta to each val to slide windows to end
window[i] = window[i] + end_delta

View File

@ -38,6 +38,7 @@ from .ldm.hydit.controlnet import HunYuanControlNet
from .t2i_adapter import adapter
from .model_base import convert_tensor
from .model_management import cast_to_device
from .ldm.qwen_image.controlnet import QwenImageControlNetModel
if TYPE_CHECKING:
from .hooks import HookGroup
@ -240,11 +241,11 @@ class ControlNet(ControlBase):
self.cond_hint = None
compression_ratio = self.compression_ratio
if self.vae is not None:
compression_ratio *= self.vae.downscale_ratio
compression_ratio *= self.vae.spacial_compression_encode()
else:
if self.latent_format is not None:
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[-1] * compression_ratio, x_noisy.shape[-2] * compression_ratio, self.upscale_algorithm, "center")
self.cond_hint = self.preprocess_image(self.cond_hint)
if self.vae is not None:
loaded_models = model_management.loaded_models(only_currently_used=True)
@ -657,6 +658,16 @@ def load_controlnet_flux_instantx(sd, model_options=None):
return control
def load_controlnet_qwen_instantx(sd, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
control_model = QwenImageControlNetModel(operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, sd)
latent_format = comfy.latent_formats.Wan21()
extra_conds = []
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def convert_mistoline(sd):
return utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
@ -732,8 +743,11 @@ def load_controlnet_state_dict(state_dict, model=None, model_options=None, ckpt_
return load_controlnet_sd35(controlnet_data, model_options=model_options) # Stability sd3.5 format
else:
return load_controlnet_mmdit(controlnet_data, model_options=model_options) # SD3 diffusers controlnet
elif "transformer_blocks.0.img_mlp.net.0.proj.weight" in controlnet_data:
return load_controlnet_qwen_instantx(controlnet_data, model_options=model_options)
elif "controlnet_x_embedder.weight" in controlnet_data:
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
elif "controlnet_blocks.0.linear.weight" in controlnet_data: # mistoline flux
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)

View File

@ -225,19 +225,27 @@ class Flux(nn.Module):
if ref_latents is not None:
h = 0
w = 0
index = 0
index_ref_method = kwargs.get("ref_latents_method", "offset") == "index"
for ref in ref_latents:
h_offset = 0
w_offset = 0
if ref.shape[-2] + h > ref.shape[-1] + w:
w_offset = w
if index_ref_method:
index += 1
h_offset = 0
w_offset = 0
else:
h_offset = h
index = 1
h_offset = 0
w_offset = 0
if ref.shape[-2] + h > ref.shape[-1] + w:
w_offset = w
else:
h_offset = h
h = max(h, ref.shape[-2] + h_offset)
w = max(w, ref.shape[-1] + w_offset)
kontext, kontext_ids = self.process_img(ref, index=1, h_offset=h_offset, w_offset=w_offset)
kontext, kontext_ids = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
img = torch.cat([img, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
h = max(h, ref.shape[-2] + h_offset)
w = max(w, ref.shape[-1] + w_offset)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))

View File

@ -178,7 +178,7 @@ class FourierEmbedder(nn.Module):
class CrossAttentionProcessor:
def __call__(self, attn, q, k, v):
out = F.scaled_dot_product_attention(q, k, v)
out = comfy.ops.scaled_dot_product_attention(q, k, v)
return out

View File

@ -480,7 +480,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
mask = mask.unsqueeze(1)
if SDP_BATCH_LIMIT >= b:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = comfy.ops.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
if not skip_output_reshape:
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
@ -493,7 +493,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
if mask.shape[0] > 1:
m = mask[i: i + SDP_BATCH_LIMIT]
out[i: i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(
out[i: i + SDP_BATCH_LIMIT] = comfy.ops.scaled_dot_product_attention(
q[i: i + SDP_BATCH_LIMIT],
k[i: i + SDP_BATCH_LIMIT],
v[i: i + SDP_BATCH_LIMIT],

View File

@ -295,7 +295,7 @@ def pytorch_attention(q, k, v):
)
try:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = comfy.ops.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = out.transpose(2, 3).reshape(orig_shape)
except model_management.OOM_EXCEPTION:
logger.warning("scaled_dot_product_attention OOMed: switched to slice attention")

View File

@ -0,0 +1,77 @@
import torch
import math
from .model import QwenImageTransformer2DModel
class QwenImageControlNetModel(QwenImageTransformer2DModel):
def __init__(
self,
extra_condition_channels=0,
dtype=None,
device=None,
operations=None,
**kwargs
):
super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)
self.main_model_double = 60
# controlnet_blocks
self.controlnet_blocks = torch.nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
self.controlnet_blocks.append(operations.Linear(self.inner_dim, self.inner_dim, device=device, dtype=dtype))
self.controlnet_x_embedder = operations.Linear(self.in_channels + extra_condition_channels, self.inner_dim, device=device, dtype=dtype)
def forward(
self,
x,
timesteps,
context,
attention_mask=None,
guidance: torch.Tensor = None,
ref_latents=None,
hint=None,
transformer_options={},
**kwargs
):
timestep = timesteps
encoder_hidden_states = context
encoder_hidden_states_mask = attention_mask
hidden_states, img_ids, orig_shape = self.process_img(x)
hint, _, _ = self.process_img(hint)
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states) + self.controlnet_x_embedder(hint)
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
encoder_hidden_states = self.txt_in(encoder_hidden_states)
if guidance is not None:
guidance = guidance * 1000
temb = (
self.time_text_embed(timestep, hidden_states)
if guidance is None
else self.time_text_embed(timestep, guidance, hidden_states)
)
repeat = math.ceil(self.main_model_double / len(self.controlnet_blocks))
controlnet_block_samples = ()
for i, block in enumerate(self.transformer_blocks):
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
controlnet_block_samples = controlnet_block_samples + (self.controlnet_blocks[i](hidden_states),) * repeat
return {"input": controlnet_block_samples[:self.main_model_double]}

View File

@ -294,13 +294,14 @@ class QwenImageTransformer2DModel(nn.Module):
guidance_embeds: bool = False,
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
image_model=None,
dtype=None,
final_layer=True, dtype=None,
device=None,
operations=None,
):
super().__init__()
self.dtype = dtype
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = out_channels or in_channels
self.inner_dim = num_attention_heads * attention_head_dim
@ -330,25 +331,29 @@ class QwenImageTransformer2DModel(nn.Module):
for _ in range(num_layers)
])
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
self.gradient_checkpointing = False
if final_layer:
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
def pos_embeds(self, x, context):
def process_img(self, x, index=0, h_offset=0, w_offset=0):
bs, c, t, h, w = x.shape
patch_size = self.patch_size
hidden_states = pad_to_patch_size(x, (1, self.patch_size, self.patch_size))
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
txt_start = round(max(h_len, w_len))
txt_ids = torch.linspace(txt_start, txt_start + context.shape[1], steps=context.shape[1], device=x.device, dtype=x.dtype).reshape(1, -1, 1).repeat(bs, 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
return self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) - (h_len // 2)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) - (w_len // 2)
return hidden_states, repeat(img_ids, "h w c -> b (h w) c", b=bs), orig_shape
def forward(
self,
@ -357,19 +362,48 @@ class QwenImageTransformer2DModel(nn.Module):
context,
attention_mask=None,
guidance: torch.Tensor = None,
ref_latents=None,
transformer_options={},
control=None,
**kwargs
):
timestep = timesteps
encoder_hidden_states = context
encoder_hidden_states_mask = attention_mask
image_rotary_emb = self.pos_embeds(x, context)
hidden_states, img_ids, orig_shape = self.process_img(x)
num_embeds = hidden_states.shape[1]
hidden_states = pad_to_patch_size(x, (1, self.patch_size, self.patch_size))
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
if ref_latents is not None:
h = 0
w = 0
index = 0
index_ref_method = kwargs.get("ref_latents_method", "index") == "index"
for ref in ref_latents:
if index_ref_method:
index += 1
h_offset = 0
w_offset = 0
else:
index = 1
h_offset = 0
w_offset = 0
if ref.shape[-2] + h > ref.shape[-1] + w:
w_offset = w
else:
h_offset = h
h = max(h, ref.shape[-2] + h_offset)
w = max(w, ref.shape[-1] + w_offset)
kontext, kontext_ids, _ = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
hidden_states = torch.cat([hidden_states, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states)
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
@ -384,18 +418,45 @@ class QwenImageTransformer2DModel(nn.Module):
else self.time_text_embed(timestep, guidance, hidden_states)
)
for block in self.transformer_blocks:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
patches_replace = transformer_options.get("patches_replace", {})
patches = transformer_options.get("patches", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb}, {"original_block": block_wrap})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
hidden_states += add
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
hidden_states = hidden_states.permute(0, 3, 1, 4, 2, 5)
return hidden_states.reshape(orig_shape)[:, :, :, :x.shape[-2], :x.shape[-1]]

View File

@ -391,6 +391,7 @@ class WanModel(torch.nn.Module):
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
in_dim_ref_conv=None,
image_model=None,
device=None,
dtype=None,
@ -484,6 +485,11 @@ class WanModel(torch.nn.Module):
else:
self.img_emb = None
if in_dim_ref_conv is not None:
self.ref_conv = operations.Conv2d(in_dim_ref_conv, dim, kernel_size=patch_size[1:], stride=patch_size[1:], device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
else:
self.ref_conv = None
def forward_orig(
self,
x,
@ -526,6 +532,13 @@ class WanModel(torch.nn.Module):
e = e.reshape(t.shape[0], -1, e.shape[-1])
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
full_ref = None
if self.ref_conv is not None:
full_ref = kwargs.get("reference_latent", None)
if full_ref is not None:
full_ref = self.ref_conv(full_ref).flatten(2).transpose(1, 2)
x = torch.concat((full_ref, x), dim=1)
# context
context = self.text_embedding(context)
@ -552,6 +565,9 @@ class WanModel(torch.nn.Module):
# head
x = self.head(x, e)
if full_ref is not None:
x = x[:, full_ref.shape[1]:]
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
@ -570,6 +586,9 @@ class WanModel(torch.nn.Module):
x = torch.cat([x, time_dim_concat], dim=2)
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
if self.ref_conv is not None and "reference_latent" in kwargs:
t_len += 1
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
@ -749,7 +768,12 @@ class CameraWanModel(WanModel):
operations=None,
):
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
if model_type == 'camera':
model_type = 'i2v'
else:
model_type = 't2v'
super().__init__(model_type=model_type, patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings)

View File

@ -313,6 +313,7 @@ def model_lora_keys_unet(model, key_map=None):
key_map["{}".format(key_lora)] = k
# Support transformer prefix format
key_map["transformer.{}".format(key_lora)] = k
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
return key_map

View File

@ -928,6 +928,10 @@ class Flux(BaseModel):
for lat in ref_latents:
latents.append(self.process_latent_in(lat))
out['ref_latents'] = conds.CONDList(latents)
ref_latents_method = kwargs.get("reference_latents_method", None)
if ref_latents_method is not None:
out['ref_latents_method'] = conds.CONDConstant(ref_latents_method)
return out
def extra_conds_shapes(self, **kwargs):
@ -1169,7 +1173,11 @@ class WAN21(BaseModel):
mask = mask.repeat(1, 4, 1, 1, 1)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((mask, image), dim=1)
concat_mask_index = kwargs.get("concat_mask_index", 0)
if concat_mask_index != 0:
return torch.cat((image[:, :concat_mask_index], mask, image[:, concat_mask_index:]), dim=1)
else:
return torch.cat((mask, image), dim=1)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
@ -1184,6 +1192,10 @@ class WAN21(BaseModel):
time_dim_concat = kwargs.get("time_dim_concat", None)
if time_dim_concat is not None:
out['time_dim_concat'] = conds.CONDRegular(self.process_latent_in(time_dim_concat))
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
out['reference_latent'] = conds.CONDRegular(self.process_latent_in(reference_latents[-1])[:, :, 0])
return out
@ -1365,10 +1377,28 @@ class Omnigen2(BaseModel):
class QwenImage(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=QwenImageTransformer2DModel)
self.memory_usage_factor_conds = ("ref_latents",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = conds.CONDRegular(cross_attn)
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
latents = []
for lat in ref_latents:
latents.append(self.process_latent_in(lat))
out['ref_latents'] = conds.CONDList(latents)
ref_latents_method = kwargs.get("reference_latents_method", None)
if ref_latents_method is not None:
out['ref_latents_method'] = conds.CONDConstant(ref_latents_method)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out

View File

@ -370,7 +370,10 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["vace_in_dim"] = state_dict['{}vace_patch_embedding.weight'.format(key_prefix)].shape[1]
dit_config["vace_layers"] = count_blocks(state_dict_keys, '{}vace_blocks.'.format(key_prefix) + '{}.')
elif '{}control_adapter.conv.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "camera"
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "camera"
else:
dit_config["model_type"] = "camera_2.2"
else:
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
@ -379,6 +382,11 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
flf_weight = state_dict.get('{}img_emb.emb_pos'.format(key_prefix))
if flf_weight is not None:
dit_config["flf_pos_embed_token_number"] = flf_weight.shape[1]
ref_conv_weight = state_dict.get('{}ref_conv.weight'.format(key_prefix))
if ref_conv_weight is not None:
dit_config["in_dim_ref_conv"] = ref_conv_weight.shape[1]
return dit_config
if '{}latent_in.weight'.format(key_prefix) in state_dict_keys: # Hunyuan 3D
@ -490,6 +498,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}txt_norm.weight'.format(key_prefix) in state_dict_keys: # Qwen Image
dit_config = {}
dit_config["image_model"] = "qwen_image"
dit_config["in_channels"] = state_dict['{}img_in.weight'.format(key_prefix)].shape[1]
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:

View File

@ -102,7 +102,6 @@ try:
torch_version = torch.version.__version__
temp = torch_version.split(".")
torch_version_numeric = (int(temp[0]), int(temp[1]))
xpu_available = (torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] <= 4)) and torch.xpu.is_available()
except:
pass
@ -126,11 +125,14 @@ if args.directml is not None:
try:
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, noqa: F401
_ = torch.xpu.device_count()
xpu_available = xpu_available or torch.xpu.is_available()
except:
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
pass
try:
_ = torch.xpu.device_count()
xpu_available = torch.xpu.is_available()
except:
xpu_available = False
try:
if torch.backends.mps.is_available():
@ -369,9 +371,9 @@ try:
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 8):
if any((a in arch) for a in ["gfx1201"]):
ENABLE_PYTORCH_ATTENTION = True
# if torch_version_numeric >= (2, 8):
# if any((a in arch) for a in ["gfx1201"]):
# ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
if any((a in arch) for a in ["gfx1201", "gfx942", "gfx950"]): # TODO: more arches
SUPPORT_FP8_OPS = True
@ -386,7 +388,7 @@ if ENABLE_PYTORCH_ATTENTION:
PRIORITIZE_FP16 = False # TODO: remove and replace with something that shows exactly which dtype is faster than the other
try:
if is_nvidia() and PerformanceFeature.Fp16Accumulation in args.fast:
if (is_nvidia() or is_amd()) and PerformanceFeature.Fp16Accumulation in args.fast:
torch.backends.cuda.matmul.allow_fp16_accumulation = True
PRIORITIZE_FP16 = True # TODO: limit to cards where it actually boosts performance
logger.info("Enabled fp16 accumulation.")
@ -682,7 +684,13 @@ def _load_models_gpu(models: Sequence[ModelManageable], memory_required: int = 0
else:
minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory())
models = set(models)
models_temp = set()
for m in models:
models_temp.add(m)
for mm in m.model_patches_models():
models_temp.add(mm)
models = models_temp
models_to_load = []
models_freed = []
@ -1063,10 +1071,12 @@ def pick_weight_dtype(dtype, fallback_dtype, device=None):
def device_supports_non_blocking(device):
if torch.jit.is_tracing() or torch.jit.is_scripting():
return True
if args.force_non_blocking:
return True
if is_device_mps(device):
return False # pytorch bug? mps doesn't support non blocking
if is_intel_xpu():
return True
if is_intel_xpu(): #xpu does support non blocking but it is slower on iGPUs for some reason so disable by default until situation changes
return False
if args.deterministic: # TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
return False
if directml_device:
@ -1441,10 +1451,10 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False
if is_intel_xpu():
if torch_version_numeric < (2, 6):
if torch_version_numeric < (2, 3):
return True
else:
return torch.xpu.get_device_capability(device)['has_bfloat16_conversions']
return torch.xpu.is_bf16_supported()
if is_ascend_npu():
return True

View File

@ -485,6 +485,9 @@ class ModelPatcher(ModelManageable):
def set_model_forward_timestep_embed_patch(self, patch):
self.set_model_patch(patch, "forward_timestep_embed_patch")
def set_model_double_block_patch(self, patch):
self.set_model_patch(patch, "double_block")
def add_object_patch(self, name, obj):
self.object_patches[name] = obj
@ -553,6 +556,30 @@ class ModelPatcher(ModelManageable):
if hasattr(wrap_func, "to"):
self.model_options["model_function_wrapper"] = wrap_func.to(device)
def model_patches_models(self):
to = self.model_options["transformer_options"]
models = []
if "patches" in to:
patches = to["patches"]
for name in patches:
patch_list = patches[name]
for i in range(len(patch_list)):
if hasattr(patch_list[i], "models"):
models += patch_list[i].models()
if "patches_replace" in to:
patches = to["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
if hasattr(patch_list[k], "models"):
models += patch_list[k].models()
if "model_function_wrapper" in self.model_options:
wrap_func = self.model_options["model_function_wrapper"]
if hasattr(wrap_func, "models"):
models += wrap_func.models()
return models
def model_dtype(self):
# this pokes into the internals of diffusion model a little bit
# todo: the base model isn't going to be aware that its diffusion model is patched this way

View File

@ -26,11 +26,36 @@ from .cli_args import args, PerformanceFeature
from .execution_context import current_execution_context
from .float import stochastic_rounding
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
try:
if torch.cuda.is_available():
from torch.nn.attention import SDPBackend, sdpa_kernel
import inspect
if "set_priority" in inspect.signature(sdpa_kernel).parameters:
SDPA_BACKEND_PRIORITY = [
SDPBackend.FLASH_ATTENTION,
SDPBackend.EFFICIENT_ATTENTION,
SDPBackend.MATH,
]
SDPA_BACKEND_PRIORITY.insert(0, SDPBackend.CUDNN_ATTENTION)
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
with sdpa_kernel(SDPA_BACKEND_PRIORITY, set_priority=True):
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
else:
logging.warning("Torch version too old to set sdpa backend priority.")
except (ModuleNotFoundError, TypeError):
logging.warning("Could not set sdpa backend priority.")
cast_to = model_management.cast_to # TODO: remove once no more references
logger = logging.getLogger(__name__)
def cast_to_input(weight, input, non_blocking=False, copy=True):
return model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)

View File

@ -1,6 +1,7 @@
import torch
from .model_management import cast_to
import numbers
import logging
RMSNorm = None
@ -9,6 +10,7 @@ try:
RMSNorm = torch.nn.RMSNorm
except:
rms_norm_torch = None
logging.warning("Please update pytorch to use native RMSNorm")
def rms_norm(x, weight=None, eps=1e-6):

View File

@ -163,7 +163,7 @@ def cleanup_models(conds, models):
cleanup_additional_models(set(control_cleanup))
def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
def prepare_model_patcher(model: ModelPatcher, conds, model_options: dict):
'''
Registers hooks from conds.
'''
@ -172,8 +172,8 @@ def prepare_model_patcher(model: 'ModelPatcher', conds, model_options: dict):
for k in conds:
get_hooks_from_cond(conds[k], hooks)
# add wrappers and callbacks from ModelPatcher to transformer_options
model_options["transformer_options"]["wrappers"] = patcher_extension.copy_nested_dicts(model.wrappers)
model_options["transformer_options"]["callbacks"] = patcher_extension.copy_nested_dicts(model.callbacks)
patcher_extension.merge_nested_dicts(model_options["transformer_options"].setdefault("wrappers", {}), model.wrappers, copy_dict1=False)
patcher_extension.merge_nested_dicts(model_options["transformer_options"].setdefault("callbacks", {}), model.callbacks, copy_dict1=False)
# begin registering hooks
registered = HookGroup()
target_dict = create_target_dict(EnumWeightTarget.Model)

View File

@ -23,6 +23,7 @@ from .model_base import BaseModel
from .model_management_types import ModelOptions
from .model_patcher import ModelPatcher
from .sampler_names import SCHEDULER_NAMES, SAMPLER_NAMES
from .context_windows import ContextHandlerABC
logger = logging.getLogger(__name__)
@ -32,6 +33,7 @@ def add_area_dims(area, num_dims):
area = [2147483648] + area[:len(area) // 2] + [0] + area[len(area) // 2:]
return area
def get_area_and_mult(conds, x_in, timestep_in):
dims = tuple(x_in.shape[2:])
area = None
@ -210,7 +212,14 @@ def finalize_default_conds(model: BaseModel, hooked_to_run: dict[HookGroup, list
hooked_to_run[p.hooks] += [(p, i)]
def calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
def calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options: dict[str]):
handler: ContextHandlerABC = model_options.get("context_handler", None)
if handler is None or not handler.should_use_context(model, conds, x_in, timestep, model_options):
return _calc_cond_batch_outer(model, conds, x_in, timestep, model_options)
return handler.execute(_calc_cond_batch_outer, model, conds, x_in, timestep, model_options)
def _calc_cond_batch_outer(model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
executor = patcher_extension.WrapperExecutor.new_executor(
_calc_cond_batch,
patcher_extension.get_all_wrappers(patcher_extension.WrappersMP.CALC_COND_BATCH, model_options, is_model_options=True)
@ -754,6 +763,7 @@ class Sampler:
sigma = float(sigmas[0])
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
self.sampler_function = sampler_function

View File

@ -229,17 +229,19 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
tokens_embed = self.transformer.get_input_embeddings()(tokens_embed, out_dtype=torch.float32)
index = 0
pad_extra = 0
embeds_info = []
for o in other_embeds:
emb = o[1]
if torch.is_tensor(emb):
emb = {"type": "embedding", "data": emb}
extra = None
emb_type = emb.get("type", None)
if emb_type == "embedding":
emb = emb.get("data", None)
else:
if hasattr(self.transformer, "preprocess_embed"):
emb = self.transformer.preprocess_embed(emb, device=device)
emb, extra = self.transformer.preprocess_embed(emb, device=device)
else:
emb = None
@ -254,6 +256,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
tokens_embed = torch.cat([tokens_embed[:, :ind], emb, tokens_embed[:, ind:]], dim=1)
attention_mask = attention_mask[:ind] + [1] * emb_shape + attention_mask[ind:]
index += emb_shape - 1
embeds_info.append({"type": emb_type, "index": ind, "size": emb_shape, "extra": extra})
else:
index += -1
pad_extra += emb_shape
@ -268,11 +271,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
attention_masks.append(attention_mask)
num_tokens.append(sum(attention_mask))
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info
def forward(self, tokens):
device = self.transformer.get_input_embeddings().weight.device
embeds, attention_mask, num_tokens = self.process_tokens(tokens, device)
embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device)
attention_mask_model = None
if self.enable_attention_masks:
@ -283,7 +286,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
else:
intermediate_output = self.layer_idx
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32, embeds_info=embeds_info)
if self.layer == "last":
z = outputs[0].float()
@ -644,7 +647,10 @@ class SDTokenizer:
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
if kwargs.get("disable_weights", False):
parsed_weights = [(text, 1.0)]
else:
parsed_weights = token_weights(text, 1.0)
vocab = self.tokenizer.get_vocab()
# tokenize words

View File

@ -1129,6 +1129,18 @@ class WAN21_Camera(WAN21_T2V):
return out
class WAN22_Camera(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "camera_2.2",
"in_dim": 36,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
return out
class WAN21_Vace(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
@ -1327,6 +1339,7 @@ class Omnigen2(supported_models_base.BASE):
hunyuan_detect = hunyuan_video.llama_detect(state_dict, "{}qwen25_3b.transformer.".format(pref))
return supported_models_base.ClipTarget(omnigen2.Omnigen2Tokenizer, omnigen2.te(**hunyuan_detect))
class QwenImage(supported_models_base.BASE):
unet_config = {
"image_model": "qwen_image",
@ -1337,7 +1350,7 @@ class QwenImage(supported_models_base.BASE):
"shift": 1.15,
}
memory_usage_factor = 1.8 #TODO
memory_usage_factor = 1.8 # TODO
unet_extra_config = {}
latent_format = latent_formats.Wan21
@ -1357,6 +1370,6 @@ class QwenImage(supported_models_base.BASE):
return supported_models_base.ClipTarget(qwen_image.QwenImageTokenizer, qwen_image.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2, QwenImage]
models += [SVD_img2vid]

View File

@ -118,7 +118,7 @@ class BertModel_(torch.nn.Module):
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
x = self.embeddings(input_tokens, embeds=embeds, dtype=dtype)
mask = None
if attention_mask is not None:

View File

@ -1,8 +1,11 @@
import torch
import torch.nn as nn
import math
from dataclasses import dataclass
from typing import Optional, Any
import torch
import torch.nn as nn
from . import qwen_vl
from ..ldm.common_dit import rms_norm
from ..ldm.modules.attention import optimized_attention_for_device
@ -23,6 +26,7 @@ class Llama2Config:
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
@dataclass
@ -41,6 +45,7 @@ class Qwen25_3BConfig:
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = True
rope_dims = None
@dataclass
@ -59,6 +64,7 @@ class Qwen25_7BVLI_Config:
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = True
rope_dims = [16, 24, 24]
@dataclass
@ -77,6 +83,7 @@ class Gemma2_2B_Config:
rms_norm_add = True
mlp_activation = "gelu_pytorch_tanh"
qkv_bias = False
rope_dims = None
class RMSNorm(nn.Module):
@ -101,24 +108,30 @@ def rotate_half(x):
return torch.cat((-x2, x1), dim=-1)
def precompute_freqs_cis(head_dim, seq_len, theta, device=None):
def precompute_freqs_cis(head_dim, position_ids, theta, rope_dims=None, device=None):
theta_numerator = torch.arange(0, head_dim, 2, device=device).float()
inv_freq = 1.0 / (theta ** (theta_numerator / head_dim))
position_ids = torch.arange(0, seq_len, device=device).unsqueeze(0)
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
if rope_dims is not None and position_ids.shape[0] > 1:
mrope_section = rope_dims * 2
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(0)
else:
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
return (cos, sin)
def apply_rope(xq, xk, freqs_cis):
cos = freqs_cis[0].unsqueeze(1)
sin = freqs_cis[1].unsqueeze(1)
cos = freqs_cis[0]
sin = freqs_cis[1]
q_embed = (xq * cos) + (rotate_half(xq) * sin)
k_embed = (xk * cos) + (rotate_half(xk) * sin)
return q_embed, k_embed
@ -282,7 +295,7 @@ class Llama2_(nn.Module):
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]):
if embeds is not None:
x = embeds
else:
@ -291,9 +304,13 @@ class Llama2_(nn.Module):
if self.normalize_in:
x *= self.config.hidden_size ** 0.5
if position_ids is None:
position_ids = torch.arange(0, x.shape[1], device=x.device).unsqueeze(0)
freqs_cis = precompute_freqs_cis(self.config.head_dim,
x.shape[1],
position_ids,
self.config.rope_theta,
self.config.rope_dims,
device=x.device)
mask = None
@ -382,8 +399,37 @@ class Qwen25_7BVLI(BaseLlama, torch.nn.Module):
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.visual = qwen_vl.Qwen2VLVisionTransformer(hidden_size=1280, output_hidden_size=config.hidden_size, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
def preprocess_embed(self, embed, device):
if embed["type"] == "image":
image, grid = qwen_vl.process_qwen2vl_images(embed["data"])
return self.visual(image.to(device, dtype=torch.float32), grid), grid
return None, None
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
grid = None
for e in embeds_info:
if e.get("type") == "image":
grid = e.get("extra", None)
position_ids = torch.zeros((3, embeds.shape[1]), device=embeds.device)
start = e.get("index")
position_ids[:, :start] = torch.arange(0, start, device=embeds.device)
end = e.get("size") + start
len_max = int(grid.max()) // 2
start_next = len_max + start
position_ids[:, end:] = torch.arange(start_next, start_next + (embeds.shape[1] - end), device=embeds.device)
position_ids[0, start:end] = start
max_d = int(grid[0][1]) // 2
position_ids[1, start:end] = torch.arange(start, start + max_d, device=embeds.device).unsqueeze(1).repeat(1, math.ceil((end - start) / max_d)).flatten(0)[:end - start]
max_d = int(grid[0][2]) // 2
position_ids[2, start:end] = torch.arange(start, start + max_d, device=embeds.device).unsqueeze(0).repeat(math.ceil((end - start) / max_d), 1).flatten(0)[:end - start]
if grid is None:
position_ids = None
return super().forward(x, attention_mask=attention_mask, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=final_layer_norm_intermediate, dtype=dtype, position_ids=position_ids)
class Gemma2_2B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):

View File

@ -21,13 +21,27 @@ class QwenImageTokenizer(sd1_clip.SD1Tokenizer):
tokenizer_data = {}
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_7b", tokenizer=Qwen25_7BVLITokenizer)
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs):
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
if len(images) > 0:
llama_text = self.llama_template_images.format(text)
else:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
return super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs)
key_name = next(iter(tokens))
embed_count = 0
qwen_tokens = tokens[key_name]
for r in qwen_tokens:
for i in range(len(r)):
if r[i][0] == 151655:
if len(images) > embed_count:
r[i] = ({"type": "image", "data": images[embed_count], "original_type": "image"},) + r[i][1:]
embed_count += 1
return tokens
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):

