Merge branch 'master' into lora-node-refactor

This commit is contained in:
Jedrzej Kosinski 2025-11-25 00:44:00 -08:00
commit e727ccab5d
268 changed files with 30646 additions and 13991 deletions

View File

@ -0,0 +1,27 @@
As of the time of writing this you need this preview driver for best results:
https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-PREVIEW.html
HOW TO RUN:
If you have a AMD gpu:
run_amd_gpu.bat
If you have memory issues you can try disabling the smart memory management by running comfyui with:
run_amd_gpu_disable_smart_memory.bat
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
You can download the stable diffusion XL one from: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0_0.9vae.safetensors
RECOMMENDED WAY TO UPDATE:
To update the ComfyUI code: update\update_comfyui.bat
TO SHARE MODELS BETWEEN COMFYUI AND ANOTHER UI:
In the ComfyUI directory you will find a file: extra_model_paths.yaml.example
Rename this file to: extra_model_paths.yaml and edit it with your favorite text editor.

View File

@ -1,2 +1,2 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --disable-smart-memory
pause

View File

@ -0,0 +1,3 @@
..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --disable-api-nodes
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@ -0,0 +1,3 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@ -0,0 +1,3 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@ -8,13 +8,15 @@ body:
Before submitting a **Bug Report**, please ensure the following:
- **1:** You are running the latest version of ComfyUI.
- **2:** You have looked at the existing bug reports and made sure this isn't already reported.
- **2:** You have your ComfyUI logs and relevant workflow on hand and will post them in this bug report.
- **3:** You confirmed that the bug is not caused by a custom node. You can disable all custom nodes by passing
`--disable-all-custom-nodes` command line argument.
`--disable-all-custom-nodes` command line argument. If you have custom node try updating them to the latest version.
- **4:** This is an actual bug in ComfyUI, not just a support question. A bug is when you can specify exact
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
## Very Important
Please make sure that you post ALL your ComfyUI logs in the bug report. A bug report without logs will likely be ignored.
- type: checkboxes
id: custom-nodes-test
attributes:

View File

@ -0,0 +1,21 @@
<!-- API_NODE_PR_CHECKLIST: do not remove -->
## API Node PR Checklist
### Scope
- [ ] **Is API Node Change**
### Pricing & Billing
- [ ] **Need pricing update**
- [ ] **No pricing update**
If **Need pricing update**:
- [ ] Metronome rate cards updated
- [ ] Autobilling tests updated and passing
### QA
- [ ] **QA done**
- [ ] **QA not required**
### Comms
- [ ] Informed **Kosinkadink**

58
.github/workflows/api-node-template.yml vendored Normal file
View File

@ -0,0 +1,58 @@
name: Append API Node PR template
on:
pull_request_target:
types: [opened, reopened, synchronize, ready_for_review]
paths:
- 'comfy_api_nodes/**' # only run if these files changed
permissions:
contents: read
pull-requests: write
jobs:
inject:
runs-on: ubuntu-latest
steps:
- name: Ensure template exists and append to PR body
uses: actions/github-script@v7
with:
script: |
const { owner, repo } = context.repo;
const number = context.payload.pull_request.number;
const templatePath = '.github/PULL_REQUEST_TEMPLATE/api-node.md';
const marker = '<!-- API_NODE_PR_CHECKLIST: do not remove -->';
const { data: pr } = await github.rest.pulls.get({ owner, repo, pull_number: number });
let templateText;
try {
const res = await github.rest.repos.getContent({
owner,
repo,
path: templatePath,
ref: pr.base.ref
});
const buf = Buffer.from(res.data.content, res.data.encoding || 'base64');
templateText = buf.toString('utf8');
} catch (e) {
core.setFailed(`Required PR template not found at "${templatePath}" on ${pr.base.ref}. Please add it to the repo.`);
return;
}
// Enforce the presence of the marker inside the template (for idempotence)
if (!templateText.includes(marker)) {
core.setFailed(`Template at "${templatePath}" does not contain the required marker:\n${marker}\nAdd it so we can detect duplicates safely.`);
return;
}
// If the PR already contains the marker, do not append again.
const body = pr.body || '';
if (body.includes(marker)) {
core.info('Template already present in PR body; nothing to inject.');
return;
}
const newBody = (body ? body + '\n\n' : '') + templateText + '\n';
await github.rest.pulls.update({ owner, repo, pull_number: number, body: newBody });
core.notice('API Node template appended to PR description.');

View File

@ -0,0 +1,78 @@
name: "Release Stable All Portable Versions"
on:
workflow_dispatch:
inputs:
git_tag:
description: 'Git tag'
required: true
type: string
jobs:
release_nvidia_default:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA Default (cu130)"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu130"
python_minor: "13"
python_patch: "9"
rel_name: "nvidia"
rel_extra_name: ""
test_release: true
secrets: inherit
release_nvidia_cu128:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA cu128"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu128"
python_minor: "12"
python_patch: "10"
rel_name: "nvidia"
rel_extra_name: "_cu128"
test_release: true
secrets: inherit
release_nvidia_cu126:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA cu126"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu126"
python_minor: "12"
python_patch: "10"
rel_name: "nvidia"
rel_extra_name: "_cu126"
test_release: true
secrets: inherit
release_amd_rocm:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release AMD ROCm 6.4.4"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "rocm644"
python_minor: "12"
python_patch: "10"
rel_name: "amd"
rel_extra_name: ""
test_release: false
secrets: inherit

View File

@ -21,3 +21,28 @@ jobs:
- name: Run Ruff
run: ruff check .
pylint:
name: Run Pylint
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
- name: Install Pylint
run: pip install pylint
- name: Run Pylint
run: pylint comfy_api_nodes

View File

@ -2,17 +2,17 @@
name: "Release Stable Version"
on:
workflow_dispatch:
workflow_call:
inputs:
git_tag:
description: 'Git tag'
required: true
type: string
cu:
description: 'CUDA version'
cache_tag:
description: 'Cached dependencies tag'
required: true
type: string
default: "129"
default: "cu129"
python_minor:
description: 'Python minor version'
required: true
@ -23,7 +23,57 @@ on:
required: true
type: string
default: "6"
rel_name:
description: 'Release name'
required: true
type: string
default: "nvidia"
rel_extra_name:
description: 'Release extra name'
required: false
type: string
default: ""
test_release:
description: 'Test Release'
required: true
type: boolean
default: true
workflow_dispatch:
inputs:
git_tag:
description: 'Git tag'
required: true
type: string
cache_tag:
description: 'Cached dependencies tag'
required: true
type: string
default: "cu129"
python_minor:
description: 'Python minor version'
required: true
type: string
default: "13"
python_patch:
description: 'Python patch version'
required: true
type: string
default: "6"
rel_name:
description: 'Release name'
required: true
type: string
default: "nvidia"
rel_extra_name:
description: 'Release extra name'
required: false
type: string
default: ""
test_release:
description: 'Test Release'
required: true
type: boolean
default: true
jobs:
package_comfy_windows:
@ -42,15 +92,15 @@ jobs:
id: cache
with:
path: |
cu${{ inputs.cu }}_python_deps.tar
${{ inputs.cache_tag }}_python_deps.tar
update_comfyui_and_python_dependencies.bat
key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }}
key: ${{ runner.os }}-build-${{ inputs.cache_tag }}-${{ inputs.python_minor }}
- shell: bash
run: |
mv cu${{ inputs.cu }}_python_deps.tar ../
mv ${{ inputs.cache_tag }}_python_deps.tar ../
mv update_comfyui_and_python_dependencies.bat ../
cd ..
tar xf cu${{ inputs.cu }}_python_deps.tar
tar xf ${{ inputs.cache_tag }}_python_deps.tar
pwd
ls
@ -65,12 +115,19 @@ jobs:
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
./python.exe -s -m pip install -r requirements_comfyui.txt
rm requirements_comfyui.txt
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
rm ./Lib/site-packages/torch/lib/libprotoc.lib
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
if test -f ./Lib/site-packages/torch/lib/dnnl.lib; then
rm ./Lib/site-packages/torch/lib/dnnl.lib #I don't think this is actually used and I need the space
rm ./Lib/site-packages/torch/lib/libprotoc.lib
rm ./Lib/site-packages/torch/lib/libprotobuf.lib
fi
cd ..
@ -85,14 +142,18 @@ jobs:
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp -r ComfyUI/.ci/windows_${{ inputs.rel_name }}_base_files/* ./
cp ../update_comfyui_and_python_dependencies.bat ./update/
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=768m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_${{ inputs.rel_name }}${{ inputs.rel_extra_name }}.7z
- shell: bash
if: ${{ inputs.test_release }}
run: |
cd ..
cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
@ -101,10 +162,9 @@ jobs:
ls
- name: Upload binaries to release
uses: svenstaro/upload-release-action@v2
uses: softprops/action-gh-release@v2
with:
repo_token: ${{ secrets.GITHUB_TOKEN }}
file: ComfyUI_windows_portable_nvidia.7z
tag: ${{ inputs.git_tag }}
overwrite: true
files: ComfyUI_windows_portable_${{ inputs.rel_name }}${{ inputs.rel_extra_name }}.7z
tag_name: ${{ inputs.git_tag }}
draft: true
overwrite_files: true

View File

@ -21,14 +21,15 @@ jobs:
fail-fast: false
matrix:
# os: [macos, linux, windows]
os: [macos, linux]
python_version: ["3.9", "3.10", "3.11", "3.12"]
# os: [macos, linux]
os: [linux]
python_version: ["3.10", "3.11", "3.12"]
cuda_version: ["12.1"]
torch_version: ["stable"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
# - os: macos
# runner_label: [self-hosted, macOS]
# flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
@ -73,14 +74,15 @@ jobs:
strategy:
fail-fast: false
matrix:
os: [macos, linux]
# os: [macos, linux]
os: [linux]
python_version: ["3.11"]
cuda_version: ["12.1"]
torch_version: ["nightly"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
# - os: macos
# runner_label: [self-hosted, macOS]
# flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""

30
.github/workflows/test-execution.yml vendored Normal file
View File

@ -0,0 +1,30 @@
name: Execution Tests
on:
push:
branches: [ main, master ]
pull_request:
branches: [ main, master ]
jobs:
test:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
runs-on: ${{ matrix.os }}
continue-on-error: true
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install -r tests-unit/requirements.txt
- name: Run Execution Tests
run: |
python -m pytest tests/execution -v --skip-timing-checks

View File

@ -10,7 +10,7 @@ jobs:
test:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
os: [ubuntu-latest, windows-2022, macos-latest]
runs-on: ${{ matrix.os }}
continue-on-error: true
steps:

View File

@ -17,7 +17,7 @@ on:
description: 'cuda version'
required: true
type: string
default: "129"
default: "130"
python_minor:
description: 'python minor version'
@ -29,7 +29,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "6"
default: "9"
# push:
# branches:
# - master
@ -56,7 +56,8 @@ jobs:
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
pause" > update_comfyui_and_python_dependencies.bat
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements.txt pygit2 -w ./temp_wheel_dir
grep -v comfyui requirements.txt > requirements_nocomfyui.txt
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements_nocomfyui.txt pygit2 -w ./temp_wheel_dir
python -m pip install --no-cache-dir ./temp_wheel_dir/*
echo installed basic
ls -lah temp_wheel_dir

View File

@ -0,0 +1,64 @@
name: "Windows Release dependencies Manual"
on:
workflow_dispatch:
inputs:
torch_dependencies:
description: 'torch dependencies'
required: false
type: string
default: "torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128"
cache_tag:
description: 'Cached dependencies tag'
required: true
type: string
default: "cu128"
python_minor:
description: 'python minor version'
required: true
type: string
default: "12"
python_patch:
description: 'python patch version'
required: true
type: string
default: "10"
jobs:
build_dependencies:
runs-on: windows-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: 3.${{ inputs.python_minor }}.${{ inputs.python_patch }}
- shell: bash
run: |
echo "@echo off
call update_comfyui.bat nopause
echo -
echo This will try to update pytorch and all python dependencies.
echo -
echo If you just want to update normally, close this and run update_comfyui.bat instead.
echo -
pause
..\python_embeded\python.exe -s -m pip install --upgrade ${{ inputs.torch_dependencies }} -r ../ComfyUI/requirements.txt pygit2
pause" > update_comfyui_and_python_dependencies.bat
grep -v comfyui requirements.txt > requirements_nocomfyui.txt
python -m pip wheel --no-cache-dir ${{ inputs.torch_dependencies }} -r requirements_nocomfyui.txt pygit2 -w ./temp_wheel_dir
python -m pip install --no-cache-dir ./temp_wheel_dir/*
echo installed basic
ls -lah temp_wheel_dir
mv temp_wheel_dir ${{ inputs.cache_tag }}_python_deps
tar cf ${{ inputs.cache_tag }}_python_deps.tar ${{ inputs.cache_tag }}_python_deps
- uses: actions/cache/save@v4
with:
path: |
${{ inputs.cache_tag }}_python_deps.tar
update_comfyui_and_python_dependencies.bat
key: ${{ runner.os }}-build-${{ inputs.cache_tag }}-${{ inputs.python_minor }}

View File

@ -68,7 +68,7 @@ jobs:
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp -r ComfyUI/.ci/windows_nvidia_base_files/* ./
cp -r ComfyUI/.ci/windows_nightly_base_files/* ./
echo "call update_comfyui.bat nopause

View File

@ -81,7 +81,7 @@ jobs:
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp -r ComfyUI/.ci/windows_nvidia_base_files/* ./
cp ../update_comfyui_and_python_dependencies.bat ./update/
cd ..

View File

@ -1,25 +1,3 @@
# Admins
* @comfyanonymous
# Note: Github teams syntax cannot be used here as the repo is not owned by Comfy-Org.
# Inlined the team members for now.
# Maintainers
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne @guill
# Python web server
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne @guill
# Node developers
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
/comfy_api_nodes/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne @guill
* @kosinkadink

