mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-17 18:13:01 +08:00
Merge branch 'master' into v3-improvements
This commit is contained in:
commit
e2bc6301af
26
README.md
26
README.md
@ -320,6 +320,32 @@ For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step
|
||||
1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536)
|
||||
2. Launch ComfyUI by running `python main.py`
|
||||
|
||||
|
||||
## [ComfyUI-Manager](https://github.com/Comfy-Org/ComfyUI-Manager/tree/manager-v4)
|
||||
|
||||
**ComfyUI-Manager** is an extension that allows you to easily install, update, and manage custom nodes for ComfyUI.
|
||||
|
||||
### Setup
|
||||
|
||||
1. Install the manager dependencies:
|
||||
```bash
|
||||
pip install -r manager_requirements.txt
|
||||
```
|
||||
|
||||
2. Enable the manager with the `--enable-manager` flag when running ComfyUI:
|
||||
```bash
|
||||
python main.py --enable-manager
|
||||
```
|
||||
|
||||
### Command Line Options
|
||||
|
||||
| Flag | Description |
|
||||
|------|-------------|
|
||||
| `--enable-manager` | Enable ComfyUI-Manager |
|
||||
| `--enable-manager-legacy-ui` | Use the legacy manager UI instead of the new UI (requires `--enable-manager`) |
|
||||
| `--disable-manager-ui` | Disable the manager UI and endpoints while keeping background features like security checks and scheduled installation completion (requires `--enable-manager`) |
|
||||
|
||||
|
||||
# Running
|
||||
|
||||
```python main.py```
|
||||
|
||||
407
comfy/ldm/kandinsky5/model.py
Normal file
407
comfy/ldm/kandinsky5/model.py
Normal file
@ -0,0 +1,407 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import math
|
||||
|
||||
import comfy.ldm.common_dit
|
||||
from comfy.ldm.modules.attention import optimized_attention
|
||||
from comfy.ldm.flux.math import apply_rope1
|
||||
from comfy.ldm.flux.layers import EmbedND
|
||||
|
||||
def attention(q, k, v, heads, transformer_options={}):
|
||||
return optimized_attention(
|
||||
q.transpose(1, 2),
|
||||
k.transpose(1, 2),
|
||||
v.transpose(1, 2),
|
||||
heads=heads,
|
||||
skip_reshape=True,
|
||||
transformer_options=transformer_options
|
||||
)
|
||||
|
||||
def apply_scale_shift_norm(norm, x, scale, shift):
|
||||
return torch.addcmul(shift, norm(x), scale + 1.0)
|
||||
|
||||
def apply_gate_sum(x, out, gate):
|
||||
return torch.addcmul(x, gate, out)
|
||||
|
||||
def get_shift_scale_gate(params):
|
||||
shift, scale, gate = torch.chunk(params, 3, dim=-1)
|
||||
return tuple(x.unsqueeze(1) for x in (shift, scale, gate))
|
||||
|
||||
def get_freqs(dim, max_period=10000.0):
|
||||
return torch.exp(-math.log(max_period) * torch.arange(start=0, end=dim, dtype=torch.float32) / dim)
|
||||
|
||||
|
||||
class TimeEmbeddings(nn.Module):
|
||||
def __init__(self, model_dim, time_dim, max_period=10000.0, operation_settings=None):
|
||||
super().__init__()
|
||||
assert model_dim % 2 == 0
|
||||
self.model_dim = model_dim
|
||||
self.max_period = max_period
|
||||
self.register_buffer("freqs", get_freqs(model_dim // 2, max_period), persistent=False)
|
||||
operations = operation_settings.get("operations")
|
||||
self.in_layer = operations.Linear(model_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.activation = nn.SiLU()
|
||||
self.out_layer = operations.Linear(time_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, timestep, dtype):
|
||||
args = torch.outer(timestep, self.freqs.to(device=timestep.device))
|
||||
time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1).to(dtype)
|
||||
time_embed = self.out_layer(self.activation(self.in_layer(time_embed)))
|
||||
return time_embed
|
||||
|
||||
|
||||
class TextEmbeddings(nn.Module):
|
||||
def __init__(self, text_dim, model_dim, operation_settings=None):
|
||||
super().__init__()
|
||||
operations = operation_settings.get("operations")
|
||||
self.in_layer = operations.Linear(text_dim, model_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.norm = operations.LayerNorm(model_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, text_embed):
|
||||
text_embed = self.in_layer(text_embed)
|
||||
return self.norm(text_embed).type_as(text_embed)
|
||||
|
||||
|
||||
class VisualEmbeddings(nn.Module):
|
||||
def __init__(self, visual_dim, model_dim, patch_size, operation_settings=None):
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
operations = operation_settings.get("operations")
|
||||
self.in_layer = operations.Linear(visual_dim, model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.movedim(1, -1) # B C T H W -> B T H W C
|
||||
B, T, H, W, dim = x.shape
|
||||
pt, ph, pw = self.patch_size
|
||||
|
||||
x = x.view(
|
||||
B,
|
||||
T // pt, pt,
|
||||
H // ph, ph,
|
||||
W // pw, pw,
|
||||
dim,
|
||||
).permute(0, 1, 3, 5, 2, 4, 6, 7).flatten(4, 7)
|
||||
|
||||
return self.in_layer(x)
|
||||
|
||||
|
||||
class Modulation(nn.Module):
|
||||
def __init__(self, time_dim, model_dim, num_params, operation_settings=None):
|
||||
super().__init__()
|
||||
self.activation = nn.SiLU()
|
||||
self.out_layer = operation_settings.get("operations").Linear(time_dim, num_params * model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, x):
|
||||
return self.out_layer(self.activation(x))
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
def __init__(self, num_channels, head_dim, operation_settings=None):
|
||||
super().__init__()
|
||||
assert num_channels % head_dim == 0
|
||||
self.num_heads = num_channels // head_dim
|
||||
self.head_dim = head_dim
|
||||
|
||||
operations = operation_settings.get("operations")
|
||||
self.to_query = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.to_key = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.to_value = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.query_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.key_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
self.out_layer = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.num_chunks = 2
|
||||
|
||||
def _compute_qk(self, x, freqs, proj_fn, norm_fn):
|
||||
result = proj_fn(x).view(*x.shape[:-1], self.num_heads, -1)
|
||||
return apply_rope1(norm_fn(result), freqs)
|
||||
|
||||
def _forward(self, x, freqs, transformer_options={}):
|
||||
q = self._compute_qk(x, freqs, self.to_query, self.query_norm)
|
||||
k = self._compute_qk(x, freqs, self.to_key, self.key_norm)
|
||||
v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1)
|
||||
out = attention(q, k, v, self.num_heads, transformer_options=transformer_options)
|
||||
return self.out_layer(out)
|
||||
|
||||
def _forward_chunked(self, x, freqs, transformer_options={}):
|
||||
def process_chunks(proj_fn, norm_fn):
|
||||
x_chunks = torch.chunk(x, self.num_chunks, dim=1)
|
||||
freqs_chunks = torch.chunk(freqs, self.num_chunks, dim=1)
|
||||
chunks = []
|
||||
for x_chunk, freqs_chunk in zip(x_chunks, freqs_chunks):
|
||||
chunks.append(self._compute_qk(x_chunk, freqs_chunk, proj_fn, norm_fn))
|
||||
return torch.cat(chunks, dim=1)
|
||||
|
||||
q = process_chunks(self.to_query, self.query_norm)
|
||||
k = process_chunks(self.to_key, self.key_norm)
|
||||
v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1)
|
||||
out = attention(q, k, v, self.num_heads, transformer_options=transformer_options)
|
||||
return self.out_layer(out)
|
||||
|
||||
def forward(self, x, freqs, transformer_options={}):
|
||||
if x.shape[1] > 8192:
|
||||
return self._forward_chunked(x, freqs, transformer_options=transformer_options)
|
||||
else:
|
||||
return self._forward(x, freqs, transformer_options=transformer_options)
|
||||
|
||||
|
||||
class CrossAttention(SelfAttention):
|
||||