View File

@ -0,0 +1,428 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
def process_qwen2vl_images(
images: torch.Tensor,
min_pixels: int = 3136,
max_pixels: int = 12845056,
patch_size: int = 14,
temporal_patch_size: int = 2,
merge_size: int = 2,
image_mean: list = None,
image_std: list = None,
):
if image_mean is None:
image_mean = [0.48145466, 0.4578275, 0.40821073]
if image_std is None:
image_std = [0.26862954, 0.26130258, 0.27577711]
batch_size, height, width, channels = images.shape
device = images.device
# dtype = images.dtype
images = images.permute(0, 3, 1, 2)
grid_thw_list = []
img = images[0]
factor = patch_size * merge_size
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = max(factor, math.floor(height / beta / factor) * factor)
w_bar = max(factor, math.floor(width / beta / factor) * factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
img_resized = F.interpolate(
img.unsqueeze(0),
size=(h_bar, w_bar),
mode='bilinear',
align_corners=False
).squeeze(0)
normalized = img_resized.clone()
for c in range(3):
normalized[c] = (img_resized[c] - image_mean[c]) / image_std[c]
grid_h = h_bar // patch_size
grid_w = w_bar // patch_size
grid_thw = torch.tensor([1, grid_h, grid_w], device=device, dtype=torch.long)
pixel_values = normalized
grid_thw_list.append(grid_thw)
image_grid_thw = torch.stack(grid_thw_list)
grid_t = 1
channel = pixel_values.shape[0]
pixel_values = pixel_values.unsqueeze(0).repeat(2, 1, 1, 1)
patches = pixel_values.reshape(
grid_t,
temporal_patch_size,
channel,
grid_h // merge_size,
merge_size,
patch_size,
grid_w // merge_size,
merge_size,
patch_size,
)
patches = patches.permute(0, 3, 6, 4, 7, 2, 1, 5, 8)
flatten_patches = patches.reshape(
grid_t * grid_h * grid_w,
channel * temporal_patch_size * patch_size * patch_size
)
return flatten_patches, image_grid_thw
class VisionPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 14,
temporal_patch_size: int = 2,
in_channels: int = 3,
embed_dim: int = 3584,
device=None,
dtype=None,
ops=None,
):
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.in_channels = in_channels
self.embed_dim = embed_dim
kernel_size = [temporal_patch_size, patch_size, patch_size]
self.proj = ops.Conv3d(
in_channels,
embed_dim,
kernel_size=kernel_size,
stride=kernel_size,
bias=False,
device=device,
dtype=dtype
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = hidden_states.view(
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
)
hidden_states = self.proj(hidden_states)
return hidden_states.view(-1, self.embed_dim)
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_vision(q, k, cos, sin):
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0):
super().__init__()
self.dim = dim
self.theta = theta
def forward(self, seqlen: int, device) -> torch.Tensor:
inv_freq = 1.0 / (self.theta ** (torch.arange(0, self.dim, 2, dtype=torch.float, device=device) / self.dim))
seq = torch.arange(seqlen, device=inv_freq.device, dtype=inv_freq.dtype)
freqs = torch.outer(seq, inv_freq)
return freqs
class PatchMerger(nn.Module):
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2, device=None, dtype=None, ops=None):
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size ** 2)
self.ln_q = ops.RMSNorm(context_dim, eps=1e-6, device=device, dtype=dtype)
self.mlp = nn.Sequential(
ops.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype),
nn.GELU(),
ops.Linear(self.hidden_size, dim, device=device, dtype=dtype),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ln_q(x).reshape(-1, self.hidden_size)
x = self.mlp(x)
return x
class VisionAttention(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, device=None, dtype=None, ops=None):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
self.scaling = self.head_dim ** -0.5
self.qkv = ops.Linear(hidden_size, hidden_size * 3, bias=True, device=device, dtype=dtype)
self.proj = ops.Linear(hidden_size, hidden_size, bias=True, device=device, dtype=dtype)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cu_seqlens=None,
optimized_attention=None,
) -> torch.Tensor:
if hidden_states.dim() == 2:
seq_length, _ = hidden_states.shape
batch_size = 1
hidden_states = hidden_states.unsqueeze(0)
else:
batch_size, seq_length, _ = hidden_states.shape
qkv = self.qkv(hidden_states)
qkv = qkv.reshape(batch_size, seq_length, 3, self.num_heads, self.head_dim)
query_states, key_states, value_states = qkv.reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
if position_embeddings is not None:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)
query_states = query_states.transpose(0, 1).unsqueeze(0)
key_states = key_states.transpose(0, 1).unsqueeze(0)
value_states = value_states.transpose(0, 1).unsqueeze(0)
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
splits = [
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
]
attn_outputs = [
optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
for q, k, v in zip(*splits)
]
attn_output = torch.cat(attn_outputs, dim=1)
attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output
class VisionMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, device=None, dtype=None, ops=None):
super().__init__()
self.gate_proj = ops.Linear(hidden_size, intermediate_size, bias=True, device=device, dtype=dtype)
self.up_proj = ops.Linear(hidden_size, intermediate_size, bias=True, device=device, dtype=dtype)
self.down_proj = ops.Linear(intermediate_size, hidden_size, bias=True, device=device, dtype=dtype)
self.act_fn = nn.SiLU()
def forward(self, hidden_state):
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
class VisionBlock(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, num_heads: int, device=None, dtype=None, ops=None):
super().__init__()
self.norm1 = ops.RMSNorm(hidden_size, eps=1e-6, device=device, dtype=dtype)
self.norm2 = ops.RMSNorm(hidden_size, eps=1e-6, device=device, dtype=dtype)
self.attn = VisionAttention(hidden_size, num_heads, device=device, dtype=dtype, ops=ops)
self.mlp = VisionMLP(hidden_size, intermediate_size, device=device, dtype=dtype, ops=ops)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cu_seqlens=None,
optimized_attention=None,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = self.attn(hidden_states, position_embeddings, cu_seqlens, optimized_attention)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Qwen2VLVisionTransformer(nn.Module):
def __init__(
self,
hidden_size: int = 3584,
output_hidden_size: int = 3584,
intermediate_size: int = 3420,
num_heads: int = 16,
num_layers: int = 32,
patch_size: int = 14,
temporal_patch_size: int = 2,
spatial_merge_size: int = 2,
window_size: int = 112,
device=None,
dtype=None,
ops=None
):
super().__init__()
self.hidden_size = hidden_size
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.window_size = window_size
self.fullatt_block_indexes = [7, 15, 23, 31]
self.patch_embed = VisionPatchEmbed(
patch_size=patch_size,
temporal_patch_size=temporal_patch_size,
in_channels=3,
embed_dim=hidden_size,
device=device,
dtype=dtype,
ops=ops,
)
head_dim = hidden_size // num_heads
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList([
VisionBlock(hidden_size, intermediate_size, num_heads, device, dtype, ops)
for _ in range(num_layers)
])
self.merger = PatchMerger(
dim=output_hidden_size,
context_dim=hidden_size,
spatial_merge_size=spatial_merge_size,
device=device,
dtype=dtype,
ops=ops,
)
def get_window_index(self, grid_thw):
window_index = []
cu_window_seqlens = [0]
window_index_id = 0
vit_merger_window_size = self.window_size // self.spatial_merge_size // self.patch_size
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h = grid_h // self.spatial_merge_size
llm_grid_w = grid_w // self.spatial_merge_size
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_size * self.spatial_merge_size + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
def get_position_embeddings(self, grid_thw, device):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h, device=device).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3).flatten()
wpos_ids = torch.arange(w, device=device).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3).flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size, device)
return rotary_pos_emb_full[pos_ids].flatten(1)
def forward(
self,
pixel_values: torch.Tensor,
image_grid_thw: Optional[torch.Tensor] = None,
) -> torch.Tensor:
optimized_attention = optimized_attention_for_device(pixel_values.device, mask=False, small_input=True)
hidden_states = self.patch_embed(pixel_values)
window_index, cu_window_seqlens = self.get_window_index(image_grid_thw)
cu_window_seqlens = torch.tensor(cu_window_seqlens, device=hidden_states.device)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
position_embeddings = self.get_position_embeddings(image_grid_thw, hidden_states.device)
seq_len, _ = hidden_states.size()
spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
hidden_states = hidden_states.reshape(seq_len // spatial_merge_unit, spatial_merge_unit, -1)
hidden_states = hidden_states[window_index, :, :]
hidden_states = hidden_states.reshape(seq_len, -1)
position_embeddings = position_embeddings.reshape(seq_len // spatial_merge_unit, spatial_merge_unit, -1)
position_embeddings = position_embeddings[window_index, :, :]
position_embeddings = position_embeddings.reshape(seq_len, -1)
position_embeddings = torch.cat((position_embeddings, position_embeddings), dim=-1)
position_embeddings = (position_embeddings.cos(), position_embeddings.sin())
cu_seqlens = torch.repeat_interleave(image_grid_thw[:, 1] * image_grid_thw[:, 2], image_grid_thw[:, 0]).cumsum(
dim=0,
dtype=torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for i, block in enumerate(self.blocks):
if i in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
else:
cu_seqlens_now = cu_window_seqlens
hidden_states = block(hidden_states, position_embeddings, cu_seqlens_now, optimized_attention=optimized_attention)
hidden_states = self.merger(hidden_states)
return hidden_states

View File

@ -210,7 +210,7 @@ class T5Stack(torch.nn.Module):
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])

View File

@ -726,6 +726,10 @@ class SEGS(ComfyTypeIO):
class AnyType(ComfyTypeIO):
Type = Any
@comfytype(io_type="MODEL_PATCH")
class MODEL_PATCH(ComfyTypeIO):
Type = Any
@comfytype(io_type="COMFY_MULTITYPED_V3")
class MultiType:
Type = Any

View File

@ -10,6 +10,11 @@ from typing import Type
import av
import numpy as np
import torch
try:
import torchaudio
TORCH_AUDIO_AVAILABLE = True
except:
TORCH_AUDIO_AVAILABLE = False
from PIL import Image as PILImage
from PIL.PngImagePlugin import PngInfo

View File

@ -1,4 +1,5 @@
from __future__ import annotations
import aiohttp
import io
import logging
import mimetypes
@ -21,7 +22,6 @@ from comfy.cmd.server import PromptServer
import numpy as np
from PIL import Image
import requests
import torch
import math
import base64
@ -30,7 +30,7 @@ from io import BytesIO
import av
def download_url_to_video_output(video_url: str, timeout: int = None) -> VideoFromFile:
async def download_url_to_video_output(video_url: str, timeout: int = None) -> VideoFromFile:
"""Downloads a video from a URL and returns a `VIDEO` output.
Args:
@ -39,7 +39,7 @@ def download_url_to_video_output(video_url: str, timeout: int = None) -> VideoFr
Returns:
A Comfy node `VIDEO` output.
"""
video_io = download_url_to_bytesio(video_url, timeout)
video_io = await download_url_to_bytesio(video_url, timeout)
if video_io is None:
error_msg = f"Failed to download video from {video_url}"
logging.error(error_msg)
@ -62,7 +62,7 @@ def downscale_image_tensor(image, total_pixels=1536 * 1024) -> torch.Tensor:
return s
def validate_and_cast_response(
async def validate_and_cast_response(
response, timeout: int = None, node_id: Union[str, None] = None
) -> torch.Tensor:
"""Validates and casts a response to a torch.Tensor.
@ -86,35 +86,24 @@ def validate_and_cast_response(
image_tensors: list[torch.Tensor] = []
# Process each image in the data array
for image_data in data:
image_url = image_data.url
b64_data = image_data.b64_json
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=timeout)) as session:
for img_data in data:
img_bytes: bytes
if img_data.b64_json:
img_bytes = base64.b64decode(img_data.b64_json)
elif img_data.url:
if node_id:
PromptServer.instance.send_progress_text(f"Result URL: {img_data.url}", node_id)
async with session.get(img_data.url) as resp:
if resp.status != 200:
raise ValueError("Failed to download generated image")
img_bytes = await resp.read()
else:
raise ValueError("Invalid image payload neither URL nor base64 data present.")
if not image_url and not b64_data:
raise ValueError("No image was generated in the response")
if b64_data:
img_data = base64.b64decode(b64_data)
img = Image.open(io.BytesIO(img_data))
elif image_url:
if node_id:
PromptServer.instance.send_progress_text(
f"Result URL: {image_url}", node_id
)
img_response = requests.get(image_url, timeout=timeout)
if img_response.status_code != 200:
raise ValueError("Failed to download the image")
img = Image.open(io.BytesIO(img_response.content))
img = img.convert("RGBA")
# Convert to numpy array, normalize to float32 between 0 and 1
img_array = np.array(img).astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_array)
# Add to list of tensors
image_tensors.append(img_tensor)
pil_img = Image.open(BytesIO(img_bytes)).convert("RGBA")
arr = np.asarray(pil_img).astype(np.float32) / 255.0
image_tensors.append(torch.from_numpy(arr))
return torch.stack(image_tensors, dim=0)
@ -175,7 +164,7 @@ def mimetype_to_extension(mime_type: str) -> str:
return mime_type.split("/")[-1].lower()
def download_url_to_bytesio(url: str, timeout: int = None) -> BytesIO:
async def download_url_to_bytesio(url: str, timeout: int = None) -> BytesIO:
"""Downloads content from a URL using requests and returns it as BytesIO.
Args:
@ -185,9 +174,11 @@ def download_url_to_bytesio(url: str, timeout: int = None) -> BytesIO:
Returns:
BytesIO object containing the downloaded content.
"""
response = requests.get(url, stream=True, timeout=timeout)
response.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX)
return BytesIO(response.content)
timeout_cfg = aiohttp.ClientTimeout(total=timeout) if timeout else None
async with aiohttp.ClientSession(timeout=timeout_cfg) as session:
async with session.get(url) as resp:
resp.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX)
return BytesIO(await resp.read())
def bytesio_to_image_tensor(image_bytesio: BytesIO, mode: str = "RGBA") -> torch.Tensor:
@ -210,15 +201,15 @@ def bytesio_to_image_tensor(image_bytesio: BytesIO, mode: str = "RGBA") -> torch
return torch.from_numpy(image_array).unsqueeze(0)
def download_url_to_image_tensor(url: str, timeout: int = None) -> torch.Tensor:
async def download_url_to_image_tensor(url: str, timeout: int = None) -> torch.Tensor:
"""Downloads an image from a URL and returns a [B, H, W, C] tensor."""
image_bytesio = download_url_to_bytesio(url, timeout)
image_bytesio = await download_url_to_bytesio(url, timeout)
return bytesio_to_image_tensor(image_bytesio)
def process_image_response(response: requests.Response) -> torch.Tensor:
def process_image_response(response_content: bytes | str) -> torch.Tensor:
"""Uses content from a Response object and converts it to a torch.Tensor"""
return bytesio_to_image_tensor(BytesIO(response.content))
return bytesio_to_image_tensor(BytesIO(response_content))
def _tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image.Image:
@ -336,10 +327,10 @@ def text_filepath_to_data_uri(filepath: str) -> str:
return f"data:{mime_type};base64,{base64_string}"
def upload_file_to_comfyapi(
async def upload_file_to_comfyapi(
file_bytes_io: BytesIO,
filename: str,
upload_mime_type: str,
upload_mime_type: Optional[str],
auth_kwargs: Optional[dict[str, str]] = None,
) -> str:
"""
@ -354,7 +345,10 @@ def upload_file_to_comfyapi(
Returns:
The download URL for the uploaded file.
"""
request_object = UploadRequest(file_name=filename, content_type=upload_mime_type)
if upload_mime_type is None:
request_object = UploadRequest(file_name=filename)
else:
request_object = UploadRequest(file_name=filename, content_type=upload_mime_type)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/customers/storage",
@ -366,12 +360,8 @@ def upload_file_to_comfyapi(
auth_kwargs=auth_kwargs,
)
response: UploadResponse = operation.execute()
upload_response = ApiClient.upload_file(
response.upload_url, file_bytes_io, content_type=upload_mime_type
)
upload_response.raise_for_status()
response: UploadResponse = await operation.execute()
await ApiClient.upload_file(response.upload_url, file_bytes_io, content_type=upload_mime_type)
return response.download_url
@ -399,7 +389,7 @@ def video_to_base64_string(
return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8")
def upload_video_to_comfyapi(
async def upload_video_to_comfyapi(
video: VideoInput,
auth_kwargs: Optional[dict[str, str]] = None,
container: VideoContainer = VideoContainer.MP4,
@ -439,9 +429,7 @@ def upload_video_to_comfyapi(
video.save_to(video_bytes_io, format=container, codec=codec)
video_bytes_io.seek(0)
return upload_file_to_comfyapi(
video_bytes_io, filename, upload_mime_type, auth_kwargs
)
return await upload_file_to_comfyapi(video_bytes_io, filename, upload_mime_type, auth_kwargs)
def audio_tensor_to_contiguous_ndarray(waveform: torch.Tensor) -> np.ndarray:
@ -501,7 +489,7 @@ def audio_ndarray_to_bytesio(
return audio_bytes_io
def upload_audio_to_comfyapi(
async def upload_audio_to_comfyapi(
audio: AudioInput,
auth_kwargs: Optional[dict[str, str]] = None,
container_format: str = "mp4",
@ -527,7 +515,7 @@ def upload_audio_to_comfyapi(
audio_data_np, sample_rate, container_format, codec_name
)
return upload_file_to_comfyapi(audio_bytes_io, filename, mime_type, auth_kwargs)
return await upload_file_to_comfyapi(audio_bytes_io, filename, mime_type, auth_kwargs)
def audio_to_base64_string(
@ -544,7 +532,7 @@ def audio_to_base64_string(
return base64.b64encode(audio_bytes).decode("utf-8")
def upload_images_to_comfyapi(
async def upload_images_to_comfyapi(
image: torch.Tensor,
max_images=8,
auth_kwargs: Optional[dict[str, str]] = None,
@ -561,55 +549,15 @@ def upload_images_to_comfyapi(
mime_type: Optional MIME type for the image.
"""
# if batch, try to upload each file if max_images is greater than 0
idx_image = 0
download_urls: list[str] = []
is_batch = len(image.shape) > 3
batch_length = 1
if is_batch:
batch_length = image.shape[0]
while True:
curr_image = image
if len(image.shape) > 3:
curr_image = image[idx_image]
# get BytesIO version of image
img_binary = tensor_to_bytesio(curr_image, mime_type=mime_type)
# first, request upload/download urls from comfy API
if not mime_type:
request_object = UploadRequest(file_name=img_binary.name)
else:
request_object = UploadRequest(
file_name=img_binary.name, content_type=mime_type
)
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/customers/storage",
method=HttpMethod.POST,
request_model=UploadRequest,
response_model=UploadResponse,
),
request=request_object,
auth_kwargs=auth_kwargs,
)
response = operation.execute()
batch_len = image.shape[0] if is_batch else 1
upload_response = ApiClient.upload_file(
response.upload_url, img_binary, content_type=mime_type
)
# verify success
try:
upload_response.raise_for_status()
except requests.exceptions.HTTPError as e:
raise ValueError(f"Could not upload one or more images: {e}") from e
# add download_url to list
download_urls.append(response.download_url)
idx_image += 1
# stop uploading additional files if done
if is_batch and max_images > 0:
if idx_image >= max_images:
break
if idx_image >= batch_length:
break
for idx in range(min(batch_len, max_images)):
tensor = image[idx] if is_batch else image
img_io = tensor_to_bytesio(tensor, mime_type=mime_type)
url = await upload_file_to_comfyapi(img_io, img_io.name, mime_type, auth_kwargs)
download_urls.append(url)
return download_urls

View File

@ -1315,6 +1315,7 @@ class KlingTaskStatus(str, Enum):
class KlingTextToVideoModelName(str, Enum):
kling_v1 = 'kling-v1'
kling_v1_6 = 'kling-v1-6'
kling_v2_1_master = 'kling-v2-1-master'
class KlingVideoGenAspectRatio(str, Enum):
@ -1347,6 +1348,8 @@ class KlingVideoGenModelName(str, Enum):
kling_v1_5 = 'kling-v1-5'
kling_v1_6 = 'kling-v1-6'
kling_v2_master = 'kling-v2-master'
kling_v2_1 = 'kling-v2-1'
kling_v2_1_master = 'kling-v2-1-master'
class KlingVideoResult(BaseModel):
@ -1620,13 +1623,14 @@ class MinimaxTaskResultResponse(BaseModel):
task_id: str = Field(..., description='The task ID being queried.')
class Model(str, Enum):
class MiniMaxModel(str, Enum):
T2V_01_Director = 'T2V-01-Director'
I2V_01_Director = 'I2V-01-Director'
S2V_01 = 'S2V-01'
I2V_01 = 'I2V-01'
I2V_01_live = 'I2V-01-live'
T2V_01 = 'T2V-01'
Hailuo_02 = 'MiniMax-Hailuo-02'
class SubjectReferenceItem(BaseModel):
@ -1648,7 +1652,7 @@ class MinimaxVideoGenerationRequest(BaseModel):
None,
description='URL or base64 encoding of the first frame image. Required when model is I2V-01, I2V-01-Director, or I2V-01-live.',
)
model: Model = Field(
model: MiniMaxModel = Field(
...,
description='Required. ID of model. Options: T2V-01-Director, I2V-01-Director, S2V-01, I2V-01, I2V-01-live, T2V-01',
)
@ -1665,6 +1669,14 @@ class MinimaxVideoGenerationRequest(BaseModel):
None,
description='Only available when model is S2V-01. The model will generate a video based on the subject uploaded through this parameter.',
)
duration: Optional[int] = Field(
None,
description="The length of the output video in seconds."
)
resolution: Optional[str] = Field(
None,
description="The dimensions of the video display. 1080p corresponds to 1920 x 1080 pixels, 768p corresponds to 1366 x 768 pixels."
)
class MinimaxVideoGenerationResponse(BaseModel):

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,4 @@
import asyncio
import io
from inspect import cleandoc
from typing import Union, Optional
@ -28,7 +29,7 @@ from comfy_api_nodes.apinode_utils import (
import numpy as np
from PIL import Image
import requests
import aiohttp
import torch
import base64
import time
@ -44,18 +45,18 @@ def convert_mask_to_image(mask: torch.Tensor):
return mask
def handle_bfl_synchronous_operation(
async def handle_bfl_synchronous_operation(
operation: SynchronousOperation,
timeout_bfl_calls=360,
node_id: Union[str, None] = None,
):
response_api: BFLFluxProGenerateResponse = operation.execute()
return _poll_until_generated(
response_api: BFLFluxProGenerateResponse = await operation.execute()
return await _poll_until_generated(
response_api.polling_url, timeout=timeout_bfl_calls, node_id=node_id
)
def _poll_until_generated(
async def _poll_until_generated(
polling_url: str, timeout=360, node_id: Union[str, None] = None
):
# used bfl-comfy-nodes to verify code implementation:
@ -66,55 +67,56 @@ def _poll_until_generated(
retry_404_seconds = 2
retry_202_seconds = 2
retry_pending_seconds = 1
request = requests.Request(method=HttpMethod.GET, url=polling_url)
# NOTE: should True loop be replaced with checking if workflow has been interrupted?
while True:
if node_id:
time_elapsed = time.time() - start_time
PromptServer.instance.send_progress_text(
f"Generating ({time_elapsed:.0f}s)", node_id
)
response = requests.Session().send(request.prepare())
if response.status_code == 200:
result = response.json()
if result["status"] == BFLStatus.ready:
img_url = result["result"]["sample"]
if node_id:
PromptServer.instance.send_progress_text(
f"Result URL: {img_url}", node_id
)
img_response = requests.get(img_url)
return process_image_response(img_response)
elif result["status"] in [
BFLStatus.request_moderated,
BFLStatus.content_moderated,
]:
status = result["status"]
raise Exception(
f"BFL API did not return an image due to: {status}."
async with aiohttp.ClientSession() as session:
# NOTE: should True loop be replaced with checking if workflow has been interrupted?
while True:
if node_id:
time_elapsed = time.time() - start_time
PromptServer.instance.send_progress_text(
f"Generating ({time_elapsed:.0f}s)", node_id
)
elif result["status"] == BFLStatus.error:
raise Exception(f"BFL API encountered an error: {result}.")
elif result["status"] == BFLStatus.pending:
time.sleep(retry_pending_seconds)
continue
elif response.status_code == 404:
if retries_404 < max_retries_404:
retries_404 += 1
time.sleep(retry_404_seconds)
continue
raise Exception(
f"BFL API could not find task after {max_retries_404} tries."
)
elif response.status_code == 202:
time.sleep(retry_202_seconds)
elif time.time() - start_time > timeout:
raise Exception(
f"BFL API experienced a timeout; could not return request under {timeout} seconds."
)
else:
raise Exception(f"BFL API encountered an error: {response.json()}")
async with session.get(polling_url) as response:
if response.status == 200:
result = await response.json()
if result["status"] == BFLStatus.ready:
img_url = result["result"]["sample"]
if node_id:
PromptServer.instance.send_progress_text(
f"Result URL: {img_url}", node_id
)
async with session.get(img_url) as img_resp:
return process_image_response(await img_resp.content.read())
elif result["status"] in [
BFLStatus.request_moderated,
BFLStatus.content_moderated,
]:
status = result["status"]
raise Exception(
f"BFL API did not return an image due to: {status}."
)
elif result["status"] == BFLStatus.error:
raise Exception(f"BFL API encountered an error: {result}.")
elif result["status"] == BFLStatus.pending:
await asyncio.sleep(retry_pending_seconds)
continue
elif response.status == 404:
if retries_404 < max_retries_404:
retries_404 += 1
await asyncio.sleep(retry_404_seconds)
continue
raise Exception(
f"BFL API could not find task after {max_retries_404} tries."
)
elif response.status == 202:
await asyncio.sleep(retry_202_seconds)
elif time.time() - start_time > timeout:
raise Exception(
f"BFL API experienced a timeout; could not return request under {timeout} seconds."
)
else:
raise Exception(f"BFL API encountered an error: {response.json()}")
def convert_image_to_base64(image: torch.Tensor):
scaled_image = downscale_image_tensor(image, total_pixels=2048 * 2048)
@ -222,7 +224,7 @@ class FluxProUltraImageNode(ComfyNodeABC):
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
async def api_call(
self,
prompt: str,
aspect_ratio: str,
@ -266,7 +268,7 @@ class FluxProUltraImageNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
output_image = handle_bfl_synchronous_operation(operation, node_id=unique_id)
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id)
return (output_image,)
@ -354,7 +356,7 @@ class FluxKontextProImageNode(ComfyNodeABC):
BFL_PATH = "/proxy/bfl/flux-kontext-pro/generate"
def api_call(
async def api_call(
self,
prompt: str,
aspect_ratio: str,
@ -397,7 +399,7 @@ class FluxKontextProImageNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
output_image = handle_bfl_synchronous_operation(operation, node_id=unique_id)
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id)
return (output_image,)
@ -489,7 +491,7 @@ class FluxProImageNode(ComfyNodeABC):
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
async def api_call(
self,
prompt: str,
prompt_upsampling,
@ -524,7 +526,7 @@ class FluxProImageNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
output_image = handle_bfl_synchronous_operation(operation, node_id=unique_id)
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id)
return (output_image,)
@ -632,7 +634,7 @@ class FluxProExpandNode(ComfyNodeABC):
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
async def api_call(
self,
image: torch.Tensor,
prompt: str,
@ -670,7 +672,7 @@ class FluxProExpandNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
output_image = handle_bfl_synchronous_operation(operation, node_id=unique_id)
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id)
return (output_image,)
@ -744,7 +746,7 @@ class FluxProFillNode(ComfyNodeABC):
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
async def api_call(
self,
image: torch.Tensor,
mask: torch.Tensor,
@ -780,7 +782,7 @@ class FluxProFillNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
output_image = handle_bfl_synchronous_operation(operation, node_id=unique_id)
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id)
return (output_image,)
@ -879,7 +881,7 @@ class FluxProCannyNode(ComfyNodeABC):
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
async def api_call(
self,
control_image: torch.Tensor,
prompt: str,
@ -929,7 +931,7 @@ class FluxProCannyNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
output_image = handle_bfl_synchronous_operation(operation, node_id=unique_id)
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id)
return (output_image,)
@ -1008,7 +1010,7 @@ class FluxProDepthNode(ComfyNodeABC):
API_NODE = True
CATEGORY = "api node/image/BFL"
def api_call(
async def api_call(
self,
control_image: torch.Tensor,
prompt: str,
@ -1045,7 +1047,7 @@ class FluxProDepthNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
output_image = handle_bfl_synchronous_operation(operation, node_id=unique_id)
output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id)
return (output_image,)

View File

@ -5,7 +5,10 @@ See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/infer
from __future__ import annotations
import json
import time
import os
import uuid
from enum import Enum
from typing import Optional, Literal
@ -46,6 +49,8 @@ class GeminiModel(str, Enum):
gemini_2_5_pro_preview_05_06 = "gemini-2.5-pro-preview-05-06"
gemini_2_5_flash_preview_04_17 = "gemini-2.5-flash-preview-04-17"
gemini_2_5_pro = "gemini-2.5-pro"
gemini_2_5_flash = "gemini-2.5-flash"
def get_gemini_endpoint(
@ -97,7 +102,7 @@ class GeminiNode(ComfyNodeABC):
{
"tooltip": "The Gemini model to use for generating responses.",
"options": [model.value for model in GeminiModel],
"default": GeminiModel.gemini_2_5_pro_preview_05_06.value,
"default": GeminiModel.gemini_2_5_pro.value,
},
),
"seed": (
@ -303,7 +308,7 @@ class GeminiNode(ComfyNodeABC):
"""
return GeminiPart(text=text)
def api_call(
async def api_call(
self,
prompt: str,
model: GeminiModel,
@ -332,7 +337,7 @@ class GeminiNode(ComfyNodeABC):
parts.extend(files)
# Create response
response = SynchronousOperation(
response = await SynchronousOperation(
endpoint=get_gemini_endpoint(model),
request=GeminiGenerateContentRequest(
contents=[
@ -348,7 +353,27 @@ class GeminiNode(ComfyNodeABC):
# Get result output
output_text = self.get_text_from_response(response)
if unique_id and output_text:
PromptServer.instance.send_progress_text(output_text, node_id=unique_id)
# Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button.
render_spec = {
"node_id": unique_id,
"component": "ChatHistoryWidget",
"props": {
"history": json.dumps(
[
{
"prompt": prompt,
"response": output_text,
"response_id": str(uuid.uuid4()),
"timestamp": time.time(),
}
]
),
},
}
PromptServer.instance.send_sync(
"display_component",
render_spec,
)
return (output_text or "Empty response from Gemini model...",)