168
QUANTIZATION.md Normal file
View File

@ -0,0 +1,168 @@
# The Comfy guide to Quantization
## How does quantization work?
Quantization aims to map a high-precision value x_f to a lower precision format with minimal loss in accuracy. These smaller formats then serve to reduce the models memory footprint and increase throughput by using specialized hardware.
When simply converting a value from FP16 to FP8 using the round-nearest method we might hit two issues:
- The dynamic range of FP16 (-65,504, 65,504) far exceeds FP8 formats like E4M3 (-448, 448) or E5M2 (-57,344, 57,344), potentially resulting in clipped values
- The original values are concentrated in a small range (e.g. -1,1) leaving many FP8-bits "unused"
By using a scaling factor, we aim to map these values into the quantized-dtype range, making use of the full spectrum. One of the easiest approaches, and common, is using per-tensor absolute-maximum scaling.
```
absmax = max(abs(tensor))
scale = amax / max_dynamic_range_low_precision
# Quantization
tensor_q = (tensor / scale).to(low_precision_dtype)
# De-Quantization
tensor_dq = tensor_q.to(fp16) * scale
tensor_dq ~ tensor
```
Given that additional information (scaling factor) is needed to "interpret" the quantized values, we describe those as derived datatypes.
## Quantization in Comfy
```
QuantizedTensor (torch.Tensor subclass)
↓ __torch_dispatch__
Two-Level Registry (generic + layout handlers)
MixedPrecisionOps + Metadata Detection
```
### Representation
To represent these derived datatypes, ComfyUI uses a subclass of torch.Tensor to implements these using the `QuantizedTensor` class found in `comfy/quant_ops.py`
A `Layout` class defines how a specific quantization format behaves:
- Required parameters
- Quantize method
- De-Quantize method
```python
from comfy.quant_ops import QuantizedLayout
class MyLayout(QuantizedLayout):
@classmethod
def quantize(cls, tensor, **kwargs):
# Convert to quantized format
qdata = ...
params = {'scale': ..., 'orig_dtype': tensor.dtype}
return qdata, params
@staticmethod
def dequantize(qdata, scale, orig_dtype, **kwargs):
return qdata.to(orig_dtype) * scale
```
To then run operations using these QuantizedTensors we use two registry systems to define supported operations.
The first is a **generic registry** that handles operations common to all quantized formats (e.g., `.to()`, `.clone()`, `.reshape()`).
The second registry is layout-specific and allows to implement fast-paths like nn.Linear.
```python
from comfy.quant_ops import register_layout_op
@register_layout_op(torch.ops.aten.linear.default, MyLayout)
def my_linear(func, args, kwargs):
# Extract tensors, call optimized kernel
...
```
When `torch.nn.functional.linear()` is called with QuantizedTensor arguments, `__torch_dispatch__` automatically routes to the registered implementation.
For any unsupported operation, QuantizedTensor will fallback to call `dequantize` and dispatch using the high-precision implementation.
### Mixed Precision
The `MixedPrecisionOps` class (lines 542-648 in `comfy/ops.py`) enables per-layer quantization decisions, allowing different layers in a model to use different precisions. This is activated when a model config contains a `layer_quant_config` dictionary that specifies which layers should be quantized and how.
**Architecture:**
```python
class MixedPrecisionOps(disable_weight_init):
_layer_quant_config = {} # Maps layer names to quantization configs
_compute_dtype = torch.bfloat16 # Default compute / dequantize precision
```
**Key mechanism:**
The custom `Linear._load_from_state_dict()` method inspects each layer during model loading:
- If the layer name is **not** in `_layer_quant_config`: load weight as regular tensor in `_compute_dtype`
- If the layer name **is** in `_layer_quant_config`:
- Load weight as `QuantizedTensor` with the specified layout (e.g., `TensorCoreFP8Layout`)
- Load associated quantization parameters (scales, block_size, etc.)
**Why it's needed:**
Not all layers tolerate quantization equally. Sensitive operations like final projections can be kept in higher precision, while compute-heavy matmuls are quantized. This provides most of the performance benefits while maintaining quality.
The system is selected in `pick_operations()` when `model_config.layer_quant_config` is present, making it the highest-priority operation mode.
## Checkpoint Format
Quantized checkpoints are stored as standard safetensors files with quantized weight tensors and associated scaling parameters, plus a `_quantization_metadata` JSON entry describing the quantization scheme.
The quantized checkpoint will contain the same layers as the original checkpoint but:
- The weights are stored as quantized values, sometimes using a different storage datatype. E.g. uint8 container for fp8.
- For each quantized weight a number of additional scaling parameters are stored alongside depending on the recipe.
- We store a metadata.json in the metadata of the final safetensor containing the `_quantization_metadata` describing which layers are quantized and what layout has been used.
### Scaling Parameters details
We define 4 possible scaling parameters that should cover most recipes in the near-future:
- **weight_scale**: quantization scalers for the weights
- **weight_scale_2**: global scalers in the context of double scaling
- **pre_quant_scale**: scalers used for smoothing salient weights
- **input_scale**: quantization scalers for the activations
| Format | Storage dtype | weight_scale | weight_scale_2 | pre_quant_scale | input_scale |
|--------|---------------|--------------|----------------|-----------------|-------------|
| float8_e4m3fn | float32 | float32 (scalar) | - | - | float32 (scalar) |
You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
### Quantization Metadata
The metadata stored alongside the checkpoint contains:
- **format_version**: String to define a version of the standard
- **layers**: A dictionary mapping layer names to their quantization format. The format string maps to the definitions found in `QUANT_ALGOS`.
Example:
```json
{
"_quantization_metadata": {
"format_version": "1.0",
"layers": {
"model.layers.0.mlp.up_proj": "float8_e4m3fn",
"model.layers.0.mlp.down_proj": "float8_e4m3fn",
"model.layers.1.mlp.up_proj": "float8_e4m3fn"
}
}
}
```
## Creating Quantized Checkpoints
To create compatible checkpoints, use any quantization tool provided the output follows the checkpoint format described above and uses a layout defined in `QUANT_ALGOS`.
### Weight Quantization
Weight quantization is straightforward - compute the scaling factor directly from the weight tensor using the absolute maximum method described earlier. Each layer's weights are quantized independently and stored with their corresponding `weight_scale` parameter.
### Calibration (for Activation Quantization)
Activation quantization (e.g., for FP8 Tensor Core operations) requires `input_scale` parameters that cannot be determined from static weights alone. Since activation values depend on actual inputs, we use **post-training calibration (PTQ)**:
1. **Collect statistics**: Run inference on N representative samples
2. **Track activations**: Record the absolute maximum (`amax`) of inputs to each quantized layer
3. **Compute scales**: Derive `input_scale` from collected statistics
4. **Store in checkpoint**: Save `input_scale` parameters alongside weights
The calibration dataset should be representative of your target use case. For diffusion models, this typically means a diverse set of prompts and generation parameters.

View File

@ -66,6 +66,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
- [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/)
- Image Editing Models
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
@ -111,10 +112,11 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
## Release Process
ComfyUI follows a weekly release cycle targeting Friday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
ComfyUI follows a weekly release cycle targeting Monday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
- Releases a new stable version (e.g., v0.7.0)
- Releases a new stable version (e.g., v0.7.0) roughly every week.
- Commits outside of the stable release tags may be very unstable and break many custom nodes.
- Serves as the foundation for the desktop release
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
@ -171,10 +173,20 @@ There is a portable standalone build for Windows that should work for running on
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
Simply download, extract with [7-Zip](https://7-zip.org) or with the windows explorer on recent windows versions and run. For smaller models you normally only need to put the checkpoints (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints but many of the larger models have multiple files. Make sure to follow the instructions to know which subfolder to put them in ComfyUI\models\
If you have trouble extracting it, right click the file -> properties -> unblock
Update your Nvidia drivers if it doesn't start.
#### Alternative Downloads:
[Experimental portable for AMD GPUs](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_amd.7z)
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z).
[Portable with pytorch cuda 12.6 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu126.7z) (Supports Nvidia 10 series and older GPUs).
#### How do I share models between another UI and ComfyUI?
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
@ -190,7 +202,11 @@ comfy install
## Manual Install (Windows, Linux)
Python 3.13 is very well supported. If you have trouble with some custom node dependencies you can try 3.12
Python 3.14 works but you may encounter issues with the torch compile node. The free threaded variant is still missing some dependencies.
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
### Instructions:
Git clone this repo.
@ -199,18 +215,36 @@ Put your SD checkpoints (the huge ckpt/safetensors files) in: models/checkpoints
Put your VAE in: models/vae
### AMD GPUs (Linux only)
### AMD GPUs (Linux)
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.4```
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
This is the command to install the nightly with ROCm 7.0 which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.4```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.1```
### AMD GPUs (Experimental: Windows and Linux), RDNA 3, 3.5 and 4 only.
These have less hardware support than the builds above but they work on windows. You also need to install the pytorch version specific to your hardware.
RDNA 3 (RX 7000 series):
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx110X-dgpu/```
RDNA 3.5 (Strix halo/Ryzen AI Max+ 365):
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx1151/```
RDNA 4 (RX 9000 series):
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx120X-all/```
### Intel GPUs (Windows and Linux)
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch xpu, use the following command:
@ -220,19 +254,15 @@ This is the command to install the Pytorch xpu nightly which might have some per
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
### NVIDIA
Nvidia users should install stable pytorch using this command:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu129```
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu130```
This is the command to install pytorch nightly instead which might have performance improvements.
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu129```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu130```
#### Troubleshooting
@ -263,12 +293,6 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
> **Note**: Remember to add your models, VAE, LoRAs etc. to the corresponding Comfy folders, as discussed in [ComfyUI manual installation](#manual-install-windows-linux).
#### DirectML (AMD Cards on Windows)
This is very badly supported and is not recommended. There are some unofficial builds of pytorch ROCm on windows that exist that will give you a much better experience than this. This readme will be updated once official pytorch ROCm builds for windows come out.
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
#### Ascend NPUs
For models compatible with Ascend Extension for PyTorch (torch_npu). To get started, ensure your environment meets the prerequisites outlined on the [installation](https://ascend.github.io/docs/sources/ascend/quick_install.html) page. Here's a step-by-step guide tailored to your platform and installation method:

View File

@ -10,7 +10,8 @@ import importlib
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from typing import TypedDict, Optional
from typing import Dict, TypedDict, Optional
from aiohttp import web
from importlib.metadata import version
import requests
@ -42,6 +43,7 @@ def get_installed_frontend_version():
frontend_version_str = version("comfyui-frontend-package")
return frontend_version_str
def get_required_frontend_version():
"""Get the required frontend version from requirements.txt."""
try:
@ -63,6 +65,7 @@ def get_required_frontend_version():
logging.error(f"Error reading requirements.txt: {e}")
return None
def check_frontend_version():
"""Check if the frontend version is up to date."""
@ -203,6 +206,37 @@ class FrontendManager:
"""Get the required frontend package version."""
return get_required_frontend_version()
@classmethod
def get_installed_templates_version(cls) -> str:
"""Get the currently installed workflow templates package version."""
try:
templates_version_str = version("comfyui-workflow-templates")
return templates_version_str
except Exception:
return None
@classmethod
def get_required_templates_version(cls) -> str:
"""Get the required workflow templates version from requirements.txt."""
try:
with open(requirements_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line.startswith("comfyui-workflow-templates=="):
version_str = line.split("==")[-1]
if not is_valid_version(version_str):
logging.error(f"Invalid templates version format in requirements.txt: {version_str}")
return None
return version_str
logging.error("comfyui-workflow-templates not found in requirements.txt")
return None
except FileNotFoundError:
logging.error("requirements.txt not found. Cannot determine required templates version.")
return None
except Exception as e:
logging.error(f"Error reading requirements.txt: {e}")
return None
@classmethod
def default_frontend_path(cls) -> str:
try:
@ -224,7 +258,54 @@ comfyui-frontend-package is not installed.
sys.exit(-1)
@classmethod
def templates_path(cls) -> str:
def template_asset_map(cls) -> Optional[Dict[str, str]]:
"""Return a mapping of template asset names to their absolute paths."""
try:
from comfyui_workflow_templates import (
get_asset_path,
iter_templates,
)
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-workflow-templates is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
return None
try:
template_entries = list(iter_templates())
except Exception as exc:
logging.error(f"Failed to enumerate workflow templates: {exc}")
return None
asset_map: Dict[str, str] = {}
try:
for entry in template_entries:
for asset in entry.assets:
asset_map[asset.filename] = get_asset_path(
entry.template_id, asset.filename
)
except Exception as exc:
logging.error(f"Failed to resolve template asset paths: {exc}")
return None
if not asset_map:
logging.error("No workflow template assets found. Did the packages install correctly?")
return None
return asset_map
@classmethod
def legacy_templates_path(cls) -> Optional[str]:
"""Return the legacy templates directory shipped inside the meta package."""
try:
import comfyui_workflow_templates
@ -243,6 +324,7 @@ comfyui-workflow-templates is not installed.
********** ERROR ***********
""".strip()
)
return None
@classmethod
def embedded_docs_path(cls) -> str:
@ -359,3 +441,17 @@ comfyui-workflow-templates is not installed.
logging.info("Falling back to the default frontend.")
check_frontend_version()
return cls.default_frontend_path()
@classmethod
def template_asset_handler(cls):
assets = cls.template_asset_map()
if not assets:
return None
async def serve_template(request: web.Request) -> web.StreamResponse:
rel_path = request.match_info.get("path", "")
target = assets.get(rel_path)
if target is None:
raise web.HTTPNotFound()
return web.FileResponse(target)
return serve_template

112
app/subgraph_manager.py Normal file
View File

@ -0,0 +1,112 @@
from __future__ import annotations
from typing import TypedDict
import os
import folder_paths
import glob
from aiohttp import web
import hashlib
class Source:
custom_node = "custom_node"
class SubgraphEntry(TypedDict):
source: str
"""
Source of subgraph - custom_nodes vs templates.
"""
path: str
"""
Relative path of the subgraph file.
For custom nodes, will be the relative directory like <custom_node_dir>/subgraphs/<name>.json
"""
name: str
"""
Name of subgraph file.
"""
info: CustomNodeSubgraphEntryInfo
"""
Additional info about subgraph; in the case of custom_nodes, will contain nodepack name
"""
data: str
class CustomNodeSubgraphEntryInfo(TypedDict):
node_pack: str
"""Node pack name."""
class SubgraphManager:
def __init__(self):
self.cached_custom_node_subgraphs: dict[SubgraphEntry] | None = None
async def load_entry_data(self, entry: SubgraphEntry):
with open(entry['path'], 'r') as f:
entry['data'] = f.read()
return entry
async def sanitize_entry(self, entry: SubgraphEntry | None, remove_data=False) -> SubgraphEntry | None:
if entry is None:
return None
entry = entry.copy()
entry.pop('path', None)
if remove_data:
entry.pop('data', None)
return entry
async def sanitize_entries(self, entries: dict[str, SubgraphEntry], remove_data=False) -> dict[str, SubgraphEntry]:
entries = entries.copy()
for key in list(entries.keys()):
entries[key] = await self.sanitize_entry(entries[key], remove_data)
return entries
async def get_custom_node_subgraphs(self, loadedModules, force_reload=False):
# if not forced to reload and cached, return cache
if not force_reload and self.cached_custom_node_subgraphs is not None:
return self.cached_custom_node_subgraphs
# Load subgraphs from custom nodes
subfolder = "subgraphs"
subgraphs_dict: dict[SubgraphEntry] = {}
for folder in folder_paths.get_folder_paths("custom_nodes"):
pattern = os.path.join(folder, f"*/{subfolder}/*.json")
matched_files = glob.glob(pattern)
for file in matched_files:
# replace backslashes with forward slashes
file = file.replace('\\', '/')
info: CustomNodeSubgraphEntryInfo = {
"node_pack": "custom_nodes." + file.split('/')[-3]
}
source = Source.custom_node
# hash source + path to make sure id will be as unique as possible, but
# reproducible across backend reloads
id = hashlib.sha256(f"{source}{file}".encode()).hexdigest()
entry: SubgraphEntry = {
"source": Source.custom_node,
"name": os.path.splitext(os.path.basename(file))[0],
"path": file,
"info": info,
}
subgraphs_dict[id] = entry
self.cached_custom_node_subgraphs = subgraphs_dict
return subgraphs_dict
async def get_custom_node_subgraph(self, id: str, loadedModules):
subgraphs = await self.get_custom_node_subgraphs(loadedModules)
entry: SubgraphEntry = subgraphs.get(id, None)
if entry is not None and entry.get('data', None) is None:
await self.load_entry_data(entry)
return entry
def add_routes(self, routes, loadedModules):
@routes.get("/global_subgraphs")
async def get_global_subgraphs(request):
subgraphs_dict = await self.get_custom_node_subgraphs(loadedModules)
# NOTE: we may want to include other sources of global subgraphs such as templates in the future;
# that's the reasoning for the current implementation
return web.json_response(await self.sanitize_entries(subgraphs_dict, remove_data=True))
@routes.get("/global_subgraphs/{id}")
async def get_global_subgraph(request):
id = request.match_info.get("id", None)
subgraph = await self.get_custom_node_subgraph(id, loadedModules)
return web.json_response(await self.sanitize_entry(subgraph))

View File

@ -0,0 +1,91 @@
from .wav2vec2 import Wav2Vec2Model
from .whisper import WhisperLargeV3
import comfy.model_management
import comfy.ops
import comfy.utils
import logging
import torchaudio
class AudioEncoderModel():
def __init__(self, config):
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
model_type = config.pop("model_type")
model_config = dict(config)
model_config.update({
"dtype": self.dtype,
"device": offload_device,
"operations": comfy.ops.manual_cast
})
if model_type == "wav2vec2":
self.model = Wav2Vec2Model(**model_config)
elif model_type == "whisper3":
self.model = WhisperLargeV3(**model_config)
self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.model_sample_rate = 16000
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=False)
def get_sd(self):
return self.model.state_dict()
def encode_audio(self, audio, sample_rate):
comfy.model_management.load_model_gpu(self.patcher)
audio = torchaudio.functional.resample(audio, sample_rate, self.model_sample_rate)
out, all_layers = self.model(audio.to(self.load_device))
outputs = {}
outputs["encoded_audio"] = out
outputs["encoded_audio_all_layers"] = all_layers
outputs["audio_samples"] = audio.shape[2]
return outputs
def load_audio_encoder_from_sd(sd, prefix=""):
sd = comfy.utils.state_dict_prefix_replace(sd, {"wav2vec2.": ""})
if "encoder.layer_norm.bias" in sd: #wav2vec2
embed_dim = sd["encoder.layer_norm.bias"].shape[0]
if embed_dim == 1024:# large
config = {
"model_type": "wav2vec2",
"embed_dim": 1024,
"num_heads": 16,
"num_layers": 24,
"conv_norm": True,
"conv_bias": True,
"do_normalize": True,
"do_stable_layer_norm": True
}
elif embed_dim == 768: # base
config = {
"model_type": "wav2vec2",
"embed_dim": 768,
"num_heads": 12,
"num_layers": 12,
"conv_norm": False,
"conv_bias": False,
"do_normalize": False, # chinese-wav2vec2-base has this False
"do_stable_layer_norm": False
}
else:
raise RuntimeError("ERROR: audio encoder file is invalid or unsupported embed_dim: {}".format(embed_dim))
elif "model.encoder.embed_positions.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"model.": ""})
config = {
"model_type": "whisper3",
}
else:
raise RuntimeError("ERROR: audio encoder not supported.")
audio_encoder = AudioEncoderModel(config)
m, u = audio_encoder.load_sd(sd)
if len(m) > 0:
logging.warning("missing audio encoder: {}".format(m))
if len(u) > 0:
logging.warning("unexpected audio encoder: {}".format(u))
return audio_encoder