def get_qkv(self, x, context):
|
||||
q = self.to_query(x).view(*x.shape[:-1], self.num_heads, -1)
|
||||
k = self.to_key(context).view(*context.shape[:-1], self.num_heads, -1)
|
||||
v = self.to_value(context).view(*context.shape[:-1], self.num_heads, -1)
|
||||
return q, k, v
|
||||
|
||||
def forward(self, x, context, transformer_options={}):
|
||||
q, k, v = self.get_qkv(x, context)
|
||||
out = attention(self.query_norm(q), self.key_norm(k), v, self.num_heads, transformer_options=transformer_options)
|
||||
return self.out_layer(out)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, ff_dim, operation_settings=None):
|
||||
super().__init__()
|
||||
operations = operation_settings.get("operations")
|
||||
self.in_layer = operations.Linear(dim, ff_dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.activation = nn.GELU()
|
||||
self.out_layer = operations.Linear(ff_dim, dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.num_chunks = 4
|
||||
|
||||
def _forward(self, x):
|
||||
return self.out_layer(self.activation(self.in_layer(x)))
|
||||
|
||||
def _forward_chunked(self, x):
|
||||
chunks = torch.chunk(x, self.num_chunks, dim=1)
|
||||
output_chunks = []
|
||||
for chunk in chunks:
|
||||
output_chunks.append(self._forward(chunk))
|
||||
return torch.cat(output_chunks, dim=1)
|
||||
|
||||
def forward(self, x):
|
||||
if x.shape[1] > 8192:
|
||||
return self._forward_chunked(x)
|
||||
else:
|
||||
return self._forward(x)
|
||||
|
||||
|
||||
class OutLayer(nn.Module):
|
||||
def __init__(self, model_dim, time_dim, visual_dim, patch_size, operation_settings=None):
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
self.modulation = Modulation(time_dim, model_dim, 2, operation_settings=operation_settings)
|
||||
operations = operation_settings.get("operations")
|
||||
self.norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.out_layer = operations.Linear(model_dim, math.prod(patch_size) * visual_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
|
||||
def forward(self, visual_embed, time_embed):
|
||||
B, T, H, W, _ = visual_embed.shape
|
||||
shift, scale = torch.chunk(self.modulation(time_embed), 2, dim=-1)
|
||||
scale = scale[:, None, None, None, :]
|
||||
shift = shift[:, None, None, None, :]
|
||||
visual_embed = apply_scale_shift_norm(self.norm, visual_embed, scale, shift)
|
||||
x = self.out_layer(visual_embed)
|
||||
|
||||
out_dim = x.shape[-1] // (self.patch_size[0] * self.patch_size[1] * self.patch_size[2])
|
||||
x = x.view(
|
||||
B, T, H, W,
|
||||
out_dim,
|
||||
self.patch_size[0], self.patch_size[1], self.patch_size[2]
|
||||
)
|
||||
return x.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(2, 3).flatten(3, 4).flatten(4, 5)
|
||||
|
||||
|
||||
class TransformerEncoderBlock(nn.Module):
|
||||
def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None):
|
||||
super().__init__()
|
||||
self.text_modulation = Modulation(time_dim, model_dim, 6, operation_settings=operation_settings)
|
||||
operations = operation_settings.get("operations")
|
||||
|
||||
self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings)
|
||||
|
||||
self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings)
|
||||
|
||||
def forward(self, x, time_embed, freqs, transformer_options={}):
|
||||
self_attn_params, ff_params = torch.chunk(self.text_modulation(time_embed), 2, dim=-1)
|
||||
shift, scale, gate = get_shift_scale_gate(self_attn_params)
|
||||
out = apply_scale_shift_norm(self.self_attention_norm, x, scale, shift)
|
||||
out = self.self_attention(out, freqs, transformer_options=transformer_options)
|
||||
x = apply_gate_sum(x, out, gate)
|
||||
|
||||
shift, scale, gate = get_shift_scale_gate(ff_params)
|
||||
out = apply_scale_shift_norm(self.feed_forward_norm, x, scale, shift)
|
||||
out = self.feed_forward(out)
|
||||
x = apply_gate_sum(x, out, gate)
|
||||
return x
|
||||
|
||||
|
||||
class TransformerDecoderBlock(nn.Module):
|
||||
def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None):
|
||||
super().__init__()
|
||||
self.visual_modulation = Modulation(time_dim, model_dim, 9, operation_settings=operation_settings)
|
||||
|
||||
operations = operation_settings.get("operations")
|
||||
self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings)
|
||||
|
||||
self.cross_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.cross_attention = CrossAttention(model_dim, head_dim, operation_settings=operation_settings)
|
||||
|
||||
self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
||||
self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings)
|
||||
|
||||
def forward(self, visual_embed, text_embed, time_embed, freqs, transformer_options={}):
|
||||
self_attn_params, cross_attn_params, ff_params = torch.chunk(self.visual_modulation(time_embed), 3, dim=-1)
|
||||
# self attention
|
||||
shift, scale, gate = get_shift_scale_gate(self_attn_params)
|
||||
visual_out = apply_scale_shift_norm(self.self_attention_norm, visual_embed, scale, shift)
|
||||
visual_out = self.self_attention(visual_out, freqs, transformer_options=transformer_options)
|
||||
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
|
||||
# cross attention
|
||||
shift, scale, gate = get_shift_scale_gate(cross_attn_params)
|
||||
visual_out = apply_scale_shift_norm(self.cross_attention_norm, visual_embed, scale, shift)
|
||||
visual_out = self.cross_attention(visual_out, text_embed, transformer_options=transformer_options)
|
||||
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
|
||||
# feed forward
|
||||
shift, scale, gate = get_shift_scale_gate(ff_params)
|
||||
visual_out = apply_scale_shift_norm(self.feed_forward_norm, visual_embed, scale, shift)
|
||||
visual_out = self.feed_forward(visual_out)
|
||||
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
|
||||
return visual_embed
|
||||
|
||||
|
||||
class Kandinsky5(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_visual_dim=16, out_visual_dim=16, in_text_dim=3584, in_text_dim2=768, time_dim=512,
|
||||
model_dim=1792, ff_dim=7168, visual_embed_dim=132, patch_size=(1, 2, 2), num_text_blocks=2, num_visual_blocks=32,
|
||||
axes_dims=(16, 24, 24), rope_scale_factor=(1.0, 2.0, 2.0),
|
||||
dtype=None, device=None, operations=None, **kwargs
|
||||
):
|
||||
super().__init__()
|
||||
head_dim = sum(axes_dims)
|
||||
self.rope_scale_factor = rope_scale_factor
|
||||
self.in_visual_dim = in_visual_dim
|
||||
self.model_dim = model_dim
|
||||
self.patch_size = patch_size
|
||||
self.visual_embed_dim = visual_embed_dim
|
||||
self.dtype = dtype
|
||||
self.device = device
|
||||
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
||||
|
||||
self.time_embeddings = TimeEmbeddings(model_dim, time_dim, operation_settings=operation_settings)
|
||||
self.text_embeddings = TextEmbeddings(in_text_dim, model_dim, operation_settings=operation_settings)
|
||||
self.pooled_text_embeddings = TextEmbeddings(in_text_dim2, time_dim, operation_settings=operation_settings)
|
||||
self.visual_embeddings = VisualEmbeddings(visual_embed_dim, model_dim, patch_size, operation_settings=operation_settings)
|
||||
|
||||
self.text_transformer_blocks = nn.ModuleList(
|
||||
[TransformerEncoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_text_blocks)]
|
||||
)
|
||||
|
||||
self.visual_transformer_blocks = nn.ModuleList(
|
||||
[TransformerDecoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_visual_blocks)]
|
||||
)
|
||||
|
||||
self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size, operation_settings=operation_settings)
|
||||
|
||||
self.rope_embedder_3d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=axes_dims)
