diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index 31e8b9a0a..cd4898caf 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -11,6 +11,7 @@ from . import deis from . import utils from .. import model_patcher from .. import model_sampling +from ..model_sampling import CONST def append_zero(x): @@ -144,30 +145,30 @@ class BrownianTreeNoiseSampler: return self.tree(t0, t1) / (t1 - t0).abs().sqrt() -def sigma_to_half_log_snr(sigma, _model_sampling): +def sigma_to_half_log_snr(sigma, model_sampling): """Convert sigma to half-logSNR log(alpha_t / sigma_t).""" - if isinstance(_model_sampling, model_sampling.CONST): + if isinstance(model_sampling, CONST): # log((1 - t) / t) = log((1 - sigma) / sigma) return sigma.logit().neg() return sigma.log().neg() -def half_log_snr_to_sigma(half_log_snr, _model_sampling): +def half_log_snr_to_sigma(half_log_snr, model_sampling): """Convert half-logSNR log(alpha_t / sigma_t) to sigma.""" - if isinstance(_model_sampling, model_sampling.CONST): + if isinstance(model_sampling, CONST): # 1 / (1 + exp(half_log_snr)) return half_log_snr.neg().sigmoid() return half_log_snr.neg().exp() -def offset_first_sigma_for_snr(sigmas, _model_sampling, percent_offset=1e-4): +def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4): """Adjust the first sigma to avoid invalid logSNR.""" if len(sigmas) <= 1: return sigmas - if isinstance(_model_sampling, model_sampling.CONST): + if isinstance(model_sampling, CONST): if sigmas[0] >= 1: sigmas = sigmas.clone() - sigmas[0] = _model_sampling.percent_to_sigma(percent_offset) + sigmas[0] = model_sampling.percent_to_sigma(percent_offset) return sigmas