View File

@ -0,0 +1,252 @@
import torch
import torch.nn as nn
from comfy.ldm.modules.attention import optimized_attention_masked
class LayerNormConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
super().__init__()
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
self.layer_norm = operations.LayerNorm(out_channels, elementwise_affine=True, device=device, dtype=dtype)
def forward(self, x):
x = self.conv(x)
return torch.nn.functional.gelu(self.layer_norm(x.transpose(-2, -1)).transpose(-2, -1))
class LayerGroupNormConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
super().__init__()
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
self.layer_norm = operations.GroupNorm(num_groups=out_channels, num_channels=out_channels, affine=True, device=device, dtype=dtype)
def forward(self, x):
x = self.conv(x)
return torch.nn.functional.gelu(self.layer_norm(x))
class ConvNoNorm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, bias=False, dtype=None, device=None, operations=None):
super().__init__()
self.conv = operations.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, bias=bias, device=device, dtype=dtype)
def forward(self, x):
x = self.conv(x)
return torch.nn.functional.gelu(x)
class ConvFeatureEncoder(nn.Module):
def __init__(self, conv_dim, conv_bias=False, conv_norm=True, dtype=None, device=None, operations=None):
super().__init__()
if conv_norm:
self.conv_layers = nn.ModuleList([
LayerNormConv(1, conv_dim, kernel_size=10, stride=5, bias=True, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
LayerNormConv(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
])
else:
self.conv_layers = nn.ModuleList([
LayerGroupNormConv(1, conv_dim, kernel_size=10, stride=5, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=3, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
ConvNoNorm(conv_dim, conv_dim, kernel_size=2, stride=2, bias=conv_bias, device=device, dtype=dtype, operations=operations),
])
def forward(self, x):
x = x.unsqueeze(1)
for conv in self.conv_layers:
x = conv(x)
return x.transpose(1, 2)
class FeatureProjection(nn.Module):
def __init__(self, conv_dim, embed_dim, dtype=None, device=None, operations=None):
super().__init__()
self.layer_norm = operations.LayerNorm(conv_dim, eps=1e-05, device=device, dtype=dtype)
self.projection = operations.Linear(conv_dim, embed_dim, device=device, dtype=dtype)
def forward(self, x):
x = self.layer_norm(x)
x = self.projection(x)
return x
class PositionalConvEmbedding(nn.Module):
def __init__(self, embed_dim=768, kernel_size=128, groups=16):
super().__init__()
self.conv = nn.Conv1d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=kernel_size // 2,
groups=groups,
)
self.conv = torch.nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2)
self.activation = nn.GELU()
def forward(self, x):
x = x.transpose(1, 2)
x = self.conv(x)[:, :, :-1]
x = self.activation(x)
x = x.transpose(1, 2)
return x
class TransformerEncoder(nn.Module):
def __init__(
self,
embed_dim=768,
num_heads=12,
num_layers=12,
mlp_ratio=4.0,
do_stable_layer_norm=True,
dtype=None, device=None, operations=None
):
super().__init__()
self.pos_conv_embed = PositionalConvEmbedding(embed_dim=embed_dim)
self.layers = nn.ModuleList([
TransformerEncoderLayer(
embed_dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
do_stable_layer_norm=do_stable_layer_norm,
device=device, dtype=dtype, operations=operations
)
for _ in range(num_layers)
])
self.layer_norm = operations.LayerNorm(embed_dim, eps=1e-05, device=device, dtype=dtype)
self.do_stable_layer_norm = do_stable_layer_norm
def forward(self, x, mask=None):
x = x + self.pos_conv_embed(x)
all_x = ()
if not self.do_stable_layer_norm:
x = self.layer_norm(x)
for layer in self.layers:
all_x += (x,)
x = layer(x, mask)
if self.do_stable_layer_norm:
x = self.layer_norm(x)
all_x += (x,)
return x, all_x
class Attention(nn.Module):
def __init__(self, embed_dim, num_heads, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
def forward(self, x, mask=None):
assert (mask is None) # TODO?
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
out = optimized_attention_masked(q, k, v, self.num_heads)
return self.out_proj(out)
class FeedForward(nn.Module):
def __init__(self, embed_dim, mlp_ratio, dtype=None, device=None, operations=None):
super().__init__()
self.intermediate_dense = operations.Linear(embed_dim, int(embed_dim * mlp_ratio), device=device, dtype=dtype)
self.output_dense = operations.Linear(int(embed_dim * mlp_ratio), embed_dim, device=device, dtype=dtype)
def forward(self, x):
x = self.intermediate_dense(x)
x = torch.nn.functional.gelu(x)
x = self.output_dense(x)
return x
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
embed_dim=768,
num_heads=12,
mlp_ratio=4.0,
do_stable_layer_norm=True,
dtype=None, device=None, operations=None
):
super().__init__()
self.attention = Attention(embed_dim, num_heads, device=device, dtype=dtype, operations=operations)
self.layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
self.feed_forward = FeedForward(embed_dim, mlp_ratio, device=device, dtype=dtype, operations=operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, device=device, dtype=dtype)
self.do_stable_layer_norm = do_stable_layer_norm
def forward(self, x, mask=None):
residual = x
if self.do_stable_layer_norm:
x = self.layer_norm(x)
x = self.attention(x, mask=mask)
x = residual + x
if not self.do_stable_layer_norm:
x = self.layer_norm(x)
return self.final_layer_norm(x + self.feed_forward(x))
else:
return x + self.feed_forward(self.final_layer_norm(x))
class Wav2Vec2Model(nn.Module):
"""Complete Wav2Vec 2.0 model."""
def __init__(
self,
embed_dim=1024,
final_dim=256,
num_heads=16,
num_layers=24,
conv_norm=True,
conv_bias=True,
do_normalize=True,
do_stable_layer_norm=True,
dtype=None, device=None, operations=None
):
super().__init__()
conv_dim = 512
self.feature_extractor = ConvFeatureEncoder(conv_dim, conv_norm=conv_norm, conv_bias=conv_bias, device=device, dtype=dtype, operations=operations)
self.feature_projection = FeatureProjection(conv_dim, embed_dim, device=device, dtype=dtype, operations=operations)
self.masked_spec_embed = nn.Parameter(torch.empty(embed_dim, device=device, dtype=dtype))
self.do_normalize = do_normalize
self.encoder = TransformerEncoder(
embed_dim=embed_dim,
num_heads=num_heads,
num_layers=num_layers,
do_stable_layer_norm=do_stable_layer_norm,
device=device, dtype=dtype, operations=operations
)
def forward(self, x, mask_time_indices=None, return_dict=False):
x = torch.mean(x, dim=1)
if self.do_normalize:
x = (x - x.mean()) / torch.sqrt(x.var() + 1e-7)
features = self.feature_extractor(x)
features = self.feature_projection(features)
batch_size, seq_len, _ = features.shape
x, all_x = self.encoder(features)
return x, all_x

186
comfy/audio_encoders/whisper.py Executable file
View File

@ -0,0 +1,186 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from typing import Optional
from comfy.ldm.modules.attention import optimized_attention_masked
import comfy.ops
class WhisperFeatureExtractor(nn.Module):
def __init__(self, n_mels=128, device=None):
super().__init__()
self.sample_rate = 16000
self.n_fft = 400
self.hop_length = 160
self.n_mels = n_mels
self.chunk_length = 30
self.n_samples = 480000
self.mel_spectrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=self.sample_rate,
n_fft=self.n_fft,
hop_length=self.hop_length,
n_mels=self.n_mels,
f_min=0,
f_max=8000,
norm="slaney",
mel_scale="slaney",
).to(device)
def __call__(self, audio):
audio = torch.mean(audio, dim=1)
batch_size = audio.shape[0]
processed_audio = []
for i in range(batch_size):
aud = audio[i]
if aud.shape[0] > self.n_samples:
aud = aud[:self.n_samples]
elif aud.shape[0] < self.n_samples:
aud = F.pad(aud, (0, self.n_samples - aud.shape[0]))
processed_audio.append(aud)
audio = torch.stack(processed_audio)
mel_spec = self.mel_spectrogram(audio.to(self.mel_spectrogram.spectrogram.window.device))[:, :, :-1].to(audio.device)
log_mel_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_mel_spec = torch.maximum(log_mel_spec, log_mel_spec.max() - 8.0)
log_mel_spec = (log_mel_spec + 4.0) / 4.0
return log_mel_spec
class MultiHeadAttention(nn.Module):
def __init__(self, d_model: int, n_heads: int, dtype=None, device=None, operations=None):
super().__init__()
assert d_model % n_heads == 0
self.d_model = d_model
self.n_heads = n_heads
self.d_k = d_model // n_heads
self.q_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
self.k_proj = operations.Linear(d_model, d_model, bias=False, dtype=dtype, device=device)
self.v_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
self.out_proj = operations.Linear(d_model, d_model, dtype=dtype, device=device)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, seq_len, _ = query.shape
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
attn_output = optimized_attention_masked(q, k, v, self.n_heads, mask)
attn_output = self.out_proj(attn_output)
return attn_output
class EncoderLayer(nn.Module):
def __init__(self, d_model: int, n_heads: int, d_ff: int, dtype=None, device=None, operations=None):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, n_heads, dtype=dtype, device=device, operations=operations)
self.self_attn_layer_norm = operations.LayerNorm(d_model, dtype=dtype, device=device)
self.fc1 = operations.Linear(d_model, d_ff, dtype=dtype, device=device)
self.fc2 = operations.Linear(d_ff, d_model, dtype=dtype, device=device)
self.final_layer_norm = operations.LayerNorm(d_model, dtype=dtype, device=device)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
residual = x
x = self.self_attn_layer_norm(x)
x = self.self_attn(x, x, x, attention_mask)
x = residual + x
residual = x
x = self.final_layer_norm(x)
x = self.fc1(x)
x = F.gelu(x)
x = self.fc2(x)
x = residual + x
return x
class AudioEncoder(nn.Module):
def __init__(
self,
n_mels: int = 128,
n_ctx: int = 1500,
n_state: int = 1280,
n_head: int = 20,
n_layer: int = 32,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.conv1 = operations.Conv1d(n_mels, n_state, kernel_size=3, padding=1, dtype=dtype, device=device)
self.conv2 = operations.Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1, dtype=dtype, device=device)
self.embed_positions = operations.Embedding(n_ctx, n_state, dtype=dtype, device=device)
self.layers = nn.ModuleList([
EncoderLayer(n_state, n_head, n_state * 4, dtype=dtype, device=device, operations=operations)
for _ in range(n_layer)
])
self.layer_norm = operations.LayerNorm(n_state, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
x = x.transpose(1, 2)
x = x + comfy.ops.cast_to_input(self.embed_positions.weight[:, :x.shape[1]], x)
all_x = ()
for layer in self.layers:
all_x += (x,)
x = layer(x)
x = self.layer_norm(x)
all_x += (x,)
return x, all_x
class WhisperLargeV3(nn.Module):
def __init__(
self,
n_mels: int = 128,
n_audio_ctx: int = 1500,
n_audio_state: int = 1280,
n_audio_head: int = 20,
n_audio_layer: int = 32,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.feature_extractor = WhisperFeatureExtractor(n_mels=n_mels, device=device)
self.encoder = AudioEncoder(
n_mels, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer,
dtype=dtype, device=device, operations=operations
)
def forward(self, audio):
mel = self.feature_extractor(audio)
x, all_x = self.encoder(mel)
return x, all_x

View File

@ -105,6 +105,7 @@ cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
cache_group.add_argument("--cache-ram", nargs='?', const=4.0, type=float, default=0, help="Use RAM pressure caching with the specified headroom threshold. If available RAM drops below the threhold the cache remove large items to free RAM. Default 4GB")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
@ -143,8 +144,11 @@ class PerformanceFeature(enum.Enum):
Fp16Accumulation = "fp16_accumulation"
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
AutoTune = "autotune"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. This is used to test new features so using it might crash your comfyui. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
parser.add_argument("--disable-pinned-memory", action="store_true", help="Disable pinned memory use.")
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
@ -156,7 +160,7 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes. Also prevents the frontend from communicating with the internet.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")

View File

@ -61,8 +61,12 @@ class CLIPEncoder(torch.nn.Module):
def forward(self, x, mask=None, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
all_intermediate = None
if intermediate_output is not None:
if intermediate_output < 0:
if intermediate_output == "all":
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
@ -70,6 +74,12 @@ class CLIPEncoder(torch.nn.Module):
x = l(x, mask, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
return x, intermediate
class CLIPEmbeddings(torch.nn.Module):

View File

@ -50,7 +50,13 @@ class ClipVisionModel():
self.image_size = config.get("image_size", 224)
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
model_type = config.get("model_type", "clip_vision_model")
model_class = IMAGE_ENCODERS.get(model_type)
if model_type == "siglip_vision_model":
self.return_all_hidden_states = True
else:
self.return_all_hidden_states = False
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
@ -68,12 +74,18 @@ class ClipVisionModel():
def encode_image(self, image, crop=True):
comfy.model_management.load_model_gpu(self.patcher)
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
outputs = Output()
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
if self.return_all_hidden_states:
all_hs = out[1].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = all_hs[:, -2]
outputs["all_hidden_states"] = all_hs
else:
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
outputs["mm_projected"] = out[3]
return outputs
@ -124,8 +136,12 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
elif "embeddings.patch_embeddings.projection.weight" in sd:
# Dinov2
elif 'encoder.layer.39.layer_scale2.lambda1' in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
elif 'encoder.layer.23.layer_scale2.lambda1' in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_large.json")
else:
return None

View File

@ -253,7 +253,10 @@ class ControlNet(ControlBase):
to_concat = []
for c in self.extra_concat_orig:
c = c.to(self.cond_hint.device)
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
c = comfy.utils.common_upscale(c, self.cond_hint.shape[-1], self.cond_hint.shape[-2], self.upscale_algorithm, "center")
if c.ndim < self.cond_hint.ndim:
c = c.unsqueeze(2)
c = comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[2], dim=2)
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
@ -307,11 +310,13 @@ class ControlLoraOps:
self.bias = None
def forward(self, input):
weight, bias = comfy.ops.cast_bias_weight(self, input)
weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True)
if self.up is not None:
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
x = torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
else:
return torch.nn.functional.linear(input, weight, bias)
x = torch.nn.functional.linear(input, weight, bias)
comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream)
return x
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
def __init__(
@ -347,12 +352,13 @@ class ControlLoraOps:
def forward(self, input):
weight, bias = comfy.ops.cast_bias_weight(self, input)
weight, bias, offload_stream = comfy.ops.cast_bias_weight(self, input, offloadable=True)
if self.up is not None:
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
x = torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
else:
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
x = torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
comfy.ops.uncast_bias_weight(self, weight, bias, offload_stream)
return x
class ControlLora(ControlNet):
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
@ -585,11 +591,18 @@ def load_controlnet_flux_instantx(sd, model_options={}):
def load_controlnet_qwen_instantx(sd, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
control_model = comfy.ldm.qwen_image.controlnet.QwenImageControlNetModel(operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_latent_channels = sd.get("controlnet_x_embedder.weight").shape[1]
extra_condition_channels = 0
concat_mask = False
if control_latent_channels == 68: #inpaint controlnet
extra_condition_channels = control_latent_channels - 64
concat_mask = True
control_model = comfy.ldm.qwen_image.controlnet.QwenImageControlNetModel(extra_condition_channels=extra_condition_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, sd)
latent_format = comfy.latent_formats.Wan21()
extra_conds = []
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def convert_mistoline(sd):

View File

@ -31,6 +31,20 @@ class LayerScale(torch.nn.Module):
def forward(self, x):
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
class Dinov2MLP(torch.nn.Module):
def __init__(self, hidden_size: int, dtype, device, operations):
super().__init__()
mlp_ratio = 4
hidden_features = int(hidden_size * mlp_ratio)
self.fc1 = operations.Linear(hidden_size, hidden_features, bias = True, device=device, dtype=dtype)
self.fc2 = operations.Linear(hidden_features, hidden_size, bias = True, device=device, dtype=dtype)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.fc1(hidden_state)
hidden_state = torch.nn.functional.gelu(hidden_state)
hidden_state = self.fc2(hidden_state)
return hidden_state
class SwiGLUFFN(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
@ -50,12 +64,15 @@ class SwiGLUFFN(torch.nn.Module):
class Dino2Block(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn):
super().__init__()
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
if use_swiglu_ffn:
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
else:
self.mlp = Dinov2MLP(dim, dtype, device, operations)
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
@ -66,9 +83,10 @@ class Dino2Block(torch.nn.Module):
class Dino2Encoder(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn):
super().__init__()
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
for _ in range(num_layers)])
def forward(self, x, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
@ -78,8 +96,8 @@ class Dino2Encoder(torch.nn.Module):
intermediate_output = len(self.layer) + intermediate_output
intermediate = None
for i, l in enumerate(self.layer):
x = l(x, optimized_attention)
for i, layer in enumerate(self.layer):
x = layer(x, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
@ -128,9 +146,10 @@ class Dinov2Model(torch.nn.Module):
dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
layer_norm_eps = config_dict["layer_norm_eps"]
use_swiglu_ffn = config_dict["use_swiglu_ffn"]
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations, use_swiglu_ffn = use_swiglu_ffn)
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):