|
||||
self.rope_embedder_1d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=[head_dim])
|
||||
|
||||
def rope_encode_1d(self, seq_len, seq_start=0, steps=None, device=None, dtype=None, transformer_options={}):
|
||||
steps = seq_len if steps is None else steps
|
||||
seq_ids = torch.linspace(seq_start, seq_start + (seq_len - 1), steps=steps, device=device, dtype=dtype)
|
||||
seq_ids = seq_ids.reshape(-1, 1).unsqueeze(0) # Shape: (1, steps, 1)
|
||||
freqs = self.rope_embedder_1d(seq_ids).movedim(1, 2)
|
||||
return freqs
|
||||
|
||||
def rope_encode_3d(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}):
|
||||
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
||||
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
||||
|
||||
if steps_t is None:
|
||||
steps_t = t_len
|
||||
if steps_h is None:
|
||||
steps_h = h_len
|
||||
if steps_w is None:
|
||||
steps_w = w_len
|
||||
|
||||
h_start = 0
|
||||
w_start = 0
|
||||
rope_options = transformer_options.get("rope_options", None)
|
||||
if rope_options is not None:
|
||||
t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0
|
||||
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
|
||||
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
|
||||
|
||||
t_start += rope_options.get("shift_t", 0.0)
|
||||
h_start += rope_options.get("shift_y", 0.0)
|
||||
w_start += rope_options.get("shift_x", 0.0)
|
||||
else:
|
||||
rope_scale_factor = self.rope_scale_factor
|
||||
if self.model_dim == 4096: # pro video model uses different rope scaling at higher resolutions
|
||||
if h * w >= 14080:
|
||||
rope_scale_factor = (1.0, 3.16, 3.16)
|
||||
|
||||
t_len = (t_len - 1.0) / rope_scale_factor[0] + 1.0
|
||||
h_len = (h_len - 1.0) / rope_scale_factor[1] + 1.0
|
||||
w_len = (w_len - 1.0) / rope_scale_factor[2] + 1.0
|
||||
|
||||
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
|
||||
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
|
||||
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
|
||||
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
|
||||
|
||||
freqs = self.rope_embedder_3d(img_ids).movedim(1, 2)
|
||||
return freqs
|
||||
|
||||
def forward_orig(self, x, timestep, context, y, freqs, freqs_text, transformer_options={}, **kwargs):
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
context = self.text_embeddings(context)
|
||||
time_embed = self.time_embeddings(timestep, x.dtype) + self.pooled_text_embeddings(y)
|
||||
|
||||
for block in self.text_transformer_blocks:
|
||||
context = block(context, time_embed, freqs_text, transformer_options=transformer_options)
|
||||
|
||||
visual_embed = self.visual_embeddings(x)
|
||||
visual_shape = visual_embed.shape[:-1]
|
||||
visual_embed = visual_embed.flatten(1, -2)
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
transformer_options["total_blocks"] = len(self.visual_transformer_blocks)
|
||||
transformer_options["block_type"] = "double"
|
||||
for i, block in enumerate(self.visual_transformer_blocks):
|
||||
transformer_options["block_index"] = i
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
return block(x=args["x"], context=args["context"], time_embed=args["time_embed"], freqs=args["freqs"], transformer_options=args.get("transformer_options"))
|
||||
visual_embed = blocks_replace[("double_block", i)]({"x": visual_embed, "context": context, "time_embed": time_embed, "freqs": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})["x"]
|
||||
else:
|
||||
visual_embed = block(visual_embed, context, time_embed, freqs=freqs, transformer_options=transformer_options)
|
||||
|
||||
visual_embed = visual_embed.reshape(*visual_shape, -1)
|
||||
return self.out_layer(visual_embed, time_embed)
|
||||
|
||||
def _forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs):
|
||||
bs, c, t_len, h, w = x.shape
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
|
||||
|
||||
if time_dim_replace is not None:
|
||||
time_dim_replace = comfy.ldm.common_dit.pad_to_patch_size(time_dim_replace, self.patch_size)
|
||||
x[:, :time_dim_replace.shape[1], :time_dim_replace.shape[2]] = time_dim_replace
|
||||
|
||||
freqs = self.rope_encode_3d(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options)
|
||||
freqs_text = self.rope_encode_1d(context.shape[1], device=x.device, dtype=x.dtype, transformer_options=transformer_options)
|
||||
|
||||
return self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs)
|
||||
|
||||
def forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
self._forward,
|
||||
self,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
||||
).execute(x, timestep, context, y, time_dim_replace=time_dim_replace, transformer_options=transformer_options, **kwargs)
|
||||
@ -322,6 +322,13 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_map["diffusion_model.{}".format(key_lora)] = to
|
||||
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to
|
||||
|
||||
if isinstance(model, comfy.model_base.Kandinsky5):
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
key_map["{}".format(key_lora)] = k
|
||||
key_map["transformer.{}".format(key_lora)] = k
|
||||
|
||||
return key_map
|
||||
|
||||
|
||||
|
||||
@ -47,6 +47,7 @@ import comfy.ldm.chroma_radiance.model
|
||||
import comfy.ldm.ace.model
|
||||
import comfy.ldm.omnigen.omnigen2
|
||||
import comfy.ldm.qwen_image.model
|
||||
import comfy.ldm.kandinsky5.model
|
||||
|
||||
import comfy.model_management
|
||||
import comfy.patcher_extension
|
||||
@ -1630,3 +1631,49 @@ class HunyuanVideo15_SR_Distilled(HunyuanVideo15):
|
||||
out = super().extra_conds(**kwargs)
|
||||
out['disable_time_r'] = comfy.conds.CONDConstant(False)
|
||||
return out
|
||||
|
||||
class Kandinsky5(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.kandinsky5.model.Kandinsky5)
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
return kwargs["pooled_output"]
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
image = torch.zeros_like(noise)
|
||||
|
||||
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
if mask is None:
|
||||
mask = torch.zeros_like(noise)[:, :1]
|
||||
else:
|
||||
mask = 1.0 - mask
|
||||
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
||||
if mask.shape[-3] < noise.shape[-3]:
|
||||
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
|
||||
mask = utils.resize_to_batch_size(mask, noise.shape[0])
|
||||
|
||||
return torch.cat((image, mask), dim=1)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
if attention_mask is not None:
|
||||
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||
cross_attn = kwargs.get("cross_attn", None)
|
||||
if cross_attn is not None:
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
|
||||
time_dim_replace = kwargs.get("time_dim_replace", None)
|
||||
if time_dim_replace is not None:
|
||||
out['time_dim_replace'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_replace))
|
||||
|
||||
return out
|
||||
|
||||
class Kandinsky5Image(Kandinsky5):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
return None
|
||||
|
||||
@ -611,6 +611,24 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
|
||||
return dit_config
|
||||
|
||||
if '{}visual_transformer_blocks.0.cross_attention.key_norm.weight'.format(key_prefix) in state_dict_keys: # Kandinsky 5
|
||||
dit_config = {}
|
||||
model_dim = state_dict['{}visual_embeddings.in_layer.bias'.format(key_prefix)].shape[0]
|
||||
dit_config["model_dim"] = model_dim
|
||||
if model_dim in [4096, 2560]: # pro video and lite image
|
||||
dit_config["axes_dims"] = (32, 48, 48)
|
||||
if model_dim == 2560: # lite image
|
||||
dit_config["rope_scale_factor"] = (1.0, 1.0, 1.0)