View File

@ -1,8 +1,8 @@
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
from inspect import cleandoc
from io import BytesIO
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io as comfy_io
from PIL import Image
import numpy as np
import io
import torch
from comfy_api_nodes.apis import (
IdeogramGenerateRequest,
@ -212,7 +212,7 @@ V3_RESOLUTIONS= [
"1536x640"
]
def download_and_process_images(image_urls):
async def download_and_process_images(image_urls):
"""Helper function to download and process multiple images from URLs"""
# Initialize list to store image tensors
@ -220,7 +220,7 @@ def download_and_process_images(image_urls):
for image_url in image_urls:
# Using functions from apinode_utils.py to handle downloading and processing
image_bytesio = download_url_to_bytesio(image_url) # Download image content to BytesIO
image_bytesio = await download_url_to_bytesio(image_url) # Download image content to BytesIO
img_tensor = bytesio_to_image_tensor(image_bytesio, mode="RGB") # Convert to torch.Tensor with RGB mode
image_tensors.append(img_tensor)
@ -246,90 +246,81 @@ def display_image_urls_on_node(image_urls, node_id):
PromptServer.instance.send_progress_text(urls_text, node_id)
class IdeogramV1(ComfyNodeABC):
"""
Generates images using the Ideogram V1 model.
"""
def __init__(self):
pass
class IdeogramV1(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
def define_schema(cls):
return comfy_io.Schema(
node_id="IdeogramV1",
display_name="Ideogram V1",
category="api node/image/Ideogram",
description="Generates images using the Ideogram V1 model.",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt for the image generation",
),
"turbo": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to use turbo mode (faster generation, potentially lower quality)",
}
comfy_io.Boolean.Input(
"turbo",
default=False,
tooltip="Whether to use turbo mode (faster generation, potentially lower quality)",
),
},
"optional": {
"aspect_ratio": (
IO.COMBO,
{
"options": list(V1_V2_RATIO_MAP.keys()),
"default": "1:1",
"tooltip": "The aspect ratio for image generation.",
},
comfy_io.Combo.Input(
"aspect_ratio",
options=list(V1_V2_RATIO_MAP.keys()),
default="1:1",
tooltip="The aspect ratio for image generation.",
optional=True,
),
"magic_prompt_option": (
IO.COMBO,
{
"options": ["AUTO", "ON", "OFF"],
"default": "AUTO",
"tooltip": "Determine if MagicPrompt should be used in generation",
},
comfy_io.Combo.Input(
"magic_prompt_option",
options=["AUTO", "ON", "OFF"],
default="AUTO",
tooltip="Determine if MagicPrompt should be used in generation",
optional=True,
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"step": 1,
"control_after_generate": True,
"display": "number",
},
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
control_after_generate=True,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
"negative_prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Description of what to exclude from the image",
},
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="",
tooltip="Description of what to exclude from the image",
optional=True,
),
"num_images": (
IO.INT,
{"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
comfy_io.Int.Input(
"num_images",
default=1,
min=1,
max=8,
step=1,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
)
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
self,
@classmethod
async def execute(
cls,
prompt,
turbo=False,
aspect_ratio="1:1",
@ -337,13 +328,15 @@ class IdeogramV1(ComfyNodeABC):
seed=0,
negative_prompt="",
num_images=1,
unique_id=None,
**kwargs,
):
# Determine the model based on turbo setting
aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None)
model = "V_1_TURBO" if turbo else "V_1"
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/ideogram/generate",
@ -364,10 +357,10 @@ class IdeogramV1(ComfyNodeABC):
negative_prompt=negative_prompt if negative_prompt else None,
)
),
auth_kwargs=kwargs,
auth_kwargs=auth,
)
response = operation.execute()
response = await operation.execute()
if not response.data or len(response.data) == 0:
raise Exception("No images were generated in the response")
@ -377,93 +370,85 @@ class IdeogramV1(ComfyNodeABC):
if not image_urls:
raise Exception("No image URLs were generated in the response")
display_image_urls_on_node(image_urls, unique_id)
return (download_and_process_images(image_urls),)
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_and_process_images(image_urls))
class IdeogramV2(ComfyNodeABC):
"""
Generates images using the Ideogram V2 model.
"""
def __init__(self):
pass
class IdeogramV2(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation",
},
def define_schema(cls):
return comfy_io.Schema(
node_id="IdeogramV2",
display_name="Ideogram V2",
category="api node/image/Ideogram",
description="Generates images using the Ideogram V2 model.",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt for the image generation",
),
"turbo": (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Whether to use turbo mode (faster generation, potentially lower quality)",
}
comfy_io.Boolean.Input(
"turbo",
default=False,
tooltip="Whether to use turbo mode (faster generation, potentially lower quality)",
),
},
"optional": {
"aspect_ratio": (
IO.COMBO,
{
"options": list(V1_V2_RATIO_MAP.keys()),
"default": "1:1",
"tooltip": "The aspect ratio for image generation. Ignored if resolution is not set to AUTO.",
},
comfy_io.Combo.Input(
"aspect_ratio",
options=list(V1_V2_RATIO_MAP.keys()),
default="1:1",
tooltip="The aspect ratio for image generation. Ignored if resolution is not set to AUTO.",
optional=True,
),
"resolution": (
IO.COMBO,
{
"options": list(V1_V1_RES_MAP.keys()),
"default": "Auto",
"tooltip": "The resolution for image generation. If not set to AUTO, this overrides the aspect_ratio setting.",
},
comfy_io.Combo.Input(
"resolution",
options=list(V1_V1_RES_MAP.keys()),
default="Auto",
tooltip="The resolution for image generation. "
"If not set to AUTO, this overrides the aspect_ratio setting.",
optional=True,
),
"magic_prompt_option": (
IO.COMBO,
{
"options": ["AUTO", "ON", "OFF"],
"default": "AUTO",
"tooltip": "Determine if MagicPrompt should be used in generation",
},
comfy_io.Combo.Input(
"magic_prompt_option",
options=["AUTO", "ON", "OFF"],
default="AUTO",
tooltip="Determine if MagicPrompt should be used in generation",
optional=True,
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"step": 1,
"control_after_generate": True,
"display": "number",
},
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
control_after_generate=True,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
"style_type": (
IO.COMBO,
{
"options": ["AUTO", "GENERAL", "REALISTIC", "DESIGN", "RENDER_3D", "ANIME"],
"default": "NONE",
"tooltip": "Style type for generation (V2 only)",
},
comfy_io.Combo.Input(
"style_type",
options=["AUTO", "GENERAL", "REALISTIC", "DESIGN", "RENDER_3D", "ANIME"],
default="NONE",
tooltip="Style type for generation (V2 only)",
optional=True,
),
"negative_prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Description of what to exclude from the image",
},
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="",
tooltip="Description of what to exclude from the image",
optional=True,
),
"num_images": (
IO.INT,
{"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
comfy_io.Int.Input(
"num_images",
default=1,
min=1,
max=8,
step=1,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
#"color_palette": (
# IO.STRING,
@ -473,22 +458,20 @@ class IdeogramV2(ComfyNodeABC):
# "tooltip": "Color palette preset name or hex colors with weights",
# },
#),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
)
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
self,
@classmethod
async def execute(
cls,
prompt,
turbo=False,
aspect_ratio="1:1",
@ -499,8 +482,6 @@ class IdeogramV2(ComfyNodeABC):
negative_prompt="",
num_images=1,
color_palette="",
unique_id=None,
**kwargs,
):
aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None)
resolution = V1_V1_RES_MAP.get(resolution, None)
@ -517,6 +498,10 @@ class IdeogramV2(ComfyNodeABC):
else:
final_aspect_ratio = aspect_ratio if aspect_ratio != "ASPECT_1_1" else None
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/ideogram/generate",
@ -540,10 +525,10 @@ class IdeogramV2(ComfyNodeABC):
color_palette=color_palette if color_palette else None,
)
),
auth_kwargs=kwargs,
auth_kwargs=auth,
)
response = operation.execute()
response = await operation.execute()
if not response.data or len(response.data) == 0:
raise Exception("No images were generated in the response")
@ -553,108 +538,99 @@ class IdeogramV2(ComfyNodeABC):
if not image_urls:
raise Exception("No image URLs were generated in the response")
display_image_urls_on_node(image_urls, unique_id)
return (download_and_process_images(image_urls),)
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_and_process_images(image_urls))
class IdeogramV3(ComfyNodeABC):
"""
Generates images using the Ideogram V3 model. Supports both regular image generation from text prompts and image editing with mask.
"""
def __init__(self):
pass
class IdeogramV3(comfy_io.ComfyNode):
@classmethod
def INPUT_TYPES(cls) -> InputTypeDict:
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Prompt for the image generation or editing",
},
def define_schema(cls):
return comfy_io.Schema(
node_id="IdeogramV3",
display_name="Ideogram V3",
category="api node/image/Ideogram",
description="Generates images using the Ideogram V3 model. "
"Supports both regular image generation from text prompts and image editing with mask.",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Prompt for the image generation or editing",
),
},
"optional": {
"image": (
IO.IMAGE,
{
"default": None,
"tooltip": "Optional reference image for image editing.",
},
comfy_io.Image.Input(
"image",
tooltip="Optional reference image for image editing.",
optional=True,
),
"mask": (
IO.MASK,
{
"default": None,
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
},
comfy_io.Mask.Input(
"mask",
tooltip="Optional mask for inpainting (white areas will be replaced)",
optional=True,
),
"aspect_ratio": (
IO.COMBO,
{
"options": list(V3_RATIO_MAP.keys()),
"default": "1:1",
"tooltip": "The aspect ratio for image generation. Ignored if resolution is not set to Auto.",
},
comfy_io.Combo.Input(
"aspect_ratio",
options=list(V3_RATIO_MAP.keys()),
default="1:1",
tooltip="The aspect ratio for image generation. Ignored if resolution is not set to Auto.",
optional=True,
),
"resolution": (
IO.COMBO,
{
"options": V3_RESOLUTIONS,
"default": "Auto",
"tooltip": "The resolution for image generation. If not set to Auto, this overrides the aspect_ratio setting.",
},
comfy_io.Combo.Input(
"resolution",
options=V3_RESOLUTIONS,
default="Auto",
tooltip="The resolution for image generation. "
"If not set to Auto, this overrides the aspect_ratio setting.",
optional=True,
),
"magic_prompt_option": (
IO.COMBO,
{
"options": ["AUTO", "ON", "OFF"],
"default": "AUTO",
"tooltip": "Determine if MagicPrompt should be used in generation",
},
comfy_io.Combo.Input(
"magic_prompt_option",
options=["AUTO", "ON", "OFF"],
default="AUTO",
tooltip="Determine if MagicPrompt should be used in generation",
optional=True,
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 2147483647,
"step": 1,
"control_after_generate": True,
"display": "number",
},
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
control_after_generate=True,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
"num_images": (
IO.INT,
{"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
comfy_io.Int.Input(
"num_images",
default=1,
min=1,
max=8,
step=1,
display_mode=comfy_io.NumberDisplay.number,
optional=True,
),
"rendering_speed": (
IO.COMBO,
{
"options": ["BALANCED", "TURBO", "QUALITY"],
"default": "BALANCED",
"tooltip": "Controls the trade-off between generation speed and quality",
},
comfy_io.Combo.Input(
"rendering_speed",
options=["BALANCED", "TURBO", "QUALITY"],
default="BALANCED",
tooltip="Controls the trade-off between generation speed and quality",
optional=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
)
RETURN_TYPES = (IO.IMAGE,)
FUNCTION = "api_call"
CATEGORY = "api node/image/Ideogram"
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
self,
@classmethod
async def execute(
cls,
prompt,
image=None,
mask=None,
@ -664,9 +640,11 @@ class IdeogramV3(ComfyNodeABC):
seed=0,
num_images=1,
rendering_speed="BALANCED",
unique_id=None,
**kwargs,
):
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
# Check if both image and mask are provided for editing mode
if image is not None and mask is not None:
# Edit mode
@ -686,7 +664,7 @@ class IdeogramV3(ComfyNodeABC):
# Process image
img_np = (input_tensor.numpy() * 255).astype(np.uint8)
img = Image.fromarray(img_np)
img_byte_arr = io.BytesIO()
img_byte_arr = BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
img_binary = img_byte_arr
@ -695,7 +673,7 @@ class IdeogramV3(ComfyNodeABC):
# Process mask - white areas will be replaced
mask_np = (mask.squeeze().cpu().numpy() * 255).astype(np.uint8)
mask_img = Image.fromarray(mask_np)
mask_byte_arr = io.BytesIO()
mask_byte_arr = BytesIO()
mask_img.save(mask_byte_arr, format="PNG")
mask_byte_arr.seek(0)
mask_binary = mask_byte_arr
@ -729,7 +707,7 @@ class IdeogramV3(ComfyNodeABC):
"mask": mask_binary,
},
content_type="multipart/form-data",
auth_kwargs=kwargs,
auth_kwargs=auth,
)
elif image is not None or mask is not None:
@ -770,11 +748,11 @@ class IdeogramV3(ComfyNodeABC):
response_model=IdeogramGenerateResponse,
),
request=gen_request,
auth_kwargs=kwargs,
auth_kwargs=auth,
)
# Execute the operation and process response
response = operation.execute()
response = await operation.execute()
if not response.data or len(response.data) == 0:
raise Exception("No images were generated in the response")
@ -784,18 +762,18 @@ class IdeogramV3(ComfyNodeABC):
if not image_urls:
raise Exception("No image URLs were generated in the response")
display_image_urls_on_node(image_urls, unique_id)
return (download_and_process_images(image_urls),)
display_image_urls_on_node(image_urls, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_and_process_images(image_urls))
NODE_CLASS_MAPPINGS = {
"IdeogramV1": IdeogramV1,
"IdeogramV2": IdeogramV2,
"IdeogramV3": IdeogramV3,
}
class IdeogramExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
IdeogramV1,
IdeogramV2,
IdeogramV3,
]
NODE_DISPLAY_NAME_MAPPINGS = {
"IdeogramV1": "Ideogram V1",
"IdeogramV2": "Ideogram V2",
"IdeogramV3": "Ideogram V3",
}
async def comfy_entrypoint() -> IdeogramExtension:
return IdeogramExtension()

View File

@ -109,7 +109,7 @@ class KlingApiError(Exception):
pass
def poll_until_finished(
async def poll_until_finished(
auth_kwargs: dict[str, str],
api_endpoint: ApiEndpoint[Any, R],
result_url_extractor: Optional[Callable[[R], str]] = None,
@ -117,7 +117,7 @@ def poll_until_finished(
node_id: Optional[str] = None,
) -> R:
"""Polls the Kling API endpoint until the task reaches a terminal state, then returns the response."""
return PollingOperation(
return await PollingOperation(
poll_endpoint=api_endpoint,
completed_statuses=[
KlingTaskStatus.succeed.value,
@ -278,18 +278,18 @@ def get_images_urls_from_response(response) -> Optional[str]:
return None
def video_result_to_node_output(
async def video_result_to_node_output(
video: KlingVideoResult,
) -> tuple[VideoFromFile, str, str]:
"""Converts a KlingVideoResult to a tuple of (VideoFromFile, str, str) to be used as a ComfyUI node output."""
return (
download_url_to_video_output(video.url),
await download_url_to_video_output(str(video.url)),
str(video.id),
str(video.duration),
)
def image_result_to_node_output(
async def image_result_to_node_output(
images: list[KlingImageResult],
) -> torch.Tensor:
"""
@ -297,9 +297,9 @@ def image_result_to_node_output(
If multiple images are returned, they will be stacked along the batch dimension.
"""
if len(images) == 1:
return download_url_to_image_tensor(images[0].url)
return await download_url_to_image_tensor(str(images[0].url))
else:
return torch.cat([download_url_to_image_tensor(image.url) for image in images])
return torch.cat([await download_url_to_image_tensor(str(image.url)) for image in images])
class KlingNodeBase(ComfyNodeABC):
@ -421,6 +421,8 @@ class KlingTextToVideoNode(KlingNodeBase):
"pro mode / 10s duration / kling-v2-master": ("pro", "10", "kling-v2-master"),
"standard mode / 5s duration / kling-v2-master": ("std", "5", "kling-v2-master"),
"standard mode / 10s duration / kling-v2-master": ("std", "10", "kling-v2-master"),
"pro mode / 5s duration / kling-v2-1-master": ("pro", "5", "kling-v2-1-master"),
"pro mode / 10s duration / kling-v2-1-master": ("pro", "10", "kling-v2-1-master"),
}
@classmethod
@ -467,10 +469,10 @@ class KlingTextToVideoNode(KlingNodeBase):
RETURN_NAMES = ("VIDEO", "video_id", "duration")
DESCRIPTION = "Kling Text to Video Node"
def get_response(
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> KlingText2VideoResponse:
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_TEXT_TO_VIDEO}/{task_id}",
@ -483,7 +485,7 @@ class KlingTextToVideoNode(KlingNodeBase):
node_id=node_id,
)
def api_call(
async def api_call(
self,
prompt: str,
negative_prompt: str,
@ -519,17 +521,17 @@ class KlingTextToVideoNode(KlingNodeBase):
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.data.task_id
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
validate_video_result_response(final_response)
video = get_video_from_response(final_response)
return video_result_to_node_output(video)
return await video_result_to_node_output(video)
class KlingCameraControlT2VNode(KlingTextToVideoNode):
@ -581,7 +583,7 @@ class KlingCameraControlT2VNode(KlingTextToVideoNode):
DESCRIPTION = "Transform text into cinematic videos with professional camera movements that simulate real-world cinematography. Control virtual camera actions including zoom, rotation, pan, tilt, and first-person view, while maintaining focus on your original text."
def api_call(
async def api_call(
self,
prompt: str,
negative_prompt: str,
@ -591,7 +593,7 @@ class KlingCameraControlT2VNode(KlingTextToVideoNode):
unique_id: Optional[str] = None,
**kwargs,
):
return super().api_call(
return await super().api_call(
model_name=KlingVideoGenModelName.kling_v1,
cfg_scale=cfg_scale,
mode=KlingVideoGenMode.std,
@ -670,10 +672,10 @@ class KlingImage2VideoNode(KlingNodeBase):
RETURN_NAMES = ("VIDEO", "video_id", "duration")
DESCRIPTION = "Kling Image to Video Node"
def get_response(
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> KlingImage2VideoResponse:
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_IMAGE_TO_VIDEO}/{task_id}",
@ -686,7 +688,7 @@ class KlingImage2VideoNode(KlingNodeBase):
node_id=node_id,
)
def api_call(
async def api_call(
self,
start_frame: torch.Tensor,
prompt: str,
@ -733,17 +735,17 @@ class KlingImage2VideoNode(KlingNodeBase):
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.data.task_id
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
validate_video_result_response(final_response)
video = get_video_from_response(final_response)
return video_result_to_node_output(video)
return await video_result_to_node_output(video)
class KlingCameraControlI2VNode(KlingImage2VideoNode):
@ -798,7 +800,7 @@ class KlingCameraControlI2VNode(KlingImage2VideoNode):
DESCRIPTION = "Transform still images into cinematic videos with professional camera movements that simulate real-world cinematography. Control virtual camera actions including zoom, rotation, pan, tilt, and first-person view, while maintaining focus on your original image."
def api_call(
async def api_call(
self,
start_frame: torch.Tensor,
prompt: str,
@ -809,7 +811,7 @@ class KlingCameraControlI2VNode(KlingImage2VideoNode):
unique_id: Optional[str] = None,
**kwargs,
):
return super().api_call(
return await super().api_call(
model_name=KlingVideoGenModelName.kling_v1_5,
start_frame=start_frame,
cfg_scale=cfg_scale,
@ -897,7 +899,7 @@ class KlingStartEndFrameNode(KlingImage2VideoNode):
DESCRIPTION = "Generate a video sequence that transitions between your provided start and end images. The node creates all frames in between, producing a smooth transformation from the first frame to the last."
def api_call(
async def api_call(
self,
start_frame: torch.Tensor,
end_frame: torch.Tensor,
@ -912,7 +914,7 @@ class KlingStartEndFrameNode(KlingImage2VideoNode):
mode, duration, model_name = KlingStartEndFrameNode.get_mode_string_mapping()[
mode
]
return super().api_call(
return await super().api_call(
prompt=prompt,
negative_prompt=negative_prompt,
model_name=model_name,
@ -964,10 +966,10 @@ class KlingVideoExtendNode(KlingNodeBase):
RETURN_NAMES = ("VIDEO", "video_id", "duration")
DESCRIPTION = "Kling Video Extend Node. Extend videos made by other Kling nodes. The video_id is created by using other Kling Nodes."
def get_response(
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> KlingVideoExtendResponse:
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_VIDEO_EXTEND}/{task_id}",
@ -980,7 +982,7 @@ class KlingVideoExtendNode(KlingNodeBase):
node_id=node_id,
)
def api_call(
async def api_call(
self,
prompt: str,
negative_prompt: str,
@ -1006,17 +1008,17 @@ class KlingVideoExtendNode(KlingNodeBase):
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.data.task_id
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
validate_video_result_response(final_response)
video = get_video_from_response(final_response)
return video_result_to_node_output(video)
return await video_result_to_node_output(video)
class KlingVideoEffectsBase(KlingNodeBase):
@ -1025,10 +1027,10 @@ class KlingVideoEffectsBase(KlingNodeBase):
RETURN_TYPES = ("VIDEO", "STRING", "STRING")
RETURN_NAMES = ("VIDEO", "video_id", "duration")
def get_response(
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> KlingVideoEffectsResponse:
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_VIDEO_EFFECTS}/{task_id}",
@ -1041,7 +1043,7 @@ class KlingVideoEffectsBase(KlingNodeBase):
node_id=node_id,
)
def api_call(
async def api_call(
self,
dual_character: bool,
effect_scene: KlingDualCharacterEffectsScene | KlingSingleImageEffectsScene,
@ -1084,17 +1086,17 @@ class KlingVideoEffectsBase(KlingNodeBase):
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.data.task_id
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
validate_video_result_response(final_response)
video = get_video_from_response(final_response)
return video_result_to_node_output(video)
return await video_result_to_node_output(video)
class KlingDualCharacterVideoEffectNode(KlingVideoEffectsBase):
@ -1142,7 +1144,7 @@ class KlingDualCharacterVideoEffectNode(KlingVideoEffectsBase):
RETURN_TYPES = ("VIDEO", "STRING")
RETURN_NAMES = ("VIDEO", "duration")
def api_call(
async def api_call(
self,
image_left: torch.Tensor,
image_right: torch.Tensor,
@ -1153,7 +1155,7 @@ class KlingDualCharacterVideoEffectNode(KlingVideoEffectsBase):
unique_id: Optional[str] = None,
**kwargs,
):
video, _, duration = super().api_call(
video, _, duration = await super().api_call(
dual_character=True,
effect_scene=effect_scene,
model_name=model_name,
@ -1208,7 +1210,7 @@ class KlingSingleImageVideoEffectNode(KlingVideoEffectsBase):
DESCRIPTION = "Achieve different special effects when generating a video based on the effect_scene."
def api_call(
async def api_call(
self,
image: torch.Tensor,
effect_scene: KlingSingleImageEffectsScene,
@ -1217,7 +1219,7 @@ class KlingSingleImageVideoEffectNode(KlingVideoEffectsBase):
unique_id: Optional[str] = None,
**kwargs,
):
return super().api_call(
return await super().api_call(
dual_character=False,
effect_scene=effect_scene,
model_name=model_name,
@ -1253,11 +1255,11 @@ class KlingLipSyncBase(KlingNodeBase):
f"Text is too long. Maximum length is {MAX_PROMPT_LENGTH_LIP_SYNC} characters."
)
def get_response(
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> KlingLipSyncResponse:
"""Polls the Kling API endpoint until the task reaches a terminal state."""
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_LIP_SYNC}/{task_id}",
@ -1270,7 +1272,7 @@ class KlingLipSyncBase(KlingNodeBase):
node_id=node_id,
)
def api_call(
async def api_call(
self,
video: VideoInput,
audio: Optional[AudioInput] = None,
@ -1287,12 +1289,12 @@ class KlingLipSyncBase(KlingNodeBase):
self.validate_lip_sync_video(video)
# Upload video to Comfy API and get download URL
video_url = upload_video_to_comfyapi(video, auth_kwargs=kwargs)
video_url = await upload_video_to_comfyapi(video, auth_kwargs=kwargs)
logging.info("Uploaded video to Comfy API. URL: %s", video_url)
# Upload the audio file to Comfy API and get download URL
if audio:
audio_url = upload_audio_to_comfyapi(audio, auth_kwargs=kwargs)
audio_url = await upload_audio_to_comfyapi(audio, auth_kwargs=kwargs)
logging.info("Uploaded audio to Comfy API. URL: %s", audio_url)
else:
audio_url = None
@ -1319,17 +1321,17 @@ class KlingLipSyncBase(KlingNodeBase):
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.data.task_id
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
validate_video_result_response(final_response)
video = get_video_from_response(final_response)
return video_result_to_node_output(video)
return await video_result_to_node_output(video)
class KlingLipSyncAudioToVideoNode(KlingLipSyncBase):
@ -1357,7 +1359,7 @@ class KlingLipSyncAudioToVideoNode(KlingLipSyncBase):
DESCRIPTION = "Kling Lip Sync Audio to Video Node. Syncs mouth movements in a video file to the audio content of an audio file. When using, ensure that the audio contains clearly distinguishable vocals and that the video contains a distinct face. The audio file should not be larger than 5MB. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length."
def api_call(
async def api_call(
self,
video: VideoInput,
audio: AudioInput,
@ -1365,7 +1367,7 @@ class KlingLipSyncAudioToVideoNode(KlingLipSyncBase):
unique_id: Optional[str] = None,
**kwargs,
):
return super().api_call(
return await super().api_call(
video=video,
audio=audio,
voice_language=voice_language,
@ -1469,7 +1471,7 @@ class KlingLipSyncTextToVideoNode(KlingLipSyncBase):
DESCRIPTION = "Kling Lip Sync Text to Video Node. Syncs mouth movements in a video file to a text prompt. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length."
def api_call(
async def api_call(
self,
video: VideoInput,
text: str,
@ -1479,7 +1481,7 @@ class KlingLipSyncTextToVideoNode(KlingLipSyncBase):
**kwargs,
):
voice_id, voice_language = KlingLipSyncTextToVideoNode.get_voice_config()[voice]
return super().api_call(
return await super().api_call(
video=video,
text=text,
voice_language=voice_language,
@ -1533,10 +1535,10 @@ class KlingVirtualTryOnNode(KlingImageGenerationBase):
DESCRIPTION = "Kling Virtual Try On Node. Input a human image and a cloth image to try on the cloth on the human. You can merge multiple clothing item pictures into one image with a white background."
def get_response(
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> KlingVirtualTryOnResponse:
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_VIRTUAL_TRY_ON}/{task_id}",
@ -1549,7 +1551,7 @@ class KlingVirtualTryOnNode(KlingImageGenerationBase):
node_id=node_id,
)
def api_call(
async def api_call(
self,
human_image: torch.Tensor,
cloth_image: torch.Tensor,
@ -1572,17 +1574,17 @@ class KlingVirtualTryOnNode(KlingImageGenerationBase):
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.data.task_id
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
validate_image_result_response(final_response)
images = get_images_from_response(final_response)
return (image_result_to_node_output(images),)
return (await image_result_to_node_output(images),)
class KlingImageGenerationNode(KlingImageGenerationBase):
@ -1655,13 +1657,13 @@ class KlingImageGenerationNode(KlingImageGenerationBase):
DESCRIPTION = "Kling Image Generation Node. Generate an image from a text prompt with an optional reference image."
def get_response(
async def get_response(
self,
task_id: str,
auth_kwargs: Optional[dict[str, str]],
node_id: Optional[str] = None,
) -> KlingImageGenerationsResponse:
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_IMAGE_GENERATIONS}/{task_id}",
@ -1674,7 +1676,7 @@ class KlingImageGenerationNode(KlingImageGenerationBase):
node_id=node_id,
)
def api_call(
async def api_call(
self,
model_name: KlingImageGenModelName,
prompt: str,
@ -1690,7 +1692,11 @@ class KlingImageGenerationNode(KlingImageGenerationBase):
):
self.validate_prompt(prompt, negative_prompt)
if image is not None:
if image is None:
image_type = None
elif model_name == KlingImageGenModelName.kling_v1:
raise ValueError(f"The model {KlingImageGenModelName.kling_v1.value} does not support reference images.")
else:
image = tensor_to_base64_string(image)
initial_operation = SynchronousOperation(
@ -1714,17 +1720,17 @@ class KlingImageGenerationNode(KlingImageGenerationBase):
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.data.task_id
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
validate_image_result_response(final_response)
images = get_images_from_response(final_response)
return (image_result_to_node_output(images),)
return (await image_result_to_node_output(images),)
NODE_CLASS_MAPPINGS = {