View File

@ -0,0 +1,22 @@
{
"hidden_size": 1024,
"use_mask_token": true,
"patch_size": 14,
"image_size": 518,
"num_channels": 3,
"num_attention_heads": 16,
"initializer_range": 0.02,
"attention_probs_dropout_prob": 0.0,
"hidden_dropout_prob": 0.0,
"hidden_act": "gelu",
"mlp_ratio": 4,
"model_type": "dinov2",
"num_hidden_layers": 24,
"layer_norm_eps": 1e-6,
"qkv_bias": true,
"use_swiglu_ffn": false,
"layerscale_value": 1.0,
"drop_path_rate": 0.0,
"image_mean": [0.485, 0.456, 0.406],
"image_std": [0.229, 0.224, 0.225]
}

View File

@ -86,24 +86,24 @@ class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(self, x, t0, t1, seed=None, **kwargs):
self.cpu_tree = True
if "cpu" in kwargs:
self.cpu_tree = kwargs.pop("cpu")
self.cpu_tree = kwargs.pop("cpu", True)
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
w0 = kwargs.pop('w0', None)
if w0 is None:
w0 = torch.zeros_like(x)
self.batched = False
if seed is None:
seed = torch.randint(0, 2 ** 63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
seed = (torch.randint(0, 2 ** 63 - 1, ()).item(),)
elif isinstance(seed, (tuple, list)):
if len(seed) != x.shape[0]:
raise ValueError("Passing a list or tuple of seeds to BatchedBrownianTree requires a length matching the batch size.")
self.batched = True
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
if self.cpu_tree:
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
else:
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
seed = (seed,)
if self.cpu_tree:
t0, w0, t1 = t0.detach().cpu(), w0.detach().cpu(), t1.detach().cpu()
self.trees = tuple(torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed)
@staticmethod
def sort(a, b):
@ -111,11 +111,10 @@ class BatchedBrownianTree:
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
device, dtype = t0.device, t0.dtype
if self.cpu_tree:
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
else:
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
t0, t1 = t0.detach().cpu().float(), t1.detach().cpu().float()
w = torch.stack([tree(t0, t1) for tree in self.trees]).to(device=device, dtype=dtype) * (self.sign * sign)
return w if self.batched else w[0]
@ -171,6 +170,16 @@ def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
return sigmas
def ei_h_phi_1(h: torch.Tensor) -> torch.Tensor:
"""Compute the result of h*phi_1(h) in exponential integrator methods."""
return torch.expm1(h)
def ei_h_phi_2(h: torch.Tensor) -> torch.Tensor:
"""Compute the result of h*phi_2(h) in exponential integrator methods."""
return (torch.expm1(h) - h) / h
@torch.no_grad()
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
@ -853,6 +862,11 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
return x
@torch.no_grad()
def sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""DPM-Solver++(3M) SDE."""
@ -925,6 +939,16 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
@torch.no_grad()
def sample_dpmpp_2m_sde_heun_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='heun'):
if len(sigmas) <= 1:
return x
extra_args = {} if extra_args is None else extra_args
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde_heun(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
if len(sigmas) <= 1:
@ -1535,13 +1559,12 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
@ -1549,55 +1572,53 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
fac = 1 / (2 * r)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r * h
fac = 1 / (2 * r)
sigma_s_1 = sigma_fn(lambda_s_1)
continue
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r)
sigma_s_1 = sigma_fn(lambda_s_1)
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r < 1
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r * h * eta).exp() * (-2 * (1 - r) * h * eta).expm1().neg().sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigmas[i + 1])
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r * h_eta) * denoised
if inject_noise:
sde_noise = (-2 * r * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_2 * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
# Step 2
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
if inject_noise:
segment_factor = (r - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigmas[i + 1])
x = x + sde_noise * sigmas[i + 1] * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
arXiv: https://arxiv.org/abs/2305.14267
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
@ -1609,45 +1630,49 @@ def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=Non
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r_1 * h
lambda_s_2 = lambda_s + r_2 * h
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
continue
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = torch.lerp(lambda_s, lambda_t, r_1)
lambda_s_2 = torch.lerp(lambda_s, lambda_t, r_2)
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r_1 < r_2 < 1
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r_1 * h * eta).exp() * (-2 * (r_2 - r_1) * h * eta).expm1().neg().sqrt()
noise_coeff_3 = (-r_2 * h * eta).exp() * (-2 * (1 - r_2) * h * eta).expm1().neg().sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * ei_h_phi_1(-r_1 * h_eta) * denoised
if inject_noise:
sde_noise = (-2 * r_1 * h * eta).expm1().neg().sqrt() * noise_sampler(sigmas[i], sigma_s_1)
x_2 = x_2 + sde_noise * sigma_s_1 * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * coeff_2 * denoised + (r_2 / r_1) * alpha_s_2 * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 2
a3_2 = r_2 / r_1 * ei_h_phi_2(-r_2 * h_eta)
a3_1 = ei_h_phi_1(-r_2 * h_eta) - a3_2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * (a3_1 * denoised + a3_2 * denoised_2)
if inject_noise:
segment_factor = (r_1 - r_2) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_1, sigma_s_2)
x_3 = x_3 + sde_noise * sigma_s_2 * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_3 * denoised + (1. / r_2) * alpha_t * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
# Step 3
b3 = ei_h_phi_2(-h_eta) / r_2
b1 = ei_h_phi_1(-h_eta) - b3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b3 * denoised_3)
if inject_noise:
segment_factor = (r_2 - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
sde_noise = sde_noise + segment_factor.mul(2).expm1().neg().sqrt() * noise_sampler(sigma_s_2, sigmas[i + 1])
x = x + sde_noise * sigmas[i + 1] * s_noise
return x

View File

@ -533,11 +533,154 @@ class Wan22(Wan21):
0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744
]).view(1, self.latent_channels, 1, 1, 1)
class HunyuanImage21(LatentFormat):
latent_channels = 64
latent_dimensions = 2
scale_factor = 0.75289
latent_rgb_factors = [
[-0.0154, -0.0397, -0.0521],
[ 0.0005, 0.0093, 0.0006],
[-0.0805, -0.0773, -0.0586],
[-0.0494, -0.0487, -0.0498],
[-0.0212, -0.0076, -0.0261],
[-0.0179, -0.0417, -0.0505],
[ 0.0158, 0.0310, 0.0239],
[ 0.0409, 0.0516, 0.0201],
[ 0.0350, 0.0553, 0.0036],
[-0.0447, -0.0327, -0.0479],
[-0.0038, -0.0221, -0.0365],
[-0.0423, -0.0718, -0.0654],
[ 0.0039, 0.0368, 0.0104],
[ 0.0655, 0.0217, 0.0122],
[ 0.0490, 0.1638, 0.2053],
[ 0.0932, 0.0829, 0.0650],
[-0.0186, -0.0209, -0.0135],
[-0.0080, -0.0076, -0.0148],
[-0.0284, -0.0201, 0.0011],
[-0.0642, -0.0294, -0.0777],
[-0.0035, 0.0076, -0.0140],
[ 0.0519, 0.0731, 0.0887],
[-0.0102, 0.0095, 0.0704],
[ 0.0068, 0.0218, -0.0023],
[-0.0726, -0.0486, -0.0519],
[ 0.0260, 0.0295, 0.0263],
[ 0.0250, 0.0333, 0.0341],
[ 0.0168, -0.0120, -0.0174],
[ 0.0226, 0.1037, 0.0114],
[ 0.2577, 0.1906, 0.1604],
[-0.0646, -0.0137, -0.0018],
[-0.0112, 0.0309, 0.0358],
[-0.0347, 0.0146, -0.0481],
[ 0.0234, 0.0179, 0.0201],
[ 0.0157, 0.0313, 0.0225],
[ 0.0423, 0.0675, 0.0524],
[-0.0031, 0.0027, -0.0255],
[ 0.0447, 0.0555, 0.0330],
[-0.0152, 0.0103, 0.0299],
[-0.0755, -0.0489, -0.0635],
[ 0.0853, 0.0788, 0.1017],
[-0.0272, -0.0294, -0.0471],
[ 0.0440, 0.0400, -0.0137],
[ 0.0335, 0.0317, -0.0036],
[-0.0344, -0.0621, -0.0984],
[-0.0127, -0.0630, -0.0620],
[-0.0648, 0.0360, 0.0924],
[-0.0781, -0.0801, -0.0409],
[ 0.0363, 0.0613, 0.0499],
[ 0.0238, 0.0034, 0.0041],
[-0.0135, 0.0258, 0.0310],
[ 0.0614, 0.1086, 0.0589],
[ 0.0428, 0.0350, 0.0205],
[ 0.0153, 0.0173, -0.0018],
[-0.0288, -0.0455, -0.0091],
[ 0.0344, 0.0109, -0.0157],
[-0.0205, -0.0247, -0.0187],
[ 0.0487, 0.0126, 0.0064],
[-0.0220, -0.0013, 0.0074],
[-0.0203, -0.0094, -0.0048],
[-0.0719, 0.0429, -0.0442],
[ 0.1042, 0.0497, 0.0356],
[-0.0659, -0.0578, -0.0280],
[-0.0060, -0.0322, -0.0234]]
latent_rgb_factors_bias = [0.0007, -0.0256, -0.0206]
class HunyuanImage21Refiner(LatentFormat):
latent_channels = 64
latent_dimensions = 3
scale_factor = 1.03682
def process_in(self, latent):
out = latent * self.scale_factor
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
def process_out(self, latent):
z = latent / self.scale_factor
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
return z
class HunyuanVideo15(LatentFormat):
latent_rgb_factors = [
[ 0.0568, -0.0521, -0.0131],
[ 0.0014, 0.0735, 0.0326],
[ 0.0186, 0.0531, -0.0138],
[-0.0031, 0.0051, 0.0288],
[ 0.0110, 0.0556, 0.0432],
[-0.0041, -0.0023, -0.0485],
[ 0.0530, 0.0413, 0.0253],
[ 0.0283, 0.0251, 0.0339],
[ 0.0277, -0.0372, -0.0093],
[ 0.0393, 0.0944, 0.1131],
[ 0.0020, 0.0251, 0.0037],
[-0.0017, 0.0012, 0.0234],
[ 0.0468, 0.0436, 0.0203],
[ 0.0354, 0.0439, -0.0233],
[ 0.0090, 0.0123, 0.0346],
[ 0.0382, 0.0029, 0.0217],
[ 0.0261, -0.0300, 0.0030],
[-0.0088, -0.0220, -0.0283],
[-0.0272, -0.0121, -0.0363],
[-0.0664, -0.0622, 0.0144],
[ 0.0414, 0.0479, 0.0529],
[ 0.0355, 0.0612, -0.0247],
[ 0.0147, 0.0264, 0.0174],
[ 0.0438, 0.0038, 0.0542],
[ 0.0431, -0.0573, -0.0033],
[-0.0162, -0.0211, -0.0406],
[-0.0487, -0.0295, -0.0393],
[ 0.0005, -0.0109, 0.0253],
[ 0.0296, 0.0591, 0.0353],
[ 0.0119, 0.0181, -0.0306],
[-0.0085, -0.0362, 0.0229],
[ 0.0005, -0.0106, 0.0242]
]
latent_rgb_factors_bias = [ 0.0456, -0.0202, -0.0644]
latent_channels = 32
latent_dimensions = 3
scale_factor = 1.03682
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 0.9990943042622529
class Hunyuan3Dv2_1(LatentFormat):
scale_factor = 1.0039506158752403
latent_channels = 64
latent_dimensions = 1
class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1
@ -546,3 +689,20 @@ class Hunyuan3Dv2mini(LatentFormat):
class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2
class ChromaRadiance(LatentFormat):
latent_channels = 3
def __init__(self):
self.latent_rgb_factors = [
# R G B
[ 1.0, 0.0, 0.0 ],
[ 0.0, 1.0, 0.0 ],
[ 0.0, 0.0, 1.0 ]
]
def process_in(self, latent):
return latent
def process_out(self, latent):
return latent

View File

@ -133,6 +133,7 @@ class Attention(nn.Module):
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
transformer_options={},
**cross_attention_kwargs,
) -> torch.Tensor:
return self.processor(
@ -140,6 +141,7 @@ class Attention(nn.Module):
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
transformer_options=transformer_options,
**cross_attention_kwargs,
)
@ -366,6 +368,7 @@ class CustomerAttnProcessor2_0:
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
transformer_options={},
*args,
**kwargs,
) -> torch.Tensor:
@ -433,7 +436,7 @@ class CustomerAttnProcessor2_0:
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = optimized_attention(
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True, transformer_options=transformer_options,
).to(query.dtype)
# linear proj
@ -697,6 +700,7 @@ class LinearTransformerBlock(nn.Module):
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
temb: torch.FloatTensor = None,
transformer_options={},
):
N = hidden_states.shape[0]
@ -720,6 +724,7 @@ class LinearTransformerBlock(nn.Module):
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
transformer_options=transformer_options,
)
else:
attn_output, _ = self.attn(
@ -729,6 +734,7 @@ class LinearTransformerBlock(nn.Module):
encoder_attention_mask=None,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=None,
transformer_options=transformer_options,
)
if self.use_adaln_single:
@ -743,6 +749,7 @@ class LinearTransformerBlock(nn.Module):
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
transformer_options=transformer_options,
)
hidden_states = attn_output + hidden_states

View File

@ -314,6 +314,7 @@ class ACEStepTransformer2DModel(nn.Module):
output_length: int = 0,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
transformer_options={},
):
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
temb = self.t_block(embedded_timestep)
@ -339,6 +340,7 @@ class ACEStepTransformer2DModel(nn.Module):
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
temb=temb,
transformer_options=transformer_options,
)
output = self.final_layer(hidden_states, embedded_timestep, output_length)
@ -393,6 +395,7 @@ class ACEStepTransformer2DModel(nn.Module):
output_length = hidden_states.shape[-1]
transformer_options = kwargs.get("transformer_options", {})
output = self.decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
@ -402,6 +405,7 @@ class ACEStepTransformer2DModel(nn.Module):
output_length=output_length,
block_controlnet_hidden_states=block_controlnet_hidden_states,
controlnet_scale=controlnet_scale,
transformer_options=transformer_options,
)
return output

View File

@ -23,8 +23,6 @@ class MusicDCAE(torch.nn.Module):
else:
self.source_sample_rate = source_sample_rate
# self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100)
self.transform = transforms.Compose([
transforms.Normalize(0.5, 0.5),
])
@ -37,10 +35,6 @@ class MusicDCAE(torch.nn.Module):
self.scale_factor = 0.1786
self.shift_factor = -1.9091
def load_audio(self, audio_path):
audio, sr = torchaudio.load(audio_path)
return audio, sr
def forward_mel(self, audios):
mels = []
for i in range(len(audios)):
@ -73,10 +67,8 @@ class MusicDCAE(torch.nn.Module):
latent = self.dcae.encoder(mel.unsqueeze(0))
latents.append(latent)
latents = torch.cat(latents, dim=0)
# latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long()
latents = (latents - self.shift_factor) * self.scale_factor
return latents
# return latents, latent_lengths
@torch.no_grad()
def decode(self, latents, audio_lengths=None, sr=None):
@ -91,9 +83,7 @@ class MusicDCAE(torch.nn.Module):
wav = self.vocoder.decode(mels[0]).squeeze(1)
if sr is not None:
# resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype)
wav = torchaudio.functional.resample(wav, 44100, sr)
# wav = resampler(wav)
else:
sr = 44100
pred_wavs.append(wav)
@ -101,7 +91,6 @@ class MusicDCAE(torch.nn.Module):
if audio_lengths is not None:
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)]
return torch.stack(pred_wavs)
# return sr, pred_wavs
def forward(self, audios, audio_lengths=None, sr=None):
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr)

