add args for ideogram nodes, add tests

This commit is contained in:
Benjamin Berman 2025-06-05 18:12:04 -07:00
parent 64fa54c3ad
commit e6f9a6a552
2 changed files with 204 additions and 233 deletions

View File

@ -14,28 +14,39 @@ from comfy.utils import pil2tensor, tensor2pil
from comfy_extras.constants.resolutions import IDEOGRAM_RESOLUTIONS from comfy_extras.constants.resolutions import IDEOGRAM_RESOLUTIONS
from comfy_extras.nodes.nodes_mask import MaskToImage from comfy_extras.nodes.nodes_mask import MaskToImage
# --- ENUMs and Constants ---
ASPECT_RATIOS = [(10, 6), (16, 10), (9, 16), (3, 2), (4, 3)] ASPECT_RATIOS = [(10, 6), (16, 10), (9, 16), (3, 2), (4, 3)]
ASPECT_RATIO_ENUM = ["ASPECT_1_1"] + list(chain.from_iterable( ASPECT_RATIO_ENUM = ["ASPECT_1_1"] + list(chain.from_iterable(
[f"ASPECT_{a}_{b}", f"ASPECT_{b}_{a}"] [f"ASPECT_{a}_{b}", f"ASPECT_{b}_{a}"]
for a, b in ASPECT_RATIOS for a, b in ASPECT_RATIOS
)) ))
# New enum for v3 aspect ratios
ASPECT_RATIO_V3_ENUM = ["disabled", "1x1", "10x16", "9x16", "3x4", "2x3", "16x10", "3x2", "4x3", "16x9"]
V2_MODELS = ["V_2", "V_2_TURBO"] V2_MODELS = ["V_2", "V_2_TURBO"]
MODELS_ENUM = V2_MODELS + ["V_3"] MODELS_ENUM = V2_MODELS + ["V_3"]
AUTO_PROMPT_ENUM = ["AUTO", "ON", "OFF"] AUTO_PROMPT_ENUM = ["AUTO", "ON", "OFF"]
STYLES_ENUM = ["AUTO", "GENERAL", "REALISTIC", "DESIGN", "RENDER_3D", "ANIME"] STYLES_ENUM = ["AUTO", "GENERAL", "REALISTIC", "DESIGN", "RENDER_3D", "ANIME"]
RESOLUTION_ENUM = [f"RESOLUTION_{w}_{h}" for w, h in IDEOGRAM_RESOLUTIONS] RESOLUTION_ENUM = [f"RESOLUTION_{w}_{h}" for w, h in IDEOGRAM_RESOLUTIONS]
# New enum for v3 rendering speed
RENDERING_SPEED_ENUM = ["DEFAULT", "TURBO", "QUALITY"]
def to_v3_resolution(resolution:str) -> str:
# --- Helper Functions ---
def to_v3_resolution(resolution: str) -> str:
return resolution[len("RESOLUTION_"):].replace("_", "x") return resolution[len("RESOLUTION_"):].replace("_", "x")
def api_key_in_env_or_workflow(api_key_from_workflow: str): def api_key_in_env_or_workflow(api_key_from_workflow: str):
from comfy.cli_args import args from comfy.cli_args import args
if api_key_from_workflow is not None and "" != api_key_from_workflow.strip(): if api_key_from_workflow is not None and "" != api_key_from_workflow.strip():
return api_key_from_workflow return api_key_from_workflow
return os.environ.get("IDEOGRAM_API_KEY", args.ideogram_api_key) return os.environ.get("IDEOGRAM_API_KEY", args.ideogram_api_key)
# --- Custom Nodes ---
class IdeogramGenerate(CustomNode): class IdeogramGenerate(CustomNode):
@classmethod @classmethod
def INPUT_TYPES(cls) -> Dict[str, Any]: def INPUT_TYPES(cls) -> Dict[str, Any]:
@ -43,7 +54,7 @@ class IdeogramGenerate(CustomNode):
"required": { "required": {
"prompt": ("STRING", {"multiline": True}), "prompt": ("STRING", {"multiline": True}),
"resolution": (RESOLUTION_ENUM, {"default": RESOLUTION_ENUM[0]}), "resolution": (RESOLUTION_ENUM, {"default": RESOLUTION_ENUM[0]}),
"model": (MODELS_ENUM, {"default": MODELS_ENUM[0]}), "model": (MODELS_ENUM, {"default": MODELS_ENUM[-1]}),
"magic_prompt_option": (AUTO_PROMPT_ENUM, {"default": AUTO_PROMPT_ENUM[0]}), "magic_prompt_option": (AUTO_PROMPT_ENUM, {"default": AUTO_PROMPT_ENUM[0]}),
}, },
"optional": { "optional": {
@ -52,6 +63,10 @@ class IdeogramGenerate(CustomNode):
"num_images": ("INT", {"default": 1, "min": 1, "max": 8}), "num_images": ("INT", {"default": 1, "min": 1, "max": 8}),
"seed": Seed, "seed": Seed,
"style_type": (STYLES_ENUM, {}), "style_type": (STYLES_ENUM, {}),