View File

@ -38,7 +38,7 @@ from comfy_api_nodes.apinode_utils import (
)
from comfy.cmd.server import PromptServer
import requests
import aiohttp
import torch
from io import BytesIO
@ -217,7 +217,7 @@ class LumaImageGenerationNode(ComfyNodeABC):
},
}
def api_call(
async def api_call(
self,
prompt: str,
model: str,
@ -234,19 +234,19 @@ class LumaImageGenerationNode(ComfyNodeABC):
# handle image_luma_ref
api_image_ref = None
if image_luma_ref is not None:
api_image_ref = self._convert_luma_refs(
api_image_ref = await self._convert_luma_refs(
image_luma_ref, max_refs=4, auth_kwargs=kwargs,
)
# handle style_luma_ref
api_style_ref = None
if style_image is not None:
api_style_ref = self._convert_style_image(
api_style_ref = await self._convert_style_image(
style_image, weight=style_image_weight, auth_kwargs=kwargs,
)
# handle character_ref images
character_ref = None
if character_image is not None:
download_urls = upload_images_to_comfyapi(
download_urls = await upload_images_to_comfyapi(
character_image, max_images=4, auth_kwargs=kwargs,
)
character_ref = LumaCharacterRef(
@ -270,7 +270,7 @@ class LumaImageGenerationNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
response_api: LumaGeneration = operation.execute()
response_api: LumaGeneration = await operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
@ -286,19 +286,20 @@ class LumaImageGenerationNode(ComfyNodeABC):
node_id=unique_id,
auth_kwargs=kwargs,
)
response_poll = operation.execute()
response_poll = await operation.execute()
img_response = requests.get(response_poll.assets.image)
img = process_image_response(img_response)
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.assets.image) as img_response:
img = process_image_response(await img_response.content.read())
return (img,)
def _convert_luma_refs(
async def _convert_luma_refs(
self, luma_ref: LumaReferenceChain, max_refs: int, auth_kwargs: Optional[dict[str,str]] = None
):
luma_urls = []
ref_count = 0
for ref in luma_ref.refs:
download_urls = upload_images_to_comfyapi(
download_urls = await upload_images_to_comfyapi(
ref.image, max_images=1, auth_kwargs=auth_kwargs
)
luma_urls.append(download_urls[0])
@ -307,13 +308,13 @@ class LumaImageGenerationNode(ComfyNodeABC):
break
return luma_ref.create_api_model(download_urls=luma_urls, max_refs=max_refs)
def _convert_style_image(
async def _convert_style_image(
self, style_image: torch.Tensor, weight: float, auth_kwargs: Optional[dict[str,str]] = None
):
chain = LumaReferenceChain(
first_ref=LumaReference(image=style_image, weight=weight)
)
return self._convert_luma_refs(chain, max_refs=1, auth_kwargs=auth_kwargs)
return await self._convert_luma_refs(chain, max_refs=1, auth_kwargs=auth_kwargs)
class LumaImageModifyNode(ComfyNodeABC):
@ -370,7 +371,7 @@ class LumaImageModifyNode(ComfyNodeABC):
},
}
def api_call(
async def api_call(
self,
prompt: str,
model: str,
@ -381,7 +382,7 @@ class LumaImageModifyNode(ComfyNodeABC):
**kwargs,
):
# first, upload image
download_urls = upload_images_to_comfyapi(
download_urls = await upload_images_to_comfyapi(
image, max_images=1, auth_kwargs=kwargs,
)
image_url = download_urls[0]
@ -402,7 +403,7 @@ class LumaImageModifyNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
response_api: LumaGeneration = operation.execute()
response_api: LumaGeneration = await operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
@ -418,10 +419,11 @@ class LumaImageModifyNode(ComfyNodeABC):
node_id=unique_id,
auth_kwargs=kwargs,
)
response_poll = operation.execute()
response_poll = await operation.execute()
img_response = requests.get(response_poll.assets.image)
img = process_image_response(img_response)
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.assets.image) as img_response:
img = process_image_response(await img_response.content.read())
return (img,)
@ -494,7 +496,7 @@ class LumaTextToVideoGenerationNode(ComfyNodeABC):
},
}
def api_call(
async def api_call(
self,
prompt: str,
model: str,
@ -529,7 +531,7 @@ class LumaTextToVideoGenerationNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
response_api: LumaGeneration = operation.execute()
response_api: LumaGeneration = await operation.execute()
if unique_id:
PromptServer.instance.send_progress_text(f"Luma video generation started: {response_api.id}", unique_id)
@ -549,10 +551,11 @@ class LumaTextToVideoGenerationNode(ComfyNodeABC):
estimated_duration=LUMA_T2V_AVERAGE_DURATION,
auth_kwargs=kwargs,
)
response_poll = operation.execute()
response_poll = await operation.execute()
vid_response = requests.get(response_poll.assets.video)
return (VideoFromFile(BytesIO(vid_response.content)),)
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.assets.video) as vid_response:
return (VideoFromFile(BytesIO(await vid_response.content.read())),)
class LumaImageToVideoGenerationNode(ComfyNodeABC):
@ -626,7 +629,7 @@ class LumaImageToVideoGenerationNode(ComfyNodeABC):
},
}
def api_call(
async def api_call(
self,
prompt: str,
model: str,
@ -644,7 +647,7 @@ class LumaImageToVideoGenerationNode(ComfyNodeABC):
raise Exception(
"At least one of first_image and last_image requires an input."
)
keyframes = self._convert_to_keyframes(first_image, last_image, auth_kwargs=kwargs)
keyframes = await self._convert_to_keyframes(first_image, last_image, auth_kwargs=kwargs)
duration = duration if model != LumaVideoModel.ray_1_6 else None
resolution = resolution if model != LumaVideoModel.ray_1_6 else None
@ -667,7 +670,7 @@ class LumaImageToVideoGenerationNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
response_api: LumaGeneration = operation.execute()
response_api: LumaGeneration = await operation.execute()
if unique_id:
PromptServer.instance.send_progress_text(f"Luma video generation started: {response_api.id}", unique_id)
@ -687,12 +690,13 @@ class LumaImageToVideoGenerationNode(ComfyNodeABC):
estimated_duration=LUMA_I2V_AVERAGE_DURATION,
auth_kwargs=kwargs,
)
response_poll = operation.execute()
response_poll = await operation.execute()
vid_response = requests.get(response_poll.assets.video)
return (VideoFromFile(BytesIO(vid_response.content)),)
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.assets.video) as vid_response:
return (VideoFromFile(BytesIO(await vid_response.content.read())),)
def _convert_to_keyframes(
async def _convert_to_keyframes(
self,
first_image: torch.Tensor = None,
last_image: torch.Tensor = None,
@ -703,12 +707,12 @@ class LumaImageToVideoGenerationNode(ComfyNodeABC):
frame0 = None
frame1 = None
if first_image is not None:
download_urls = upload_images_to_comfyapi(
download_urls = await upload_images_to_comfyapi(
first_image, max_images=1, auth_kwargs=auth_kwargs,
)
frame0 = LumaImageReference(type="image", url=download_urls[0])
if last_image is not None:
download_urls = upload_images_to_comfyapi(
download_urls = await upload_images_to_comfyapi(
last_image, max_images=1, auth_kwargs=auth_kwargs,
)
frame1 = LumaImageReference(type="image", url=download_urls[0])

View File

@ -1,3 +1,4 @@
from inspect import cleandoc
from typing import Union
import logging
import torch
@ -10,7 +11,7 @@ from comfy_api_nodes.apis import (
MinimaxFileRetrieveResponse,
MinimaxTaskResultResponse,
SubjectReferenceItem,
Model
MiniMaxModel
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
@ -84,9 +85,8 @@ class MinimaxTextToVideoNode:
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
def generate_video(
async def generate_video(
self,
prompt_text,
seed=0,
@ -104,12 +104,12 @@ class MinimaxTextToVideoNode:
# upload image, if passed in
image_url = None
if image is not None:
image_url = upload_images_to_comfyapi(image, max_images=1, auth_kwargs=kwargs)[0]
image_url = (await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=kwargs))[0]
# TODO: figure out how to deal with subject properly, API returns invalid params when using S2V-01 model
subject_reference = None
if subject is not None:
subject_url = upload_images_to_comfyapi(subject, max_images=1, auth_kwargs=kwargs)[0]
subject_url = (await upload_images_to_comfyapi(subject, max_images=1, auth_kwargs=kwargs))[0]
subject_reference = [SubjectReferenceItem(image=subject_url)]
@ -121,7 +121,7 @@ class MinimaxTextToVideoNode:
response_model=MinimaxVideoGenerationResponse,
),
request=MinimaxVideoGenerationRequest(
model=Model(model),
model=MiniMaxModel(model),
prompt=prompt_text,
callback_url=None,
first_frame_image=image_url,
@ -130,7 +130,7 @@ class MinimaxTextToVideoNode:
),
auth_kwargs=kwargs,
)
response = video_generate_operation.execute()
response = await video_generate_operation.execute()
task_id = response.task_id
if not task_id:
@ -151,7 +151,7 @@ class MinimaxTextToVideoNode:
node_id=unique_id,
auth_kwargs=kwargs,
)
task_result = video_generate_operation.execute()
task_result = await video_generate_operation.execute()
file_id = task_result.file_id
if file_id is None:
@ -167,7 +167,7 @@ class MinimaxTextToVideoNode:
request=EmptyRequest(),
auth_kwargs=kwargs,
)
file_result = file_retrieve_operation.execute()
file_result = await file_retrieve_operation.execute()
file_url = file_result.file.download_url
if file_url is None:
@ -182,7 +182,7 @@ class MinimaxTextToVideoNode:
message = f"Result URL: {file_url}"
PromptServer.instance.send_progress_text(message, unique_id)
video_io = download_url_to_bytesio(file_url)
video_io = await download_url_to_bytesio(file_url)
if video_io is None:
error_msg = f"Failed to download video from {file_url}"
logging.error(error_msg)
@ -251,7 +251,6 @@ class MinimaxImageToVideoNode(MinimaxTextToVideoNode):
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
class MinimaxSubjectToVideoNode(MinimaxTextToVideoNode):
@ -313,7 +312,181 @@ class MinimaxSubjectToVideoNode(MinimaxTextToVideoNode):
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
OUTPUT_NODE = True
class MinimaxHailuoVideoNode:
"""Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt_text": (
"STRING",
{
"multiline": True,
"default": "",
"tooltip": "Text prompt to guide the video generation.",
},
),
},
"optional": {
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFFFFFFFFFF,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
"first_frame_image": (
IO.IMAGE,
{
"tooltip": "Optional image to use as the first frame to generate a video."
},
),
"prompt_optimizer": (
IO.BOOLEAN,
{
"tooltip": "Optimize prompt to improve generation quality when needed.",
"default": True,
},
),
"duration": (
IO.COMBO,
{
"tooltip": "The length of the output video in seconds.",
"default": 6,
"options": [6, 10],
},
),
"resolution": (
IO.COMBO,
{
"tooltip": "The dimensions of the video display. "
"1080p corresponds to 1920 x 1080 pixels, 768p corresponds to 1366 x 768 pixels.",
"default": "768P",
"options": ["768P", "1080P"],
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = ("VIDEO",)
DESCRIPTION = cleandoc(__doc__ or "")
FUNCTION = "generate_video"
CATEGORY = "api node/video/MiniMax"
API_NODE = True
async def generate_video(
self,
prompt_text,
seed=0,
first_frame_image: torch.Tensor=None, # used for ImageToVideo
prompt_optimizer=True,
duration=6,
resolution="768P",
model="MiniMax-Hailuo-02",
unique_id: Union[str, None]=None,
**kwargs,
):
if first_frame_image is None:
validate_string(prompt_text, field_name="prompt_text")
if model == "MiniMax-Hailuo-02" and resolution.upper() == "1080P" and duration != 6:
raise Exception(
"When model is MiniMax-Hailuo-02 and resolution is 1080P, duration is limited to 6 seconds."
)
# upload image, if passed in
image_url = None
if first_frame_image is not None:
image_url = (await upload_images_to_comfyapi(first_frame_image, max_images=1, auth_kwargs=kwargs))[0]
video_generate_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/video_generation",
method=HttpMethod.POST,
request_model=MinimaxVideoGenerationRequest,
response_model=MinimaxVideoGenerationResponse,
),
request=MinimaxVideoGenerationRequest(
model=MiniMaxModel(model),
prompt=prompt_text,
callback_url=None,
first_frame_image=image_url,
prompt_optimizer=prompt_optimizer,
duration=duration,
resolution=resolution,
),
auth_kwargs=kwargs,
)
response = await video_generate_operation.execute()
task_id = response.task_id
if not task_id:
raise Exception(f"MiniMax generation failed: {response.base_resp}")
average_duration = 120 if resolution == "768P" else 240
video_generate_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path="/proxy/minimax/query/video_generation",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxTaskResultResponse,
query_params={"task_id": task_id},
),
completed_statuses=["Success"],
failed_statuses=["Fail"],
status_extractor=lambda x: x.status.value,
estimated_duration=average_duration,
node_id=unique_id,
auth_kwargs=kwargs,
)
task_result = await video_generate_operation.execute()
file_id = task_result.file_id
if file_id is None:
raise Exception("Request was not successful. Missing file ID.")
file_retrieve_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/minimax/files/retrieve",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MinimaxFileRetrieveResponse,
query_params={"file_id": int(file_id)},
),
request=EmptyRequest(),
auth_kwargs=kwargs,
)
file_result = await file_retrieve_operation.execute()
file_url = file_result.file.download_url
if file_url is None:
raise Exception(
f"No video was found in the response. Full response: {file_result.model_dump()}"
)
logging.info(f"Generated video URL: {file_url}")
if unique_id:
if hasattr(file_result.file, "backup_download_url"):
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"
else:
message = f"Result URL: {file_url}"
PromptServer.instance.send_progress_text(message, unique_id)
video_io = await download_url_to_bytesio(file_url)
if video_io is None:
error_msg = f"Failed to download video from {file_url}"
logging.error(error_msg)
raise Exception(error_msg)
return (VideoFromFile(video_io),)
# A dictionary that contains all nodes you want to export with their names
@ -322,6 +495,7 @@ NODE_CLASS_MAPPINGS = {
"MinimaxTextToVideoNode": MinimaxTextToVideoNode,
"MinimaxImageToVideoNode": MinimaxImageToVideoNode,
# "MinimaxSubjectToVideoNode": MinimaxSubjectToVideoNode,
"MinimaxHailuoVideoNode": MinimaxHailuoVideoNode,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
@ -329,4 +503,5 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"MinimaxTextToVideoNode": "MiniMax Text to Video",
"MinimaxImageToVideoNode": "MiniMax Image to Video",
"MinimaxSubjectToVideoNode": "MiniMax Subject to Video",
"MinimaxHailuoVideoNode": "MiniMax Hailuo Video",
}

View File

@ -1,6 +1,5 @@
import logging
from typing import Any, Callable, Optional, TypeVar
import random
import torch
from comfy_api_nodes.util.validation_utils import (
get_image_dimensions,
@ -95,14 +94,14 @@ def get_video_url_from_response(response) -> Optional[str]:
return None
def poll_until_finished(
async def poll_until_finished(
auth_kwargs: dict[str, str],
api_endpoint: ApiEndpoint[Any, R],
result_url_extractor: Optional[Callable[[R], str]] = None,
node_id: Optional[str] = None,
) -> R:
"""Polls the Moonvalley API endpoint until the task reaches a terminal state, then returns the response."""
return PollingOperation(
return await PollingOperation(
poll_endpoint=api_endpoint,
completed_statuses=[
"completed",
@ -208,20 +207,29 @@ def _get_video_dimensions(video: VideoInput) -> tuple[int, int]:
def _validate_video_dimensions(width: int, height: int) -> None:
"""Validates video dimensions meet Moonvalley V2V requirements."""
supported_resolutions = {
(1920, 1080), (1080, 1920), (1152, 1152),
(1536, 1152), (1152, 1536)
(1920, 1080),
(1080, 1920),
(1152, 1152),
(1536, 1152),
(1152, 1536),
}
if (width, height) not in supported_resolutions:
supported_list = ', '.join([f'{w}x{h}' for w, h in sorted(supported_resolutions)])
raise ValueError(f"Resolution {width}x{height} not supported. Supported: {supported_list}")
supported_list = ", ".join(
[f"{w}x{h}" for w, h in sorted(supported_resolutions)]
)
raise ValueError(
f"Resolution {width}x{height} not supported. Supported: {supported_list}"
)
def _validate_container_format(video: VideoInput) -> None:
"""Validates video container format is MP4."""
container_format = video.get_container_format()
if container_format not in ['mp4', 'mov,mp4,m4a,3gp,3g2,mj2']:
raise ValueError(f"Only MP4 container format supported. Got: {container_format}")
if container_format not in ["mp4", "mov,mp4,m4a,3gp,3g2,mj2"]:
raise ValueError(
f"Only MP4 container format supported. Got: {container_format}"
)
def _validate_and_trim_duration(video: VideoInput) -> VideoInput:
@ -244,7 +252,6 @@ def _trim_if_too_long(video: VideoInput, duration: float) -> VideoInput:
return video
def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
"""
Returns a new VideoInput object trimmed from the beginning to the specified duration,
@ -302,7 +309,9 @@ def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
# Calculate target frame count that's divisible by 16
fps = input_container.streams.video[0].average_rate
estimated_frames = int(duration_sec * fps)
target_frames = (estimated_frames // 16) * 16 # Round down to nearest multiple of 16
target_frames = (
estimated_frames // 16
) * 16 # Round down to nearest multiple of 16
if target_frames == 0:
raise ValueError("Video too short: need at least 16 frames for Moonvalley")
@ -394,10 +403,10 @@ class BaseMoonvalleyVideoNode:
else:
return control_map["Motion Transfer"]
def get_response(
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> MoonvalleyPromptResponse:
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{API_PROMPTS_ENDPOINT}/{task_id}",
@ -424,7 +433,7 @@ class BaseMoonvalleyVideoNode:
MoonvalleyTextToVideoInferenceParams,
"negative_prompt",
multiline=True,
default="low-poly, flat shader, bad rigging, stiff animation, uncanny eyes, low-quality textures, looping glitch, cheap effect, overbloom, bloom spam, default lighting, game asset, stiff face, ugly specular, AI artifacts",
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, wobbly, weird, low quality, plastic, stock footage, video camera, boring",
),
"resolution": (
IO.COMBO,
@ -441,12 +450,11 @@ class BaseMoonvalleyVideoNode:
"tooltip": "Resolution of the output video",
},
),
# "length": (IO.COMBO,{"options":['5s','10s'], "default": '5s'}),
"prompt_adherence": model_field_to_node_input(
IO.FLOAT,
MoonvalleyTextToVideoInferenceParams,
"guidance_scale",
default=7.0,
default=10.0,
step=1,
min=1,
max=20,
@ -455,13 +463,12 @@ class BaseMoonvalleyVideoNode:
IO.INT,
MoonvalleyTextToVideoInferenceParams,
"seed",
default=random.randint(0, 2**32 - 1),
default=9,
min=0,
max=4294967295,
step=1,
display="number",
tooltip="Random seed value",
control_after_generate=True,
),
"steps": model_field_to_node_input(
IO.INT,
@ -507,7 +514,7 @@ class MoonvalleyImg2VideoNode(BaseMoonvalleyVideoNode):
RETURN_NAMES = ("video",)
DESCRIPTION = "Moonvalley Marey Image to Video Node"
def generate(
async def generate(
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
):
image = kwargs.get("image", None)
@ -532,8 +539,10 @@ class MoonvalleyImg2VideoNode(BaseMoonvalleyVideoNode):
# Get MIME type from tensor - assuming PNG format for image tensors
mime_type = "image/png"
image_url = upload_images_to_comfyapi(
image, max_images=1, auth_kwargs=kwargs, mime_type=mime_type
image_url = (
await upload_images_to_comfyapi(
image, max_images=1, auth_kwargs=kwargs, mime_type=mime_type
)
)[0]
request = MoonvalleyTextToVideoRequest(
@ -549,14 +558,14 @@ class MoonvalleyImg2VideoNode(BaseMoonvalleyVideoNode):
request=request,
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
video = download_url_to_video_output(final_response.output_url)
video = await download_url_to_video_output(final_response.output_url)
return (video,)
@ -570,17 +579,39 @@ class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING, MoonvalleyVideoToVideoRequest, "prompt_text",
multiline=True
IO.STRING,
MoonvalleyVideoToVideoRequest,
"prompt_text",
multiline=True,
),
"negative_prompt": model_field_to_node_input(
IO.STRING,
MoonvalleyVideoToVideoInferenceParams,
"negative_prompt",
multiline=True,
default="low-poly, flat shader, bad rigging, stiff animation, uncanny eyes, low-quality textures, looping glitch, cheap effect, overbloom, bloom spam, default lighting, game asset, stiff face, ugly specular, AI artifacts"
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, wobbly, weird, low quality, plastic, stock footage, video camera, boring",
),
"seed": model_field_to_node_input(
IO.INT,
MoonvalleyVideoToVideoInferenceParams,
"seed",
default=9,
min=0,
max=4294967295,
step=1,
display="number",
tooltip="Random seed value",
control_after_generate=False,
),
"prompt_adherence": model_field_to_node_input(
IO.FLOAT,
MoonvalleyVideoToVideoInferenceParams,
"guidance_scale",
default=10.0,
step=1,
min=1,
max=20,
),
"seed": model_field_to_node_input(IO.INT,MoonvalleyVideoToVideoInferenceParams, "seed", default=random.randint(0, 2**32 - 1), min=0, max=4294967295, step=1, display="number", tooltip="Random seed value", control_after_generate=True),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
@ -588,7 +619,14 @@ class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
"unique_id": "UNIQUE_ID",
},
"optional": {
"video": (IO.VIDEO, {"default": "", "multiline": False, "tooltip": "The reference video used to generate the output video. Must be at least 5 seconds long. Videos longer than 5s will be automatically trimmed. Only MP4 format supported."}),
"video": (
IO.VIDEO,
{
"default": "",
"multiline": False,
"tooltip": "The reference video used to generate the output video. Must be at least 5 seconds long. Videos longer than 5s will be automatically trimmed. Only MP4 format supported.",
},
),
"control_type": (
["Motion Transfer", "Pose Transfer"],
{"default": "Motion Transfer"},
@ -602,17 +640,24 @@ class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
"max": 100,
"tooltip": "Only used if control_type is 'Motion Transfer'",
},
)
}
),
"image": model_field_to_node_input(
IO.IMAGE,
MoonvalleyTextToVideoRequest,
"image_url",
tooltip="The reference image used to generate the video",
),
},
}
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video",)
def generate(
async def generate(
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
):
video = kwargs.get("video")
image = kwargs.get("image", None)
if not video:
raise MoonvalleyApiError("video is required")
@ -620,8 +665,16 @@ class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
video_url = ""
if video:
validated_video = validate_video_to_video_input(video)
video_url = upload_video_to_comfyapi(validated_video, auth_kwargs=kwargs)
video_url = await upload_video_to_comfyapi(
validated_video, auth_kwargs=kwargs
)
mime_type = "image/png"
if not image is None:
validate_input_image(image, with_frame_conditioning=True)
image_url = await upload_images_to_comfyapi(
image=image, auth_kwargs=kwargs, max_images=1, mime_type=mime_type
)
control_type = kwargs.get("control_type")
motion_intensity = kwargs.get("motion_intensity")
@ -631,12 +684,12 @@ class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
# Only include motion_intensity for Motion Transfer
control_params = {}
if control_type == "Motion Transfer" and motion_intensity is not None:
control_params['motion_intensity'] = motion_intensity
control_params["motion_intensity"] = motion_intensity
inference_params=MoonvalleyVideoToVideoInferenceParams(
inference_params = MoonvalleyVideoToVideoInferenceParams(
negative_prompt=negative_prompt,
seed=kwargs.get("seed"),
control_params=control_params
control_params=control_params,
)
control = self.parseControlParameter(control_type)
@ -647,6 +700,7 @@ class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
prompt_text=prompt,
inference_params=inference_params,
)
request.image_url = image_url if not image is None else None
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
@ -658,15 +712,15 @@ class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
request=request,
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
video = download_url_to_video_output(final_response.output_url)
video = await download_url_to_video_output(final_response.output_url)
return (video,)
@ -688,21 +742,21 @@ class MoonvalleyTxt2VideoNode(BaseMoonvalleyVideoNode):
del input_types["optional"][param]
return input_types
def generate(
async def generate(
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
):
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
width_height = self.parseWidthHeightFromRes(kwargs.get("resolution"))
inference_params=MoonvalleyTextToVideoInferenceParams(
negative_prompt=negative_prompt,
steps=kwargs.get("steps"),
seed=kwargs.get("seed"),
guidance_scale=kwargs.get("prompt_adherence"),
num_frames=128,
width=width_height.get("width"),
height=width_height.get("height"),
)
inference_params = MoonvalleyTextToVideoInferenceParams(
negative_prompt=negative_prompt,
steps=kwargs.get("steps"),
seed=kwargs.get("seed"),
guidance_scale=kwargs.get("prompt_adherence"),
num_frames=128,
width=width_height.get("width"),
height=width_height.get("height"),
)
request = MoonvalleyTextToVideoRequest(
prompt_text=prompt, inference_params=inference_params
)
@ -717,15 +771,15 @@ class MoonvalleyTxt2VideoNode(BaseMoonvalleyVideoNode):
request=request,
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
task_creation_response = await initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
video = download_url_to_video_output(final_response.output_url)
video = await download_url_to_video_output(final_response.output_url)
return (video,)

View File

@ -80,6 +80,9 @@ class SupportedOpenAIModel(str, Enum):
gpt_4_1 = "gpt-4.1"
gpt_4_1_mini = "gpt-4.1-mini"
gpt_4_1_nano = "gpt-4.1-nano"
gpt_5 = "gpt-5"
gpt_5_mini = "gpt-5-mini"
gpt_5_nano = "gpt-5-nano"
class OpenAIDalle2(ComfyNodeABC):
@ -163,7 +166,7 @@ class OpenAIDalle2(ComfyNodeABC):
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
async def api_call(
self,
prompt,
seed=0,
@ -233,9 +236,9 @@ class OpenAIDalle2(ComfyNodeABC):
auth_kwargs=kwargs,
)
response = operation.execute()
response = await operation.execute()
img_tensor = validate_and_cast_response(response, node_id=unique_id)
img_tensor = await validate_and_cast_response(response, node_id=unique_id)
return (img_tensor,)
@ -311,7 +314,7 @@ class OpenAIDalle3(ComfyNodeABC):
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
async def api_call(
self,
prompt,
seed=0,
@ -343,9 +346,9 @@ class OpenAIDalle3(ComfyNodeABC):
auth_kwargs=kwargs,
)
response = operation.execute()
response = await operation.execute()
img_tensor = validate_and_cast_response(response, node_id=unique_id)
img_tensor = await validate_and_cast_response(response, node_id=unique_id)
return (img_tensor,)
@ -446,7 +449,7 @@ class OpenAIGPTImage1(ComfyNodeABC):
DESCRIPTION = cleandoc(__doc__ or "")
API_NODE = True
def api_call(
async def api_call(
self,
prompt,
seed=0,
@ -464,8 +467,6 @@ class OpenAIGPTImage1(ComfyNodeABC):
path = "/proxy/openai/images/generations"
content_type = "application/json"
request_class = OpenAIImageGenerationRequest
img_binaries = []
mask_binary = None
files = []
if image is not None:
@ -484,14 +485,11 @@ class OpenAIGPTImage1(ComfyNodeABC):
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
img_binary = img_byte_arr
img_binary.name = f"image_{i}.png"
img_binaries.append(img_binary)
if batch_size == 1:
files.append(("image", img_binary))
files.append(("image", (f"image_{i}.png", img_byte_arr, "image/png")))
else:
files.append(("image[]", img_binary))
files.append(("image[]", (f"image_{i}.png", img_byte_arr, "image/png")))
if mask is not None:
if image is None:
@ -511,9 +509,7 @@ class OpenAIGPTImage1(ComfyNodeABC):
mask_img_byte_arr = io.BytesIO()
mask_img.save(mask_img_byte_arr, format="PNG")
mask_img_byte_arr.seek(0)
mask_binary = mask_img_byte_arr
mask_binary.name = "mask.png"
files.append(("mask", mask_binary))
files.append(("mask", ("mask.png", mask_img_byte_arr, "image/png")))
# Build the operation
operation = SynchronousOperation(
@ -537,9 +533,9 @@ class OpenAIGPTImage1(ComfyNodeABC):
auth_kwargs=kwargs,
)
response = operation.execute()
response = await operation.execute()
img_tensor = validate_and_cast_response(response, node_id=unique_id)
img_tensor = await validate_and_cast_response(response, node_id=unique_id)
return (img_tensor,)
@ -623,7 +619,7 @@ class OpenAIChatNode(OpenAITextNode):
DESCRIPTION = "Generate text responses from an OpenAI model."
def get_result_response(
async def get_result_response(
self,
response_id: str,
include: Optional[list[Includable]] = None,
@ -639,7 +635,7 @@ class OpenAIChatNode(OpenAITextNode):
creation above for more information.
"""
return PollingOperation(
return await PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"{RESPONSES_ENDPOINT}/{response_id}",
method=HttpMethod.GET,
@ -784,7 +780,7 @@ class OpenAIChatNode(OpenAITextNode):
self.history[session_id] = new_history
def api_call(
async def api_call(
self,
prompt: str,
persist_context: bool,
@ -815,7 +811,7 @@ class OpenAIChatNode(OpenAITextNode):
previous_response_id = None
# Create response
create_response = SynchronousOperation(
create_response = await SynchronousOperation(
endpoint=ApiEndpoint(
path=RESPONSES_ENDPOINT,
method=HttpMethod.POST,
@ -848,7 +844,7 @@ class OpenAIChatNode(OpenAITextNode):
response_id = create_response.id
# Get result output
result_response = self.get_result_response(response_id, auth_kwargs=kwargs)
result_response = await self.get_result_response(response_id, auth_kwargs=kwargs)
output_text = self.parse_output_text_from_response(result_response)
# Update history
@ -1002,7 +998,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"OpenAIDalle2": "OpenAI DALL·E 2",
"OpenAIDalle3": "OpenAI DALL·E 3",
"OpenAIGPTImage1": "OpenAI GPT Image 1",
"OpenAIChatNode": "OpenAI Chat",
"OpenAIInputFiles": "OpenAI Chat Input Files",
"OpenAIChatConfig": "OpenAI Chat Advanced Options",
"OpenAIChatNode": "OpenAI ChatGPT",
"OpenAIInputFiles": "OpenAI ChatGPT Input Files",
"OpenAIChatConfig": "OpenAI ChatGPT Advanced Options",
}