|
||||
elif model_dim == 1792: # lite video
|
||||
dit_config["axes_dims"] = (16, 24, 24)
|
||||
dit_config["time_dim"] = state_dict['{}time_embeddings.in_layer.bias'.format(key_prefix)].shape[0]
|
||||
dit_config["image_model"] = "kandinsky5"
|
||||
dit_config["ff_dim"] = state_dict['{}visual_transformer_blocks.0.feed_forward.in_layer.weight'.format(key_prefix)].shape[0]
|
||||
dit_config["visual_embed_dim"] = state_dict['{}visual_embeddings.in_layer.weight'.format(key_prefix)].shape[1]
|
||||
dit_config["num_text_blocks"] = count_blocks(state_dict_keys, '{}text_transformer_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["num_visual_blocks"] = count_blocks(state_dict_keys, '{}visual_transformer_blocks.'.format(key_prefix) + '{}.')
|
||||
return dit_config
|
||||
|
||||
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
|
||||
return None
|
||||
|
||||
|
||||
11
comfy/sd.py
11
comfy/sd.py
@ -54,6 +54,7 @@ import comfy.text_encoders.qwen_image
|
||||
import comfy.text_encoders.hunyuan_image
|
||||
import comfy.text_encoders.z_image
|
||||
import comfy.text_encoders.ovis
|
||||
import comfy.text_encoders.kandinsky5
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
@ -766,6 +767,8 @@ class VAE:
|
||||
self.throw_exception_if_invalid()
|
||||
pixel_samples = None
|
||||
do_tile = False
|
||||
if self.latent_dim == 2 and samples_in.ndim == 5:
|
||||
samples_in = samples_in[:, :, 0]
|
||||
try:
|
||||
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
|
||||
@ -983,6 +986,8 @@ class CLIPType(Enum):
|
||||
HUNYUAN_IMAGE = 19
|
||||
HUNYUAN_VIDEO_15 = 20
|
||||
OVIS = 21
|
||||
KANDINSKY5 = 22
|
||||
KANDINSKY5_IMAGE = 23
|
||||
|
||||
|
||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||
@ -1231,6 +1236,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
||||
elif clip_type == CLIPType.HUNYUAN_VIDEO_15:
|
||||
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer
|
||||
elif clip_type == CLIPType.KANDINSKY5:
|
||||
clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer
|
||||
elif clip_type == CLIPType.KANDINSKY5_IMAGE:
|
||||
clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data))
|
||||
clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage
|
||||
else:
|
||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||
|
||||
@ -21,6 +21,7 @@ import comfy.text_encoders.ace
|
||||
import comfy.text_encoders.omnigen2
|
||||
import comfy.text_encoders.qwen_image
|
||||
import comfy.text_encoders.hunyuan_image
|
||||
import comfy.text_encoders.kandinsky5
|
||||
import comfy.text_encoders.z_image
|
||||
|
||||
from . import supported_models_base
|
||||
@ -1474,7 +1475,60 @@ class HunyuanVideo15_SR_Distilled(HunyuanVideo):
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2]
|
||||
|
||||
class Kandinsky5(supported_models_base.BASE):
|
||||
unet_config = {
|
||||
"image_model": "kandinsky5",
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 10.0,
|
||||
}
|
||||
|
||||
unet_extra_config = {}
|
||||
latent_format = latent_formats.HunyuanVideo
|
||||
|
||||
memory_usage_factor = 1.1 #TODO
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Kandinsky5(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
|
||||
|
||||
|
||||
class Kandinsky5Image(Kandinsky5):
|
||||
unet_config = {
|
||||
"image_model": "kandinsky5",
|
||||
"model_dim": 2560,
|
||||
"visual_embed_dim": 64,
|
||||
}
|
||||
|
||||
sampling_settings = {
|
||||
"shift": 3.0,
|
||||
}
|
||||
|
||||
latent_format = latent_formats.Flux
|
||||
memory_usage_factor = 1.1 #TODO
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Kandinsky5Image(self, device=device)
|
||||
return out
|
||||
|
||||
def clip_target(self, state_dict={}):
|
||||
pref = self.text_encoder_key_prefix[0]
|
||||
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
|
||||
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
|
||||
|
||||
|
||||
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5]
|
||||
|
||||
models += [SVD_img2vid]
|
||||
|
||||
@ -17,6 +17,7 @@
|
||||
"""
|
||||
|
||||
import torch
|
||||
import logging
|
||||
from . import model_base
|
||||
from . import utils
|
||||
from . import latent_formats
|
||||
@ -117,3 +118,7 @@ class BASE:
|
||||
def set_inference_dtype(self, dtype, manual_cast_dtype):
|
||||
self.unet_config['dtype'] = dtype
|
||||
self.manual_cast_dtype = manual_cast_dtype
|
||||
|
||||
def __getattr__(self, name):
|
||||
logging.warning("\nWARNING, you accessed {} from the model config object which doesn't exist. Please fix your code.\n".format(name))
|
||||
return None
|
||||
|
||||
68
comfy/text_encoders/kandinsky5.py
Normal file
68
comfy/text_encoders/kandinsky5.py
Normal file
@ -0,0 +1,68 @@
|
||||
from comfy import sd1_clip
|
||||
from .qwen_image import QwenImageTokenizer, QwenImageTEModel
|
||||
from .llama import Qwen25_7BVLI
|
||||
|
||||
|
||||
class Kandinsky5Tokenizer(QwenImageTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.llama_template = "<|im_start|>system\nYou are a prompt engineer. Describe the video in detail.\nDescribe how the camera moves or shakes, describe the zoom and view angle, whether it follows the objects.\nDescribe the location of the video, main characters or objects and their action.\nDescribe the dynamism of the video and presented actions.\nName the visual style of the video: whether it is a professional footage, user generated content, some kind of animation, video game or screen content.\nDescribe the visual effects, postprocessing and transitions if they are presented in the video.\nPay attention to the order of key actions shown in the scene.<|im_end|>\n<|im_start|>user\n{}<|im_end|>"
|
||||
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
|
||||
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
||||
out = super().tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Kandinsky5TokenizerImage(Kandinsky5Tokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.llama_template = "<|im_start|>system\nYou are a promt engineer. Describe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>"
|
||||
|
||||
|
||||
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="hidden", layer_idx=-1, dtype=None, attention_mask=True, model_options={}):
|
||||
llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None)
|
||||
if llama_scaled_fp8 is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
|
||||
class Kandinsky5TEModel(QwenImageTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
super(QwenImageTEModel, self).__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options)
|
||||
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
cond, p, extra = super().encode_token_weights(token_weight_pairs, template_end=-1)
|
||||
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs["l"])
|
||||
|
||||
return cond, l_pooled, extra
|
||||
|
||||
def set_clip_options(self, options):
|
||||
super().set_clip_options(options)
|
||||
self.clip_l.set_clip_options(options)
|
||||
|
||||
def reset_clip_options(self):
|
||||
super().reset_clip_options()
|
||||
self.clip_l.reset_clip_options()
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
||||
return self.clip_l.load_sd(sd)
|
||||
else:
|
||||
return super().load_sd(sd)
|
||||
|
||||
def te(dtype_llama=None, llama_scaled_fp8=None):
|
||||
class Kandinsky5TEModel_(Kandinsky5TEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
|
||||
model_options = model_options.copy()
|
||||
model_options["qwen_scaled_fp8"] = llama_scaled_fp8
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||||
return Kandinsky5TEModel_
|
||||
@ -568,6 +568,8 @@ class Conditioning(ComfyTypeIO):
|
||||
'''Used by WAN Camera.'''