View File

@ -298,7 +298,8 @@ class Attention(nn.Module):
mask = None,
context_mask = None,
rotary_pos_emb = None,
causal = None
causal = None,
transformer_options={},
):
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
@ -363,7 +364,7 @@ class Attention(nn.Module):
heads_per_kv_head = h // kv_h
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
out = optimized_attention(q, k, v, h, skip_reshape=True)
out = optimized_attention(q, k, v, h, skip_reshape=True, transformer_options=transformer_options)
out = self.to_out(out)
if mask is not None:
@ -488,7 +489,8 @@ class TransformerBlock(nn.Module):
global_cond=None,
mask = None,
context_mask = None,
rotary_pos_emb = None
rotary_pos_emb = None,
transformer_options={}
):
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
@ -498,12 +500,12 @@ class TransformerBlock(nn.Module):
residual = x
x = self.pre_norm(x)
x = x * (1 + scale_self) + shift_self
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb, transformer_options=transformer_options)
x = x * torch.sigmoid(1 - gate_self)
x = x + residual
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask, transformer_options=transformer_options)
if self.conformer is not None:
x = x + self.conformer(x)
@ -517,10 +519,10 @@ class TransformerBlock(nn.Module):
x = x + residual
else:
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb, transformer_options=transformer_options)
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask, transformer_options=transformer_options)
if self.conformer is not None:
x = x + self.conformer(x)
@ -606,7 +608,8 @@ class ContinuousTransformer(nn.Module):
return_info = False,
**kwargs
):
patches_replace = kwargs.get("transformer_options", {}).get("patches_replace", {})
transformer_options = kwargs.get("transformer_options", {})
patches_replace = transformer_options.get("patches_replace", {})
batch, seq, device = *x.shape[:2], x.device
context = kwargs["context"]
@ -632,7 +635,7 @@ class ContinuousTransformer(nn.Module):
# Attention layers
if self.rotary_pos_emb is not None:
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=torch.float, device=x.device)
else:
rotary_pos_emb = None
@ -645,13 +648,13 @@ class ContinuousTransformer(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"])
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context)
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context, transformer_options=transformer_options)
# x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
if return_info:

View File

@ -85,7 +85,7 @@ class SingleAttention(nn.Module):
)
#@torch.compile()
def forward(self, c):
def forward(self, c, transformer_options={}):
bsz, seqlen1, _ = c.shape
@ -95,7 +95,7 @@ class SingleAttention(nn.Module):
v = v.view(bsz, seqlen1, self.n_heads, self.head_dim)
q, k = self.q_norm1(q), self.k_norm1(k)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True, transformer_options=transformer_options)
c = self.w1o(output)
return c
@ -144,7 +144,7 @@ class DoubleAttention(nn.Module):
#@torch.compile()
def forward(self, c, x):
def forward(self, c, x, transformer_options={}):
bsz, seqlen1, _ = c.shape
bsz, seqlen2, _ = x.shape
@ -168,7 +168,7 @@ class DoubleAttention(nn.Module):
torch.cat([cv, xv], dim=1),
)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True, transformer_options=transformer_options)
c, x = output.split([seqlen1, seqlen2], dim=1)
c = self.w1o(c)
@ -207,7 +207,7 @@ class MMDiTBlock(nn.Module):
self.is_last = is_last
#@torch.compile()
def forward(self, c, x, global_cond, **kwargs):
def forward(self, c, x, global_cond, transformer_options={}, **kwargs):
cres, xres = c, x
@ -225,7 +225,7 @@ class MMDiTBlock(nn.Module):
x = modulate(self.normX1(x), xshift_msa, xscale_msa)
# attention
c, x = self.attn(c, x)
c, x = self.attn(c, x, transformer_options=transformer_options)
c = self.normC2(cres + cgate_msa.unsqueeze(1) * c)
@ -255,13 +255,13 @@ class DiTBlock(nn.Module):
self.mlp = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
#@torch.compile()
def forward(self, cx, global_cond, **kwargs):
def forward(self, cx, global_cond, transformer_options={}, **kwargs):
cxres = cx
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.modCX(
global_cond
).chunk(6, dim=1)
cx = modulate(self.norm1(cx), shift_msa, scale_msa)
cx = self.attn(cx)
cx = self.attn(cx, transformer_options=transformer_options)
cx = self.norm2(cxres + gate_msa.unsqueeze(1) * cx)
mlpout = self.mlp(modulate(cx, shift_mlp, scale_mlp))
cx = gate_mlp.unsqueeze(1) * mlpout
@ -473,13 +473,14 @@ class MMDiT(nn.Module):
out = {}
out["txt"], out["img"] = layer(args["txt"],
args["img"],
args["vec"])
args["vec"],
transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond, "transformer_options": transformer_options}, {"original_block": block_wrap})
c = out["txt"]
x = out["img"]
else:
c, x = layer(c, x, global_cond, **kwargs)
c, x = layer(c, x, global_cond, transformer_options=transformer_options, **kwargs)
if len(self.single_layers) > 0:
c_len = c.size(1)
@ -488,13 +489,13 @@ class MMDiT(nn.Module):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = layer(args["img"], args["vec"])
out["img"] = layer(args["img"], args["vec"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond}, {"original_block": block_wrap})
out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond, "transformer_options": transformer_options}, {"original_block": block_wrap})
cx = out["img"]
else:
cx = layer(cx, global_cond, **kwargs)
cx = layer(cx, global_cond, transformer_options=transformer_options, **kwargs)
x = cx[:, c_len:]

View File

@ -32,12 +32,12 @@ class OptimizedAttention(nn.Module):
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
def forward(self, q, k, v):
def forward(self, q, k, v, transformer_options={}):
q = self.to_q(q)
k = self.to_k(k)
v = self.to_v(v)
out = optimized_attention(q, k, v, self.heads)
out = optimized_attention(q, k, v, self.heads, transformer_options=transformer_options)
return self.out_proj(out)
@ -47,13 +47,13 @@ class Attention2D(nn.Module):
self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
def forward(self, x, kv, self_attn=False):
def forward(self, x, kv, self_attn=False, transformer_options={}):
orig_shape = x.shape
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
if self_attn:
kv = torch.cat([x, kv], dim=1)
# x = self.attn(x, kv, kv, need_weights=False)[0]
x = self.attn(x, kv, kv)
x = self.attn(x, kv, kv, transformer_options=transformer_options)
x = x.permute(0, 2, 1).view(*orig_shape)
return x
@ -114,9 +114,9 @@ class AttnBlock(nn.Module):
operations.Linear(c_cond, c, dtype=dtype, device=device)
)
def forward(self, x, kv):
def forward(self, x, kv, transformer_options={}):
kv = self.kv_mapper(kv)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn, transformer_options=transformer_options)
return x

View File

@ -173,7 +173,7 @@ class StageB(nn.Module):
clip = self.clip_norm(clip)
return clip
def _down_encode(self, x, r_embed, clip):
def _down_encode(self, x, r_embed, clip, transformer_options={}):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
for down_block, downscaler, repmap in block_group:
@ -187,7 +187,7 @@ class StageB(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@ -199,7 +199,7 @@ class StageB(nn.Module):
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip):
def _up_decode(self, level_outputs, r_embed, clip, transformer_options={}):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
for i, (up_block, upscaler, repmap) in enumerate(block_group):
@ -216,7 +216,7 @@ class StageB(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@ -228,7 +228,7 @@ class StageB(nn.Module):
x = upscaler(x)
return x
def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
def forward(self, x, r, effnet, clip, pixels=None, transformer_options={}, **kwargs):
if pixels is None:
pixels = x.new_zeros(x.size(0), 3, 8, 8)
@ -245,8 +245,8 @@ class StageB(nn.Module):
nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True))
x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear',
align_corners=True)
level_outputs = self._down_encode(x, r_embed, clip)
x = self._up_decode(level_outputs, r_embed, clip)
level_outputs = self._down_encode(x, r_embed, clip, transformer_options=transformer_options)
x = self._up_decode(level_outputs, r_embed, clip, transformer_options=transformer_options)
return self.clf(x)
def update_weights_ema(self, src_model, beta=0.999):

View File

@ -182,7 +182,7 @@ class StageC(nn.Module):
clip = self.clip_norm(clip)
return clip
def _down_encode(self, x, r_embed, clip, cnet=None):
def _down_encode(self, x, r_embed, clip, cnet=None, transformer_options={}):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
for down_block, downscaler, repmap in block_group:
@ -201,7 +201,7 @@ class StageC(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@ -213,7 +213,7 @@ class StageC(nn.Module):
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
def _up_decode(self, level_outputs, r_embed, clip, cnet=None, transformer_options={}):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
for i, (up_block, upscaler, repmap) in enumerate(block_group):
@ -235,7 +235,7 @@ class StageC(nn.Module):
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
x = block(x, clip, transformer_options=transformer_options)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
@ -247,7 +247,7 @@ class StageC(nn.Module):
x = upscaler(x)
return x
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs):
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, transformer_options={}, **kwargs):
# Process the conditioning embeddings
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
for c in self.t_conds:
@ -262,8 +262,8 @@ class StageC(nn.Module):
# Model Blocks
x = self.embedding(x)
level_outputs = self._down_encode(x, r_embed, clip, cnet)
x = self._up_decode(level_outputs, r_embed, clip, cnet)
level_outputs = self._down_encode(x, r_embed, clip, cnet, transformer_options=transformer_options)
x = self._up_decode(level_outputs, r_embed, clip, cnet, transformer_options=transformer_options)
return self.clf(x)
def update_weights_ema(self, src_model, beta=0.999):

View File

@ -1,15 +1,15 @@
import torch
from torch import Tensor, nn
from comfy.ldm.flux.math import attention
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
QKNorm,
SelfAttention,
ModulationOut,
)
# TODO: remove this in a few months
SingleStreamBlock = None
DoubleStreamBlock = None
class ChromaModulationOut(ModulationOut):
@ -48,124 +48,6 @@ class Approximator(nn.Module):
return x
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
# calculate the txt bloks
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
mod = vec
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x.addcmul_(mod.gate, output)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()

View File

@ -11,12 +11,12 @@ import comfy.ldm.common_dit
from comfy.ldm.flux.layers import (
EmbedND,
timestep_embedding,
DoubleStreamBlock,
SingleStreamBlock,
)
from .layers import (
DoubleStreamBlock,
LastLayer,
SingleStreamBlock,
Approximator,
ChromaModulationOut,
)
@ -90,6 +90,7 @@ class Chroma(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=False,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@ -98,7 +99,7 @@ class Chroma(nn.Module):
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=False, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
@ -151,8 +152,6 @@ class Chroma(nn.Module):
attn_mask: Tensor = None,
) -> Tensor:
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
@ -193,14 +192,16 @@ class Chroma(nn.Module):
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": double_mod,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
@ -209,7 +210,8 @@ class Chroma(nn.Module):
txt=txt,
vec=double_mod,
pe=pe,
attn_mask=attn_mask)
attn_mask=attn_mask,
transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
@ -229,17 +231,19 @@ class Chroma(nn.Module):
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": single_mod,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
@ -249,8 +253,9 @@ class Chroma(nn.Module):
img[:, txt.shape[1] :, ...] += add
img = img[:, txt.shape[1] :, ...]
final_mod = self.get_modulations(mod_vectors, "final")
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
if hasattr(self, "final_layer"):
final_mod = self.get_modulations(mod_vectors, "final")
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
return img
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
@ -266,6 +271,9 @@ class Chroma(nn.Module):
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=self.patch_size, pw=self.patch_size)
if img.ndim != 3 or context.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
h_len = ((h + (self.patch_size // 2)) // self.patch_size)
w_len = ((w + (self.patch_size // 2)) // self.patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)

View File

@ -0,0 +1,206 @@
# Adapted from https://github.com/lodestone-rock/flow
from functools import lru_cache
import torch
from torch import nn
from comfy.ldm.flux.layers import RMSNorm
class NerfEmbedder(nn.Module):
"""
An embedder module that combines input features with a 2D positional
encoding that mimics the Discrete Cosine Transform (DCT).
This module takes an input tensor of shape (B, P^2, C), where P is the
patch size, and enriches it with positional information before projecting
it to a new hidden size.
"""
def __init__(
self,
in_channels: int,
hidden_size_input: int,
max_freqs: int,
dtype=None,
device=None,
operations=None,
):
"""
Initializes the NerfEmbedder.
Args:
in_channels (int): The number of channels in the input tensor.
hidden_size_input (int): The desired dimension of the output embedding.
max_freqs (int): The number of frequency components to use for both
the x and y dimensions of the positional encoding.
The total number of positional features will be max_freqs^2.
"""
super().__init__()
self.dtype = dtype
self.max_freqs = max_freqs
self.hidden_size_input = hidden_size_input
# A linear layer to project the concatenated input features and
# positional encodings to the final output dimension.
self.embedder = nn.Sequential(
operations.Linear(in_channels + max_freqs**2, hidden_size_input, dtype=dtype, device=device)
)
@lru_cache(maxsize=4)
def fetch_pos(self, patch_size: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
"""
Generates and caches 2D DCT-like positional embeddings for a given patch size.
The LRU cache is a performance optimization that avoids recomputing the
same positional grid on every forward pass.
Args:
patch_size (int): The side length of the square input patch.
device: The torch device to create the tensors on.
dtype: The torch dtype for the tensors.
Returns:
A tensor of shape (1, patch_size^2, max_freqs^2) containing the
positional embeddings.
"""
# Create normalized 1D coordinate grids from 0 to 1.
pos_x = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
pos_y = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
# Create a 2D meshgrid of coordinates.
pos_y, pos_x = torch.meshgrid(pos_y, pos_x, indexing="ij")
# Reshape positions to be broadcastable with frequencies.
# Shape becomes (patch_size^2, 1, 1).
pos_x = pos_x.reshape(-1, 1, 1)
pos_y = pos_y.reshape(-1, 1, 1)
# Create a 1D tensor of frequency values from 0 to max_freqs-1.
freqs = torch.linspace(0, self.max_freqs - 1, self.max_freqs, dtype=dtype, device=device)
# Reshape frequencies to be broadcastable for creating 2D basis functions.
# freqs_x shape: (1, max_freqs, 1)
# freqs_y shape: (1, 1, max_freqs)
freqs_x = freqs[None, :, None]
freqs_y = freqs[None, None, :]
# A custom weighting coefficient, not part of standard DCT.
# This seems to down-weight the contribution of higher-frequency interactions.
coeffs = (1 + freqs_x * freqs_y) ** -1
# Calculate the 1D cosine basis functions for x and y coordinates.
# This is the core of the DCT formulation.
dct_x = torch.cos(pos_x * freqs_x * torch.pi)
dct_y = torch.cos(pos_y * freqs_y * torch.pi)
# Combine the 1D basis functions to create 2D basis functions by element-wise
# multiplication, and apply the custom coefficients. Broadcasting handles the
# combination of all (pos_x, freqs_x) with all (pos_y, freqs_y).
# The result is flattened into a feature vector for each position.
dct = (dct_x * dct_y * coeffs).view(1, -1, self.max_freqs ** 2)
return dct
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the embedder.
Args:
inputs (Tensor): The input tensor of shape (B, P^2, C).
Returns:
Tensor: The output tensor of shape (B, P^2, hidden_size_input).
"""
# Get the batch size, number of pixels, and number of channels.
B, P2, C = inputs.shape
# Infer the patch side length from the number of pixels (P^2).
patch_size = int(P2 ** 0.5)
input_dtype = inputs.dtype
inputs = inputs.to(dtype=self.dtype)
# Fetch the pre-computed or cached positional embeddings.
dct = self.fetch_pos(patch_size, inputs.device, self.dtype)
# Repeat the positional embeddings for each item in the batch.
dct = dct.repeat(B, 1, 1)
# Concatenate the original input features with the positional embeddings
# along the feature dimension.
inputs = torch.cat((inputs, dct), dim=-1)
# Project the combined tensor to the target hidden size.
return self.embedder(inputs).to(dtype=input_dtype)
class NerfGLUBlock(nn.Module):
"""
A NerfBlock using a Gated Linear Unit (GLU) like MLP.
"""
def __init__(self, hidden_size_s: int, hidden_size_x: int, mlp_ratio, dtype=None, device=None, operations=None):
super().__init__()
# The total number of parameters for the MLP is increased to accommodate
# the gate, value, and output projection matrices.
# We now need to generate parameters for 3 matrices.
total_params = 3 * hidden_size_x**2 * mlp_ratio
self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device)
self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations)
self.mlp_ratio = mlp_ratio
def forward(self, x: torch.Tensor, s: torch.Tensor) -> torch.Tensor:
batch_size, num_x, hidden_size_x = x.shape
mlp_params = self.param_generator(s)
# Split the generated parameters into three parts for the gate, value, and output projection.
fc1_gate_params, fc1_value_params, fc2_params = mlp_params.chunk(3, dim=-1)
# Reshape the parameters into matrices for batch matrix multiplication.
fc1_gate = fc1_gate_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio)
fc1_value = fc1_value_params.view(batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio)
fc2 = fc2_params.view(batch_size, hidden_size_x * self.mlp_ratio, hidden_size_x)
# Normalize the generated weight matrices as in the original implementation.
fc1_gate = torch.nn.functional.normalize(fc1_gate, dim=-2)
fc1_value = torch.nn.functional.normalize(fc1_value, dim=-2)
fc2 = torch.nn.functional.normalize(fc2, dim=-2)
res_x = x
x = self.norm(x)
# Apply the final output projection.
x = torch.bmm(torch.nn.functional.silu(torch.bmm(x, fc1_gate)) * torch.bmm(x, fc1_value), fc2)
return x + res_x
class NerfFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1.
# So we temporarily move the channel dimension to the end for the norm operation.
return self.linear(self.norm(x.movedim(1, -1))).movedim(-1, 1)
class NerfFinalLayerConv(nn.Module):
def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.conv = operations.Conv2d(
in_channels=hidden_size,
out_channels=out_channels,
kernel_size=3,
padding=1,
dtype=dtype,
device=device,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# RMSNorm normalizes over the last dimension, but our channel dim (C) is at dim=1.
# So we temporarily move the channel dimension to the end for the norm operation.
return self.conv(self.norm(x.movedim(1, -1)).movedim(-1, 1))