View File

@ -122,7 +122,7 @@ class PikaNodeBase(ComfyNodeABC):
FUNCTION = "api_call"
RETURN_TYPES = ("VIDEO",)
def poll_for_task_status(
async def poll_for_task_status(
self,
task_id: str,
auth_kwargs: Optional[dict[str, str]] = None,
@ -152,9 +152,9 @@ class PikaNodeBase(ComfyNodeABC):
node_id=node_id,
estimated_duration=60
)
return polling_operation.execute()
return await polling_operation.execute()
def execute_task(
async def execute_task(
self,
initial_operation: SynchronousOperation[R, PikaGenerateResponse],
auth_kwargs: Optional[dict[str, str]] = None,
@ -169,14 +169,14 @@ class PikaNodeBase(ComfyNodeABC):
Returns:
A tuple containing the video file as a VIDEO output.
"""
initial_response = initial_operation.execute()
initial_response = await initial_operation.execute()
if not is_valid_initial_response(initial_response):
error_msg = f"Pika initial request failed. Code: {initial_response.code}, Message: {initial_response.message}, Data: {initial_response.data}"
logging.error(error_msg)
raise PikaApiError(error_msg)
task_id = initial_response.video_id
final_response = self.poll_for_task_status(task_id, auth_kwargs)
final_response = await self.poll_for_task_status(task_id, auth_kwargs)
if not is_valid_video_response(final_response):
error_msg = (
f"Pika task {task_id} succeeded but no video data found in response."
@ -187,7 +187,7 @@ class PikaNodeBase(ComfyNodeABC):
video_url = str(final_response.url)
logging.info("Pika task %s succeeded. Video URL: %s", task_id, video_url)
return (download_url_to_video_output(video_url),)
return (await download_url_to_video_output(video_url),)
class PikaImageToVideoV2_2(PikaNodeBase):
@ -212,7 +212,7 @@ class PikaImageToVideoV2_2(PikaNodeBase):
DESCRIPTION = "Sends an image and prompt to the Pika API v2.2 to generate a video."
def api_call(
async def api_call(
self,
image: torch.Tensor,
prompt_text: str,
@ -251,7 +251,7 @@ class PikaImageToVideoV2_2(PikaNodeBase):
auth_kwargs=kwargs,
)
return self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
class PikaTextToVideoNodeV2_2(PikaNodeBase):
@ -281,7 +281,7 @@ class PikaTextToVideoNodeV2_2(PikaNodeBase):
DESCRIPTION = "Sends a text prompt to the Pika API v2.2 to generate a video."
def api_call(
async def api_call(
self,
prompt_text: str,
negative_prompt: str,
@ -311,7 +311,7 @@ class PikaTextToVideoNodeV2_2(PikaNodeBase):
content_type="application/x-www-form-urlencoded",
)
return self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
class PikaScenesV2_2(PikaNodeBase):
@ -361,7 +361,7 @@ class PikaScenesV2_2(PikaNodeBase):
DESCRIPTION = "Combine your images to create a video with the objects in them. Upload multiple images as ingredients and generate a high-quality video that incorporates all of them."
def api_call(
async def api_call(
self,
prompt_text: str,
negative_prompt: str,
@ -420,7 +420,7 @@ class PikaScenesV2_2(PikaNodeBase):
auth_kwargs=kwargs,
)
return self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
class PikAdditionsNode(PikaNodeBase):
@ -462,7 +462,7 @@ class PikAdditionsNode(PikaNodeBase):
DESCRIPTION = "Add any object or image into your video. Upload a video and specify what you'd like to add to create a seamlessly integrated result."
def api_call(
async def api_call(
self,
video: VideoInput,
image: torch.Tensor,
@ -481,10 +481,10 @@ class PikAdditionsNode(PikaNodeBase):
image_bytes_io = tensor_to_bytesio(image)
image_bytes_io.seek(0)
pika_files = [
("video", ("video.mp4", video_bytes_io, "video/mp4")),
("image", ("image.png", image_bytes_io, "image/png")),
]
pika_files = {
"video": ("video.mp4", video_bytes_io, "video/mp4"),
"image": ("image.png", image_bytes_io, "image/png"),
}
# Prepare non-file data
pika_request_data = PikaBodyGeneratePikadditionsGeneratePikadditionsPost(
@ -506,7 +506,7 @@ class PikAdditionsNode(PikaNodeBase):
auth_kwargs=kwargs,
)
return self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
class PikaSwapsNode(PikaNodeBase):
@ -558,7 +558,7 @@ class PikaSwapsNode(PikaNodeBase):
DESCRIPTION = "Swap out any object or region of your video with a new image or object. Define areas to replace either with a mask or coordinates."
RETURN_TYPES = ("VIDEO",)
def api_call(
async def api_call(
self,
video: VideoInput,
image: torch.Tensor,
@ -587,11 +587,11 @@ class PikaSwapsNode(PikaNodeBase):
image_bytes_io = tensor_to_bytesio(image)
image_bytes_io.seek(0)
pika_files = [
("video", ("video.mp4", video_bytes_io, "video/mp4")),
("image", ("image.png", image_bytes_io, "image/png")),
("modifyRegionMask", ("mask.png", mask_bytes_io, "image/png")),
]
pika_files = {
"video": ("video.mp4", video_bytes_io, "video/mp4"),
"image": ("image.png", image_bytes_io, "image/png"),
"modifyRegionMask": ("mask.png", mask_bytes_io, "image/png"),
}
# Prepare non-file data
pika_request_data = PikaBodyGeneratePikaswapsGeneratePikaswapsPost(
@ -613,7 +613,7 @@ class PikaSwapsNode(PikaNodeBase):
auth_kwargs=kwargs,
)
return self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
class PikaffectsNode(PikaNodeBase):
@ -664,7 +664,7 @@ class PikaffectsNode(PikaNodeBase):
DESCRIPTION = "Generate a video with a specific Pikaffect. Supported Pikaffects: Cake-ify, Crumble, Crush, Decapitate, Deflate, Dissolve, Explode, Eye-pop, Inflate, Levitate, Melt, Peel, Poke, Squish, Ta-da, Tear"
def api_call(
async def api_call(
self,
image: torch.Tensor,
pikaffect: str,
@ -693,7 +693,7 @@ class PikaffectsNode(PikaNodeBase):
auth_kwargs=kwargs,
)
return self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
class PikaStartEndFrameNode2_2(PikaNodeBase):
@ -718,7 +718,7 @@ class PikaStartEndFrameNode2_2(PikaNodeBase):
DESCRIPTION = "Generate a video by combining your first and last frame. Upload two images to define the start and end points, and let the AI create a smooth transition between them."
def api_call(
async def api_call(
self,
image_start: torch.Tensor,
image_end: torch.Tensor,
@ -732,10 +732,7 @@ class PikaStartEndFrameNode2_2(PikaNodeBase):
) -> tuple[VideoFromFile]:
pika_files = [
(
"keyFrames",
("image_start.png", tensor_to_bytesio(image_start), "image/png"),
),
("keyFrames", ("image_start.png", tensor_to_bytesio(image_start), "image/png")),
("keyFrames", ("image_end.png", tensor_to_bytesio(image_end), "image/png")),
]
@ -758,7 +755,7 @@ class PikaStartEndFrameNode2_2(PikaNodeBase):
auth_kwargs=kwargs,
)
return self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
return await self.execute_task(initial_operation, auth_kwargs=kwargs, node_id=unique_id)
NODE_CLASS_MAPPINGS = {

View File

@ -30,7 +30,7 @@ from comfy.comfy_types.node_typing import IO, ComfyNodeABC
from comfy_api.input_impl import VideoFromFile
import torch
import requests
import aiohttp
from io import BytesIO
@ -47,7 +47,7 @@ def get_video_url_from_response(
return str(response.Resp.url)
def upload_image_to_pixverse(image: torch.Tensor, auth_kwargs=None):
async def upload_image_to_pixverse(image: torch.Tensor, auth_kwargs=None):
# first, upload image to Pixverse and get image id to use in actual generation call
files = {"image": tensor_to_bytesio(image)}
operation = SynchronousOperation(
@ -62,7 +62,7 @@ def upload_image_to_pixverse(image: torch.Tensor, auth_kwargs=None):
content_type="multipart/form-data",
auth_kwargs=auth_kwargs,
)
response_upload: PixverseImageUploadResponse = operation.execute()
response_upload: PixverseImageUploadResponse = await operation.execute()
if response_upload.Resp is None:
raise Exception(
@ -164,7 +164,7 @@ class PixverseTextToVideoNode(ComfyNodeABC):
},
}
def api_call(
async def api_call(
self,
prompt: str,
aspect_ratio: str,
@ -205,7 +205,7 @@ class PixverseTextToVideoNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
response_api = operation.execute()
response_api = await operation.execute()
if response_api.Resp is None:
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
@ -229,11 +229,11 @@ class PixverseTextToVideoNode(ComfyNodeABC):
result_url_extractor=get_video_url_from_response,
estimated_duration=AVERAGE_DURATION_T2V,
)
response_poll = operation.execute()
response_poll = await operation.execute()
vid_response = requests.get(response_poll.Resp.url)
return (VideoFromFile(BytesIO(vid_response.content)),)
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.Resp.url) as vid_response:
return (VideoFromFile(BytesIO(await vid_response.content.read())),)
class PixverseImageToVideoNode(ComfyNodeABC):
@ -302,7 +302,7 @@ class PixverseImageToVideoNode(ComfyNodeABC):
},
}
def api_call(
async def api_call(
self,
image: torch.Tensor,
prompt: str,
@ -316,7 +316,7 @@ class PixverseImageToVideoNode(ComfyNodeABC):
**kwargs,
):
validate_string(prompt, strip_whitespace=False)
img_id = upload_image_to_pixverse(image, auth_kwargs=kwargs)
img_id = await upload_image_to_pixverse(image, auth_kwargs=kwargs)
# 1080p is limited to 5 seconds duration
# only normal motion_mode supported for 1080p or for non-5 second duration
@ -345,7 +345,7 @@ class PixverseImageToVideoNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
response_api = operation.execute()
response_api = await operation.execute()
if response_api.Resp is None:
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
@ -369,10 +369,11 @@ class PixverseImageToVideoNode(ComfyNodeABC):
result_url_extractor=get_video_url_from_response,
estimated_duration=AVERAGE_DURATION_I2V,
)
response_poll = operation.execute()
response_poll = await operation.execute()
vid_response = requests.get(response_poll.Resp.url)
return (VideoFromFile(BytesIO(vid_response.content)),)
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.Resp.url) as vid_response:
return (VideoFromFile(BytesIO(await vid_response.content.read())),)
class PixverseTransitionVideoNode(ComfyNodeABC):
@ -436,7 +437,7 @@ class PixverseTransitionVideoNode(ComfyNodeABC):
},
}
def api_call(
async def api_call(
self,
first_frame: torch.Tensor,
last_frame: torch.Tensor,
@ -450,8 +451,8 @@ class PixverseTransitionVideoNode(ComfyNodeABC):
**kwargs,
):
validate_string(prompt, strip_whitespace=False)
first_frame_id = upload_image_to_pixverse(first_frame, auth_kwargs=kwargs)
last_frame_id = upload_image_to_pixverse(last_frame, auth_kwargs=kwargs)
first_frame_id = await upload_image_to_pixverse(first_frame, auth_kwargs=kwargs)
last_frame_id = await upload_image_to_pixverse(last_frame, auth_kwargs=kwargs)
# 1080p is limited to 5 seconds duration
# only normal motion_mode supported for 1080p or for non-5 second duration
@ -480,7 +481,7 @@ class PixverseTransitionVideoNode(ComfyNodeABC):
),
auth_kwargs=kwargs,
)
response_api = operation.execute()
response_api = await operation.execute()
if response_api.Resp is None:
raise Exception(f"PixVerse request failed: '{response_api.ErrMsg}'")
@ -504,10 +505,11 @@ class PixverseTransitionVideoNode(ComfyNodeABC):
result_url_extractor=get_video_url_from_response,
estimated_duration=AVERAGE_DURATION_T2V,
)
response_poll = operation.execute()
response_poll = await operation.execute()
vid_response = requests.get(response_poll.Resp.url)
return (VideoFromFile(BytesIO(vid_response.content)),)
async with aiohttp.ClientSession() as session:
async with session.get(response_poll.Resp.url) as vid_response:
return (VideoFromFile(BytesIO(await vid_response.content.read())),)
NODE_CLASS_MAPPINGS = {

View File

@ -37,7 +37,7 @@ from io import BytesIO
from PIL import UnidentifiedImageError
def handle_recraft_file_request(
async def handle_recraft_file_request(
image: torch.Tensor,
path: str,
mask: torch.Tensor=None,
@ -71,13 +71,13 @@ def handle_recraft_file_request(
auth_kwargs=auth_kwargs,
multipart_parser=recraft_multipart_parser,
)
response: RecraftImageGenerationResponse = operation.execute()
response: RecraftImageGenerationResponse = await operation.execute()
all_bytesio = []
if response.image is not None:
all_bytesio.append(download_url_to_bytesio(response.image.url, timeout=timeout))
all_bytesio.append(await download_url_to_bytesio(response.image.url, timeout=timeout))
else:
for data in response.data:
all_bytesio.append(download_url_to_bytesio(data.url, timeout=timeout))
all_bytesio.append(await download_url_to_bytesio(data.url, timeout=timeout))
return all_bytesio
@ -395,7 +395,7 @@ class RecraftTextToImageNode:
},
}
def api_call(
async def api_call(
self,
prompt: str,
size: str,
@ -439,7 +439,7 @@ class RecraftTextToImageNode:
),
auth_kwargs=kwargs,
)
response: RecraftImageGenerationResponse = operation.execute()
response: RecraftImageGenerationResponse = await operation.execute()
images = []
urls = []
for data in response.data:
@ -451,7 +451,7 @@ class RecraftTextToImageNode:
f"Result URL: {urls_string}", unique_id
)
image = bytesio_to_image_tensor(
download_url_to_bytesio(data.url, timeout=1024)
await download_url_to_bytesio(data.url, timeout=1024)
)
if len(image.shape) < 4:
image = image.unsqueeze(0)
@ -538,7 +538,7 @@ class RecraftImageToImageNode:
},
}
def api_call(
async def api_call(
self,
image: torch.Tensor,
prompt: str,
@ -578,7 +578,7 @@ class RecraftImageToImageNode:
total = image.shape[0]
pbar = ProgressBar(total)
for i in range(total):
sub_bytes = handle_recraft_file_request(
sub_bytes = await handle_recraft_file_request(
image=image[i],
path="/proxy/recraft/images/imageToImage",
request=request,
@ -654,7 +654,7 @@ class RecraftImageInpaintingNode:
},
}
def api_call(
async def api_call(
self,
image: torch.Tensor,
mask: torch.Tensor,
@ -690,7 +690,7 @@ class RecraftImageInpaintingNode:
total = image.shape[0]
pbar = ProgressBar(total)
for i in range(total):
sub_bytes = handle_recraft_file_request(
sub_bytes = await handle_recraft_file_request(
image=image[i],
mask=mask[i:i+1],
path="/proxy/recraft/images/inpaint",
@ -779,7 +779,7 @@ class RecraftTextToVectorNode:
},
}
def api_call(
async def api_call(
self,
prompt: str,
substyle: str,
@ -821,7 +821,7 @@ class RecraftTextToVectorNode:
),
auth_kwargs=kwargs,
)
response: RecraftImageGenerationResponse = operation.execute()
response: RecraftImageGenerationResponse = await operation.execute()
svg_data = []
urls = []
for data in response.data:
@ -831,7 +831,7 @@ class RecraftTextToVectorNode:
PromptServer.instance.send_progress_text(
f"Result URL: {' '.join(urls)}", unique_id
)
svg_data.append(download_url_to_bytesio(data.url, timeout=1024))
svg_data.append(await download_url_to_bytesio(data.url, timeout=1024))
return (SVG(svg_data),)
@ -861,7 +861,7 @@ class RecraftVectorizeImageNode:
},
}
def api_call(
async def api_call(
self,
image: torch.Tensor,
**kwargs,
@ -870,7 +870,7 @@ class RecraftVectorizeImageNode:
total = image.shape[0]
pbar = ProgressBar(total)
for i in range(total):
sub_bytes = handle_recraft_file_request(
sub_bytes = await handle_recraft_file_request(
image=image[i],
path="/proxy/recraft/images/vectorize",
auth_kwargs=kwargs,
@ -942,7 +942,7 @@ class RecraftReplaceBackgroundNode:
},
}
def api_call(
async def api_call(
self,
image: torch.Tensor,
prompt: str,
@ -973,7 +973,7 @@ class RecraftReplaceBackgroundNode:
total = image.shape[0]
pbar = ProgressBar(total)
for i in range(total):
sub_bytes = handle_recraft_file_request(
sub_bytes = await handle_recraft_file_request(
image=image[i],
path="/proxy/recraft/images/replaceBackground",
request=request,
@ -1011,7 +1011,7 @@ class RecraftRemoveBackgroundNode:
},
}
def api_call(
async def api_call(
self,
image: torch.Tensor,
**kwargs,
@ -1020,7 +1020,7 @@ class RecraftRemoveBackgroundNode:
total = image.shape[0]
pbar = ProgressBar(total)
for i in range(total):
sub_bytes = handle_recraft_file_request(
sub_bytes = await handle_recraft_file_request(
image=image[i],
path="/proxy/recraft/images/removeBackground",
auth_kwargs=kwargs,
@ -1062,7 +1062,7 @@ class RecraftCrispUpscaleNode:
},
}
def api_call(
async def api_call(
self,
image: torch.Tensor,
**kwargs,
@ -1071,7 +1071,7 @@ class RecraftCrispUpscaleNode:
total = image.shape[0]
pbar = ProgressBar(total)
for i in range(total):
sub_bytes = handle_recraft_file_request(
sub_bytes = await handle_recraft_file_request(
image=image[i],
path=self.RECRAFT_PATH,
auth_kwargs=kwargs,

View File

@ -9,11 +9,10 @@ from __future__ import annotations
from inspect import cleandoc
from comfy.comfy_types.node_typing import IO
from comfy.cmd import folder_paths as comfy_paths
import requests
import aiohttp
import os
import datetime
import shutil
import time
import asyncio
import io
import logging
import math
@ -66,7 +65,6 @@ def create_task_error(response: Rodin3DGenerateResponse):
return hasattr(response, "error")
class Rodin3DAPI:
"""
Generate 3D Assets using Rodin API
@ -123,8 +121,8 @@ class Rodin3DAPI:
else:
return "Generating"
def CreateGenerateTask(self, images=None, seed=1, material="PBR", quality="medium", tier="Regular", mesh_mode="Quad", **kwargs):
if images == None:
async def create_generate_task(self, images=None, seed=1, material="PBR", quality="medium", tier="Regular", mesh_mode="Quad", **kwargs):
if images is None:
raise Exception("Rodin 3D generate requires at least 1 image.")
if len(images) >= 5:
raise Exception("Rodin 3D generate requires up to 5 image.")
@ -155,7 +153,7 @@ class Rodin3DAPI:
auth_kwargs=kwargs,
)
response = operation.execute()
response = await operation.execute()
if create_task_error(response):
error_message = f"Rodin3D Create 3D generate Task Failed. Message: {response.message}, error: {response.error}"
@ -168,7 +166,7 @@ class Rodin3DAPI:
logging.info(f"[ Rodin3D API - Submit Jobs ] UUID: {task_uuid}")
return task_uuid, subscription_key
def poll_for_task_status(self, subscription_key, **kwargs) -> Rodin3DCheckStatusResponse:
async def poll_for_task_status(self, subscription_key, **kwargs) -> Rodin3DCheckStatusResponse:
path = "/proxy/rodin/api/v2/status"
@ -191,11 +189,9 @@ class Rodin3DAPI:
logging.info("[ Rodin3D API - CheckStatus ] Generate Start!")
return poll_operation.execute()
return await poll_operation.execute()
def GetRodinDownloadList(self, uuid, **kwargs) -> Rodin3DDownloadResponse:
async def get_rodin_download_list(self, uuid, **kwargs) -> Rodin3DDownloadResponse:
logging.info("[ Rodin3D API - Downloading ] Generate Successfully!")
path = "/proxy/rodin/api/v2/download"
@ -212,53 +208,59 @@ class Rodin3DAPI:
auth_kwargs=kwargs
)
return operation.execute()
return await operation.execute()
def GetQualityAndMode(self, PolyCount):
if PolyCount == "200K-Triangle":
def get_quality_mode(self, poly_count):
if poly_count == "200K-Triangle":
mesh_mode = "Raw"
quality = "medium"
else:
mesh_mode = "Quad"
if PolyCount == "4K-Quad":
if poly_count == "4K-Quad":
quality = "extra-low"
elif PolyCount == "8K-Quad":
elif poly_count == "8K-Quad":
quality = "low"
elif PolyCount == "18K-Quad":
elif poly_count == "18K-Quad":
quality = "medium"
elif PolyCount == "50K-Quad":
elif poly_count == "50K-Quad":
quality = "high"
else:
quality = "medium"
return mesh_mode, quality
def DownLoadFiles(self, Url_List):
Save_path = os.path.join(comfy_paths.get_output_directory(), "Rodin3D", datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
os.makedirs(Save_path, exist_ok=True)
async def download_files(self, url_list):
save_path = os.path.join(comfy_paths.get_output_directory(), "Rodin3D", datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
os.makedirs(save_path, exist_ok=True)
model_file_path = None
for Item in Url_List.list:
url = Item.url
file_name = Item.name
file_path = os.path.join(Save_path, file_name)
if file_path.endswith(".glb"):
model_file_path = file_path
logging.info(f"[ Rodin3D API - download_files ] Downloading file: {file_path}")
max_retries = 5
for attempt in range(max_retries):
try:
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(file_path, "wb") as f:
shutil.copyfileobj(r.raw, f)
break
except Exception as e:
logging.info(f"[ Rodin3D API - download_files ] Error downloading {file_path}:{e}")
if attempt < max_retries - 1:
logging.info("Retrying...")
time.sleep(2)
else:
logging.info(f"[ Rodin3D API - download_files ] Failed to download {file_path} after {max_retries} attempts.")
async with aiohttp.ClientSession() as session:
for i in url_list.list:
url = i.url
file_name = i.name
file_path = os.path.join(save_path, file_name)
if file_path.endswith(".glb"):
model_file_path = file_path
logging.info(f"[ Rodin3D API - download_files ] Downloading file: {file_path}")
max_retries = 5
for attempt in range(max_retries):
try:
async with session.get(url) as resp:
resp.raise_for_status()
with open(file_path, "wb") as f:
async for chunk in resp.content.iter_chunked(32 * 1024):
f.write(chunk)
break
except Exception as e:
logging.info(f"[ Rodin3D API - download_files ] Error downloading {file_path}:{e}")
if attempt < max_retries - 1:
logging.info("Retrying...")
await asyncio.sleep(2)
else:
logging.info(
"[ Rodin3D API - download_files ] Failed to download %s after %s attempts.",
file_path,
max_retries,
)
return model_file_path
@ -285,7 +287,7 @@ class Rodin3D_Regular(Rodin3DAPI):
},
}
def api_call(
async def api_call(
self,
Images,
Seed,
@ -298,14 +300,17 @@ class Rodin3D_Regular(Rodin3DAPI):
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality = self.GetQualityAndMode(Polygon_count)
task_uuid, subscription_key = self.CreateGenerateTask(images=m_images, seed=Seed, material=Material_Type, quality=quality, tier=tier, mesh_mode=mesh_mode, **kwargs)
self.poll_for_task_status(subscription_key, **kwargs)
Download_List = self.GetRodinDownloadList(task_uuid, **kwargs)
model = self.DownLoadFiles(Download_List)
mesh_mode, quality = self.get_quality_mode(Polygon_count)
task_uuid, subscription_key = await self.create_generate_task(images=m_images, seed=Seed, material=Material_Type,
quality=quality, tier=tier, mesh_mode=mesh_mode,
**kwargs)
await self.poll_for_task_status(subscription_key, **kwargs)
download_list = await self.get_rodin_download_list(task_uuid, **kwargs)
model = await self.download_files(download_list)
return (model,)
class Rodin3D_Detail(Rodin3DAPI):
@classmethod
def INPUT_TYPES(s):
@ -328,7 +333,7 @@ class Rodin3D_Detail(Rodin3DAPI):
},
}
def api_call(
async def api_call(
self,
Images,
Seed,
@ -341,14 +346,17 @@ class Rodin3D_Detail(Rodin3DAPI):
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality = self.GetQualityAndMode(Polygon_count)
task_uuid, subscription_key = self.CreateGenerateTask(images=m_images, seed=Seed, material=Material_Type, quality=quality, tier=tier, mesh_mode=mesh_mode, **kwargs)
self.poll_for_task_status(subscription_key, **kwargs)
Download_List = self.GetRodinDownloadList(task_uuid, **kwargs)
model = self.DownLoadFiles(Download_List)
mesh_mode, quality = self.get_quality_mode(Polygon_count)
task_uuid, subscription_key = await self.create_generate_task(images=m_images, seed=Seed, material=Material_Type,
quality=quality, tier=tier, mesh_mode=mesh_mode,
**kwargs)
await self.poll_for_task_status(subscription_key, **kwargs)
download_list = await self.get_rodin_download_list(task_uuid, **kwargs)
model = await self.download_files(download_list)
return (model,)
class Rodin3D_Smooth(Rodin3DAPI):
@classmethod
def INPUT_TYPES(s):
@ -371,7 +379,7 @@ class Rodin3D_Smooth(Rodin3DAPI):
},
}
def api_call(
async def api_call(
self,
Images,
Seed,
@ -384,14 +392,17 @@ class Rodin3D_Smooth(Rodin3DAPI):
m_images = []
for i in range(num_images):
m_images.append(Images[i])
mesh_mode, quality = self.GetQualityAndMode(Polygon_count)
task_uuid, subscription_key = self.CreateGenerateTask(images=m_images, seed=Seed, material=Material_Type, quality=quality, tier=tier, mesh_mode=mesh_mode, **kwargs)
self.poll_for_task_status(subscription_key, **kwargs)
Download_List = self.GetRodinDownloadList(task_uuid, **kwargs)
model = self.DownLoadFiles(Download_List)
mesh_mode, quality = self.get_quality_mode(Polygon_count)
task_uuid, subscription_key = await self.create_generate_task(images=m_images, seed=Seed, material=Material_Type,
quality=quality, tier=tier, mesh_mode=mesh_mode,
**kwargs)
await self.poll_for_task_status(subscription_key, **kwargs)
download_list = await self.get_rodin_download_list(task_uuid, **kwargs)
model = await self.download_files(download_list)
return (model,)
class Rodin3D_Sketch(Rodin3DAPI):
@classmethod
def INPUT_TYPES(s):
@ -423,7 +434,7 @@ class Rodin3D_Sketch(Rodin3DAPI):
},
}
def api_call(
async def api_call(
self,
Images,
Seed,
@ -437,10 +448,12 @@ class Rodin3D_Sketch(Rodin3DAPI):
material_type = "PBR"
quality = "medium"
mesh_mode = "Quad"
task_uuid, subscription_key = self.CreateGenerateTask(images=m_images, seed=Seed, material=material_type, quality=quality, tier=tier, mesh_mode=mesh_mode, **kwargs)
self.poll_for_task_status(subscription_key, **kwargs)
Download_List = self.GetRodinDownloadList(task_uuid, **kwargs)
model = self.DownLoadFiles(Download_List)
task_uuid, subscription_key = await self.create_generate_task(
images=m_images, seed=Seed, material=material_type, quality=quality, tier=tier, mesh_mode=mesh_mode, **kwargs
)
await self.poll_for_task_status(subscription_key, **kwargs)
download_list = await self.get_rodin_download_list(task_uuid, **kwargs)
model = await self.download_files(download_list)
return (model,)