|
||||
time_dim_concat: NotRequired[torch.Tensor]
|
||||
'''Used by WAN Phantom Subject.'''
|
||||
time_dim_replace: NotRequired[torch.Tensor]
|
||||
'''Used by Kandinsky5 I2V.'''
|
||||
|
||||
CondList = list[tuple[torch.Tensor, PooledDict]]
|
||||
Type = CondList
|
||||
|
||||
@ -92,6 +92,7 @@ class PikaImageToVideo(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_deprecated=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -152,6 +153,7 @@ class PikaTextToVideoNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_deprecated=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -239,6 +241,7 @@ class PikaScenes(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_deprecated=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -323,6 +326,7 @@ class PikAdditionsNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_deprecated=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -399,6 +403,7 @@ class PikaSwapsNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_deprecated=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -466,6 +471,7 @@ class PikaffectsNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_deprecated=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -515,6 +521,7 @@ class PikaStartEndFrameNode(IO.ComfyNode):
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
is_deprecated=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@ -573,12 +573,14 @@ class EmptyAudio(IO.ComfyNode):
|
||||
step=0.01,
|
||||
tooltip="Duration of the empty audio clip in seconds",
|
||||
),
|
||||
IO.Float.Input(
|
||||
IO.Int.Input(
|
||||
"sample_rate",
|
||||
default=44100,
|
||||
tooltip="Sample rate of the empty audio clip.",
|
||||
min=1,
|
||||
max=192000,
|
||||
),
|
||||
IO.Float.Input(
|
||||
IO.Int.Input(
|
||||
"channels",
|
||||
default=2,
|
||||
min=1,
|
||||
|
||||
@ -2,6 +2,8 @@
|
||||
|
||||
import torch
|
||||
import logging
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, IO
|
||||
|
||||
def Fourier_filter(x, threshold, scale):
|
||||
# FFT
|
||||
@ -22,21 +24,26 @@ def Fourier_filter(x, threshold, scale):
|
||||
return x_filtered.to(x.dtype)
|
||||
|
||||
|
||||
class FreeU:
|
||||
class FreeU(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
"b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="FreeU",
|
||||
category="model_patches/unet",
|
||||
inputs=[
|
||||
IO.Model.Input("model"),
|
||||
IO.Float.Input("b1", default=1.1, min=0.0, max=10.0, step=0.01),
|
||||
IO.Float.Input("b2", default=1.2, min=0.0, max=10.0, step=0.01),
|
||||
IO.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01),
|
||||
IO.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
IO.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "model_patches/unet"
|
||||
|
||||
def patch(self, model, b1, b2, s1, s2):
|
||||
@classmethod
|
||||
def execute(cls, model, b1, b2, s1, s2) -> IO.NodeOutput:
|
||||
model_channels = model.model.model_config.unet_config["model_channels"]
|
||||
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
|
||||
on_cpu_devices = {}
|
||||
@ -59,23 +66,31 @@ class FreeU:
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_output_block_patch(output_block_patch)
|
||||
return (m, )
|
||||
return IO.NodeOutput(m)
|
||||
|
||||
class FreeU_V2:
|
||||
patch = execute # TODO: remove
|
||||
|
||||
|
||||
class FreeU_V2(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
"b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="FreeU_V2",
|
||||
category="model_patches/unet",
|
||||
inputs=[
|
||||
IO.Model.Input("model"),
|
||||
IO.Float.Input("b1", default=1.3, min=0.0, max=10.0, step=0.01),
|
||||
IO.Float.Input("b2", default=1.4, min=0.0, max=10.0, step=0.01),
|
||||
IO.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01),
|
||||
IO.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
IO.Model.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
CATEGORY = "model_patches/unet"
|
||||
|
||||
def patch(self, model, b1, b2, s1, s2):
|
||||
@classmethod
|
||||
def execute(cls, model, b1, b2, s1, s2) -> IO.NodeOutput:
|
||||
model_channels = model.model.model_config.unet_config["model_channels"]
|
||||
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
|
||||
on_cpu_devices = {}
|
||||
@ -105,9 +120,19 @@ class FreeU_V2:
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_output_block_patch(output_block_patch)
|
||||
return (m, )
|
||||
return IO.NodeOutput(m)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"FreeU": FreeU,
|
||||
"FreeU_V2": FreeU_V2,
|
||||
}
|
||||
patch = execute # TODO: remove
|
||||
|
||||
|
||||
class FreelunchExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
FreeU,
|
||||
FreeU_V2,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> FreelunchExtension:
|
||||
return FreelunchExtension()
|
||||
|
||||
136
comfy_extras/nodes_kandinsky5.py
Normal file
136
comfy_extras/nodes_kandinsky5.py
Normal file
@ -0,0 +1,136 @@
|
||||
import nodes
|
||||
import node_helpers
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import comfy.utils
|
||||
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
|
||||
class Kandinsky5ImageToVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="Kandinsky5ImageToVideo",
|
||||
category="conditioning/video_models",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Conditioning.Input("negative"),
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("width", default=768, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=512, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=4),
|
||||
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
||||
io.Image.Input("start_image", optional=True),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(display_name="positive"),
|
||||
io.Conditioning.Output(display_name="negative"),
|
||||
io.Latent.Output(display_name="latent", tooltip="Empty video latent"),
|
||||
io.Latent.Output(display_name="cond_latent", tooltip="Clean encoded start images, used to replace the noisy start of the model output latents"),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None) -> io.NodeOutput:
|
||||
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
|
||||
cond_latent_out = {}
|
||||
if start_image is not None:
|
||||
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
encoded = vae.encode(start_image[:, :, :, :3])
|
||||
cond_latent_out["samples"] = encoded
|
||||
|
||||
mask = torch.ones((1, 1, latent.shape[2], latent.shape[-2], latent.shape[-1]), device=start_image.device, dtype=start_image.dtype)
|
||||
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0
|
||||
|
||||
positive = node_helpers.conditioning_set_values(positive, {"time_dim_replace": encoded, "concat_mask": mask})
|
||||
negative = node_helpers.conditioning_set_values(negative, {"time_dim_replace": encoded, "concat_mask": mask})
|
||||
|
||||
out_latent = {}
|
||||
out_latent["samples"] = latent
|
||||
return io.NodeOutput(positive, negative, out_latent, cond_latent_out)
|
||||
|
||||
|
||||
def adaptive_mean_std_normalization(source, reference, clump_mean_low=0.3, clump_mean_high=0.35, clump_std_low=0.35, clump_std_high=0.5):
|
||||
source_mean = source.mean(dim=(1, 3, 4), keepdim=True) # mean over C, H, W
|
||||
source_std = source.std(dim=(1, 3, 4), keepdim=True) # std over C, H, W
|
||||
|
||||
reference_mean = torch.clamp(reference.mean(), source_mean - clump_mean_low, source_mean + clump_mean_high)
|
||||
reference_std = torch.clamp(reference.std(), source_std - clump_std_low, source_std + clump_std_high)
|
||||
|
||||
# normalization
|
||||
normalized = (source - source_mean) / (source_std + 1e-8)
|
||||
normalized = normalized * reference_std + reference_mean
|
||||
|
||||
return normalized
|
||||
|
||||
|
||||
class NormalizeVideoLatentStart(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="NormalizeVideoLatentStart",
|
||||
category="conditioning/video_models",
|
||||
description="Normalizes the initial frames of a video latent to match the mean and standard deviation of subsequent reference frames. Helps reduce differences between the starting frames and the rest of the video.",
|
||||
inputs=[
|
||||
io.Latent.Input("latent"),
|
||||
io.Int.Input("start_frame_count", default=4, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames to normalize, counted from the start"),
|
||||
io.Int.Input("reference_frame_count", default=5, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames after the start frames to use as reference"),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(display_name="latent"),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, latent, start_frame_count, reference_frame_count) -> io.NodeOutput:
|
||||
if latent["samples"].shape[2] <= 1:
|
||||
return io.NodeOutput(latent)
|
||||
s = latent.copy()
|
||||
samples = latent["samples"].clone()
|
||||
|
||||
first_frames = samples[:, :, :start_frame_count]
|
||||
reference_frames_data = samples[:, :, start_frame_count:start_frame_count+min(reference_frame_count, samples.shape[2]-1)]
|
||||
normalized_first_frames = adaptive_mean_std_normalization(first_frames, reference_frames_data)
|
||||
|
||||
samples[:, :, :start_frame_count] = normalized_first_frames
|
||||
s["samples"] = samples
|
||||
return io.NodeOutput(s)
|
||||
|
||||
|
||||
class CLIPTextEncodeKandinsky5(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeKandinsky5",
|
||||
category="advanced/conditioning/kandinsky5",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.String.Input("clip_l", multiline=True, dynamic_prompts=True),
|
||||
io.String.Input("qwen25_7b", multiline=True, dynamic_prompts=True),
|
||||
],
|
||||
outputs=[
|
||||
io.Conditioning.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip, clip_l, qwen25_7b) -> io.NodeOutput:
|
||||
tokens = clip.tokenize(clip_l)
|
||||
tokens["qwen25_7b"] = clip.tokenize(qwen25_7b)["qwen25_7b"]
|
||||
|
||||
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
||||
|
||||
|
||||
class Kandinsky5Extension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
Kandinsky5ImageToVideo,
|
||||
NormalizeVideoLatentStart,
|
||||
CLIPTextEncodeKandinsky5,
|
||||
]
|
||||
|
||||
async def comfy_entrypoint() -> Kandinsky5Extension:
|
||||
return Kandinsky5Extension()
|
||||
@ -4,7 +4,7 @@ import torch
|
||||
import nodes
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
|
||||
import logging
|
||||
|
||||
def reshape_latent_to(target_shape, latent, repeat_batch=True):
|
||||
if latent.shape[1:] != target_shape[1:]:
|
||||
@ -388,6 +388,42 @@ class LatentOperationSharpen(io.ComfyNode):
|
||||
return luminance * sharpened
|
||||
return io.NodeOutput(sharpen)
|
||||
|
||||
class ReplaceVideoLatentFrames(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ReplaceVideoLatentFrames",
|
||||
category="latent/batch",
|
||||
inputs=[
|
||||
io.Latent.Input("destination", tooltip="The destination latent where frames will be replaced."),
|
||||
io.Latent.Input("source", optional=True, tooltip="The source latent providing frames to insert into the destination latent. If not provided, the destination latent is returned unchanged."),
|
||||
io.Int.Input("index", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1, tooltip="The starting latent frame index in the destination latent where the source latent frames will be placed. Negative values count from the end."),
|
||||
],
|
||||
outputs=[
|
||||
io.Latent.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, destination, index, source=None) -> io.NodeOutput:
|
||||
if source is None:
|
||||
return io.NodeOutput(destination)
|
||||
dest_frames = destination["samples"].shape[2]
|
||||
source_frames = source["samples"].shape[2]
|
||||
if index < 0:
|
||||
index = dest_frames + index
|
||||
if index > dest_frames:
|
||||
logging.warning(f"ReplaceVideoLatentFrames: Index {index} is out of bounds for destination latent frames {dest_frames}.")
|
||||
return io.NodeOutput(destination)
|
||||
if index + source_frames > dest_frames:
|
||||
logging.warning(f"ReplaceVideoLatentFrames: Source latent frames {source_frames} do not fit within destination latent frames {dest_frames} at the specified index {index}.")