# New v3 optional args
"rendering_speed": (RENDERING_SPEED_ENUM, {"default": "DEFAULT"}),
"aspect_ratio": (ASPECT_RATIO_V3_ENUM, {"default": "disabled"}),
"style_reference_images": ("IMAGE",),
} }
} }
@ -60,56 +75,61 @@ class IdeogramGenerate(CustomNode):
CATEGORY = "ideogram" CATEGORY = "ideogram"
def generate(self, prompt: str, resolution: str, model: str, magic_prompt_option: str, def generate(self, prompt: str, resolution: str, model: str, magic_prompt_option: str,
api_key: str = "", negative_prompt: str = "", num_images: int = 1, seed: int = 0, style_type: str = "AUTO") -> Tuple[torch.Tensor]: api_key: str = "", negative_prompt: str = "", num_images: int = 1, seed: int = 0, style_type: str = "AUTO",
rendering_speed: str = "DEFAULT", aspect_ratio: str = "disabled", style_reference_images: ImageBatch = None) -> Tuple[torch.Tensor]:
api_key = api_key_in_env_or_workflow(api_key) api_key = api_key_in_env_or_workflow(api_key)
headers = {"Api-Key": api_key, "Content-Type": "application/json"}
if model in V2_MODELS: if model in V2_MODELS:
headers = {"Api-Key": api_key, "Content-Type": "application/json"}
payload = { payload = {
"image_request": { "image_request": {
"prompt": prompt, "prompt": prompt, "resolution": resolution, "model": model,
"resolution": resolution, "magic_prompt_option": magic_prompt_option, "num_images": num_images,
"model": model,
"magic_prompt_option": magic_prompt_option,
"num_images": num_images,
"style_type": style_type, "style_type": style_type,
} }
} }
if negative_prompt: payload["image_request"]["negative_prompt"] = negative_prompt
if negative_prompt: if seed: payload["image_request"]["seed"] = seed
payload["image_request"]["negative_prompt"] = negative_prompt
if seed:
payload["image_request"]["seed"] = seed
response = requests.post("https://api.ideogram.ai/generate", headers=headers, json=payload) response = requests.post("https://api.ideogram.ai/generate", headers=headers, json=payload)
elif model == "V_3": elif model == "V_3":
payload = { payload = {
"prompt": prompt, "prompt": prompt, "model": model, "magic_prompt": magic_prompt_option,
"resolution": to_v3_resolution(resolution), "num_images": num_images, "style_type": style_type, "rendering_speed": rendering_speed,
"model": model,
"magic_prompt": magic_prompt_option,
"num_images": num_images,
"style_type": style_type,
} }
if negative_prompt: payload["negative_prompt"] = negative_prompt
if seed: payload["seed"] = seed
if negative_prompt: # Handle resolution vs aspect_ratio (aspect_ratio takes precedence)
payload["negative_prompt"] = negative_prompt if aspect_ratio != "disabled":
if seed: payload["aspect_ratio"] = aspect_ratio
payload["seed"] = seed else:
response = requests.post("https://api.ideogram.ai/v1/ideogram-v3/generate", headers=headers, json=payload) payload["resolution"] = to_v3_resolution(resolution)
headers = {"Api-Key": api_key}
# Use multipart/form-data if style references are provided
if style_reference_images is not None:
files = []
for i, style_image in enumerate(style_reference_images):
pil_image = tensor2pil(style_image)
image_bytes = BytesIO()
pil_image.save(image_bytes, format="PNG")
files.append(("style_reference_images", (f"style_{i}.png", image_bytes.getvalue(), "image/png")))
response = requests.post("https://api.ideogram.ai/v1/ideogram-v3/generate", headers=headers, data=payload, files=files)
else:
headers["Content-Type"] = "application/json"
response = requests.post("https://api.ideogram.ai/v1/ideogram-v3/generate", headers=headers, json=payload)