View File

@ -99,14 +99,14 @@ def validate_input_image(image: torch.Tensor) -> bool:
return image.shape[2] < 8000 and image.shape[1] < 8000
def poll_until_finished(
async def poll_until_finished(
auth_kwargs: dict[str, str],
api_endpoint: ApiEndpoint[Any, TaskStatusResponse],
estimated_duration: Optional[int] = None,
node_id: Optional[str] = None,
) -> TaskStatusResponse:
"""Polls the Runway API endpoint until the task reaches a terminal state, then returns the response."""
return PollingOperation(
return await PollingOperation(
poll_endpoint=api_endpoint,
completed_statuses=[
TaskStatus.SUCCEEDED.value,
@ -115,7 +115,7 @@ def poll_until_finished(
TaskStatus.FAILED.value,
TaskStatus.CANCELLED.value,
],
status_extractor=lambda response: (response.status.value),
status_extractor=lambda response: response.status.value,
auth_kwargs=auth_kwargs,
result_url_extractor=get_video_url_from_task_status,
estimated_duration=estimated_duration,
@ -167,11 +167,11 @@ class RunwayVideoGenNode(ComfyNodeABC):
)
return True
def get_response(
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> RunwayImageToVideoResponse:
"""Poll the task status until it is finished then get the response."""
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
@ -183,7 +183,7 @@ class RunwayVideoGenNode(ComfyNodeABC):
node_id=node_id,
)
def generate_video(
async def generate_video(
self,
request: RunwayImageToVideoRequest,
auth_kwargs: dict[str, str],
@ -200,15 +200,15 @@ class RunwayVideoGenNode(ComfyNodeABC):
auth_kwargs=auth_kwargs,
)
initial_response = initial_operation.execute()
initial_response = await initial_operation.execute()
self.validate_task_created(initial_response)
task_id = initial_response.id
final_response = self.get_response(task_id, auth_kwargs, node_id)
final_response = await self.get_response(task_id, auth_kwargs, node_id)
self.validate_response(final_response)
video_url = get_video_url_from_task_status(final_response)
return (download_url_to_video_output(video_url),)
return (await download_url_to_video_output(video_url),)
class RunwayImageToVideoNodeGen3a(RunwayVideoGenNode):
@ -250,7 +250,7 @@ class RunwayImageToVideoNodeGen3a(RunwayVideoGenNode):
},
}
def api_call(
async def api_call(
self,
prompt: str,
start_frame: torch.Tensor,
@ -265,7 +265,7 @@ class RunwayImageToVideoNodeGen3a(RunwayVideoGenNode):
validate_input_image(start_frame)
# Upload image
download_urls = upload_images_to_comfyapi(
download_urls = await upload_images_to_comfyapi(
start_frame,
max_images=1,
mime_type="image/png",
@ -274,7 +274,7 @@ class RunwayImageToVideoNodeGen3a(RunwayVideoGenNode):
if len(download_urls) != 1:
raise RunwayApiError("Failed to upload one or more images to comfy api.")
return self.generate_video(
return await self.generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
@ -333,7 +333,7 @@ class RunwayImageToVideoNodeGen4(RunwayVideoGenNode):
},
}
def api_call(
async def api_call(
self,
prompt: str,
start_frame: torch.Tensor,
@ -348,7 +348,7 @@ class RunwayImageToVideoNodeGen4(RunwayVideoGenNode):
validate_input_image(start_frame)
# Upload image
download_urls = upload_images_to_comfyapi(
download_urls = await upload_images_to_comfyapi(
start_frame,
max_images=1,
mime_type="image/png",
@ -357,7 +357,7 @@ class RunwayImageToVideoNodeGen4(RunwayVideoGenNode):
if len(download_urls) != 1:
raise RunwayApiError("Failed to upload one or more images to comfy api.")
return self.generate_video(
return await self.generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
@ -382,10 +382,10 @@ class RunwayFirstLastFrameNode(RunwayVideoGenNode):
DESCRIPTION = "Upload first and last keyframes, draft a prompt, and generate a video. More complex transitions, such as cases where the Last frame is completely different from the First frame, may benefit from the longer 10s duration. This would give the generation more time to smoothly transition between the two inputs. Before diving in, review these best practices to ensure that your input selections will set your generation up for success: https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3."
def get_response(
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> RunwayImageToVideoResponse:
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
@ -437,7 +437,7 @@ class RunwayFirstLastFrameNode(RunwayVideoGenNode):
},
}
def api_call(
async def api_call(
self,
prompt: str,
start_frame: torch.Tensor,
@ -455,7 +455,7 @@ class RunwayFirstLastFrameNode(RunwayVideoGenNode):
# Upload images
stacked_input_images = image_tensor_pair_to_batch(start_frame, end_frame)
download_urls = upload_images_to_comfyapi(
download_urls = await upload_images_to_comfyapi(
stacked_input_images,
max_images=2,
mime_type="image/png",
@ -464,7 +464,7 @@ class RunwayFirstLastFrameNode(RunwayVideoGenNode):
if len(download_urls) != 2:
raise RunwayApiError("Failed to upload one or more images to comfy api.")
return self.generate_video(
return await self.generate_video(
RunwayImageToVideoRequest(
promptText=prompt,
seed=seed,
@ -543,11 +543,11 @@ class RunwayTextToImageNode(ComfyNodeABC):
)
return True
def get_response(
async def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> TaskStatusResponse:
"""Poll the task status until it is finished then get the response."""
return poll_until_finished(
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{PATH_GET_TASK_STATUS}/{task_id}",
@ -559,7 +559,7 @@ class RunwayTextToImageNode(ComfyNodeABC):
node_id=node_id,
)
def api_call(
async def api_call(
self,
prompt: str,
ratio: str,
@ -574,7 +574,7 @@ class RunwayTextToImageNode(ComfyNodeABC):
reference_images = None
if reference_image is not None:
validate_input_image(reference_image)
download_urls = upload_images_to_comfyapi(
download_urls = await upload_images_to_comfyapi(
reference_image,
max_images=1,
mime_type="image/png",
@ -605,19 +605,19 @@ class RunwayTextToImageNode(ComfyNodeABC):
auth_kwargs=kwargs,
)
initial_response = initial_operation.execute()
initial_response = await initial_operation.execute()
self.validate_task_created(initial_response)
task_id = initial_response.id
# Poll for completion
final_response = self.get_response(
final_response = await self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
self.validate_response(final_response)
# Download and return image
image_url = get_image_url_from_task_status(final_response)
return (download_url_to_image_tensor(image_url),)
return (await download_url_to_image_tensor(image_url),)
NODE_CLASS_MAPPINGS = {

View File

@ -124,7 +124,7 @@ class StabilityStableImageUltraNode:
},
}
def api_call(self, prompt: str, aspect_ratio: str, style_preset: str, seed: int,
async def api_call(self, prompt: str, aspect_ratio: str, style_preset: str, seed: int,
negative_prompt: str=None, image: torch.Tensor = None, image_denoise: float=None,
**kwargs):
validate_string(prompt, strip_whitespace=False)
@ -163,7 +163,7 @@ class StabilityStableImageUltraNode:
content_type="multipart/form-data",
auth_kwargs=kwargs,
)
response_api = operation.execute()
response_api = await operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stable Image Ultra generation failed: {response_api.finish_reason}.")
@ -257,7 +257,7 @@ class StabilityStableImageSD_3_5Node:
},
}
def api_call(self, model: str, prompt: str, aspect_ratio: str, style_preset: str, seed: int, cfg_scale: float,
async def api_call(self, model: str, prompt: str, aspect_ratio: str, style_preset: str, seed: int, cfg_scale: float,
negative_prompt: str=None, image: torch.Tensor = None, image_denoise: float=None,
**kwargs):
validate_string(prompt, strip_whitespace=False)
@ -302,7 +302,7 @@ class StabilityStableImageSD_3_5Node:
content_type="multipart/form-data",
auth_kwargs=kwargs,
)
response_api = operation.execute()
response_api = await operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stable Diffusion 3.5 Image generation failed: {response_api.finish_reason}.")
@ -374,7 +374,7 @@ class StabilityUpscaleConservativeNode:
},
}
def api_call(self, image: torch.Tensor, prompt: str, creativity: float, seed: int, negative_prompt: str=None,
async def api_call(self, image: torch.Tensor, prompt: str, creativity: float, seed: int, negative_prompt: str=None,
**kwargs):
validate_string(prompt, strip_whitespace=False)
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
@ -403,7 +403,7 @@ class StabilityUpscaleConservativeNode:
content_type="multipart/form-data",
auth_kwargs=kwargs,
)
response_api = operation.execute()
response_api = await operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Conservative generation failed: {response_api.finish_reason}.")
@ -480,7 +480,7 @@ class StabilityUpscaleCreativeNode:
},
}
def api_call(self, image: torch.Tensor, prompt: str, creativity: float, style_preset: str, seed: int, negative_prompt: str=None,
async def api_call(self, image: torch.Tensor, prompt: str, creativity: float, style_preset: str, seed: int, negative_prompt: str=None,
**kwargs):
validate_string(prompt, strip_whitespace=False)
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
@ -512,7 +512,7 @@ class StabilityUpscaleCreativeNode:
content_type="multipart/form-data",
auth_kwargs=kwargs,
)
response_api = operation.execute()
response_api = await operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
@ -527,7 +527,7 @@ class StabilityUpscaleCreativeNode:
status_extractor=lambda x: get_async_dummy_status(x),
auth_kwargs=kwargs,
)
response_poll: StabilityResultsGetResponse = operation.execute()
response_poll: StabilityResultsGetResponse = await operation.execute()
if response_poll.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Creative generation failed: {response_poll.finish_reason}.")
@ -563,8 +563,7 @@ class StabilityUpscaleFastNode:
},
}
def api_call(self, image: torch.Tensor,
**kwargs):
async def api_call(self, image: torch.Tensor, **kwargs):
image_binary = tensor_to_bytesio(image, total_pixels=4096*4096).read()
files = {
@ -583,7 +582,7 @@ class StabilityUpscaleFastNode:
content_type="multipart/form-data",
auth_kwargs=kwargs,
)
response_api = operation.execute()
response_api = await operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Fast failed: {response_api.finish_reason}.")

View File

@ -37,8 +37,8 @@ from comfy_api_nodes.apinode_utils import (
)
def upload_image_to_tripo(image, **kwargs):
urls = upload_images_to_comfyapi(image, max_images=1, auth_kwargs=kwargs)
async def upload_image_to_tripo(image, **kwargs):
urls = await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=kwargs)
return TripoFileReference(TripoUrlReference(url=urls[0], type="jpeg"))
def get_model_url_from_response(response: TripoTaskResponse) -> str:
@ -49,7 +49,7 @@ def get_model_url_from_response(response: TripoTaskResponse) -> str:
raise RuntimeError(f"Failed to get model url from response: {response}")
def poll_until_finished(
async def poll_until_finished(
kwargs: dict[str, str],
response: TripoTaskResponse,
) -> tuple[str, str]:
@ -57,7 +57,7 @@ def poll_until_finished(
if response.code != 0:
raise RuntimeError(f"Failed to generate mesh: {response.error}")
task_id = response.data.task_id
response_poll = PollingOperation(
response_poll = await PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/tripo/v2/openapi/task/{task_id}",
method=HttpMethod.GET,
@ -80,7 +80,7 @@ def poll_until_finished(
).execute()
if response_poll.data.status == TripoTaskStatus.SUCCESS:
url = get_model_url_from_response(response_poll)
bytesio = download_url_to_bytesio(url)
bytesio = await download_url_to_bytesio(url)
# Save the downloaded model file
model_file = f"tripo_model_{task_id}.glb"
with open(os.path.join(get_output_directory(), model_file), "wb") as f:
@ -88,6 +88,7 @@ def poll_until_finished(
return model_file, task_id
raise RuntimeError(f"Failed to generate mesh: {response_poll}")
class TripoTextToModelNode:
"""
Generates 3D models synchronously based on a text prompt using Tripo's API.
@ -126,11 +127,11 @@ class TripoTextToModelNode:
API_NODE = True
OUTPUT_NODE = True
def generate_mesh(self, prompt, negative_prompt=None, model_version=None, style=None, texture=None, pbr=None, image_seed=None, model_seed=None, texture_seed=None, texture_quality=None, face_limit=None, quad=None, **kwargs):
async def generate_mesh(self, prompt, negative_prompt=None, model_version=None, style=None, texture=None, pbr=None, image_seed=None, model_seed=None, texture_seed=None, texture_quality=None, face_limit=None, quad=None, **kwargs):
style_enum = None if style == "None" else style
if not prompt:
raise RuntimeError("Prompt is required")
response = SynchronousOperation(
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
@ -155,7 +156,8 @@ class TripoTextToModelNode:
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
return await poll_until_finished(kwargs, response)
class TripoImageToModelNode:
"""
@ -195,12 +197,12 @@ class TripoImageToModelNode:
API_NODE = True
OUTPUT_NODE = True
def generate_mesh(self, image, model_version=None, style=None, texture=None, pbr=None, model_seed=None, orientation=None, texture_alignment=None, texture_seed=None, texture_quality=None, face_limit=None, quad=None, **kwargs):
async def generate_mesh(self, image, model_version=None, style=None, texture=None, pbr=None, model_seed=None, orientation=None, texture_alignment=None, texture_seed=None, texture_quality=None, face_limit=None, quad=None, **kwargs):
style_enum = None if style == "None" else style
if image is None:
raise RuntimeError("Image is required")
tripo_file = upload_image_to_tripo(image, **kwargs)
response = SynchronousOperation(
tripo_file = await upload_image_to_tripo(image, **kwargs)
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
@ -225,7 +227,8 @@ class TripoImageToModelNode:
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
return await poll_until_finished(kwargs, response)
class TripoMultiviewToModelNode:
"""
@ -267,7 +270,7 @@ class TripoMultiviewToModelNode:
API_NODE = True
OUTPUT_NODE = True
def generate_mesh(self, image, image_left=None, image_back=None, image_right=None, model_version=None, orientation=None, texture=None, pbr=None, model_seed=None, texture_seed=None, texture_quality=None, texture_alignment=None, face_limit=None, quad=None, **kwargs):
async def generate_mesh(self, image, image_left=None, image_back=None, image_right=None, model_version=None, orientation=None, texture=None, pbr=None, model_seed=None, texture_seed=None, texture_quality=None, texture_alignment=None, face_limit=None, quad=None, **kwargs):
if image is None:
raise RuntimeError("front image for multiview is required")
images = []
@ -282,11 +285,11 @@ class TripoMultiviewToModelNode:
for image_name in ["image", "image_left", "image_back", "image_right"]:
image_ = image_dict[image_name]
if image_ is not None:
tripo_file = upload_image_to_tripo(image_, **kwargs)
tripo_file = await upload_image_to_tripo(image_, **kwargs)
images.append(tripo_file)
else:
images.append(TripoFileEmptyReference())
response = SynchronousOperation(
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
@ -309,7 +312,8 @@ class TripoMultiviewToModelNode:
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
return await poll_until_finished(kwargs, response)
class TripoTextureNode:
@classmethod
@ -340,8 +344,8 @@ class TripoTextureNode:
OUTPUT_NODE = True
AVERAGE_DURATION = 80
def generate_mesh(self, model_task_id, texture=None, pbr=None, texture_seed=None, texture_quality=None, texture_alignment=None, **kwargs):
response = SynchronousOperation(
async def generate_mesh(self, model_task_id, texture=None, pbr=None, texture_seed=None, texture_quality=None, texture_alignment=None, **kwargs):
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
@ -358,7 +362,7 @@ class TripoTextureNode:
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
return await poll_until_finished(kwargs, response)
class TripoRefineNode:
@ -387,8 +391,8 @@ class TripoRefineNode:
OUTPUT_NODE = True
AVERAGE_DURATION = 240
def generate_mesh(self, model_task_id, **kwargs):
response = SynchronousOperation(
async def generate_mesh(self, model_task_id, **kwargs):
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
@ -400,7 +404,7 @@ class TripoRefineNode:
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
return await poll_until_finished(kwargs, response)
class TripoRigNode:
@ -425,8 +429,8 @@ class TripoRigNode:
OUTPUT_NODE = True
AVERAGE_DURATION = 180
def generate_mesh(self, original_model_task_id, **kwargs):
response = SynchronousOperation(
async def generate_mesh(self, original_model_task_id, **kwargs):
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
@ -440,7 +444,8 @@ class TripoRigNode:
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
return await poll_until_finished(kwargs, response)
class TripoRetargetNode:
@classmethod
@ -475,8 +480,8 @@ class TripoRetargetNode:
OUTPUT_NODE = True
AVERAGE_DURATION = 30
def generate_mesh(self, animation, original_model_task_id, **kwargs):
response = SynchronousOperation(
async def generate_mesh(self, animation, original_model_task_id, **kwargs):
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
@ -491,7 +496,8 @@ class TripoRetargetNode:
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
return await poll_until_finished(kwargs, response)
class TripoConversionNode:
@classmethod
@ -529,10 +535,10 @@ class TripoConversionNode:
OUTPUT_NODE = True
AVERAGE_DURATION = 30
def generate_mesh(self, original_model_task_id, format, quad, face_limit, texture_size, texture_format, **kwargs):
async def generate_mesh(self, original_model_task_id, format, quad, face_limit, texture_size, texture_format, **kwargs):
if not original_model_task_id:
raise RuntimeError("original_model_task_id is required")
response = SynchronousOperation(
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/tripo/v2/openapi/task",
method=HttpMethod.POST,
@ -549,7 +555,8 @@ class TripoConversionNode:
),
auth_kwargs=kwargs,
).execute()
return poll_until_finished(kwargs, response)
return await poll_until_finished(kwargs, response)
NODE_CLASS_MAPPINGS = {
"TripoTextToModelNode": TripoTextToModelNode,

View File

@ -1,17 +1,18 @@
import io
import logging
import base64
import requests
import aiohttp
import torch
from io import BytesIO
from typing import Optional
from typing_extensions import override
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
from comfy_api.latest import ComfyExtension, io as comfy_io
from comfy_api.input_impl.video_types import VideoFromFile
from comfy_api_nodes.apis import (
VeoGenVidRequest,
VeoGenVidResponse,
VeoGenVidPollRequest,
VeoGenVidPollResponse
VeoGenVidPollResponse,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
@ -22,7 +23,7 @@ from comfy_api_nodes.apis.client import (
from comfy_api_nodes.apinode_utils import (
downscale_image_tensor,
tensor_to_base64_string
tensor_to_base64_string,
)
AVERAGE_DURATION_VIDEO_GEN = 32
@ -50,7 +51,7 @@ def get_video_url_from_response(poll_response: VeoGenVidPollResponse) -> Optiona
return None
class VeoVideoGenerationNode(ComfyNodeABC):
class VeoVideoGenerationNode(comfy_io.ComfyNode):
"""
Generates videos from text prompts using Google's Veo API.
@ -59,101 +60,93 @@ class VeoVideoGenerationNode(ComfyNodeABC):
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text description of the video",
},
def define_schema(cls):
return comfy_io.Schema(
node_id="VeoVideoGenerationNode",
display_name="Google Veo 2 Video Generation",
category="api node/video/Veo",
description="Generates videos from text prompts using Google's Veo 2 API",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text description of the video",
),
"aspect_ratio": (
IO.COMBO,
{
"options": ["16:9", "9:16"],
"default": "16:9",
"tooltip": "Aspect ratio of the output video",
},
comfy_io.Combo.Input(
"aspect_ratio",
options=["16:9", "9:16"],
default="16:9",
tooltip="Aspect ratio of the output video",
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Negative text prompt to guide what to avoid in the video",
},
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="",
tooltip="Negative text prompt to guide what to avoid in the video",
optional=True,
),
"duration_seconds": (
IO.INT,
{
"default": 5,
"min": 5,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "Duration of the output video in seconds",
},
comfy_io.Int.Input(
"duration_seconds",
default=5,
min=5,
max=8,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds",
optional=True,
),
"enhance_prompt": (
IO.BOOLEAN,
{
"default": True,
"tooltip": "Whether to enhance the prompt with AI assistance",
}
comfy_io.Boolean.Input(
"enhance_prompt",
default=True,
tooltip="Whether to enhance the prompt with AI assistance",
optional=True,
),
"person_generation": (
IO.COMBO,
{
"options": ["ALLOW", "BLOCK"],
"default": "ALLOW",
"tooltip": "Whether to allow generating people in the video",
},
comfy_io.Combo.Input(
"person_generation",
options=["ALLOW", "BLOCK"],
default="ALLOW",
tooltip="Whether to allow generating people in the video",
optional=True,
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFF,
"step": 1,
"display": "number",
"control_after_generate": True,
"tooltip": "Seed for video generation (0 for random)",
},
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFF,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
"image": (IO.IMAGE, {
"default": None,
"tooltip": "Optional reference image to guide video generation",
}),
"model": (
IO.COMBO,
{
"options": ["veo-2.0-generate-001"],
"default": "veo-2.0-generate-001",
"tooltip": "Veo 2 model to use for video generation",
},
comfy_io.Image.Input(
"image",
tooltip="Optional reference image to guide video generation",
optional=True,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
comfy_io.Combo.Input(
"model",
options=["veo-2.0-generate-001"],
default="veo-2.0-generate-001",
tooltip="Veo 2 model to use for video generation",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
RETURN_TYPES = (IO.VIDEO,)
FUNCTION = "generate_video"
CATEGORY = "api node/video/Veo"
DESCRIPTION = "Generates videos from text prompts using Google's Veo 2 API"
API_NODE = True
def generate_video(
self,
@classmethod
async def execute(
cls,
prompt,
aspect_ratio="16:9",
negative_prompt="",
@ -164,8 +157,6 @@ class VeoVideoGenerationNode(ComfyNodeABC):
image=None,
model="veo-2.0-generate-001",
generate_audio=False,
unique_id: Optional[str] = None,
**kwargs,
):
# Prepare the instances for the request
instances = []
@ -202,6 +193,10 @@ class VeoVideoGenerationNode(ComfyNodeABC):
if "veo-3.0" in model:
parameters["generateAudio"] = generate_audio
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
# Initial request to start video generation
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
@ -214,10 +209,10 @@ class VeoVideoGenerationNode(ComfyNodeABC):
instances=instances,
parameters=parameters
),
auth_kwargs=kwargs,
auth_kwargs=auth,
)
initial_response = initial_operation.execute()
initial_response = await initial_operation.execute()
operation_name = initial_response.name
logging.info(f"Veo generation started with operation name: {operation_name}")
@ -248,15 +243,15 @@ class VeoVideoGenerationNode(ComfyNodeABC):
request=VeoGenVidPollRequest(
operationName=operation_name
),
auth_kwargs=kwargs,
auth_kwargs=auth,
poll_interval=5.0,
result_url_extractor=get_video_url_from_response,
node_id=unique_id,
node_id=cls.hidden.unique_id,
estimated_duration=AVERAGE_DURATION_VIDEO_GEN,
)
# Execute the polling operation
poll_response = poll_operation.execute()
poll_response = await poll_operation.execute()
# Now check for errors in the final response
# Check for error in poll response
@ -281,7 +276,6 @@ class VeoVideoGenerationNode(ComfyNodeABC):
raise Exception(error_message)
# Extract video data
video_data = None
if poll_response.response and hasattr(poll_response.response, 'videos') and poll_response.response.videos and len(poll_response.response.videos) > 0:
video = poll_response.response.videos[0]
@ -291,9 +285,9 @@ class VeoVideoGenerationNode(ComfyNodeABC):
video_data = base64.b64decode(video.bytesBase64Encoded)
elif hasattr(video, 'gcsUri') and video.gcsUri:
# Download from URL
video_url = video.gcsUri
video_response = requests.get(video_url)
video_data = video_response.content
async with aiohttp.ClientSession() as session:
async with session.get(video.gcsUri) as video_response:
video_data = await video_response.content.read()
else:
raise Exception("Video returned but no data or URL was provided")
else:
@ -305,10 +299,10 @@ class VeoVideoGenerationNode(ComfyNodeABC):
logging.info("Video generation completed successfully")
# Convert video data to BytesIO object
video_io = io.BytesIO(video_data)
video_io = BytesIO(video_data)
# Return VideoFromFile object
return (VideoFromFile(video_io),)
return comfy_io.NodeOutput(VideoFromFile(video_io))
class Veo3VideoGenerationNode(VeoVideoGenerationNode):
@ -324,51 +318,104 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode):
"""
@classmethod
def INPUT_TYPES(s):
parent_input = super().INPUT_TYPES()
# Update model options for Veo 3
parent_input["optional"]["model"] = (
IO.COMBO,
{
"options": ["veo-3.0-generate-001", "veo-3.0-fast-generate-001"],
"default": "veo-3.0-generate-001",
"tooltip": "Veo 3 model to use for video generation",
},
def define_schema(cls):
return comfy_io.Schema(
node_id="Veo3VideoGenerationNode",
display_name="Google Veo 3 Video Generation",
category="api node/video/Veo",
description="Generates videos from text prompts using Google's Veo 3 API",
inputs=[
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Text description of the video",
),
comfy_io.Combo.Input(
"aspect_ratio",
options=["16:9", "9:16"],
default="16:9",
tooltip="Aspect ratio of the output video",
),
comfy_io.String.Input(
"negative_prompt",
multiline=True,
default="",
tooltip="Negative text prompt to guide what to avoid in the video",
optional=True,
),
comfy_io.Int.Input(
"duration_seconds",
default=8,
min=8,
max=8,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds (Veo 3 only supports 8 seconds)",
optional=True,
),
comfy_io.Boolean.Input(
"enhance_prompt",
default=True,
tooltip="Whether to enhance the prompt with AI assistance",
optional=True,
),
comfy_io.Combo.Input(
"person_generation",
options=["ALLOW", "BLOCK"],
default="ALLOW",
tooltip="Whether to allow generating people in the video",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFF,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
comfy_io.Image.Input(
"image",
tooltip="Optional reference image to guide video generation",
optional=True,
),
comfy_io.Combo.Input(
"model",
options=["veo-3.0-generate-001", "veo-3.0-fast-generate-001"],
default="veo-3.0-generate-001",
tooltip="Veo 3 model to use for video generation",
optional=True,
),
comfy_io.Boolean.Input(
"generate_audio",
default=False,
tooltip="Generate audio for the video. Supported by all Veo 3 models.",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
# Add generateAudio parameter
parent_input["optional"]["generate_audio"] = (
IO.BOOLEAN,
{
"default": False,
"tooltip": "Generate audio for the video. Supported by all Veo 3 models.",
}
)
# Update duration constraints for Veo 3 (only 8 seconds supported)
parent_input["optional"]["duration_seconds"] = (
IO.INT,
{
"default": 8,
"min": 8,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "Duration of the output video in seconds (Veo 3 only supports 8 seconds)",
},
)
class VeoExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
VeoVideoGenerationNode,
Veo3VideoGenerationNode,
]
return parent_input
# Register the nodes
NODE_CLASS_MAPPINGS = {
"VeoVideoGenerationNode": VeoVideoGenerationNode,
"Veo3VideoGenerationNode": Veo3VideoGenerationNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"VeoVideoGenerationNode": "Google Veo 2 Video Generation",
"Veo3VideoGenerationNode": "Google Veo 3 Video Generation",
}
async def comfy_entrypoint() -> VeoExtension:
return VeoExtension()