View File

@ -0,0 +1,319 @@
# Credits:
# Original Flux code can be found on: https://github.com/black-forest-labs/flux
# Chroma Radiance adaption referenced from https://github.com/lodestone-rock/flow
from dataclasses import dataclass
from typing import Optional
import torch
from torch import Tensor, nn
from einops import repeat
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
from comfy.ldm.chroma.model import Chroma, ChromaParams
from comfy.ldm.chroma.layers import (
Approximator,
)
from .layers import (
NerfEmbedder,
NerfGLUBlock,
NerfFinalLayer,
NerfFinalLayerConv,
)
@dataclass
class ChromaRadianceParams(ChromaParams):
patch_size: int
nerf_hidden_size: int
nerf_mlp_ratio: int
nerf_depth: int
nerf_max_freqs: int
# Setting nerf_tile_size to 0 disables tiling.
nerf_tile_size: int
# Currently one of linear (legacy) or conv.
nerf_final_head_type: str
# None means use the same dtype as the model.
nerf_embedder_dtype: Optional[torch.dtype]
class ChromaRadiance(Chroma):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
if operations is None:
raise RuntimeError("Attempt to create ChromaRadiance object without setting operations")
nn.Module.__init__(self)
self.dtype = dtype
params = ChromaRadianceParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.in_dim = params.in_dim
self.out_dim = params.out_dim
self.hidden_dim = params.hidden_dim
self.n_layers = params.n_layers
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in_patch = operations.Conv2d(
params.in_channels,
params.hidden_size,
kernel_size=params.patch_size,
stride=params.patch_size,
bias=True,
dtype=dtype,
device=device,
)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
# set as nn identity for now, will overwrite it later.
self.distilled_guidance_layer = Approximator(
in_dim=self.in_dim,
hidden_dim=self.hidden_dim,
out_dim=self.out_dim,
n_layers=self.n_layers,
dtype=dtype, device=device, operations=operations
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=False,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
modulation=False,
dtype=dtype, device=device, operations=operations,
)
for _ in range(params.depth_single_blocks)
]
)
# pixel channel concat with DCT
self.nerf_image_embedder = NerfEmbedder(
in_channels=params.in_channels,
hidden_size_input=params.nerf_hidden_size,
max_freqs=params.nerf_max_freqs,
dtype=params.nerf_embedder_dtype or dtype,
device=device,
operations=operations,
)
self.nerf_blocks = nn.ModuleList([
NerfGLUBlock(
hidden_size_s=params.hidden_size,
hidden_size_x=params.nerf_hidden_size,
mlp_ratio=params.nerf_mlp_ratio,
dtype=dtype,
device=device,
operations=operations,
) for _ in range(params.nerf_depth)
])
if params.nerf_final_head_type == "linear":
self.nerf_final_layer = NerfFinalLayer(
params.nerf_hidden_size,
out_channels=params.in_channels,
dtype=dtype,
device=device,
operations=operations,
)
elif params.nerf_final_head_type == "conv":
self.nerf_final_layer_conv = NerfFinalLayerConv(
params.nerf_hidden_size,
out_channels=params.in_channels,
dtype=dtype,
device=device,
operations=operations,
)
else:
errstr = f"Unsupported nerf_final_head_type {params.nerf_final_head_type}"
raise ValueError(errstr)
self.skip_mmdit = []
self.skip_dit = []
self.lite = False
@property
def _nerf_final_layer(self) -> nn.Module:
if self.params.nerf_final_head_type == "linear":
return self.nerf_final_layer
if self.params.nerf_final_head_type == "conv":
return self.nerf_final_layer_conv
# Impossible to get here as we raise an error on unexpected types on initialization.
raise NotImplementedError
def img_in(self, img: Tensor) -> Tensor:
img = self.img_in_patch(img) # -> [B, Hidden, H/P, W/P]
# flatten into a sequence for the transformer.
return img.flatten(2).transpose(1, 2) # -> [B, NumPatches, Hidden]
def forward_nerf(
self,
img_orig: Tensor,
img_out: Tensor,
params: ChromaRadianceParams,
) -> Tensor:
B, C, H, W = img_orig.shape
num_patches = img_out.shape[1]
patch_size = params.patch_size
# Store the raw pixel values of each patch for the NeRF head later.
# unfold creates patches: [B, C * P * P, NumPatches]
nerf_pixels = nn.functional.unfold(img_orig, kernel_size=patch_size, stride=patch_size)
nerf_pixels = nerf_pixels.transpose(1, 2) # -> [B, NumPatches, C * P * P]
# Reshape for per-patch processing
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
if params.nerf_tile_size > 0 and num_patches > params.nerf_tile_size:
# Enable tiling if nerf_tile_size isn't 0 and we actually have more patches than
# the tile size.
img_dct = self.forward_tiled_nerf(nerf_hidden, nerf_pixels, B, C, num_patches, patch_size, params)
else:
# Get DCT-encoded pixel embeddings [pixel-dct]
img_dct = self.nerf_image_embedder(nerf_pixels)
# Pass through the dynamic MLP blocks (the NeRF)
for block in self.nerf_blocks:
img_dct = block(img_dct, nerf_hidden)
# Reassemble the patches into the final image.
img_dct = img_dct.transpose(1, 2) # -> [B*NumPatches, C, P*P]
# Reshape to combine with batch dimension for fold
img_dct = img_dct.reshape(B, num_patches, -1) # -> [B, NumPatches, C*P*P]
img_dct = img_dct.transpose(1, 2) # -> [B, C*P*P, NumPatches]
img_dct = nn.functional.fold(
img_dct,
output_size=(H, W),
kernel_size=patch_size,
stride=patch_size,
)
return self._nerf_final_layer(img_dct)
def forward_tiled_nerf(
self,
nerf_hidden: Tensor,
nerf_pixels: Tensor,
batch: int,
channels: int,
num_patches: int,
patch_size: int,
params: ChromaRadianceParams,
) -> Tensor:
"""
Processes the NeRF head in tiles to save memory.
nerf_hidden has shape [B, L, D]
nerf_pixels has shape [B, L, C * P * P]
"""
tile_size = params.nerf_tile_size
output_tiles = []
# Iterate over the patches in tiles. The dimension L (num_patches) is at index 1.
for i in range(0, num_patches, tile_size):
end = min(i + tile_size, num_patches)
# Slice the current tile from the input tensors
nerf_hidden_tile = nerf_hidden[i * batch:end * batch]
nerf_pixels_tile = nerf_pixels[i * batch:end * batch]
# get DCT-encoded pixel embeddings [pixel-dct]
img_dct_tile = self.nerf_image_embedder(nerf_pixels_tile)
# pass through the dynamic MLP blocks (the NeRF)
for block in self.nerf_blocks:
img_dct_tile = block(img_dct_tile, nerf_hidden_tile)
output_tiles.append(img_dct_tile)
# Concatenate the processed tiles along the patch dimension
return torch.cat(output_tiles, dim=0)
def radiance_get_override_params(self, overrides: dict) -> ChromaRadianceParams:
params = self.params
if not overrides:
return params
params_dict = {k: getattr(params, k) for k in params.__dataclass_fields__}
nullable_keys = frozenset(("nerf_embedder_dtype",))
bad_keys = tuple(k for k in overrides if k not in params_dict)
if bad_keys:
e = f"Unknown key(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
raise ValueError(e)
bad_keys = tuple(
k
for k, v in overrides.items()
if type(v) != type(getattr(params, k)) and (v is not None or k not in nullable_keys)
)
if bad_keys:
e = f"Invalid value(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
raise ValueError(e)
# At this point it's all valid keys and values so we can merge with the existing params.
params_dict |= overrides
return params.__class__(**params_dict)
def _forward(
self,
x: Tensor,
timestep: Tensor,
context: Tensor,
guidance: Optional[Tensor],
control: Optional[dict]=None,
transformer_options: dict={},
**kwargs: dict,
) -> Tensor:
bs, c, h, w = x.shape
img = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
if img.ndim != 4:
raise ValueError("Input img tensor must be in [B, C, H, W] format.")
if context.ndim != 3:
raise ValueError("Input txt tensors must have 3 dimensions.")
params = self.radiance_get_override_params(transformer_options.get("chroma_radiance_options", {}))
h_len = (img.shape[-2] // self.patch_size)
w_len = (img.shape[-1] // self.patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
img_out = self.forward_orig(
img,
img_ids,
context,
txt_ids,
timestep,
guidance,
control,
transformer_options,
attn_mask=kwargs.get("attention_mask", None),
)
return self.forward_nerf(img, img_out, params)[:, :, :h, :w]

View File

@ -176,6 +176,7 @@ class Attention(nn.Module):
context=None,
mask=None,
rope_emb=None,
transformer_options={},
**kwargs,
):
"""
@ -184,7 +185,7 @@ class Attention(nn.Module):
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs)
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True)
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True, transformer_options=transformer_options)
del q, k, v
out = rearrange(out, " b n s c -> s b (n c)")
return self.to_out(out)
@ -546,6 +547,7 @@ class VideoAttn(nn.Module):
context: Optional[torch.Tensor] = None,
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
"""
Forward pass for video attention.
@ -571,6 +573,7 @@ class VideoAttn(nn.Module):
context_M_B_D,
crossattn_mask,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
)
x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W)
return x_T_H_W_B_D
@ -665,6 +668,7 @@ class DITBuildingBlock(nn.Module):
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
"""
Forward pass for dynamically configured blocks with adaptive normalization.
@ -702,6 +706,7 @@ class DITBuildingBlock(nn.Module):
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
context=None,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
transformer_options=transformer_options,
)
elif self.block_type in ["cross_attn", "ca"]:
x = x + gate_1_1_1_B_D * self.block(
@ -709,6 +714,7 @@ class DITBuildingBlock(nn.Module):
context=crossattn_emb,
crossattn_mask=crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
transformer_options=transformer_options,
)
else:
raise ValueError(f"Unknown block type: {self.block_type}")
@ -784,6 +790,7 @@ class GeneralDITTransformerBlock(nn.Module):
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
for block in self.blocks:
x = block(
@ -793,5 +800,6 @@ class GeneralDITTransformerBlock(nn.Module):
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
transformer_options=transformer_options,
)
return x

View File

@ -520,6 +520,7 @@ class GeneralDIT(nn.Module):
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}"
transformer_options = kwargs.get("transformer_options", {})
for _, block in self.blocks.items():
assert (
self.blocks["block0"].x_format == block.x_format
@ -534,6 +535,7 @@ class GeneralDIT(nn.Module):
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
transformer_options=transformer_options,
)
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D")

View File

@ -44,7 +44,7 @@ class GPT2FeedForward(nn.Module):
return x
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor) -> torch.Tensor:
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor, transformer_options: Optional[dict] = {}) -> torch.Tensor:
"""Computes multi-head attention using PyTorch's native implementation.
This function provides a PyTorch backend alternative to Transformer Engine's attention operation.
@ -71,7 +71,7 @@ def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H
q_B_H_S_D = rearrange(q_B_S_H_D, "b ... h k -> b h ... k").view(in_q_shape[0], in_q_shape[-2], -1, in_q_shape[-1])
k_B_H_S_D = rearrange(k_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
v_B_H_S_D = rearrange(v_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True)
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True, transformer_options=transformer_options)
class Attention(nn.Module):
@ -180,8 +180,8 @@ class Attention(nn.Module):
return q, k, v
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
result = self.attn_op(q, k, v) # [B, S, H, D]
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, transformer_options: Optional[dict] = {}) -> torch.Tensor:
result = self.attn_op(q, k, v, transformer_options=transformer_options) # [B, S, H, D]
return self.output_dropout(self.output_proj(result))
def forward(
@ -189,6 +189,7 @@ class Attention(nn.Module):
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
rope_emb: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
"""
Args:
@ -196,7 +197,7 @@ class Attention(nn.Module):
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.compute_qkv(x, context, rope_emb=rope_emb)
return self.compute_attention(q, k, v)
return self.compute_attention(q, k, v, transformer_options=transformer_options)
class Timesteps(nn.Module):
@ -459,6 +460,7 @@ class Block(nn.Module):
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
if extra_per_block_pos_emb is not None:
x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb
@ -512,6 +514,7 @@ class Block(nn.Module):
rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
None,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
),
"b (t h w) d -> b t h w d",
t=T,
@ -525,6 +528,7 @@ class Block(nn.Module):
layer_norm_cross_attn: Callable,
_scale_cross_attn_B_T_1_1_D: torch.Tensor,
_shift_cross_attn_B_T_1_1_D: torch.Tensor,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
_normalized_x_B_T_H_W_D = _fn(
_x_B_T_H_W_D, layer_norm_cross_attn, _scale_cross_attn_B_T_1_1_D, _shift_cross_attn_B_T_1_1_D
@ -534,6 +538,7 @@ class Block(nn.Module):
rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
crossattn_emb,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
),
"b (t h w) d -> b t h w d",
t=T,
@ -547,6 +552,7 @@ class Block(nn.Module):
self.layer_norm_cross_attn,
scale_cross_attn_B_T_1_1_D,
shift_cross_attn_B_T_1_1_D,
transformer_options=transformer_options,
)
x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D
@ -865,6 +871,7 @@ class MiniTrainDIT(nn.Module):
"rope_emb_L_1_1_D": rope_emb_L_1_1_D.unsqueeze(1).unsqueeze(0),
"adaln_lora_B_T_3D": adaln_lora_B_T_3D,
"extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
"transformer_options": kwargs.get("transformer_options", {}),
}
for block in self.blocks:
x_B_T_H_W_D = block(

View File

@ -130,13 +130,17 @@ def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.modulation = modulation
if self.modulation:
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
@ -147,7 +151,9 @@ class DoubleStreamBlock(nn.Module):
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
if self.modulation:
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
@ -159,47 +165,66 @@ class DoubleStreamBlock(nn.Module):
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None):
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
if self.modulation:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
else:
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img)
img_qkv = self.img_attn.qkv(img_modulated)
del img_modulated
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del img_qkv
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt)
txt_qkv = self.txt_attn.qkv(txt_modulated)
del txt_modulated
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del txt_qkv
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
if self.flipped_img_txt:
q = torch.cat((img_q, txt_q), dim=2)
del img_q, txt_q
k = torch.cat((img_k, txt_k), dim=2)
del img_k, txt_k
v = torch.cat((img_v, txt_v), dim=2)
del img_v, txt_v
# run actual attention
attn = attention(torch.cat((img_q, txt_q), dim=2),
torch.cat((img_k, txt_k), dim=2),
torch.cat((img_v, txt_v), dim=2),
pe=pe, mask=attn_mask)
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else:
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask)
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks
img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
del img_attn
img += apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
# calculate the txt bloks
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt)
del txt_attn
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt)
if txt.dtype == torch.float16:
@ -220,6 +245,7 @@ class SingleStreamBlock(nn.Module):
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
modulation=True,
dtype=None,
device=None,
operations=None
@ -242,19 +268,29 @@ class SingleStreamBlock(nn.Module):
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
if modulation:
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
else:
self.modulation = None
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
if self.modulation:
mod, _ = self.modulation(vec)
else:
mod = vec
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor:
mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del qkv
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask)
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
mlp = self.mlp_act(mlp)
output = self.linear2(torch.cat((attn, mlp), 2))
x += apply_mod(output, mod.gate, None, modulation_dims)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)

View File

@ -6,18 +6,11 @@ from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
q_shape = q.shape
k_shape = k.shape
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
if pe is not None:
q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2)
k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2)
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
q, k = apply_rope(q, k, pe)
heads = q.shape[1]
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask)
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
return x
@ -35,11 +28,13 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.to(dtype=torch.float32, device=pos.device)
def apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
x_out = freqs_cis[..., 0] * x_[..., 0]
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
return x_out.reshape(*x.shape).type_as(x)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
xq_ = xq.to(dtype=freqs_cis.dtype).reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.to(dtype=freqs_cis.dtype).reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)