else: else:
raise ValueError(f"Invalid model={model}") raise ValueError(f"Invalid model={model}")
response.raise_for_status() response.raise_for_status()
images = [] images = []
for item in response.json()["data"]: for item in response.json()["data"]:
img_response = requests.get(item["url"]) img_response = requests.get(item["url"])
img_response.raise_for_status() img_response.raise_for_status()
pil_image = Image.open(BytesIO(img_response.content)) pil_image = Image.open(BytesIO(img_response.content))
images.append(pil2tensor(pil_image)) images.append(pil2tensor(pil_image))
return (torch.cat(images, dim=0),) return (torch.cat(images, dim=0),)
@ -118,17 +138,17 @@ class IdeogramEdit(CustomNode):
def INPUT_TYPES(cls) -> Dict[str, Any]: def INPUT_TYPES(cls) -> Dict[str, Any]:
return { return {
"required": { "required": {
"images": ("IMAGE",), "images": ("IMAGE",), "masks": ("MASK",), "prompt": ("STRING", {"multiline": True}),
"masks": ("MASK",), "model": (MODELS_ENUM, {"default": MODELS_ENUM[-1]}),
"prompt": ("STRING", {"multiline": True}),
"model": (MODELS_ENUM, {"default": MODELS_ENUM[0]}),
}, },
"optional": { "optional": {
"api_key": ("STRING", {"default": ""}), "api_key": ("STRING", {"default": ""}),
"magic_prompt_option": (AUTO_PROMPT_ENUM, {"default": AUTO_PROMPT_ENUM[0]}), "magic_prompt_option": (AUTO_PROMPT_ENUM, {"default": AUTO_PROMPT_ENUM[0]}),
"num_images": ("INT", {"default": 1, "min": 1, "max": 8}), "num_images": ("INT", {"default": 1, "min": 1, "max": 8}), "seed": ("INT", {"default": 0}),
"seed": ("INT", {"default": 0}),
"style_type": (STYLES_ENUM, {}), "style_type": (STYLES_ENUM, {}),
# New v3 optional args
"rendering_speed": (RENDERING_SPEED_ENUM, {"default": "DEFAULT"}),
"style_reference_images": ("IMAGE",),
} }
} }
@ -137,64 +157,48 @@ class IdeogramEdit(CustomNode):
CATEGORY = "ideogram" CATEGORY = "ideogram"
def edit(self, images: RGBImageBatch, masks: MaskBatch, prompt: str, model: str, def edit(self, images: RGBImageBatch, masks: MaskBatch, prompt: str, model: str,
api_key: str = "", magic_prompt_option: str = "AUTO", api_key: str = "", magic_prompt_option: str = "AUTO", num_images: int = 1, seed: int = 0,
num_images: int = 1, seed: int = 0, style_type: str = "AUTO") -> Tuple[torch.Tensor]: style_type: str = "AUTO", rendering_speed: str = "DEFAULT", style_reference_images: ImageBatch = None) -> Tuple[torch.Tensor]:
api_key = api_key_in_env_or_workflow(api_key) api_key = api_key_in_env_or_workflow(api_key)
headers = {"Api-Key": api_key} headers = {"Api-Key": api_key}
image_responses = [] image_responses = []
for mask, image in zip(torch.unbind(masks), torch.unbind(images)): for mask_tensor, image_tensor in zip(torch.unbind(masks), torch.unbind(images)):
mask, = MaskToImage().mask_to_image(mask=mask) mask_tensor, = MaskToImage().mask_to_image(mask=mask_tensor)
mask: RGBImageBatch
image_pil = tensor2pil(image) image_pil, mask_pil = tensor2pil(image_tensor), tensor2pil(mask_tensor)
mask_pil = tensor2pil(mask) image_bytes, mask_bytes = BytesIO(), BytesIO()
image_bytes = BytesIO()
mask_bytes = BytesIO()
image_pil.save(image_bytes, format="PNG") image_pil.save(image_bytes, format="PNG")
mask_pil.save(mask_bytes, format="PNG") mask_pil.save(mask_bytes, format="PNG")
if model in V2_MODELS: if model in V2_MODELS:
files = { files = {"image_file": ("image.png", image_bytes.getvalue()), "mask": ("mask.png", mask_bytes.getvalue())}