View File

@ -0,0 +1,622 @@
import logging
from enum import Enum
from typing import Any, Callable, Optional, Literal, TypeVar
from typing_extensions import override
import torch
from pydantic import BaseModel, Field
from comfy_api.latest import ComfyExtension, io as comfy_io
from comfy_api_nodes.util.validation_utils import (
validate_aspect_ratio_closeness,
validate_image_dimensions,
validate_image_aspect_ratio_range,
get_number_of_images,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import download_url_to_video_output, upload_images_to_comfyapi
VIDU_TEXT_TO_VIDEO = "/proxy/vidu/text2video"
VIDU_IMAGE_TO_VIDEO = "/proxy/vidu/img2video"
VIDU_REFERENCE_VIDEO = "/proxy/vidu/reference2video"
VIDU_START_END_VIDEO = "/proxy/vidu/start-end2video"
VIDU_GET_GENERATION_STATUS = "/proxy/vidu/tasks/%s/creations"
R = TypeVar("R")
class VideoModelName(str, Enum):
vidu_q1 = 'viduq1'
class AspectRatio(str, Enum):
r_16_9 = "16:9"
r_9_16 = "9:16"
r_1_1 = "1:1"
class Resolution(str, Enum):
r_1080p = "1080p"
class MovementAmplitude(str, Enum):
auto = "auto"
small = "small"
medium = "medium"
large = "large"
class TaskCreationRequest(BaseModel):
model: VideoModelName = VideoModelName.vidu_q1
prompt: Optional[str] = Field(None, max_length=1500)
duration: Optional[Literal[5]] = 5
seed: Optional[int] = Field(0, ge=0, le=2147483647)
aspect_ratio: Optional[AspectRatio] = AspectRatio.r_16_9
resolution: Optional[Resolution] = Resolution.r_1080p
movement_amplitude: Optional[MovementAmplitude] = MovementAmplitude.auto
images: Optional[list[str]] = Field(None, description="Base64 encoded string or image URL")
class TaskStatus(str, Enum):
created = "created"
queueing = "queueing"
processing = "processing"
success = "success"
failed = "failed"
class TaskCreationResponse(BaseModel):
task_id: str = Field(...)
state: TaskStatus = Field(...)
created_at: str = Field(...)
code: Optional[int] = Field(None, description="Error code")
class TaskResult(BaseModel):
id: str = Field(..., description="Creation id")
url: str = Field(..., description="The URL of the generated results, valid for one hour")
cover_url: str = Field(..., description="The cover URL of the generated results, valid for one hour")
class TaskStatusResponse(BaseModel):
state: TaskStatus = Field(...)
err_code: Optional[str] = Field(None)
creations: list[TaskResult] = Field(..., description="Generated results")
async def poll_until_finished(
auth_kwargs: dict[str, str],
api_endpoint: ApiEndpoint[Any, R],
result_url_extractor: Optional[Callable[[R], str]] = None,
estimated_duration: Optional[int] = None,
node_id: Optional[str] = None,
) -> R:
return await PollingOperation(
poll_endpoint=api_endpoint,
completed_statuses=[TaskStatus.success.value],
failed_statuses=[TaskStatus.failed.value],
status_extractor=lambda response: response.state.value,
auth_kwargs=auth_kwargs,
result_url_extractor=result_url_extractor,
estimated_duration=estimated_duration,
node_id=node_id,
poll_interval=16.0,
max_poll_attempts=256,
).execute()
def get_video_url_from_response(response) -> Optional[str]:
if response.creations:
return response.creations[0].url
return None
def get_video_from_response(response) -> TaskResult:
if not response.creations:
error_msg = f"Vidu request does not contain results. State: {response.state}, Error Code: {response.err_code}"
logging.info(error_msg)
raise RuntimeError(error_msg)
logging.info("Vidu task %s succeeded. Video URL: %s", response.creations[0].id, response.creations[0].url)
return response.creations[0]
async def execute_task(
vidu_endpoint: str,
auth_kwargs: Optional[dict[str, str]],
payload: TaskCreationRequest,
estimated_duration: int,
node_id: str,
) -> R:
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path=vidu_endpoint,
method=HttpMethod.POST,
request_model=TaskCreationRequest,
response_model=TaskCreationResponse,
),
request=payload,
auth_kwargs=auth_kwargs,
).execute()
if response.state == TaskStatus.failed:
error_msg = f"Vidu request failed. Code: {response.code}"
logging.error(error_msg)
raise RuntimeError(error_msg)
return await poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=VIDU_GET_GENERATION_STATUS % response.task_id,
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TaskStatusResponse,
),
result_url_extractor=get_video_url_from_response,
estimated_duration=estimated_duration,
node_id=node_id,
)
class ViduTextToVideoNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ViduTextToVideoNode",
display_name="Vidu Text To Video Generation",
category="api node/video/Vidu",
description="Generate video from text prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in VideoModelName],
default=VideoModelName.vidu_q1.value,
tooltip="Model name",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="A textual description for video generation",
),
comfy_io.Int.Input(
"duration",
default=5,
min=5,
max=5,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
comfy_io.Combo.Input(
"aspect_ratio",
options=[model.value for model in AspectRatio],
default=AspectRatio.r_16_9.value,
tooltip="The aspect ratio of the output video",
optional=True,
),
comfy_io.Combo.Input(
"resolution",
options=[model.value for model in Resolution],
default=Resolution.r_1080p.value,
tooltip="Supported values may vary by model & duration",
optional=True,
),
comfy_io.Combo.Input(
"movement_amplitude",
options=[model.value for model in MovementAmplitude],
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
duration: int,
seed: int,
aspect_ratio: str,
resolution: str,
movement_amplitude: str,
) -> comfy_io.NodeOutput:
if not prompt:
raise ValueError("The prompt field is required and cannot be empty.")
payload = TaskCreationRequest(
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
aspect_ratio=aspect_ratio,
resolution=resolution,
movement_amplitude=movement_amplitude,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
results = await execute_task(VIDU_TEXT_TO_VIDEO, auth, payload, 320, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduImageToVideoNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ViduImageToVideoNode",
display_name="Vidu Image To Video Generation",
category="api node/video/Vidu",
description="Generate video from image and optional prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in VideoModelName],
default=VideoModelName.vidu_q1.value,
tooltip="Model name",
),
comfy_io.Image.Input(
"image",
tooltip="An image to be used as the start frame of the generated video",
),
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="A textual description for video generation",
optional=True,
),
comfy_io.Int.Input(
"duration",
default=5,
min=5,
max=5,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
comfy_io.Combo.Input(
"resolution",
options=[model.value for model in Resolution],
default=Resolution.r_1080p.value,
tooltip="Supported values may vary by model & duration",
optional=True,
),
comfy_io.Combo.Input(
"movement_amplitude",
options=[model.value for model in MovementAmplitude],
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
image: torch.Tensor,
prompt: str,
duration: int,
seed: int,
resolution: str,
movement_amplitude: str,
) -> comfy_io.NodeOutput:
if get_number_of_images(image) > 1:
raise ValueError("Only one input image is allowed.")
validate_image_aspect_ratio_range(image, (1, 4), (4, 1))
payload = TaskCreationRequest(
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
resolution=resolution,
movement_amplitude=movement_amplitude,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
payload.images = await upload_images_to_comfyapi(
image,
max_images=1,
mime_type="image/png",
auth_kwargs=auth,
)
results = await execute_task(VIDU_IMAGE_TO_VIDEO, auth, payload, 120, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduReferenceVideoNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ViduReferenceVideoNode",
display_name="Vidu Reference To Video Generation",
category="api node/video/Vidu",
description="Generate video from multiple images and prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in VideoModelName],
default=VideoModelName.vidu_q1.value,
tooltip="Model name",
),
comfy_io.Image.Input(
"images",
tooltip="Images to use as references to generate a video with consistent subjects (max 7 images).",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="A textual description for video generation",
),
comfy_io.Int.Input(
"duration",
default=5,
min=5,
max=5,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
comfy_io.Combo.Input(
"aspect_ratio",
options=[model.value for model in AspectRatio],
default=AspectRatio.r_16_9.value,
tooltip="The aspect ratio of the output video",
optional=True,
),
comfy_io.Combo.Input(
"resolution",
options=[model.value for model in Resolution],
default=Resolution.r_1080p.value,
tooltip="Supported values may vary by model & duration",
optional=True,
),
comfy_io.Combo.Input(
"movement_amplitude",
options=[model.value for model in MovementAmplitude],
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
images: torch.Tensor,
prompt: str,
duration: int,
seed: int,
aspect_ratio: str,
resolution: str,
movement_amplitude: str,
) -> comfy_io.NodeOutput:
if not prompt:
raise ValueError("The prompt field is required and cannot be empty.")
a = get_number_of_images(images)
if a > 7:
raise ValueError("Too many images, maximum allowed is 7.")
for image in images:
validate_image_aspect_ratio_range(image, (1, 4), (4, 1))
validate_image_dimensions(image, min_width=128, min_height=128)
payload = TaskCreationRequest(
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
aspect_ratio=aspect_ratio,
resolution=resolution,
movement_amplitude=movement_amplitude,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
payload.images = await upload_images_to_comfyapi(
images,
max_images=7,
mime_type="image/png",
auth_kwargs=auth,
)
results = await execute_task(VIDU_REFERENCE_VIDEO, auth, payload, 120, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduStartEndToVideoNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ViduStartEndToVideoNode",
display_name="Vidu Start End To Video Generation",
category="api node/video/Vidu",
description="Generate a video from start and end frames and a prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in VideoModelName],
default=VideoModelName.vidu_q1.value,
tooltip="Model name",
),
comfy_io.Image.Input(
"first_frame",
tooltip="Start frame",
),
comfy_io.Image.Input(
"end_frame",
tooltip="End frame",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="A textual description for video generation",
optional=True,
),
comfy_io.Int.Input(
"duration",
default=5,
min=5,
max=5,
step=1,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Duration of the output video in seconds",
optional=True,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed for video generation (0 for random)",
optional=True,
),
comfy_io.Combo.Input(
"resolution",
options=[model.value for model in Resolution],
default=Resolution.r_1080p.value,
tooltip="Supported values may vary by model & duration",
optional=True,
),
comfy_io.Combo.Input(
"movement_amplitude",
options=[model.value for model in MovementAmplitude],
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
first_frame: torch.Tensor,
end_frame: torch.Tensor,
prompt: str,
duration: int,
seed: int,
resolution: str,
movement_amplitude: str,
) -> comfy_io.NodeOutput:
validate_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False)
payload = TaskCreationRequest(
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
resolution=resolution,
movement_amplitude=movement_amplitude,
)
auth = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
payload.images = [
(await upload_images_to_comfyapi(frame, max_images=1, mime_type="image/png", auth_kwargs=auth))[0]
for frame in (first_frame, end_frame)
]
results = await execute_task(VIDU_START_END_VIDEO, auth, payload, 96, cls.hidden.unique_id)
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
ViduTextToVideoNode,
ViduImageToVideoNode,
ViduReferenceVideoNode,
ViduStartEndToVideoNode,
]
async def comfy_entrypoint() -> ViduExtension:
return ViduExtension()

View File

@ -53,6 +53,53 @@ def validate_image_aspect_ratio(
)
def validate_image_aspect_ratio_range(
image: torch.Tensor,
min_ratio: tuple[float, float], # e.g. (1, 4)
max_ratio: tuple[float, float], # e.g. (4, 1)
*,
strict: bool = True, # True -> (min, max); False -> [min, max]
) -> float:
a1, b1 = min_ratio
a2, b2 = max_ratio
if a1 <= 0 or b1 <= 0 or a2 <= 0 or b2 <= 0:
raise ValueError("Ratios must be positive, like (1, 4) or (4, 1).")
lo, hi = (a1 / b1), (a2 / b2)
if lo > hi:
lo, hi = hi, lo
a1, b1, a2, b2 = a2, b2, a1, b1 # swap only for error text
w, h = get_image_dimensions(image)
if w <= 0 or h <= 0:
raise ValueError(f"Invalid image dimensions: {w}x{h}")
ar = w / h
ok = (lo < ar < hi) if strict else (lo <= ar <= hi)
if not ok:
op = "<" if strict else ""
raise ValueError(f"Image aspect ratio {ar:.6g} is outside allowed range: {a1}:{b1} {op} ratio {op} {a2}:{b2}")
return ar
def validate_aspect_ratio_closeness(
start_img,
end_img,
min_rel: float,
max_rel: float,
*,
strict: bool = False, # True => exclusive, False => inclusive
) -> None:
w1, h1 = get_image_dimensions(start_img)
w2, h2 = get_image_dimensions(end_img)
if min(w1, h1, w2, h2) <= 0:
raise ValueError("Invalid image dimensions")
ar1 = w1 / h1
ar2 = w2 / h2
# Normalize so it is symmetric (no need to check both ar1/ar2 and ar2/ar1)
closeness = max(ar1, ar2) / min(ar1, ar2)
limit = max(max_rel, 1.0 / min_rel) # for 0.8..1.25 this is 1.25
if (closeness >= limit) if strict else (closeness > limit):
raise ValueError(f"Aspect ratios must be close: start/end={ar1/ar2:.4f}, allowed range {min_rel}{max_rel}.")
def validate_video_dimensions(
video: VideoInput,
min_width: Optional[int] = None,
@ -98,3 +145,9 @@ def validate_video_duration(
raise ValueError(
f"Video duration must be at most {max_duration}s, got {duration}s"
)
def get_number_of_images(images):
if isinstance(images, torch.Tensor):
return images.shape[0] if images.ndim >= 4 else 1
return len(images)

View File

@ -1,53 +1,65 @@
import torch
from typing_extensions import override
import comfy.model_management
from comfy import node_helpers
from comfy_api.latest import ComfyExtension, io
class TextEncodeAceStepAudio:
class TextEncodeAceStepAudio(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP",),
"tags": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"lyrics": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"lyrics_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
def define_schema(cls):
return io.Schema(
node_id="TextEncodeAceStepAudio",
category="conditioning",
inputs=[
io.Clip.Input("clip"),
io.String.Input("tags", multiline=True, dynamic_prompts=True),
io.String.Input("lyrics", multiline=True, dynamic_prompts=True),
io.Float.Input("lyrics_strength", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Conditioning.Output()],
)
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "conditioning"
def encode(self, clip, tags, lyrics, lyrics_strength):
@classmethod
def execute(cls, clip, tags, lyrics, lyrics_strength) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics)
conditioning = clip.encode_from_tokens_scheduled(tokens)
conditioning = node_helpers.conditioning_set_values(conditioning, {"lyrics_strength": lyrics_strength})
return (conditioning,)
return io.NodeOutput(conditioning)
class EmptyAceStepLatentAudio:
def __init__(self):
self.device = comfy.model_management.intermediate_device()
class EmptyAceStepLatentAudio(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="EmptyAceStepLatentAudio",
category="latent/audio",
inputs=[
io.Float.Input("seconds", default=120.0, min=1.0, max=1000.0, step=0.1),
io.Int.Input(
"batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
),
],
outputs=[io.Latent.Output()],
)
@classmethod
def INPUT_TYPES(s):
return {"required": {"seconds": ("FLOAT", {"default": 120.0, "min": 1.0, "max": 1000.0, "step": 0.1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/audio"
def generate(self, seconds, batch_size):
def execute(cls, seconds, batch_size) -> io.NodeOutput:
length = int(seconds * 44100 / 512 / 8)
latent = torch.zeros([batch_size, 8, 16, length], device=self.device)
return ({"samples": latent, "type": "audio"},)
latent = torch.zeros([batch_size, 8, 16, length], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples": latent, "type": "audio"})
NODE_CLASS_MAPPINGS = {
"TextEncodeAceStepAudio": TextEncodeAceStepAudio,
"EmptyAceStepLatentAudio": EmptyAceStepLatentAudio,
}
class AceExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
TextEncodeAceStepAudio,
EmptyAceStepLatentAudio,
]
async def comfy_entrypoint() -> AceExtension:
return AceExtension()

View File

@ -1,8 +1,13 @@
import numpy as np
import torch
from tqdm.auto import trange
from typing_extensions import override
import comfy.model_patcher
import comfy.samplers
import comfy.utils
import torch
import numpy as np
from tqdm.auto import trange
from comfy.k_diffusion.sampling import to_d
from comfy_api.latest import ComfyExtension, io
@torch.no_grad()
@ -33,30 +38,29 @@ def sample_lcm_upscale(model, x, sigmas, extra_args=None, callback=None, disable
return x
class SamplerLCMUpscale:
upscale_methods = ["bislerp", "nearest-exact", "bilinear", "area", "bicubic"]
class SamplerLCMUpscale(io.ComfyNode):
UPSCALE_METHODS = ["bislerp", "nearest-exact", "bilinear", "area", "bicubic"]
@classmethod
def INPUT_TYPES(s):
return {"required":
{"scale_ratio": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 20.0, "step": 0.01}),
"scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}),
"upscale_method": (s.upscale_methods,),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="SamplerLCMUpscale",
category="sampling/custom_sampling/samplers",
inputs=[
io.Float.Input("scale_ratio", default=1.0, min=0.1, max=20.0, step=0.01),
io.Int.Input("scale_steps", default=-1, min=-1, max=1000, step=1),
io.Combo.Input("upscale_method", options=cls.UPSCALE_METHODS),
],
outputs=[io.Sampler.Output()],
)
FUNCTION = "get_sampler"
def get_sampler(self, scale_ratio, scale_steps, upscale_method):
@classmethod
def execute(cls, scale_ratio, scale_steps, upscale_method) -> io.NodeOutput:
if scale_steps < 0:
scale_steps = None
sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
return (sampler, )
return io.NodeOutput(sampler)
from comfy.k_diffusion.sampling import to_d
import comfy.model_patcher
@torch.no_grad()
def sample_euler_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
@ -82,30 +86,36 @@ def sample_euler_pp(model, x, sigmas, extra_args=None, callback=None, disable=No
return x
class SamplerEulerCFGpp:
class SamplerEulerCFGpp(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required":
{"version": (["regular", "alternative"],),}
}
RETURN_TYPES = ("SAMPLER",)
# CATEGORY = "sampling/custom_sampling/samplers"
CATEGORY = "_for_testing"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="SamplerEulerCFGpp",
display_name="SamplerEulerCFG++",
category="_for_testing", # "sampling/custom_sampling/samplers"
inputs=[
io.Combo.Input("version", options=["regular", "alternative"]),
],
outputs=[io.Sampler.Output()],
is_experimental=True,
)
FUNCTION = "get_sampler"
def get_sampler(self, version):
@classmethod
def execute(cls, version) -> io.NodeOutput:
if version == "alternative":
sampler = comfy.samplers.KSAMPLER(sample_euler_pp)
else:
sampler = comfy.samplers.ksampler("euler_cfg_pp")
return (sampler, )
return io.NodeOutput(sampler)
NODE_CLASS_MAPPINGS = {
"SamplerLCMUpscale": SamplerLCMUpscale,
"SamplerEulerCFGpp": SamplerEulerCFGpp,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"SamplerEulerCFGpp": "SamplerEulerCFG++",
}
class AdvancedSamplersExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
SamplerLCMUpscale,
SamplerEulerCFGpp,
]
async def comfy_entrypoint() -> AdvancedSamplersExtension:
return AdvancedSamplersExtension()

View File

@ -1,4 +1,8 @@
import torch
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
def project(v0, v1):
@ -8,23 +12,46 @@ def project(v0, v1):
return v0_parallel, v0_orthogonal
class APG:
class APG(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"eta": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01, "tooltip": "Controls the scale of the parallel guidance vector. Default CFG behavior at a setting of 1."}),
"norm_threshold": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 50.0, "step": 0.1, "tooltip": "Normalize guidance vector to this value, normalization disable at a setting of 0."}),
"momentum": ("FLOAT", {"default": 0.0, "min": -5.0, "max": 1.0, "step": 0.01, "tooltip": "Controls a running average of guidance during diffusion, disabled at a setting of 0."}),
}
}
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="APG",
display_name="Adaptive Projected Guidance",
category="sampling/custom_sampling",
inputs=[
io.Model.Input("model"),
io.Float.Input(
"eta",
default=1.0,
min=-10.0,
max=10.0,
step=0.01,
tooltip="Controls the scale of the parallel guidance vector. Default CFG behavior at a setting of 1.",
),
io.Float.Input(
"norm_threshold",
default=5.0,
min=0.0,
max=50.0,
step=0.1,
tooltip="Normalize guidance vector to this value, normalization disable at a setting of 0.",
),
io.Float.Input(
"momentum",
default=0.0,
min=-5.0,
max=1.0,
step=0.01,
tooltip= "Controls a running average of guidance during diffusion, disabled at a setting of 0.",
),
],
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "sampling/custom_sampling"
outputs=[io.Model.Output()],
)
def patch(self, model, eta, norm_threshold, momentum):
@classmethod
def execute(cls, model, eta, norm_threshold, momentum) -> io.NodeOutput:
running_avg = 0
prev_sigma = None
@ -68,13 +95,15 @@ class APG:
m = model.clone()
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
return (m,)
return io.NodeOutput(m)
NODE_CLASS_MAPPINGS = {
"APG": APG,
}
class ApgExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
APG,
]
NODE_DISPLAY_NAME_MAPPINGS = {
"APG": "Adaptive Projected Guidance",
}
async def comfy_entrypoint() -> ApgExtension:
return ApgExtension()

View File

@ -1,3 +1,7 @@
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
def attention_multiply(attn, model, q, k, v, out):
m = model.clone()
@ -16,57 +20,71 @@ def attention_multiply(attn, model, q, k, v, out):
return m
class UNetSelfAttentionMultiply:
class UNetSelfAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="UNetSelfAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Model.Input("model"),
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Model.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, q, k, v, out):
@classmethod
def execute(cls, model, q, k, v, out) -> io.NodeOutput:
m = attention_multiply("attn1", model, q, k, v, out)
return (m, )
return io.NodeOutput(m)
class UNetCrossAttentionMultiply:
class UNetCrossAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="UNetCrossAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Model.Input("model"),
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Model.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, q, k, v, out):
@classmethod
def execute(cls, model, q, k, v, out) -> io.NodeOutput:
m = attention_multiply("attn2", model, q, k, v, out)
return (m, )
return io.NodeOutput(m)
class CLIPAttentionMultiply:
class CLIPAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip": ("CLIP",),
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="CLIPAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Clip.Input("clip"),
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Clip.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, clip, q, k, v, out):
@classmethod
def execute(cls, clip, q, k, v, out) -> io.NodeOutput:
m = clip.clone()
sd = m.patcher.model_state_dict()
@ -79,23 +97,28 @@ class CLIPAttentionMultiply:
m.add_patches({key: (None,)}, 0.0, v)
if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"):
m.add_patches({key: (None,)}, 0.0, out)
return (m, )
return io.NodeOutput(m)
class UNetTemporalAttentionMultiply:
class UNetTemporalAttentionMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"self_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"self_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"cross_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"cross_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="UNetTemporalAttentionMultiply",
category="_for_testing/attention_experiments",
inputs=[
io.Model.Input("model"),
io.Float.Input("self_structural", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("self_temporal", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("cross_structural", default=1.0, min=0.0, max=10.0, step=0.01),
io.Float.Input("cross_temporal", default=1.0, min=0.0, max=10.0, step=0.01),
],
outputs=[io.Model.Output()],
is_experimental=True,
)
CATEGORY = "_for_testing/attention_experiments"
def patch(self, model, self_structural, self_temporal, cross_structural, cross_temporal):
@classmethod
def execute(cls, model, self_structural, self_temporal, cross_structural, cross_temporal) -> io.NodeOutput:
m = model.clone()
sd = model.model_state_dict()
@ -110,11 +133,18 @@ class UNetTemporalAttentionMultiply:
m.add_patches({k: (None,)}, 0.0, cross_temporal)
else:
m.add_patches({k: (None,)}, 0.0, cross_structural)
return (m, )
return io.NodeOutput(m)
NODE_CLASS_MAPPINGS = {
"UNetSelfAttentionMultiply": UNetSelfAttentionMultiply,
"UNetCrossAttentionMultiply": UNetCrossAttentionMultiply,
"CLIPAttentionMultiply": CLIPAttentionMultiply,
"UNetTemporalAttentionMultiply": UNetTemporalAttentionMultiply,
}
class AttentionMultiplyExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
UNetSelfAttentionMultiply,
UNetCrossAttentionMultiply,
CLIPAttentionMultiply,
UNetTemporalAttentionMultiply,
]
async def comfy_entrypoint() -> AttentionMultiplyExtension:
return AttentionMultiplyExtension()

View File

@ -379,6 +379,27 @@ class LoadAudio:
return "Invalid audio file: {}".format(audio)
return True
class RecordAudio:
@classmethod
def INPUT_TYPES(s):
return {"required": {"audio": ("AUDIO_RECORD", {})}}
CATEGORY = "audio"
RETURN_TYPES = ("AUDIO", )
FUNCTION = "load"
def load(self, audio):
audio_path = folder_paths.get_annotated_filepath(audio)
try:
import torchaudio # pylint: disable=import-error
except (ImportError, ModuleNotFoundError):
raise TorchAudioNotFoundError()
waveform, sample_rate = torchaudio.load(audio_path)
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
return (audio, )
NODE_CLASS_MAPPINGS = {
"EmptyLatentAudio": EmptyLatentAudio,
@ -390,6 +411,7 @@ NODE_CLASS_MAPPINGS = {
"LoadAudio": LoadAudio,
"PreviewAudio": PreviewAudio,
"ConditioningStableAudio": ConditioningStableAudio,
"RecordAudio": RecordAudio,
}
NODE_DISPLAY_NAME_MAPPINGS = {
@ -401,4 +423,5 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"SaveAudio": "Save Audio (FLAC)",
"SaveAudioMP3": "Save Audio (MP3)",
"SaveAudioOpus": "Save Audio (Opus)",
"RecordAudio": "Record Audio",
}

View File

@ -83,9 +83,28 @@ class FluxKontextImageScale:
return (image,)
class FluxKontextMultiReferenceLatentMethod:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"conditioning": ("CONDITIONING", ),
"reference_latents_method": (("offset", "index"), ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
EXPERIMENTAL = True
CATEGORY = "advanced/conditioning/flux"
def append(self, conditioning, reference_latents_method):
c = node_helpers.conditioning_set_values(conditioning, {"reference_latents_method": reference_latents_method})
return (c, )
NODE_CLASS_MAPPINGS = {
"CLIPTextEncodeFlux": CLIPTextEncodeFlux,
"FluxGuidance": FluxGuidance,
"FluxDisableGuidance": FluxDisableGuidance,
"FluxKontextImageScale": FluxKontextImageScale,
"FluxKontextMultiReferenceLatentMethod": FluxKontextMultiReferenceLatentMethod,
}

View File

@ -172,7 +172,7 @@ class LTXVAddGuide:
negative = self.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors)
mask = torch.full(
(noise_mask.shape[0], 1, guiding_latent.shape[2], 1, 1),
(noise_mask.shape[0], 1, guiding_latent.shape[2], noise_mask.shape[3], noise_mask.shape[4]),
1.0 - strength,
dtype=noise_mask.dtype,
device=noise_mask.device,