|
||||
return io.NodeOutput(destination)
|
||||
s = source.copy()
|
||||
s_source = source["samples"]
|
||||
s_destination = destination["samples"].clone()
|
||||
s_destination[:, :, index:index + s_source.shape[2]] = s_source
|
||||
s["samples"] = s_destination
|
||||
return io.NodeOutput(s)
|
||||
|
||||
class LatentExtension(ComfyExtension):
|
||||
@override
|
||||
@ -405,6 +441,7 @@ class LatentExtension(ComfyExtension):
|
||||
LatentApplyOperationCFG,
|
||||
LatentOperationTonemapReinhard,
|
||||
LatentOperationSharpen,
|
||||
ReplaceVideoLatentFrames
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -3,11 +3,10 @@ import scipy.ndimage
|
||||
import torch
|
||||
import comfy.utils
|
||||
import node_helpers
|
||||
import folder_paths
|
||||
import random
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, IO, UI
|
||||
|
||||
import nodes
|
||||
from nodes import MAX_RESOLUTION
|
||||
|
||||
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
|
||||
source = source.to(destination.device)
|
||||
@ -46,202 +45,213 @@ def composite(destination, source, x, y, mask = None, multiplier = 8, resize_sou
|
||||
destination[..., top:bottom, left:right] = source_portion + destination_portion
|
||||
return destination
|
||||
|
||||
class LatentCompositeMasked:
|
||||
class LatentCompositeMasked(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"destination": ("LATENT",),
|
||||
"source": ("LATENT",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"resize_source": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
"optional": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "composite"
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="LatentCompositeMasked",
|
||||
category="latent",
|
||||
inputs=[
|
||||
IO.Latent.Input("destination"),
|
||||
IO.Latent.Input("source"),
|
||||
IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8),
|
||||
IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8),
|
||||
IO.Boolean.Input("resize_source", default=False),
|
||||
IO.Mask.Input("mask", optional=True),
|
||||
],
|
||||
outputs=[IO.Latent.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "latent"
|
||||
|
||||
def composite(self, destination, source, x, y, resize_source, mask = None):
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput:
|
||||
output = destination.copy()
|
||||
destination = destination["samples"].clone()
|
||||
source = source["samples"]
|
||||
output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
|
||||
return (output,)
|
||||
return IO.NodeOutput(output)
|
||||
|
||||
class ImageCompositeMasked:
|
||||
composite = execute # TODO: remove
|
||||
|
||||
|
||||
class ImageCompositeMasked(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"destination": ("IMAGE",),
|
||||
"source": ("IMAGE",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"resize_source": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
"optional": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "composite"
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="ImageCompositeMasked",
|
||||
category="image",
|
||||
inputs=[
|
||||
IO.Image.Input("destination"),
|
||||
IO.Image.Input("source"),
|
||||
IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Boolean.Input("resize_source", default=False),
|
||||
IO.Mask.Input("mask", optional=True),
|
||||
],
|
||||
outputs=[IO.Image.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "image"
|
||||
|
||||
def composite(self, destination, source, x, y, resize_source, mask = None):
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput:
|
||||
destination, source = node_helpers.image_alpha_fix(destination, source)
|
||||
destination = destination.clone().movedim(-1, 1)
|
||||
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
|
||||
return (output,)
|
||||
return IO.NodeOutput(output)
|
||||
|
||||
class MaskToImage:
|
||||
composite = execute # TODO: remove
|
||||
|
||||
|
||||
class MaskToImage(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MaskToImage",
|
||||
display_name="Convert Mask to Image",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
],
|
||||
outputs=[IO.Image.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "mask_to_image"
|
||||
|
||||
def mask_to_image(self, mask):
|
||||
@classmethod
|
||||
def execute(cls, mask) -> IO.NodeOutput:
|
||||
result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
||||
return (result,)
|
||||
return IO.NodeOutput(result)
|
||||
|
||||
class ImageToMask:
|
||||
mask_to_image = execute # TODO: remove
|
||||
|
||||
|
||||
class ImageToMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": ("IMAGE",),
|
||||
"channel": (["red", "green", "blue", "alpha"],),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="ImageToMask",
|
||||
display_name="Convert Image to Mask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.Combo.Input("channel", options=["red", "green", "blue", "alpha"]),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
FUNCTION = "image_to_mask"
|
||||
|
||||
def image_to_mask(self, image, channel):
|
||||
@classmethod
|
||||
def execute(cls, image, channel) -> IO.NodeOutput:
|
||||
channels = ["red", "green", "blue", "alpha"]
|
||||
mask = image[:, :, :, channels.index(channel)]
|
||||
return (mask,)
|
||||
return IO.NodeOutput(mask)
|
||||
|
||||
class ImageColorToMask:
|
||||
image_to_mask = execute # TODO: remove
|
||||
|
||||
|
||||
class ImageColorToMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": ("IMAGE",),
|
||||
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="ImageColorToMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.Int.Input("color", default=0, min=0, max=0xFFFFFF, step=1, display_mode=IO.NumberDisplay.number),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
FUNCTION = "image_to_mask"
|
||||
|
||||
def image_to_mask(self, image, color):
|
||||
@classmethod
|
||||
def execute(cls, image, color) -> IO.NodeOutput:
|
||||
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
|
||||
temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2]
|
||||
mask = torch.where(temp == color, 1.0, 0).float()
|
||||
return (mask,)
|
||||
return IO.NodeOutput(mask)
|
||||
|
||||
class SolidMask:
|
||||
image_to_mask = execute # TODO: remove
|
||||
|
||||
|
||||
class SolidMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="SolidMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Float.Input("value", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "solid"
|
||||
|
||||
def solid(self, value, width, height):
|
||||
@classmethod
|
||||
def execute(cls, value, width, height) -> IO.NodeOutput:
|
||||
out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu")
|
||||
return (out,)
|
||||
return IO.NodeOutput(out)
|
||||
|
||||
class InvertMask:
|
||||
solid = execute # TODO: remove
|
||||
|
||||
|
||||
class InvertMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="InvertMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "invert"
|
||||
|
||||
def invert(self, mask):
|
||||
@classmethod
|
||||
def execute(cls, mask) -> IO.NodeOutput:
|
||||
out = 1.0 - mask
|
||||
return (out,)
|
||||
return IO.NodeOutput(out)
|
||||
|
||||
class CropMask:
|
||||
invert = execute # TODO: remove
|
||||
|
||||
|
||||
class CropMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="CropMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "crop"
|
||||
|
||||
def crop(self, mask, x, y, width, height):
|
||||
@classmethod
|
||||
def execute(cls, mask, x, y, width, height) -> IO.NodeOutput:
|
||||
mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
|
||||
out = mask[:, y:y + height, x:x + width]
|
||||
return (out,)
|
||||
return IO.NodeOutput(out)
|
||||
|
||||
class MaskComposite:
|
||||
crop = execute # TODO: remove
|
||||
|
||||
|
||||
class MaskComposite(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"destination": ("MASK",),
|
||||
"source": ("MASK",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"operation": (["multiply", "add", "subtract", "and", "or", "xor"],),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MaskComposite",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("destination"),
|
||||
IO.Mask.Input("source"),
|
||||
IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Combo.Input("operation", options=["multiply", "add", "subtract", "and", "or", "xor"]),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "combine"
|
||||
|
||||
def combine(self, destination, source, x, y, operation):
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, operation) -> IO.NodeOutput:
|