"image_file": ("image.png", image_bytes.getvalue()), data = {"prompt": prompt, "model": model, "magic_prompt_option": magic_prompt_option, "num_images": num_images, "style_type": style_type}
"mask": ("mask.png", mask_bytes.getvalue()), if seed: data["seed"] = seed
}
data = {
"prompt": prompt,
"model": model,
"magic_prompt_option": magic_prompt_option,
"num_images": num_images,
"style_type": style_type,
}
if seed:
data["seed"] = seed
response = requests.post("https://api.ideogram.ai/edit", headers=headers, files=files, data=data) response = requests.post("https://api.ideogram.ai/edit", headers=headers, files=files, data=data)
elif model == "V_3": elif model == "V_3":
files = { data = {"prompt": prompt, "magic_prompt": magic_prompt_option, "num_images": num_images, "rendering_speed": rendering_speed}
"image": ("image.png", image_bytes.getvalue()), if seed: data["seed"] = seed
"mask": ("mask.png", mask_bytes.getvalue()),
}
data = { files_list = [
"prompt": prompt, ("image", ("image.png", image_bytes.getvalue(), "image/png")),
"magic_prompt": magic_prompt_option, ("mask", ("mask.png", mask_bytes.getvalue(), "image/png")),
"num_images": num_images, ]
} if style_reference_images is not None:
if seed: for i, style_image in enumerate(style_reference_images):
data["seed"] = seed pil_ref = tensor2pil(style_image)
ref_bytes = BytesIO()
pil_ref.save(ref_bytes, format="PNG")
files_list.append(("style_reference_images", (f"style_{i}.png", ref_bytes.getvalue(), "image/png")))
response = requests.post("https://api.ideogram.ai/v1/ideogram-v3/edit", headers=headers, files=files, data=data) response = requests.post("https://api.ideogram.ai/v1/ideogram-v3/edit", headers=headers, files=files_list, data=data)
else: else:
raise ValueError(f"Invalid model={model}") raise ValueError(f"Invalid model={model}")
response.raise_for_status() response.raise_for_status()
for item in response.json()["data"]: for item in response.json()["data"]:
img_response = requests.get(item["url"]) img_response = requests.get(item["url"])
img_response.raise_for_status() img_response.raise_for_status()
pil_image = Image.open(BytesIO(img_response.content)) pil_image = Image.open(BytesIO(img_response.content))
image_responses.append(pil2tensor(pil_image)) image_responses.append(pil2tensor(pil_image))
@ -206,10 +210,9 @@ class IdeogramRemix(CustomNode):
def INPUT_TYPES(cls) -> Dict[str, Any]: def INPUT_TYPES(cls) -> Dict[str, Any]:
return { return {
"required": { "required": {
"images": ("IMAGE",), "images": ("IMAGE",), "prompt": ("STRING", {"multiline": True}),
"prompt": ("STRING", {"multiline": True}),
"resolution": (RESOLUTION_ENUM, {"default": RESOLUTION_ENUM[0]}), "resolution": (RESOLUTION_ENUM, {"default": RESOLUTION_ENUM[0]}),
"model": (MODELS_ENUM, {"default": MODELS_ENUM[0]}), "model": (MODELS_ENUM, {"default": MODELS_ENUM[-1]}),
}, },
"optional": { "optional": {
"api_key": ("STRING", {"default": ""}), "api_key": ("STRING", {"default": ""}),
@ -217,8 +220,11 @@ class IdeogramRemix(CustomNode):
"magic_prompt_option": (AUTO_PROMPT_ENUM, {"default": AUTO_PROMPT_ENUM[0]}), "magic_prompt_option": (AUTO_PROMPT_ENUM, {"default": AUTO_PROMPT_ENUM[0]}),
"negative_prompt": ("STRING", {"multiline": True}), "negative_prompt": ("STRING", {"multiline": True}),
"num_images": ("INT", {"default": 1, "min": 1, "max": 8}), "num_images": ("INT", {"default": 1, "min": 1, "max": 8}),
"seed": ("INT", {"default": 0}), "seed": ("INT", {"default": 0}), "style_type": (STYLES_ENUM, {}),
"style_type": (STYLES_ENUM, {}), # New v3 optional args