View File

@ -1,81 +1,91 @@
import re
from typing_extensions import override
from comfy.comfy_types.node_typing import IO
from comfy_api.latest import ComfyExtension, io
class StringConcatenate():
class StringConcatenate(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string_a": (IO.STRING, {"multiline": True}),
"string_b": (IO.STRING, {"multiline": True}),
"delimiter": (IO.STRING, {"multiline": False, "default": ""})
}
}
def define_schema(cls):
return io.Schema(
node_id="StringConcatenate",
display_name="Concatenate",
category="utils/string",
inputs=[
io.String.Input("string_a", multiline=True),
io.String.Input("string_b", multiline=True),
io.String.Input("delimiter", multiline=False, default=""),
],
outputs=[
io.String.Output(),
]
)
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string_a, string_b, delimiter, **kwargs):
return delimiter.join((string_a, string_b)),
class StringSubstring():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"start": (IO.INT, {}),
"end": (IO.INT, {}),
}
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, start, end, **kwargs):
return string[start:end],
def execute(cls, string_a, string_b, delimiter):
return io.NodeOutput(delimiter.join((string_a, string_b)))
class StringLength():
class StringSubstring(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True})
}
}
def define_schema(cls):
return io.Schema(
node_id="StringSubstring",
display_name="Substring",
category="utils/string",
inputs=[
io.String.Input("string", multiline=True),
io.Int.Input("start"),
io.Int.Input("end"),
],
outputs=[
io.String.Output(),
]
)
RETURN_TYPES = (IO.INT,)
RETURN_NAMES = ("length",)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, **kwargs):
length = len(string)
return length,
class CaseConverter():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"mode": (IO.COMBO, {"options": ["UPPERCASE", "lowercase", "Capitalize", "Title Case"]})
}
}
def execute(cls, string, start, end):
return io.NodeOutput(string[start:end])
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, mode, **kwargs):
class StringLength(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="StringLength",
display_name="Length",
category="utils/string",
inputs=[
io.String.Input("string", multiline=True),
],
outputs=[
io.Int.Output(display_name="length"),
]
)
@classmethod
def execute(cls, string):
return io.NodeOutput(len(string))
class CaseConverter(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="CaseConverter",
display_name="Case Converter",
category="utils/string",
inputs=[
io.String.Input("string", multiline=True),
io.Combo.Input("mode", options=["UPPERCASE", "lowercase", "Capitalize", "Title Case"]),
],
outputs=[
io.String.Output(),
]
)
@classmethod
def execute(cls, string, mode):
if mode == "UPPERCASE":
result = string.upper()
elif mode == "lowercase":
@ -87,24 +97,27 @@ class CaseConverter():
else:
result = string
return result,
return io.NodeOutput(result)
class StringTrim():
class StringTrim(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"mode": (IO.COMBO, {"options": ["Both", "Left", "Right"]})
}
}
def define_schema(cls):
return io.Schema(
node_id="StringTrim",
display_name="Trim",
category="utils/string",
inputs=[
io.String.Input("string", multiline=True),
io.Combo.Input("mode", options=["Both", "Left", "Right"]),
],
outputs=[
io.String.Output(),
]
)
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, mode, **kwargs):
@classmethod
def execute(cls, string, mode):
if mode == "Both":
result = string.strip()
elif mode == "Left":
@ -114,71 +127,78 @@ class StringTrim():
else:
result = string
return result,
return io.NodeOutput(result)
class StringReplace():
class StringReplace(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"find": (IO.STRING, {"multiline": True}),
"replace": (IO.STRING, {"multiline": True})
}
}
def define_schema(cls):
return io.Schema(
node_id="StringReplace",
display_name="Replace",
category="utils/string",
inputs=[
io.String.Input("string", multiline=True),
io.String.Input("find", multiline=True),
io.String.Input("replace", multiline=True),
],
outputs=[
io.String.Output(),
]
)
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, find, replace, **kwargs):
result = string.replace(find, replace)
return result,
class StringContains():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"substring": (IO.STRING, {"multiline": True}),
"case_sensitive": (IO.BOOLEAN, {"default": True})
}
}
def execute(cls, string, find, replace):
return io.NodeOutput(string.replace(find, replace))
RETURN_TYPES = (IO.BOOLEAN,)
RETURN_NAMES = ("contains",)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, substring, case_sensitive, **kwargs):
class StringContains(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="StringContains",
display_name="Contains",
category="utils/string",
inputs=[
io.String.Input("string", multiline=True),
io.String.Input("substring", multiline=True),
io.Boolean.Input("case_sensitive", default=True),
],
outputs=[
io.Boolean.Output(display_name="contains"),
]
)
@classmethod
def execute(cls, string, substring, case_sensitive):
if case_sensitive:
contains = substring in string
else:
contains = substring.lower() in string.lower()
return contains,
return io.NodeOutput(contains)
class StringCompare():
class StringCompare(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string_a": (IO.STRING, {"multiline": True}),
"string_b": (IO.STRING, {"multiline": True}),
"mode": (IO.COMBO, {"options": ["Starts With", "Ends With", "Equal"]}),
"case_sensitive": (IO.BOOLEAN, {"default": True})
}
}
def define_schema(cls):
return io.Schema(
node_id="StringCompare",
display_name="Compare",
category="utils/string",
inputs=[
io.String.Input("string_a", multiline=True),
io.String.Input("string_b", multiline=True),
io.Combo.Input("mode", options=["Starts With", "Ends With", "Equal"]),
io.Boolean.Input("case_sensitive", default=True),
],
outputs=[
io.Boolean.Output(),
]
)
RETURN_TYPES = (IO.BOOLEAN,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string_a, string_b, mode, case_sensitive, **kwargs):
@classmethod
def execute(cls, string_a, string_b, mode, case_sensitive):
if case_sensitive:
a = string_a
b = string_b
@ -187,32 +207,34 @@ class StringCompare():
b = string_b.lower()
if mode == "Equal":
return a == b,
return io.NodeOutput(a == b)
elif mode == "Starts With":
return a.startswith(b),
return io.NodeOutput(a.startswith(b))
elif mode == "Ends With":
return a.endswith(b),
return io.NodeOutput(a.endswith(b))
class RegexMatch():
class RegexMatch(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"regex_pattern": (IO.STRING, {"multiline": True}),
"case_insensitive": (IO.BOOLEAN, {"default": True}),
"multiline": (IO.BOOLEAN, {"default": False}),
"dotall": (IO.BOOLEAN, {"default": False})
}
}
def define_schema(cls):
return io.Schema(
node_id="RegexMatch",
display_name="Regex Match",
category="utils/string",
inputs=[
io.String.Input("string", multiline=True),
io.String.Input("regex_pattern", multiline=True),
io.Boolean.Input("case_insensitive", default=True),
io.Boolean.Input("multiline", default=False),
io.Boolean.Input("dotall", default=False),
],
outputs=[
io.Boolean.Output(display_name="matches"),
]
)
RETURN_TYPES = (IO.BOOLEAN,)
RETURN_NAMES = ("matches",)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, regex_pattern, case_insensitive, multiline, dotall, **kwargs):
@classmethod
def execute(cls, string, regex_pattern, case_insensitive, multiline, dotall):
flags = 0
if case_insensitive:
@ -229,29 +251,32 @@ class RegexMatch():
except re.error:
result = False
return result,
return io.NodeOutput(result)
class RegexExtract():
class RegexExtract(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"regex_pattern": (IO.STRING, {"multiline": True}),
"mode": (IO.COMBO, {"options": ["First Match", "All Matches", "First Group", "All Groups"]}),
"case_insensitive": (IO.BOOLEAN, {"default": True}),
"multiline": (IO.BOOLEAN, {"default": False}),
"dotall": (IO.BOOLEAN, {"default": False}),
"group_index": (IO.INT, {"default": 1, "min": 0, "max": 100})
}
}
def define_schema(cls):
return io.Schema(
node_id="RegexExtract",
display_name="Regex Extract",
category="utils/string",
inputs=[
io.String.Input("string", multiline=True),
io.String.Input("regex_pattern", multiline=True),
io.Combo.Input("mode", options=["First Match", "All Matches", "First Group", "All Groups"]),
io.Boolean.Input("case_insensitive", default=True),
io.Boolean.Input("multiline", default=False),
io.Boolean.Input("dotall", default=False),
io.Int.Input("group_index", default=1, min=0, max=100),
],
outputs=[
io.String.Output(),
]
)
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, regex_pattern, mode, case_insensitive, multiline, dotall, group_index, **kwargs):
@classmethod
def execute(cls, string, regex_pattern, mode, case_insensitive, multiline, dotall, group_index):
join_delimiter = "\n"
flags = 0
@ -300,33 +325,33 @@ class RegexExtract():
except re.error:
result = ""
return result,
return io.NodeOutput(result)
class RegexReplace():
DESCRIPTION = "Find and replace text using regex patterns."
class RegexReplace(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="RegexReplace",
display_name="Regex Replace",
category="utils/string",
description="Find and replace text using regex patterns.",
inputs=[
io.String.Input("string", multiline=True),
io.String.Input("regex_pattern", multiline=True),
io.String.Input("replace", multiline=True),
io.Boolean.Input("case_insensitive", default=True, optional=True),
io.Boolean.Input("multiline", default=False, optional=True),
io.Boolean.Input("dotall", default=False, optional=True, tooltip="When enabled, the dot (.) character will match any character including newline characters. When disabled, dots won't match newlines."),
io.Int.Input("count", default=0, min=0, max=100, optional=True, tooltip="Maximum number of replacements to make. Set to 0 to replace all occurrences (default). Set to 1 to replace only the first match, 2 for the first two matches, etc."),
],
outputs=[
io.String.Output(),
]
)
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"string": (IO.STRING, {"multiline": True}),
"regex_pattern": (IO.STRING, {"multiline": True}),
"replace": (IO.STRING, {"multiline": True}),
},
"optional": {
"case_insensitive": (IO.BOOLEAN, {"default": True}),
"multiline": (IO.BOOLEAN, {"default": False}),
"dotall": (IO.BOOLEAN, {"default": False, "tooltip": "When enabled, the dot (.) character will match any character including newline characters. When disabled, dots won't match newlines."}),
"count": (IO.INT, {"default": 0, "min": 0, "max": 100, "tooltip": "Maximum number of replacements to make. Set to 0 to replace all occurrences (default). Set to 1 to replace only the first match, 2 for the first two matches, etc."}),
}
}
RETURN_TYPES = (IO.STRING,)
FUNCTION = "execute"
CATEGORY = "utils/string"
def execute(self, string, regex_pattern, replace, case_insensitive=True, multiline=False, dotall=False, count=0, **kwargs):
def execute(cls, string, regex_pattern, replace, case_insensitive=True, multiline=False, dotall=False, count=0):
flags = 0
if case_insensitive:
@ -336,33 +361,26 @@ class RegexReplace():
if dotall:
flags |= re.DOTALL
result = re.sub(regex_pattern, replace, string, count=count, flags=flags)
return result,
return io.NodeOutput(result)
NODE_CLASS_MAPPINGS = {
"StringConcatenate": StringConcatenate,
"StringSubstring": StringSubstring,
"StringLength": StringLength,
"CaseConverter": CaseConverter,
"StringTrim": StringTrim,
"StringReplace": StringReplace,
"StringContains": StringContains,
"StringCompare": StringCompare,
"RegexMatch": RegexMatch,
"RegexExtract": RegexExtract,
"RegexReplace": RegexReplace,
}
class StringExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
StringConcatenate,
StringSubstring,
StringLength,
CaseConverter,
StringTrim,
StringReplace,
StringContains,
StringCompare,
RegexMatch,
RegexExtract,
RegexReplace,
]
NODE_DISPLAY_NAME_MAPPINGS = {
"StringConcatenate": "Concatenate",
"StringSubstring": "Substring",
"StringLength": "Length",
"CaseConverter": "Case Converter",
"StringTrim": "Trim",
"StringReplace": "Replace",
"StringContains": "Contains",
"StringCompare": "Compare",
"RegexMatch": "Regex Match",
"RegexExtract": "Regex Extract",
"RegexReplace": "Regex Replace",
}
async def comfy_entrypoint() -> StringExtension:
return StringExtension()

View File

@ -4,37 +4,45 @@ from typing import Tuple
import numpy as np
import torch
from typing_extensions import override
import comfy.clip_vision
import comfy.clip_vision
import comfy.latent_formats
import comfy.latent_formats
import comfy.model_management
import comfy.utils
from comfy import node_helpers
from comfy.nodes import base_nodes as nodes
from comfy_api.latest import ComfyExtension, io
class WanImageToVideo:
class WanImageToVideo(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"vae": ("VAE",),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT",),
"start_image": ("IMAGE",),
}}
def define_schema(cls):
return io.Schema(
node_id="WanImageToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
io.Image.Input("start_image", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None):
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
@ -54,32 +62,36 @@ class WanImageToVideo:
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
return io.NodeOutput(positive, negative, out_latent)
class WanFunControlToVideo:
class WanFunControlToVideo(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"vae": ("VAE",),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT",),
"start_image": ("IMAGE",),
"control_video": ("IMAGE",),
}}
def define_schema(cls):
return io.Schema(
node_id="WanFunControlToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
io.Image.Input("start_image", optional=True),
io.Image.Input("control_video", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None, control_video=None):
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None, control_video=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent)
@ -104,33 +116,97 @@ class WanFunControlToVideo:
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
return io.NodeOutput(positive, negative, out_latent)
class WanFirstLastFrameToVideo:
class Wan22FunControlToVideo(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"vae": ("VAE",),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_start_image": ("CLIP_VISION_OUTPUT",),
"clip_vision_end_image": ("CLIP_VISION_OUTPUT",),
"start_image": ("IMAGE",),
"end_image": ("IMAGE",),
}}
def define_schema(cls):
return io.Schema(
node_id="Wan22FunControlToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Image.Input("ref_image", optional=True),
io.Image.Input("control_video", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, ref_image=None, start_image=None, control_video=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent)
concat_latent = concat_latent.repeat(1, 2, 1, 1, 1)
mask = torch.ones((1, 1, latent.shape[2] * 4, latent.shape[-2], latent.shape[-1]))
CATEGORY = "conditioning/video_models"
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(start_image[:, :, :, :3])
concat_latent[:,16:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
mask[:, :, :start_image.shape[0] + 3] = 0.0
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_start_image=None, clip_vision_end_image=None):
ref_latent = None
if ref_image is not None:
ref_image = comfy.utils.common_upscale(ref_image[:1].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
ref_latent = vae.encode(ref_image[:, :, :, :3])
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(control_video[:, :, :, :3])
concat_latent[:,:16,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2)
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": 16})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": 16})
if ref_latent is not None:
positive = node_helpers.conditioning_set_values(positive, {"reference_latents": [ref_latent]}, append=True)
negative = node_helpers.conditioning_set_values(negative, {"reference_latents": [ref_latent]}, append=True)
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent)
class WanFirstLastFrameToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanFirstLastFrameToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_start_image", optional=True),
io.ClipVisionOutput.Input("clip_vision_end_image", optional=True),
io.Image.Input("start_image", optional=True),
io.Image.Input("end_image", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_start_image=None, clip_vision_end_image=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
@ -171,62 +247,70 @@ class WanFirstLastFrameToVideo:
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
return io.NodeOutput(positive, negative, out_latent)
class WanFunInpaintToVideo:
class WanFunInpaintToVideo(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"vae": ("VAE",),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT",),
"start_image": ("IMAGE",),
"end_image": ("IMAGE",),
}}
def define_schema(cls):
return io.Schema(
node_id="WanFunInpaintToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
io.Image.Input("start_image", optional=True),
io.Image.Input("end_image", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_output=None):
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_output=None) -> io.NodeOutput:
flfv = WanFirstLastFrameToVideo()
return flfv.encode(positive, negative, vae, width, height, length, batch_size, start_image=start_image, end_image=end_image, clip_vision_start_image=clip_vision_output)
return flfv.execute(positive, negative, vae, width, height, length, batch_size, start_image=start_image, end_image=end_image, clip_vision_start_image=clip_vision_output)
class WanVaceToVideo:
class WanVaceToVideo(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"vae": ("VAE",),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1000.0, "step": 0.01}),
},
"optional": {"control_video": ("IMAGE",),
"control_masks": ("MASK",),
"reference_image": ("IMAGE",),
}}
def define_schema(cls):
return io.Schema(
node_id="WanVaceToVideo",
category="conditioning/video_models",
is_experimental=True,
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Float.Input("strength", default=1.0, min=0.0, max=1000.0, step=0.01),
io.Image.Input("control_video", optional=True),
io.Mask.Input("control_masks", optional=True),
io.Image.Input("reference_image", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
io.Int.Output(display_name="trim_latent"),
],
)
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT", "INT")
RETURN_NAMES = ("positive", "negative", "latent", "trim_latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
EXPERIMENTAL = True
def encode(self, positive, negative, vae, width, height, length, batch_size, strength, control_video=None, control_masks=None, reference_image=None):
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, strength, control_video=None, control_masks=None, reference_image=None) -> io.NodeOutput:
latent_length = ((length - 1) // 4) + 1
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
@ -283,54 +367,60 @@ class WanVaceToVideo:
latent = torch.zeros([batch_size, 16, latent_length, height // 8, width // 8], device=comfy.model_management.intermediate_device())
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent, trim_latent)
return io.NodeOutput(positive, negative, out_latent, trim_latent)
class TrimVideoLatent:
class TrimVideoLatent(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"samples": ("LATENT",),
"trim_amount": ("INT", {"default": 0, "min": 0, "max": 99999}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/video"
EXPERIMENTAL = True
def op(self, samples, trim_amount):
def define_schema(cls):
return io.Schema(
node_id="TrimVideoLatent",
category="latent/video",
is_experimental=True,
inputs=[
io.Latent.Input("samples"),
io.Int.Input("trim_amount", default=0, min=0, max=99999),
],
outputs=[
io.Latent.Output(),
],
)
@classmethod
def execute(cls, samples, trim_amount) -> io.NodeOutput:
samples_out = samples.copy()
s1 = samples["samples"]
samples_out["samples"] = s1[:, :, trim_amount:]
return (samples_out,)
return io.NodeOutput(samples_out)
class WanCameraImageToVideo:
class WanCameraImageToVideo(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"vae": ("VAE",),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT",),
"start_image": ("IMAGE",),
"camera_conditions": ("WAN_CAMERA_EMBEDDING",),
}}
def define_schema(cls):
return io.Schema(
node_id="WanCameraImageToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
io.Image.Input("start_image", optional=True),
io.WanCameraEmbedding.Input("camera_conditions", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None, camera_conditions=None):
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None, camera_conditions=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent)
@ -339,9 +429,12 @@ class WanCameraImageToVideo:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(start_image[:, :, :, :3])
concat_latent[:, :, :concat_latent_image.shape[2]] = concat_latent_image[:, :, :concat_latent.shape[2]]
mask = torch.ones((1, 1, latent.shape[2] * 4, latent.shape[-2], latent.shape[-1]))
mask[:, :, :start_image.shape[0] + 3] = 0.0
mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2)
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent})
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent, "concat_mask": mask})
if camera_conditions is not None:
positive = node_helpers.conditioning_set_values(positive, {'camera_conditions': camera_conditions})
@ -353,30 +446,34 @@ class WanCameraImageToVideo:
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
return io.NodeOutput(positive, negative, out_latent)
class WanPhantomSubjectToVideo:
class WanPhantomSubjectToVideo(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"vae": ("VAE",),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"images": ("IMAGE",),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative_text", "negative_img_text", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, width, height, length, batch_size, images):
def define_schema(cls):
return io.Schema(
node_id="WanPhantomSubjectToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Image.Input("images", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative_text"),
io.Conditioning.Output(display_name="negative_img_text"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, images) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
cond2 = negative
if images is not None:
@ -392,7 +489,7 @@ class WanPhantomSubjectToVideo:
out_latent = {}
out_latent["samples"] = latent
return (positive, cond2, negative, out_latent)
return io.NodeOutput(positive, cond2, negative, out_latent)
def parse_json_tracks(tracks):
@ -613,39 +710,40 @@ def patch_motion(
return out_mask_full, out_feature_full
class WanTrackToVideo:
class WanTrackToVideo(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"vae": ("VAE",),
"tracks": ("STRING", {"multiline": True, "default": "[]"}),
"width": ("INT", {"default": 832, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 81, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"temperature": ("FLOAT", {"default": 220.0, "min": 1.0, "max": 1000.0, "step": 0.1}),
"topk": ("INT", {"default": 2, "min": 1, "max": 10}),
"start_image": ("IMAGE",),
},
"optional": {
"clip_vision_output": ("CLIP_VISION_OUTPUT",),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/video_models"
def encode(self, positive, negative, vae, tracks, width, height, length, batch_size,
temperature, topk, start_image=None, clip_vision_output=None):
def define_schema(cls):
return io.Schema(
node_id="WanTrackToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.String.Input("tracks", multiline=True, default="[]"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Float.Input("temperature", default=220.0, min=1.0, max=1000.0, step=0.1),
io.Int.Input("topk", default=2, min=1, max=10),
io.Image.Input("start_image"),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, tracks, width, height, length, batch_size,
temperature, topk, start_image=None, clip_vision_output=None) -> io.NodeOutput:
tracks_data = parse_json_tracks(tracks)
if not tracks_data:
return WanImageToVideo().encode(positive, negative, vae, width, height, length, batch_size, start_image=start_image, clip_vision_output=clip_vision_output)
return WanImageToVideo().execute(positive, negative, vae, width, height, length, batch_size, start_image=start_image, clip_vision_output=clip_vision_output)
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8],
device=comfy.model_management.intermediate_device())
@ -699,34 +797,36 @@ class WanTrackToVideo:
out_latent = {}
out_latent["samples"] = latent
return (positive, negative, out_latent)
return io.NodeOutput(positive, negative, out_latent)
class Wan22ImageToVideoLatent:
class Wan22ImageToVideoLatent(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"vae": ("VAE", ),
"width": ("INT", {"default": 1280, "min": 32, "max": nodes.MAX_RESOLUTION, "step": 32}),
"height": ("INT", {"default": 704, "min": 32, "max": nodes.MAX_RESOLUTION, "step": 32}),
"length": ("INT", {"default": 49, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
},
"optional": {"start_image": ("IMAGE", ),
}}
def define_schema(cls):
return io.Schema(
node_id="Wan22ImageToVideoLatent",
category="conditioning/inpaint",
inputs=[
io.Vae.Input("vae"),
io.Int.Input("width", default=1280, min=32, max=nodes.MAX_RESOLUTION, step=32),
io.Int.Input("height", default=704, min=32, max=nodes.MAX_RESOLUTION, step=32),
io.Int.Input("length", default=49, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Image.Input("start_image", optional=True),
],
outputs=[
io.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "conditioning/inpaint"
def encode(self, vae, width, height, length, batch_size, start_image=None):
@classmethod
def execute(cls, vae, width, height, length, batch_size, start_image=None) -> io.NodeOutput:
latent = torch.zeros([1, 48, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device())
if start_image is None:
out_latent = {}
out_latent["samples"] = latent
return (out_latent,)
return io.NodeOutput(out_latent)
mask = torch.ones([latent.shape[0], 1, ((length - 1) // 4) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device())
@ -741,18 +841,25 @@ class Wan22ImageToVideoLatent:
latent = latent_format.process_out(latent) * mask + latent * (1.0 - mask)
out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1))
out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1))
return (out_latent,)
return io.NodeOutput(out_latent)
NODE_CLASS_MAPPINGS = {
"WanTrackToVideo": WanTrackToVideo,
"WanImageToVideo": WanImageToVideo,
"WanFunControlToVideo": WanFunControlToVideo,
"WanFunInpaintToVideo": WanFunInpaintToVideo,
"WanFirstLastFrameToVideo": WanFirstLastFrameToVideo,
"WanVaceToVideo": WanVaceToVideo,
"TrimVideoLatent": TrimVideoLatent,
"WanCameraImageToVideo": WanCameraImageToVideo,
"WanPhantomSubjectToVideo": WanPhantomSubjectToVideo,
"Wan22ImageToVideoLatent": Wan22ImageToVideoLatent,
}
class WanExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
WanTrackToVideo,
WanImageToVideo,
WanFunControlToVideo,
Wan22FunControlToVideo,
WanFunInpaintToVideo,
WanFirstLastFrameToVideo,
WanVaceToVideo,
TrimVideoLatent,
WanCameraImageToVideo,
WanPhantomSubjectToVideo,
Wan22ImageToVideoLatent,
]
async def comfy_entrypoint() -> WanExtension:
return WanExtension()

View File

@ -0,0 +1,89 @@
from __future__ import annotations
from comfy_api.latest import ComfyExtension, io
import comfy.context_windows
import nodes
class ContextWindowsManualNode(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="ContextWindowsManual",
display_name="Context Windows (Manual)",
category="context",
description="Manually set context windows.",
inputs=[
io.Model.Input("model", tooltip="The model to apply context windows to during sampling."),
io.Int.Input("context_length", min=1, default=16, tooltip="The length of the context window."),
io.Int.Input("context_overlap", min=0, default=4, tooltip="The overlap of the context window."),
io.Combo.Input("context_schedule", options=[
comfy.context_windows.ContextSchedules.STATIC_STANDARD,
comfy.context_windows.ContextSchedules.UNIFORM_STANDARD,
comfy.context_windows.ContextSchedules.UNIFORM_LOOPED,
comfy.context_windows.ContextSchedules.BATCHED,
], tooltip="The stride of the context window."),
io.Int.Input("context_stride", min=1, default=1, tooltip="The stride of the context window; only applicable to uniform schedules."),
io.Boolean.Input("closed_loop", default=False, tooltip="Whether to close the context window loop; only applicable to looped schedules."),
io.Combo.Input("fuse_method", options=comfy.context_windows.ContextFuseMethods.LIST_STATIC, default=comfy.context_windows.ContextFuseMethods.PYRAMID, tooltip="The method to use to fuse the context windows."),
io.Int.Input("dim", min=0, max=5, default=0, tooltip="The dimension to apply the context windows to."),
],
outputs=[
io.Model.Output(tooltip="The model with context windows applied during sampling."),
],
is_experimental=True,
)
@classmethod
def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, dim: int) -> io.Model:
model = model.clone()
model.model_options["context_handler"] = comfy.context_windows.IndexListContextHandler(
context_schedule=comfy.context_windows.get_matching_context_schedule(context_schedule),
fuse_method=comfy.context_windows.get_matching_fuse_method(fuse_method),
context_length=context_length,
context_overlap=context_overlap,
context_stride=context_stride,
closed_loop=closed_loop,
dim=dim)
# make memory usage calculation only take into account the context window latents
comfy.context_windows.create_prepare_sampling_wrapper(model)
return io.NodeOutput(model)
class WanContextWindowsManualNode(ContextWindowsManualNode):
@classmethod
def define_schema(cls) -> io.Schema:
schema = super().define_schema()
schema.node_id = "WanContextWindowsManual"
schema.display_name = "WAN Context Windows (Manual)"
schema.description = "Manually set context windows for WAN-like models (dim=2)."
schema.inputs = [
io.Model.Input("model", tooltip="The model to apply context windows to during sampling."),
io.Int.Input("context_length", min=1, max=nodes.MAX_RESOLUTION, step=4, default=81, tooltip="The length of the context window."),
io.Int.Input("context_overlap", min=0, default=30, tooltip="The overlap of the context window."),
io.Combo.Input("context_schedule", options=[
comfy.context_windows.ContextSchedules.STATIC_STANDARD,
comfy.context_windows.ContextSchedules.UNIFORM_STANDARD,
comfy.context_windows.ContextSchedules.UNIFORM_LOOPED,
comfy.context_windows.ContextSchedules.BATCHED,
], tooltip="The stride of the context window."),
io.Int.Input("context_stride", min=1, default=1, tooltip="The stride of the context window; only applicable to uniform schedules."),
io.Boolean.Input("closed_loop", default=False, tooltip="Whether to close the context window loop; only applicable to looped schedules."),
io.Combo.Input("fuse_method", options=comfy.context_windows.ContextFuseMethods.LIST_STATIC, default=comfy.context_windows.ContextFuseMethods.PYRAMID, tooltip="The method to use to fuse the context windows."),
]
return schema
@classmethod
def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str) -> io.Model:
context_length = max(((context_length - 1) // 4) + 1, 1) # at least length 1
context_overlap = max(((context_overlap - 1) // 4) + 1, 0) # at least overlap 0
return super().execute(model, context_length, context_overlap, context_schedule, context_stride, closed_loop, fuse_method, dim=2)
class ContextWindowsExtension(ComfyExtension):
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
ContextWindowsManualNode,
WanContextWindowsManualNode,
]
def comfy_entrypoint():
return ContextWindowsExtension()

View File

@ -0,0 +1,161 @@
import torch
import folder_paths
import comfy.utils
import comfy.ops
import comfy.model_management
import comfy.ldm.common_dit
import comfy.latent_formats
class BlockWiseControlBlock(torch.nn.Module):
# [linear, gelu, linear]
def __init__(self, dim: int = 3072, device=None, dtype=None, operations=None):
super().__init__()
self.x_rms = operations.RMSNorm(dim, eps=1e-6)
self.y_rms = operations.RMSNorm(dim, eps=1e-6)
self.input_proj = operations.Linear(dim, dim)
self.act = torch.nn.GELU()
self.output_proj = operations.Linear(dim, dim)
def forward(self, x, y):
x, y = self.x_rms(x), self.y_rms(y)
x = self.input_proj(x + y)
x = self.act(x)
x = self.output_proj(x)
return x
class QwenImageBlockWiseControlNet(torch.nn.Module):
def __init__(
self,
num_layers: int = 60,
in_dim: int = 64,
additional_in_dim: int = 0,
dim: int = 3072,
device=None, dtype=None, operations=None
):
super().__init__()
self.additional_in_dim = additional_in_dim
self.img_in = operations.Linear(in_dim + additional_in_dim, dim, device=device, dtype=dtype)
self.controlnet_blocks = torch.nn.ModuleList(
[
BlockWiseControlBlock(dim, device=device, dtype=dtype, operations=operations)
for _ in range(num_layers)
]
)
def process_input_latent_image(self, latent_image):
latent_image[:, :16] = comfy.latent_formats.Wan21().process_in(latent_image[:, :16])
patch_size = 2
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(latent_image, (1, patch_size, patch_size))
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
return self.img_in(hidden_states)
def control_block(self, img, controlnet_conditioning, block_id):
return self.controlnet_blocks[block_id](img, controlnet_conditioning)
class ModelPatchLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "name": (folder_paths.get_filename_list("model_patches"), ),
}}
RETURN_TYPES = ("MODEL_PATCH",)
FUNCTION = "load_model_patch"
EXPERIMENTAL = True
CATEGORY = "advanced/loaders"
def load_model_patch(self, name):
model_patch_path = folder_paths.get_full_path_or_raise("model_patches", name)
sd = comfy.utils.load_torch_file(model_patch_path, safe_load=True)
dtype = comfy.utils.weight_dtype(sd)
# TODO: this node will work with more types of model patches
additional_in_dim = sd["img_in.weight"].shape[1] - 64
model = QwenImageBlockWiseControlNet(additional_in_dim=additional_in_dim, device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
model.load_state_dict(sd)
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
return (model,)
class DiffSynthCnetPatch:
def __init__(self, model_patch, vae, image, strength, mask=None):
self.model_patch = model_patch
self.vae = vae
self.image = image
self.strength = strength
self.mask = mask
self.encoded_image = model_patch.model.process_input_latent_image(self.encode_latent_cond(image))
def encode_latent_cond(self, image):
latent_image = self.vae.encode(image)
if self.model_patch.model.additional_in_dim > 0:
if self.mask is None:
mask_ = torch.ones_like(latent_image)[:, :self.model_patch.model.additional_in_dim // 4]
else:
mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none")
return torch.cat([latent_image, mask_], dim=1)
else:
return latent_image
def __call__(self, kwargs):
x = kwargs.get("x")
img = kwargs.get("img")
block_index = kwargs.get("block_index")
if self.encoded_image is None or self.encoded_image.shape[1:] != img.shape[1:]:
spacial_compression = self.vae.spacial_compression_encode()
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
self.encoded_image = self.model_patch.model.process_input_latent_image(self.encode_latent_cond(image_scaled.movedim(1, -1)))
comfy.model_management.load_models_gpu(loaded_models)
img = img + (self.model_patch.model.control_block(img, self.encoded_image.to(img.dtype), block_index) * self.strength)
kwargs['img'] = img
return kwargs
def to(self, device_or_dtype):
if isinstance(device_or_dtype, torch.device):
self.encoded_image = self.encoded_image.to(device_or_dtype)
return self
def models(self):
return [self.model_patch]
class QwenImageDiffsynthControlnet:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"model_patch": ("MODEL_PATCH",),
"vae": ("VAE",),
"image": ("IMAGE",),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
},
"optional": {"mask": ("MASK",)}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "diffsynth_controlnet"
EXPERIMENTAL = True
CATEGORY = "advanced/loaders/qwen"
def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None):
model_patched = model.clone()
image = image[:, :, :, :3]
if mask is not None:
if mask.ndim == 3:
mask = mask.unsqueeze(1)
if mask.ndim == 4:
mask = mask.unsqueeze(2)
mask = 1.0 - mask
model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask))
return (model_patched,)
NODE_CLASS_MAPPINGS = {
"ModelPatchLoader": ModelPatchLoader,
"QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet,
}

View File

@ -0,0 +1,48 @@
import node_helpers
import comfy.utils
import math
class TextEncodeQwenImageEdit:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP", ),
"prompt": ("STRING", {"multiline": True, "dynamicPrompts": True}),
},
"optional": {"vae": ("VAE", ),
"image": ("IMAGE", ),}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning"
def encode(self, clip, prompt, vae=None, image=None):
ref_latent = None
if image is None:
images = []
else:
samples = image.movedim(-1, 1)
total = int(1024 * 1024)
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = comfy.utils.common_upscale(samples, width, height, "area", "disabled")
image = s.movedim(1, -1)
images = [image[:, :, :, :3]]
if vae is not None:
ref_latent = vae.encode(image[:, :, :, :3])
tokens = clip.tokenize(prompt, images=images)
conditioning = clip.encode_from_tokens_scheduled(tokens)
if ref_latent is not None:
conditioning = node_helpers.conditioning_set_values(conditioning, {"reference_latents": [ref_latent]}, append=True)
return (conditioning, )
NODE_CLASS_MAPPINGS = {
"TextEncodeQwenImageEdit": TextEncodeQwenImageEdit,
}

View File

@ -1,6 +1,6 @@
[project]
name = "comfyui"
version = "0.3.49"
version = "0.3.51"
description = "An installable version of ComfyUI"
readme = "README.md"
authors = [
@ -18,9 +18,9 @@ classifiers = [
]
dependencies = [
"comfyui-frontend-package>=1.24.4",
"comfyui-workflow-templates>=0.1.51",
"comfyui-embedded-docs>=0.2.4",
"comfyui-frontend-package>=1.25.9",
"comfyui-workflow-templates>=0.1.62",
"comfyui-embedded-docs>=0.2.6",
"torch",
"torchvision",
"torchdiffeq>=0.2.3",