||||
output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone()
|
||||
source = source.reshape((-1, source.shape[-2], source.shape[-1]))
|
||||
|
||||
@ -267,28 +277,29 @@ class MaskComposite:
|
||||
|
||||
output = torch.clamp(output, 0.0, 1.0)
|
||||
|
||||
return (output,)
|
||||
return IO.NodeOutput(output)
|
||||
|
||||
class FeatherMask:
|
||||
combine = execute # TODO: remove
|
||||
|
||||
|
||||
class FeatherMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="FeatherMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
IO.Int.Input("left", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("top", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("right", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("bottom", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "feather"
|
||||
|
||||
def feather(self, mask, left, top, right, bottom):
|
||||
@classmethod
|
||||
def execute(cls, mask, left, top, right, bottom) -> IO.NodeOutput:
|
||||
output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone()
|
||||
|
||||
left = min(left, output.shape[-1])
|
||||
@ -312,26 +323,28 @@ class FeatherMask:
|
||||
feather_rate = (y + 1) / bottom
|
||||
output[:, -y, :] *= feather_rate
|
||||
|
||||
return (output,)
|
||||
return IO.NodeOutput(output)
|
||||
|
||||
class GrowMask:
|
||||
feather = execute # TODO: remove
|
||||
|
||||
|
||||
class GrowMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"tapered_corners": ("BOOLEAN", {"default": True}),
|
||||
},
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="GrowMask",
|
||||
display_name="Grow Mask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
IO.Int.Input("expand", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Boolean.Input("tapered_corners", default=True),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "expand_mask"
|
||||
|
||||
def expand_mask(self, mask, expand, tapered_corners):
|
||||
@classmethod
|
||||
def execute(cls, mask, expand, tapered_corners) -> IO.NodeOutput:
|
||||
c = 0 if tapered_corners else 1
|
||||
kernel = np.array([[c, 1, c],
|
||||
[1, 1, 1],
|
||||
@ -347,69 +360,74 @@ class GrowMask:
|
||||
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
|
||||
output = torch.from_numpy(output)
|
||||
out.append(output)
|
||||
return (torch.stack(out, dim=0),)
|
||||
return IO.NodeOutput(torch.stack(out, dim=0))
|
||||
|
||||
class ThresholdMask:
|
||||
expand_mask = execute # TODO: remove
|
||||
|
||||
|
||||
class ThresholdMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="ThresholdMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
IO.Float.Input("value", default=0.5, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
FUNCTION = "image_to_mask"
|
||||
|
||||
def image_to_mask(self, mask, value):
|
||||
@classmethod
|
||||
def execute(cls, mask, value) -> IO.NodeOutput:
|
||||
mask = (mask > value).float()
|
||||
return (mask,)
|
||||
return IO.NodeOutput(mask)
|
||||
|
||||
image_to_mask = execute # TODO: remove
|
||||
|
||||
|
||||
# Mask Preview - original implement from
|
||||
# https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81
|
||||
# upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes
|
||||
class MaskPreview(nodes.SaveImage):
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_temp_directory()
|
||||
self.type = "temp"
|
||||
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
||||
self.compress_level = 4
|
||||
class MaskPreview(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MaskPreview",
|
||||
display_name="Preview Mask",
|
||||
category="mask",
|
||||
description="Saves the input images to your ComfyUI output directory.",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
],
|
||||
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {"mask": ("MASK",), },
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||||
}
|
||||
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "mask"
|
||||
|
||||
def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
||||
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
||||
return self.save_images(preview, filename_prefix, prompt, extra_pnginfo)
|
||||
def execute(cls, mask, filename_prefix="ComfyUI") -> IO.NodeOutput:
|
||||
return IO.NodeOutput(ui=UI.PreviewMask(mask))
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LatentCompositeMasked": LatentCompositeMasked,
|
||||
"ImageCompositeMasked": ImageCompositeMasked,
|
||||
"MaskToImage": MaskToImage,
|
||||
"ImageToMask": ImageToMask,
|
||||
"ImageColorToMask": ImageColorToMask,
|
||||
"SolidMask": SolidMask,
|
||||
"InvertMask": InvertMask,
|
||||
"CropMask": CropMask,
|
||||
"MaskComposite": MaskComposite,
|
||||
"FeatherMask": FeatherMask,
|
||||
"GrowMask": GrowMask,
|
||||
"ThresholdMask": ThresholdMask,
|
||||
"MaskPreview": MaskPreview
|
||||
}
|
||||
class MaskExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
LatentCompositeMasked,
|
||||
ImageCompositeMasked,
|
||||
MaskToImage,
|
||||
ImageToMask,
|
||||
ImageColorToMask,
|
||||
SolidMask,
|
||||
InvertMask,
|
||||
CropMask,
|
||||
MaskComposite,
|
||||
FeatherMask,
|
||||
GrowMask,
|
||||
ThresholdMask,
|
||||
MaskPreview,
|
||||
]
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"ImageToMask": "Convert Image to Mask",
|
||||
"MaskToImage": "Convert Mask to Image",
|
||||
}
|
||||
|
||||
async def comfy_entrypoint() -> MaskExtension:
|
||||
return MaskExtension()
|
||||
|
||||
@ -53,11 +53,6 @@ class PatchModelAddDownscale(io.ComfyNode):
|
||||
return io.NodeOutput(m)
|
||||
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
# Sampling
|
||||
"PatchModelAddDownscale": "",
|
||||
}
|
||||
|
||||
class ModelDownscaleExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
|
||||
@ -63,18 +63,22 @@ def cuda_malloc_supported():
|
||||
return True
|
||||
|
||||
|
||||
version = ""
|
||||
|
||||
try:
|
||||
torch_spec = importlib.util.find_spec("torch")
|
||||
for folder in torch_spec.submodule_search_locations:
|
||||
ver_file = os.path.join(folder, "version.py")
|
||||
if os.path.isfile(ver_file):
|
||||
spec = importlib.util.spec_from_file_location("torch_version_import", ver_file)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module)
|
||||
version = module.__version__
|
||||
except:
|
||||
pass
|
||||
|
||||
if not args.cuda_malloc:
|
||||
try:
|
||||
version = ""
|
||||
torch_spec = importlib.util.find_spec("torch")
|
||||
for folder in torch_spec.submodule_search_locations:
|
||||
ver_file = os.path.join(folder, "version.py")
|
||||
if os.path.isfile(ver_file):
|
||||
spec = importlib.util.spec_from_file_location("torch_version_import", ver_file)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module)
|
||||
version = module.__version__
|
||||
|
||||
if int(version[0]) >= 2 and "+cu" in version: # enable by default for torch version 2.0 and up only on cuda torch
|
||||
if PerformanceFeature.AutoTune not in args.fast: # Autotune has issues with cuda malloc
|
||||
args.cuda_malloc = cuda_malloc_supported()
|
||||
@ -90,3 +94,6 @@ if args.cuda_malloc and not args.disable_cuda_malloc:
|
||||
env_var += ",backend:cudaMallocAsync"
|
||||
|
||||
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var
|
||||
|
||||
def get_torch_version_noimport():
|
||||
return str(version)
|
||||
|
||||
3
main.py
3
main.py
@ -167,6 +167,9 @@ if __name__ == "__main__":
|
||||
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8"
|
||||
|
||||
import cuda_malloc
|
||||
if "rocm" in cuda_malloc.get_torch_version_noimport():
|
||||
os.environ['OCL_SET_SVM_SIZE'] = '262144' # set at the request of AMD
|
||||
|
||||
|
||||
if 'torch' in sys.modules:
|
||||
logging.warning("WARNING: Potential Error in code: Torch already imported, torch should never be imported before this point.")
|
||||
|
||||
@ -1 +1 @@
|
||||
comfyui_manager==4.0.3b3
|
||||
comfyui_manager==4.0.3b4
|
||||
|
||||
3
nodes.py
3
nodes.py
@ -970,7 +970,7 @@ class DualCLIPLoader:
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
|
||||
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
|
||||
"type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15"], ),
|
||||
"type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image"], ),
|
||||
},
|
||||
"optional": {
|
||||
"device": (["default", "cpu"], {"advanced": True}),
|
||||
@ -2357,6 +2357,7 @@ async def init_builtin_extra_nodes():
|
||||
"nodes_rope.py",
|
||||
"nodes_logic.py",
|
||||
"nodes_nop.py",
|
||||
"nodes_kandinsky5.py",
|
||||
]
|
||||
|
||||
import_failed = []
|
||||
|
||||
Loading…
Reference in New Issue
Block a user