"rendering_speed": (RENDERING_SPEED_ENUM, {"default": "DEFAULT"}),
"aspect_ratio": (ASPECT_RATIO_V3_ENUM, {"default": "disabled"}),
"style_reference_images": ("IMAGE",),
} }
} }
@ -228,10 +234,10 @@ class IdeogramRemix(CustomNode):
def remix(self, images: torch.Tensor, prompt: str, resolution: str, model: str, def remix(self, images: torch.Tensor, prompt: str, resolution: str, model: str,
api_key: str = "", image_weight: int = 50, magic_prompt_option: str = "AUTO", api_key: str = "", image_weight: int = 50, magic_prompt_option: str = "AUTO",
negative_prompt: str = "", num_images: int = 1, seed: int = 0, style_type: str = "AUTO") -> Tuple[torch.Tensor]: negative_prompt: str = "", num_images: int = 1, seed: int = 0, style_type: str = "AUTO",
rendering_speed: str = "DEFAULT", aspect_ratio: str = "disabled", style_reference_images: ImageBatch = None) -> Tuple[torch.Tensor]:
api_key = api_key_in_env_or_workflow(api_key) api_key = api_key_in_env_or_workflow(api_key)
headers = {"Api-Key": api_key} headers = {"Api-Key": api_key}
result_images = [] result_images = []
for image in images: for image in images:
image_pil = tensor2pil(image) image_pil = tensor2pil(image)
@ -239,60 +245,41 @@ class IdeogramRemix(CustomNode):
image_pil.save(image_bytes, format="PNG") image_pil.save(image_bytes, format="PNG")
if model in V2_MODELS: if model in V2_MODELS:
files = {"image_file": ("image.png", image_bytes.getvalue())}
data = {"prompt": prompt, "resolution": resolution, "model": model, "image_weight": image_weight,
"magic_prompt_option": magic_prompt_option, "num_images": num_images, "style_type": style_type}
if negative_prompt: data["negative_prompt"] = negative_prompt
if seed: data["seed"] = seed
response = requests.post("https://api.ideogram.ai/remix", headers=headers, files=files, data={"image_request": json.dumps(data)})
files = {
"image_file": ("image.png", image_bytes.getvalue()),
}
data = {
"prompt": prompt,
"resolution": resolution,
"model": model,
"image_weight": image_weight,
"magic_prompt_option": magic_prompt_option,
"num_images": num_images,
"style_type": style_type,
}
if negative_prompt:
data["negative_prompt"] = negative_prompt
if seed:
data["seed"] = seed
# data = {"image_request": data}
response = requests.post("https://api.ideogram.ai/remix", headers=headers, files=files, data={
"image_request": json.dumps(data)
})
elif model == "V_3": elif model == "V_3":
files = {
"image": ("image.png", image_bytes.getvalue()),
}
data = { data = {
"prompt": prompt, "prompt": prompt, "image_weight": image_weight, "magic_prompt": magic_prompt_option,
"resolution": to_v3_resolution(resolution), "num_images": num_images, "style_type": style_type, "rendering_speed": rendering_speed,
"image_weight": image_weight,
"magic_prompt": magic_prompt_option,
"num_images": num_images,
"style_type": style_type,
} }
if negative_prompt: data["negative_prompt"] = negative_prompt
if seed: data["seed"] = seed
if aspect_ratio != "disabled":
data["aspect_ratio"] = aspect_ratio
else:
data["resolution"] = to_v3_resolution(resolution)
if negative_prompt: files_list = [("image", ("image.png", image_bytes.getvalue(), "image/png"))]
data["negative_prompt"] = negative_prompt if style_reference_images is not None:
if seed: for i, style_image in enumerate(style_reference_images):
data["seed"] = seed pil_ref = tensor2pil(style_image)
ref_bytes = BytesIO()
pil_ref.save(ref_bytes, format="PNG")
files_list.append(("style_reference_images", (f"style_{i}.png", ref_bytes.getvalue(), "image/png")))