View File

@ -106,6 +106,7 @@ class Flux(nn.Module):
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches = transformer_options.get("patches", {})
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@ -117,9 +118,17 @@ class Flux(nn.Module):
if guidance is not None:
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
txt = self.txt_in(txt)
if "post_input" in patches:
for p in patches["post_input"]:
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
img = out["img"]
txt = out["txt"]
img_ids = out["img_ids"]
txt_ids = out["txt_ids"]
if img_ids is not None:
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
@ -135,14 +144,16 @@ class Flux(nn.Module):
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
@ -151,14 +162,15 @@ class Flux(nn.Module):
txt=txt,
vec=vec,
pe=pe,
attn_mask=attn_mask)
attn_mask=attn_mask,
transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
img[:, :add.shape[1]] += add
if img.dtype == torch.float16:
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504)
@ -172,31 +184,33 @@ class Flux(nn.Module):
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args.get("transformer_options"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
img[:, txt.shape[1] : txt.shape[1] + add.shape[1], ...] += add
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
def process_img(self, x, index=0, h_offset=0, w_offset=0):
def process_img(self, x, index=0, h_offset=0, w_offset=0, transformer_options={}):
bs, c, h, w = x.shape
patch_size = self.patch_size
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
@ -208,10 +222,22 @@ class Flux(nn.Module):
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
steps_h = h_len
steps_w = w_len
rope_options = transformer_options.get("rope_options", None)
if rope_options is not None:
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
index += rope_options.get("shift_t", 0.0)
h_offset += rope_options.get("shift_y", 0.0)
w_offset += rope_options.get("shift_x", 0.0)
img_ids = torch.zeros((steps_h, steps_w, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=steps_h, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=steps_w, device=x.device, dtype=x.dtype).unsqueeze(0)
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
@ -227,18 +253,24 @@ class Flux(nn.Module):
h_len = ((h_orig + (patch_size // 2)) // patch_size)
w_len = ((w_orig + (patch_size // 2)) // patch_size)
img, img_ids = self.process_img(x)
img, img_ids = self.process_img(x, transformer_options=transformer_options)
img_tokens = img.shape[1]
if ref_latents is not None:
h = 0
w = 0
index = 0
index_ref_method = kwargs.get("ref_latents_method", "offset") == "index"
ref_latents_method = kwargs.get("ref_latents_method", "offset")
for ref in ref_latents:
if index_ref_method:
if ref_latents_method == "index":
index += 1
h_offset = 0
w_offset = 0
elif ref_latents_method == "uxo":
index = 0
h_offset = h_len * patch_size + h
w_offset = w_len * patch_size + w
h += ref.shape[-2]
w += ref.shape[-1]
else:
index = 1
h_offset = 0

View File

@ -109,6 +109,7 @@ class AsymmetricAttention(nn.Module):
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
crop_y,
transformer_options={},
**rope_rotation,
) -> Tuple[torch.Tensor, torch.Tensor]:
rope_cos = rope_rotation.get("rope_cos")
@ -143,7 +144,7 @@ class AsymmetricAttention(nn.Module):
xy = optimized_attention(q,
k,
v, self.num_heads, skip_reshape=True)
v, self.num_heads, skip_reshape=True, transformer_options=transformer_options)
x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1)
x = self.proj_x(x)
@ -224,6 +225,7 @@ class AsymmetricJointBlock(nn.Module):
x: torch.Tensor,
c: torch.Tensor,
y: torch.Tensor,
transformer_options={},
**attn_kwargs,
):
"""Forward pass of a block.
@ -256,6 +258,7 @@ class AsymmetricJointBlock(nn.Module):
y,
scale_x=scale_msa_x,
scale_y=scale_msa_y,
transformer_options=transformer_options,
**attn_kwargs,
)
@ -524,10 +527,11 @@ class AsymmDiTJoint(nn.Module):
args["txt"],
rope_cos=args["rope_cos"],
rope_sin=args["rope_sin"],
crop_y=args["num_tokens"]
crop_y=args["num_tokens"],
transformer_options=args["transformer_options"]
)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens, "transformer_options": transformer_options}, {"original_block": block_wrap})
y_feat = out["txt"]
x = out["img"]
else:
@ -538,6 +542,7 @@ class AsymmDiTJoint(nn.Module):
rope_cos=rope_cos,
rope_sin=rope_sin,
crop_y=num_tokens,
transformer_options=transformer_options,
) # (B, M, D), (B, L, D)
del y_feat # Final layers don't use dense text features.

View File

@ -72,8 +72,8 @@ class TimestepEmbed(nn.Module):
return t_emb
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2])
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, transformer_options={}):
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2], transformer_options=transformer_options)
class HiDreamAttnProcessor_flashattn:
@ -86,6 +86,7 @@ class HiDreamAttnProcessor_flashattn:
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
transformer_options={},
*args,
**kwargs,
) -> torch.FloatTensor:
@ -133,7 +134,7 @@ class HiDreamAttnProcessor_flashattn:
query = torch.cat([query_1, query_2], dim=-1)
key = torch.cat([key_1, key_2], dim=-1)
hidden_states = attention(query, key, value)
hidden_states = attention(query, key, value, transformer_options=transformer_options)
if not attn.single:
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
@ -199,6 +200,7 @@ class HiDreamAttention(nn.Module):
image_tokens_masks: torch.FloatTensor = None,
norm_text_tokens: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.Tensor:
return self.processor(
self,
@ -206,6 +208,7 @@ class HiDreamAttention(nn.Module):
image_tokens_masks = image_tokens_masks,
text_tokens = norm_text_tokens,
rope = rope,
transformer_options=transformer_options,
)
@ -406,7 +409,7 @@ class HiDreamImageSingleTransformerBlock(nn.Module):
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
@ -419,6 +422,7 @@ class HiDreamImageSingleTransformerBlock(nn.Module):
norm_image_tokens,
image_tokens_masks,
rope = rope,
transformer_options=transformer_options,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
@ -483,6 +487,7 @@ class HiDreamImageTransformerBlock(nn.Module):
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
@ -500,6 +505,7 @@ class HiDreamImageTransformerBlock(nn.Module):
image_tokens_masks,
norm_text_tokens,
rope = rope,
transformer_options=transformer_options,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
@ -550,6 +556,7 @@ class HiDreamImageBlock(nn.Module):
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
transformer_options={},
) -> torch.FloatTensor:
return self.block(
image_tokens,
@ -557,6 +564,7 @@ class HiDreamImageBlock(nn.Module):
text_tokens,
adaln_input,
rope,
transformer_options=transformer_options,
)
@ -786,6 +794,7 @@ class HiDreamImageTransformer2DModel(nn.Module):
text_tokens = cur_encoder_hidden_states,
adaln_input = adaln_input,
rope = rope,
transformer_options=transformer_options,
)
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
block_id += 1
@ -809,6 +818,7 @@ class HiDreamImageTransformer2DModel(nn.Module):
text_tokens=None,
adaln_input=adaln_input,
rope=rope,
transformer_options=transformer_options,
)
hidden_states = hidden_states[:, :hidden_states_seq_len]
block_id += 1

View File

@ -99,14 +99,16 @@ class Hunyuan3Dv2(nn.Module):
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
@ -115,7 +117,8 @@ class Hunyuan3Dv2(nn.Module):
txt=txt,
vec=vec,
pe=pe,
attn_mask=attn_mask)
attn_mask=attn_mask,
transformer_options=transformer_options)
img = torch.cat((txt, img), 1)
@ -126,17 +129,19 @@ class Hunyuan3Dv2(nn.Module):
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
attn_mask=args.get("attn_mask"),
transformer_options=args["transformer_options"])
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec,
"pe": pe,
"attn_mask": attn_mask},
"attn_mask": attn_mask,
"transformer_options": transformer_options},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, transformer_options=transformer_options)
img = img[:, txt.shape[1]:, ...]
img = self.final_layer(img, vec)