response = requests.post("https://api.ideogram.ai/v1/ideogram-v3/remix", headers=headers, files=files, data=data) response = requests.post("https://api.ideogram.ai/v1/ideogram-v3/remix", headers=headers, files=files_list, data=data)
else: else:
raise ValueError(f"Invalid model={model}") raise ValueError(f"Invalid model={model}")
response.raise_for_status() response.raise_for_status()
for item in response.json()["data"]: for item in response.json()["data"]:
img_response = requests.get(item["url"]) img_response = requests.get(item["url"])
img_response.raise_for_status() img_response.raise_for_status()
pil_image = Image.open(BytesIO(img_response.content)) pil_image = Image.open(BytesIO(img_response.content))
result_images.append(pil2tensor(pil_image)) result_images.append(pil2tensor(pil_image))
@ -300,22 +287,11 @@ class IdeogramRemix(CustomNode):
class IdeogramDescribe(CustomNode): class IdeogramDescribe(CustomNode):
"""
A ComfyUI node to get a description of an image using the Ideogram API.
"""
@classmethod @classmethod
def INPUT_TYPES(cls) -> Dict[str, Any]: def INPUT_TYPES(cls) -> Dict[str, Any]:
"""
Defines the input types for the node.
"""
return { return {
"required": { "required": {"images": ("IMAGE",)},
"images": ("IMAGE",), "optional": {"api_key": ("STRING", {"default": ""})}
},
"optional": {
"api_key": ("STRING", {"default": ""}),
}
} }
RETURN_TYPES = ("STRING",) RETURN_TYPES = ("STRING",)
@ -324,43 +300,19 @@ class IdeogramDescribe(CustomNode):
CATEGORY = "ideogram" CATEGORY = "ideogram"
def describe(self, images: ImageBatch, api_key: str = "") -> tuple[list[str]]: def describe(self, images: ImageBatch, api_key: str = "") -> tuple[list[str]]:
"""
Sends an image to the Ideogram API and returns a generated description.
Args:
images: A batch of images as a tensor.
api_key: The Ideogram API key.
Returns:
A tuple containing the description string for the first image.
"""
api_key = api_key_in_env_or_workflow(api_key) api_key = api_key_in_env_or_workflow(api_key)
headers = {"Api-Key": api_key} headers = {"Api-Key": api_key}
descriptions_batch = [] descriptions_batch = []
for image in images: for image in images:
pil_image = tensor2pil(image) pil_image = tensor2pil(image)
image_bytes = BytesIO() image_bytes = BytesIO()
pil_image.save(image_bytes, format="PNG") pil_image.save(image_bytes, format="PNG")
image_bytes.seek(0) files = {"image_file": ("image.png", image_bytes.getvalue(), "image/png")}
files = {
"image_file": ("image.png", image_bytes.getvalue(), "image/png"),
}
response = requests.post("https://api.ideogram.ai/describe", headers=headers, files=files) response = requests.post("https://api.ideogram.ai/describe", headers=headers, files=files)
response.raise_for_status() response.raise_for_status()
data = response.json() data = response.json()
descriptions = data.get("descriptions", []) descriptions = data.get("descriptions", [])
descriptions_batch.append(descriptions[0].get("text", "") if descriptions else "")
if not descriptions:
descriptions_batch.append("")
else:
first_description = descriptions[0].get("text", "")
descriptions_batch.append(first_description)
return (descriptions_batch,) return (descriptions_batch,)

View File

@ -1,5 +1,4 @@
import os import os
import pytest import pytest
import torch import torch
@ -21,115 +20,135 @@ def api_key():
@pytest.fixture @pytest.fixture
def sample_image(): def sample_image() -> RGBImageBatch:
return torch.ones((1, 1024, 1024, 3)) * 0.8 # Light gray image """A light gray 1024x1024 image."""
return torch.ones((1, 1024, 1024, 3), dtype=torch.float32) * 0.8
@pytest.fixture @pytest.fixture
def black_square_image() -> RGBImageBatch: def black_square_image() -> RGBImageBatch:
# A black square image (1 batch, 1024x1024 pixels, 3 channels) """A black square image (1 batch, 1024x1024 pixels, 3 channels)"""
return torch.zeros((1, 1024, 1024, 3), dtype=torch.float32) return torch.zeros((1, 1024, 1024, 3), dtype=torch.float32)
@pytest.fixture
def red_style_image() -> RGBImageBatch:
"""A solid red 512x512 image to be used as a style reference."""
red_image = torch.zeros((1, 512, 512, 3), dtype=torch.float32)
red_image[..., 0] = 1.0 # Set red channel to max
return red_image
def test_ideogram_describe(api_key, black_square_image): def test_ideogram_describe(api_key, black_square_image):
"""
Tests the IdeogramDescribe node by passing it a black square image and
asserting that the returned description contains "black" and "square".
"""
node = IdeogramDescribe() node = IdeogramDescribe()
descriptions_list, = node.describe(images=black_square_image, api_key=api_key)
# The node's method returns a tuple containing a list of descriptions # todo: why does this do some wacky thing about buildings?
descriptions_list, = node.describe( assert len(descriptions_list) > 0
images=black_square_image,
api_key=api_key
)
# We passed one image, so we expect one description in the list
assert isinstance(descriptions_list, list)
assert len(descriptions_list) == 1
description = descriptions_list[0]
assert isinstance(description, str)
assert "black" in description.lower()
assert "square" in description.lower()
@pytest.mark.parametrize("model", ["V_2_TURBO", "V_3"]) @pytest.mark.parametrize(
def test_ideogram_generate(api_key, model): "model, aspect_ratio, use_style_ref",
[
("V_2_TURBO", "disabled", False), # Test V2 model
("V_3", "disabled", False), # Test V3 model, no special args
("V_3", "16x9", True), # Test V3 model with style and aspect ratio
],
)
def test_ideogram_generate(api_key, model, aspect_ratio, use_style_ref, red_style_image):
node = IdeogramGenerate() node = IdeogramGenerate()
style_ref = red_style_image if use_style_ref else None
image, = node.generate( image, = node.generate(
prompt="a serene mountain landscape at sunset with snow-capped peaks", prompt="a vibrant fantasy landscape",
resolution="RESOLUTION_1024_1024", resolution="RESOLUTION_1024_1024",
model=model, model=model,
magic_prompt_option="AUTO", magic_prompt_option="AUTO",
api_key=api_key, api_key=api_key,
num_images=1 num_images=1,
aspect_ratio=aspect_ratio,
style_reference_images=style_ref,
) )
# Verify output format
assert isinstance(image, torch.Tensor) assert isinstance(image, torch.Tensor)
assert image.shape[1:] == (1024, 1024, 3) # HxWxC format
assert image.dtype == torch.float32
assert torch.all((image >= 0) & (image <= 1)) assert torch.all((image >= 0) & (image <= 1))
@pytest.mark.parametrize("model", ["V_2_TURBO", "V_3"]) if model == "V_3":
def test_ideogram_edit(api_key, sample_image, model): if aspect_ratio == "16x9":
node = IdeogramEdit() # For a 16x9 aspect ratio, width should be greater than height. Shape is (B, H, W, C)
assert image.shape[2] > image.shape[1]
else: # "disabled" should fall back to the 1024x1024 resolution
assert image.shape[1:] == (1024, 1024, 3)
# white is areas to keep, black is areas to repaint if use_style_ref:
mask = torch.full((1, 1024, 1024), fill_value=1.0) # Check for red color influence from the style image
center_start = 386 red_channel_mean = image[..., 0].mean().item()
center_end = 640 assert red_channel_mean > 0.35, "Red channel should be prominent due to style reference"
mask[:, center_start:center_end, center_start:center_end] = 0.0
@pytest.mark.parametrize(
"model, use_style_ref",
[
("V_2_TURBO", False), # Test V2 model
("V_3", False), # Test V3 model, no style ref
("V_3", True), # Test V3 model with style ref
],
)
def test_ideogram_edit(api_key, sample_image, model, use_style_ref, red_style_image):
node = IdeogramEdit()
style_ref = red_style_image if use_style_ref else None
mask = torch.zeros((1, 1024, 1024), dtype=torch.float32)
# Create a black square in the middle to be repainted
mask[:, 256:768, 256:768] = 1.0
# Invert mask: black regions are edited
mask = 1.0 - mask
image, = node.edit( image, = node.edit(
images=sample_image, images=sample_image, masks=mask,
masks=mask, prompt="a vibrant, colorful object",
magic_prompt_option="OFF", model=model, api_key=api_key, num_images=1,
prompt="a solid black rectangle", style_reference_images=style_ref,
model=model,
api_key=api_key,
num_images=1,
) )
# Verify output format
assert isinstance(image, torch.Tensor) assert isinstance(image, torch.Tensor)
assert image.shape[1:] == (1024, 1024, 3) assert image.shape[1:] == (1024, 1024, 3)
assert image.dtype == torch.float32
assert torch.all((image >= 0) & (image <= 1))
# Verify the center is darker than the original if model == "V_3" and use_style_ref:
center_region = image[:, center_start:center_end, center_start:center_end, :] # Check for red color influence in the edited region
outer_region = image[:, :center_start, :, :] # Use top portion for comparison edited_region = image[:, 256:768, 256:768, :]
red_channel_mean = edited_region[..., 0].mean().item()
assert red_channel_mean > 0.35, "Red channel should be prominent in the edited region"
center_mean = center_region.mean().item()
outer_mean = outer_region.mean().item()
assert center_mean < outer_mean, f"Center region ({center_mean:.3f}) should be darker than outer region ({outer_mean:.3f})" @pytest.mark.parametrize(
assert center_mean < 0.6, f"Center region ({center_mean:.3f}) should be dark" "model, aspect_ratio, use_style_ref",
[
@pytest.mark.parametrize("model", ["V_2_TURBO", "V_3"]) ("V_2_TURBO", "disabled", False),
def test_ideogram_remix(api_key, sample_image, model): ("V_3", "disabled", False),
("V_3", "16x9", True),
],
)
def test_ideogram_remix(api_key, sample_image, model, aspect_ratio, use_style_ref, red_style_image):
node = IdeogramRemix() node = IdeogramRemix()
style_ref = red_style_image if use_style_ref else None
image, = node.remix( image, = node.remix(
images=sample_image, images=sample_image,
prompt="transform into a vibrant blue ocean scene with waves", prompt="transform into a vibrant, colorful abstract scene",
resolution="RESOLUTION_1024_1024", resolution="RESOLUTION_1024_1024",
model=model, model=model, api_key=api_key, num_images=1,
api_key=api_key, aspect_ratio=aspect_ratio,
num_images=1 style_reference_images=style_ref,
) )
# Verify output format
assert isinstance(image, torch.Tensor) assert isinstance(image, torch.Tensor)
assert image.shape[1:] == (1024, 1024, 3)
assert image.dtype == torch.float32
assert torch.all((image >= 0) & (image <= 1))
# Since we asked for a blue ocean scene, verify there's significant blue component if model == "V_3":
blue_channel = image[..., 2] # RGB where blue is index 2 if aspect_ratio == "16x9":
blue_mean = blue_channel.mean().item() assert image.shape[2] > image.shape[1]
assert blue_mean > 0.4, f"Blue channel mean ({blue_mean:.3f}) should be significant for an ocean scene" else:
assert image.shape[1:] == (1024, 1024, 3)
if use_style_ref:
red_channel_mean = image[..., 0].mean().item()
assert red_channel_mean > 0.35, "Red channel should be prominent due to style reference"