View File

@ -4,81 +4,458 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Union, Tuple, List, Callable, Optional
import numpy as np
from einops import repeat, rearrange
import math
from tqdm import tqdm
from typing import Optional
import logging
import comfy.ops
ops = comfy.ops.disable_weight_init
def generate_dense_grid_points(
bbox_min: np.ndarray,
bbox_max: np.ndarray,
octree_resolution: int,
indexing: str = "ij",
):
length = bbox_max - bbox_min
num_cells = octree_resolution
def fps(src: torch.Tensor, batch: torch.Tensor, sampling_ratio: float, start_random: bool = True):
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
# manually create the pointer vector
assert src.size(0) == batch.numel()
return xyz, grid_size, length
batch_size = int(batch.max()) + 1
deg = src.new_zeros(batch_size, dtype = torch.long)
deg.scatter_add_(0, batch, torch.ones_like(batch))
ptr_vec = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_vec[1:])
#return fps_sampling(src, ptr_vec, ratio)
sampled_indicies = []
for b in range(batch_size):
# start and the end of each batch
start, end = ptr_vec[b].item(), ptr_vec[b + 1].item()
# points from the point cloud
points = src[start:end]
num_points = points.size(0)
num_samples = max(1, math.ceil(num_points * sampling_ratio))
selected = torch.zeros(num_samples, device = src.device, dtype = torch.long)
distances = torch.full((num_points,), float("inf"), device = src.device)
# select a random start point
if start_random:
farthest = torch.randint(0, num_points, (1,), device = src.device)
else:
farthest = torch.tensor([0], device = src.device, dtype = torch.long)
for i in range(num_samples):
selected[i] = farthest
centroid = points[farthest].squeeze(0)
dist = torch.norm(points - centroid, dim = 1) # compute euclidean distance
distances = torch.minimum(distances, dist)
farthest = torch.argmax(distances)
sampled_indicies.append(torch.arange(start, end)[selected])
return torch.cat(sampled_indicies, dim = 0)
class PointCrossAttention(nn.Module):
def __init__(self,
num_latents: int,
downsample_ratio: float,
pc_size: int,
pc_sharpedge_size: int,
point_feats: int,
width: int,
heads: int,
layers: int,
fourier_embedder,
normal_pe: bool = False,
qkv_bias: bool = False,
use_ln_post: bool = True,
qk_norm: bool = True):
super().__init__()
self.fourier_embedder = fourier_embedder
self.pc_size = pc_size
self.normal_pe = normal_pe
self.downsample_ratio = downsample_ratio
self.pc_sharpedge_size = pc_sharpedge_size
self.num_latents = num_latents
self.point_feats = point_feats
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width)
self.cross_attn = ResidualCrossAttentionBlock(
width = width,
heads = heads,
qkv_bias = qkv_bias,
qk_norm = qk_norm
)
self.self_attn = None
if layers > 0:
self.self_attn = Transformer(
width = width,
heads = heads,
qkv_bias = qkv_bias,
qk_norm = qk_norm,
layers = layers
)
if use_ln_post:
self.ln_post = nn.LayerNorm(width)
else:
self.ln_post = None
def sample_points_and_latents(self, point_cloud: torch.Tensor, features: torch.Tensor):
"""
Subsample points randomly from the point cloud (input_pc)
Further sample the subsampled points to get query_pc
take the fourier embeddings for both input and query pc
Mental Note: FPS-sampled points (query_pc) act as latent tokens that attend to and learn from the broader context in input_pc.
Goal: get a smaller represenation (query_pc) to represent the entire scence structure by learning from a broader subset (input_pc).
More computationally efficient.
Features are additional information for each point in the cloud
"""
B, _, D = point_cloud.shape
num_latents = int(self.num_latents)
num_random_query = self.pc_size / (self.pc_size + self.pc_sharpedge_size) * num_latents
num_sharpedge_query = num_latents - num_random_query
# Split random and sharpedge surface points
random_pc, sharpedge_pc = torch.split(point_cloud, [self.pc_size, self.pc_sharpedge_size], dim=1)
# assert statements
assert random_pc.shape[1] <= self.pc_size, "Random surface points size must be less than or equal to pc_size"
assert sharpedge_pc.shape[1] <= self.pc_sharpedge_size, "Sharpedge surface points size must be less than or equal to pc_sharpedge_size"
input_random_pc_size = int(num_random_query * self.downsample_ratio)
random_query_pc, random_input_pc, random_idx_pc, random_idx_query = \
self.subsample(pc = random_pc, num_query = num_random_query, input_pc_size = input_random_pc_size)
input_sharpedge_pc_size = int(num_sharpedge_query * self.downsample_ratio)
if input_sharpedge_pc_size == 0:
sharpedge_input_pc = torch.zeros(B, 0, D, dtype = random_input_pc.dtype).to(point_cloud.device)
sharpedge_query_pc = torch.zeros(B, 0, D, dtype= random_query_pc.dtype).to(point_cloud.device)
else:
sharpedge_query_pc, sharpedge_input_pc, sharpedge_idx_pc, sharpedge_idx_query = \
self.subsample(pc = sharpedge_pc, num_query = num_sharpedge_query, input_pc_size = input_sharpedge_pc_size)
# concat the random and sharpedges
query_pc = torch.cat([random_query_pc, sharpedge_query_pc], dim = 1)
input_pc = torch.cat([random_input_pc, sharpedge_input_pc], dim = 1)
query = self.fourier_embedder(query_pc)
data = self.fourier_embedder(input_pc)
if self.point_feats > 0:
random_surface_features, sharpedge_surface_features = torch.split(features, [self.pc_size, self.pc_sharpedge_size], dim = 1)
input_random_surface_features, query_random_features = \
self.handle_features(features = random_surface_features, idx_pc = random_idx_pc, batch_size = B,
input_pc_size = input_random_pc_size, idx_query = random_idx_query)
if input_sharpedge_pc_size == 0:
input_sharpedge_surface_features = torch.zeros(B, 0, self.point_feats,
dtype = input_random_surface_features.dtype, device = point_cloud.device)
query_sharpedge_features = torch.zeros(B, 0, self.point_feats,
dtype = query_random_features.dtype, device = point_cloud.device)
else:
input_sharpedge_surface_features, query_sharpedge_features = \
self.handle_features(idx_pc = sharpedge_idx_pc, features = sharpedge_surface_features,
batch_size = B, idx_query = sharpedge_idx_query, input_pc_size = input_sharpedge_pc_size)
query_features = torch.cat([query_random_features, query_sharpedge_features], dim = 1)
input_features = torch.cat([input_random_surface_features, input_sharpedge_surface_features], dim = 1)
if self.normal_pe:
# apply the fourier embeddings on the first 3 dims (xyz)
input_features_pe = self.fourier_embedder(input_features[..., :3])
query_features_pe = self.fourier_embedder(query_features[..., :3])
# replace the first 3 dims with the new PE ones
input_features = torch.cat([input_features_pe, input_features[..., :3]], dim = -1)
query_features = torch.cat([query_features_pe, query_features[..., :3]], dim = -1)
# concat at the channels dim
query = torch.cat([query, query_features], dim = -1)
data = torch.cat([data, input_features], dim = -1)
# don't return pc_info to avoid unnecessary memory usuage
return query.view(B, -1, query.shape[-1]), data.view(B, -1, data.shape[-1])
def forward(self, point_cloud: torch.Tensor, features: torch.Tensor):
query, data = self.sample_points_and_latents(point_cloud = point_cloud, features = features)
# apply projections
query = self.input_proj(query)
data = self.input_proj(data)
# apply cross attention between query and data
latents = self.cross_attn(query, data)
if self.self_attn is not None:
latents = self.self_attn(latents)
if self.ln_post is not None:
latents = self.ln_post(latents)
return latents
class VanillaVolumeDecoder:
def subsample(self, pc, num_query, input_pc_size: int):
"""
num_query: number of points to keep after FPS
input_pc_size: number of points to select before FPS
"""
B, _, D = pc.shape
query_ratio = num_query / input_pc_size
# random subsampling of points inside the point cloud
idx_pc = torch.randperm(pc.shape[1], device = pc.device)[:input_pc_size]
input_pc = pc[:, idx_pc, :]
# flatten to allow applying fps across the whole batch
flattent_input_pc = input_pc.view(B * input_pc_size, D)
# construct a batch_down tensor to tell fps
# which points belong to which batch
N_down = int(flattent_input_pc.shape[0] / B)
batch_down = torch.arange(B).to(pc.device)
batch_down = torch.repeat_interleave(batch_down, N_down)
idx_query = fps(flattent_input_pc, batch_down, sampling_ratio = query_ratio)
query_pc = flattent_input_pc[idx_query].view(B, -1, D)
return query_pc, input_pc, idx_pc, idx_query
def handle_features(self, features, idx_pc, input_pc_size, batch_size: int, idx_query):
B = batch_size
input_surface_features = features[:, idx_pc, :]
flattent_input_features = input_surface_features.view(B * input_pc_size, -1)
query_features = flattent_input_features[idx_query].view(B, -1,
flattent_input_features.shape[-1])
return input_surface_features, query_features
def normalize_mesh(mesh, scale = 0.9999):
"""Normalize mesh to fit in [-scale, scale]. Translate mesh so its center is [0,0,0]"""
bbox = mesh.bounds
center = (bbox[1] + bbox[0]) / 2
max_extent = (bbox[1] - bbox[0]).max()
mesh.apply_translation(-center)
mesh.apply_scale((2 * scale) / max_extent)
return mesh
def sample_pointcloud(mesh, num = 200000):
""" Uniformly sample points from the surface of the mesh """
points, face_idx = mesh.sample(num, return_index = True)
normals = mesh.face_normals[face_idx]
return torch.from_numpy(points.astype(np.float32)), torch.from_numpy(normals.astype(np.float32))
def detect_sharp_edges(mesh, threshold=0.985):
"""Return edge indices (a, b) that lie on sharp boundaries of the mesh."""
V, F = mesh.vertices, mesh.faces
VN, FN = mesh.vertex_normals, mesh.face_normals
sharp_mask = np.ones(V.shape[0])
for i in range(3):
indices = F[:, i]
alignment = np.einsum('ij,ij->i', VN[indices], FN)
dot_stack = np.stack((sharp_mask[indices], alignment), axis=-1)
sharp_mask[indices] = np.min(dot_stack, axis=-1)
edge_a = np.concatenate([F[:, 0], F[:, 1], F[:, 2]])
edge_b = np.concatenate([F[:, 1], F[:, 2], F[:, 0]])
sharp_edges = (sharp_mask[edge_a] < threshold) & (sharp_mask[edge_b] < threshold)
return edge_a[sharp_edges], edge_b[sharp_edges]
def sharp_sample_pointcloud(mesh, num = 16384):
""" Sample points preferentially from sharp edges in the mesh. """
edge_a, edge_b = detect_sharp_edges(mesh)
V, VN = mesh.vertices, mesh.vertex_normals
va, vb = V[edge_a], V[edge_b]
na, nb = VN[edge_a], VN[edge_b]
edge_lengths = np.linalg.norm(vb - va, axis=-1)
weights = edge_lengths / edge_lengths.sum()
indices = np.searchsorted(np.cumsum(weights), np.random.rand(num))
t = np.random.rand(num, 1)
samples = t * va[indices] + (1 - t) * vb[indices]
normals = t * na[indices] + (1 - t) * nb[indices]
return samples.astype(np.float32), normals.astype(np.float32)
def load_surface_sharpedge(mesh, num_points=4096, num_sharp_points=4096, sharpedge_flag = True, device = "cuda"):
"""Load a surface with optional sharp-edge annotations from a trimesh mesh."""
import trimesh
try:
mesh_full = trimesh.util.concatenate(mesh.dump())
except Exception:
mesh_full = trimesh.util.concatenate(mesh)
mesh_full = normalize_mesh(mesh_full)
faces = mesh_full.faces
vertices = mesh_full.vertices
origin_face_count = faces.shape[0]
mesh_surface = trimesh.Trimesh(vertices=vertices, faces=faces[:origin_face_count])
mesh_fill = trimesh.Trimesh(vertices=vertices, faces=faces[origin_face_count:])
area_surface = mesh_surface.area
area_fill = mesh_fill.area
total_area = area_surface + area_fill
sample_num = 499712 // 2
fill_ratio = area_fill / total_area if total_area > 0 else 0
num_fill = int(sample_num * fill_ratio)
num_surface = sample_num - num_fill
surf_pts, surf_normals = sample_pointcloud(mesh_surface, num_surface)
fill_pts, fill_normals = (torch.zeros(0, 3), torch.zeros(0, 3)) if num_fill == 0 else sample_pointcloud(mesh_fill, num_fill)
sharp_pts, sharp_normals = sharp_sample_pointcloud(mesh_surface, sample_num)
def assemble_tensor(points, normals, label=None):
data = torch.cat([points, normals], dim=1).half().to(device)
if label is not None:
label_tensor = torch.full((data.shape[0], 1), float(label), dtype=torch.float16).to(device)
data = torch.cat([data, label_tensor], dim=1)
return data
surface = assemble_tensor(torch.cat([surf_pts.to(device), fill_pts.to(device)], dim=0),
torch.cat([surf_normals.to(device), fill_normals.to(device)], dim=0),
label = 0 if sharpedge_flag else None)
sharp_surface = assemble_tensor(torch.from_numpy(sharp_pts), torch.from_numpy(sharp_normals),
label = 1 if sharpedge_flag else None)
rng = np.random.default_rng()
surface = surface[rng.choice(surface.shape[0], num_points, replace = False)]
sharp_surface = sharp_surface[rng.choice(sharp_surface.shape[0], num_sharp_points, replace = False)]
full = torch.cat([surface, sharp_surface], dim = 0).unsqueeze(0)
return full
class SharpEdgeSurfaceLoader:
""" Load mesh surface and sharp edge samples. """
def __init__(self, num_uniform_points = 8192, num_sharp_points = 8192):
self.num_uniform_points = num_uniform_points
self.num_sharp_points = num_sharp_points
self.total_points = num_uniform_points + num_sharp_points
def __call__(self, mesh_input, device = "cuda"):
mesh = self._load_mesh(mesh_input)
return load_surface_sharpedge(mesh, self.num_uniform_points, self.num_sharp_points, device = device)
@staticmethod
def _load_mesh(mesh_input):
import trimesh
if isinstance(mesh_input, str):
mesh = trimesh.load(mesh_input, force="mesh", merge_primitives = True)
else:
mesh = mesh_input
if isinstance(mesh, trimesh.Scene):
combined = None
for obj in mesh.geometry.values():
combined = obj if combined is None else combined + obj
return combined
return mesh
class DiagonalGaussianDistribution:
def __init__(self, params: torch.Tensor, feature_dim: int = -1):
# divide quant channels (8) into mean and log variance
self.mean, self.logvar = torch.chunk(params, 2, dim = feature_dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.std = torch.exp(0.5 * self.logvar)
def sample(self):
eps = torch.randn_like(self.std)
z = self.mean + eps * self.std
return z
################################################
# Volume Decoder
################################################
class VanillaVolumeDecoder():
@torch.no_grad()
def __call__(
self,
latents: torch.FloatTensor,
geo_decoder: Callable,
bounds: Union[Tuple[float], List[float], float] = 1.01,
num_chunks: int = 10000,
octree_resolution: int = None,
enable_pbar: bool = True,
**kwargs,
):
device = latents.device
dtype = latents.dtype
batch_size = latents.shape[0]
def __call__(self, latents: torch.Tensor, geo_decoder: callable, octree_resolution: int, bounds = 1.01,
num_chunks: int = 10_000, enable_pbar: bool = True, **kwargs):
# 1. generate query points
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=octree_resolution,
indexing="ij"
)
xyz_samples = torch.from_numpy(xyz_samples).to(device, dtype=dtype).contiguous().reshape(-1, 3)
bbox_min, bbox_max = torch.tensor(bounds[:3]), torch.tensor(bounds[3:])
x = torch.linspace(bbox_min[0], bbox_max[0], int(octree_resolution) + 1, dtype = torch.float32)
y = torch.linspace(bbox_min[1], bbox_max[1], int(octree_resolution) + 1, dtype = torch.float32)
z = torch.linspace(bbox_min[2], bbox_max[2], int(octree_resolution) + 1, dtype = torch.float32)
[xs, ys, zs] = torch.meshgrid(x, y, z, indexing = "ij")
xyz = torch.stack((xs, ys, zs), axis=-1).to(latents.device, dtype = latents.dtype).contiguous().reshape(-1, 3)
grid_size = [int(octree_resolution) + 1, int(octree_resolution) + 1, int(octree_resolution) + 1]
# 2. latents to 3d volume
batch_logits = []
for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), desc="Volume Decoding",
for start in tqdm(range(0, xyz.shape[0], num_chunks), desc="Volume Decoding",
disable=not enable_pbar):
chunk_queries = xyz_samples[start: start + num_chunks, :]
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
logits = geo_decoder(queries=chunk_queries, latents=latents)
chunk_queries = xyz[start: start + num_chunks, :]
chunk_queries = chunk_queries.unsqueeze(0).repeat(latents.shape[0], 1, 1)
logits = geo_decoder(queries = chunk_queries, latents = latents)
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1)
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
grid_logits = torch.cat(batch_logits, dim = 1)
grid_logits = grid_logits.view((latents.shape[0], *grid_size)).float()
return grid_logits
class FourierEmbedder(nn.Module):
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
each feature dimension of `x[..., i]` into:
@ -175,13 +552,11 @@ class FourierEmbedder(nn.Module):
else:
return x
class CrossAttentionProcessor:
def __call__(self, attn, q, k, v):
out = comfy.ops.scaled_dot_product_attention(q, k, v)
return out
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
@ -232,38 +607,41 @@ class MLP(nn.Module):
def forward(self, x):
return self.drop_path(self.c_proj(self.gelu(self.c_fc(x))))
class QKVMultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
heads: int,
n_data = None,
width=None,
qk_norm=False,
norm_layer=ops.LayerNorm
):
super().__init__()
self.heads = heads
self.n_data = n_data
self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
self.attn_processor = CrossAttentionProcessor()
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
out = self.attn_processor(self, q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
q, k, v = [t.permute(0, 2, 1, 3) for t in (q, k, v)]
out = F.scaled_dot_product_attention(q, k, v)
out = out.transpose(1, 2).reshape(bs, n_ctx, -1)
return out
class MultiheadCrossAttention(nn.Module):
def __init__(
@ -306,7 +684,6 @@ class MultiheadCrossAttention(nn.Module):
x = self.c_proj(x)
return x
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
@ -366,7 +743,7 @@ class QKVMultiheadAttention(nn.Module):
q = self.q_norm(q)
k = self.k_norm(k)
q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v))
q, k, v = [t.permute(0, 2, 1, 3) for t in (q, k, v)]
out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1)
return out
@ -383,8 +760,7 @@ class MultiheadAttention(nn.Module):
drop_path_rate: float = 0.0
):
super().__init__()
self.width = width
self.heads = heads
self.c_qkv = ops.Linear(width, width * 3, bias=qkv_bias)
self.c_proj = ops.Linear(width, width)
self.attention = QKVMultiheadAttention(
@ -491,7 +867,7 @@ class CrossAttentionDecoder(nn.Module):
self.query_proj = ops.Linear(self.fourier_embedder.out_dim, width)
if self.downsample_ratio != 1:
self.latents_proj = ops.Linear(width * downsample_ratio, width)
if self.enable_ln_post == False:
if not self.enable_ln_post:
qk_norm = False
self.cross_attn_decoder = ResidualCrossAttentionBlock(
width=width,
@ -522,28 +898,44 @@ class CrossAttentionDecoder(nn.Module):
class ShapeVAE(nn.Module):
def __init__(
self,
*,
embed_dim: int,
width: int,
heads: int,
num_decoder_layers: int,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
include_pi: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary",
drop_path_rate: float = 0.0,
scale_factor: float = 1.0,
self,
*,
num_latents: int = 4096,
embed_dim: int = 64,
width: int = 1024,
heads: int = 16,
num_decoder_layers: int = 16,
num_encoder_layers: int = 8,
pc_size: int = 81920,
pc_sharpedge_size: int = 0,
point_feats: int = 4,
downsample_ratio: int = 20,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
qkv_bias: bool = False,
qk_norm: bool = True,
drop_path_rate: float = 0.0,
include_pi: bool = False,
scale_factor: float = 1.0039506158752403,
label_type: str = "binary",
):
super().__init__()
self.geo_decoder_ln_post = geo_decoder_ln_post
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
self.encoder = PointCrossAttention(layers = num_encoder_layers,
num_latents = num_latents,
downsample_ratio = downsample_ratio,
heads = heads,
pc_size = pc_size,
width = width,
point_feats = point_feats,
fourier_embedder = self.fourier_embedder,
pc_sharpedge_size = pc_sharpedge_size)
self.post_kl = ops.Linear(embed_dim, width)
self.transformer = Transformer(
@ -583,5 +975,14 @@ class ShapeVAE(nn.Module):
grid_logits = self.volume_decoder(latents, self.geo_decoder, bounds=bounds, num_chunks=num_chunks, octree_resolution=octree_resolution, enable_pbar=enable_pbar)
return grid_logits.movedim(-2, -1)
def encode(self, x):
return None
def encode(self, surface):
pc, feats = surface[:, :, :3], surface[:, :, 3:]
latents = self.encoder(pc, feats)
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feature_dim = -1)
latents = posterior.sample()
return latents

View File

@ -0,0 +1,659 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, operations, device, dtype):
super().__init__()
self.proj = operations.Linear(dim_in, dim_out, device = device, dtype = dtype)
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
if gate.device.type == "mps":
return F.gelu(gate.to(dtype = torch.float32)).to(dtype = gate.dtype)
return F.gelu(gate)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class FeedForward(nn.Module):
def __init__(self, dim: int, dim_out = None, mult: int = 4,
dropout: float = 0.0, inner_dim = None, operations = None, device = None, dtype = None):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
act_fn = GELU(dim, inner_dim, operations = operations, device = device, dtype = dtype)
self.net = nn.ModuleList([])
self.net.append(act_fn)
self.net.append(nn.Dropout(dropout))
self.net.append(operations.Linear(inner_dim, dim_out, device = device, dtype = dtype))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class AddAuxLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, x, loss):
# do nothing in forward (no computation)
ctx.requires_aux_loss = loss.requires_grad
ctx.dtype = loss.dtype
return x
@staticmethod
def backward(ctx, grad_output):
# add the aux loss gradients
grad_loss = None
# put the aux grad the same as the main grad loss
# aux grad contributes equally
if ctx.requires_aux_loss:
grad_loss = torch.ones(1, dtype = ctx.dtype, device = grad_output.device)
return grad_output, grad_loss
class MoEGate(nn.Module):
def __init__(self, embed_dim, num_experts=16, num_experts_per_tok=2, aux_loss_alpha=0.01, device = None, dtype = None):
super().__init__()
self.top_k = num_experts_per_tok
self.n_routed_experts = num_experts
self.alpha = aux_loss_alpha
self.gating_dim = embed_dim
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), device = device, dtype = dtype))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# flatten hidden states
hidden_states = hidden_states.view(-1, hidden_states.size(-1))
# get logits and pass it to softmax
logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), bias = None)
scores = logits.softmax(dim = -1)
topk_weight, topk_idx = torch.topk(scores, k = self.top_k, dim = -1, sorted = False)
if self.training and self.alpha > 0.0:
scores_for_aux = scores
# used bincount instead of one hot encoding
counts = torch.bincount(topk_idx.view(-1), minlength = self.n_routed_experts).float()
ce = counts / topk_idx.numel() # normalized expert usage
# mean expert score
Pi = scores_for_aux.mean(0)
# expert balance loss
aux_loss = (Pi * ce * self.n_routed_experts).sum() * self.alpha
else:
aux_loss = None
return topk_idx, topk_weight, aux_loss
class MoEBlock(nn.Module):
def __init__(self, dim, num_experts: int = 6, moe_top_k: int = 2, dropout: float = 0.0,
ff_inner_dim: int = None, operations = None, device = None, dtype = None):
super().__init__()
self.moe_top_k = moe_top_k
self.num_experts = num_experts
self.experts = nn.ModuleList([
FeedForward(dim, dropout = dropout, inner_dim = ff_inner_dim, operations = operations, device = device, dtype = dtype)
for _ in range(num_experts)
])
self.gate = MoEGate(dim, num_experts = num_experts, num_experts_per_tok = moe_top_k, device = device, dtype = dtype)
self.shared_experts = FeedForward(dim, dropout = dropout, inner_dim = ff_inner_dim, operations = operations, device = device, dtype = dtype)
def forward(self, hidden_states) -> torch.Tensor:
identity = hidden_states
orig_shape = hidden_states.shape
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
hidden_states = hidden_states.repeat_interleave(self.moe_top_k, dim = 0)
y = torch.empty_like(hidden_states, dtype = hidden_states.dtype)
for i, expert in enumerate(self.experts):
tmp = expert(hidden_states[flat_topk_idx == i])
y[flat_topk_idx == i] = tmp.to(hidden_states.dtype)
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim = 1)
y = y.view(*orig_shape)
y = AddAuxLoss.apply(y, aux_loss)
else:
y = self.moe_infer(hidden_states, flat_expert_indices = flat_topk_idx,flat_expert_weights = topk_weight.view(-1, 1)).view(*orig_shape)
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
# no need for .numpy().cpu() here
tokens_per_expert = flat_expert_indices.bincount().cumsum(0)
token_idxs = idxs // self.moe_top_k
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
# use index_add_ with a 1-D index tensor directly avoids building a large [N, D] index map and extra memcopy required by scatter_reduce_
# + avoid dtype conversion
expert_cache.index_add_(0, exp_token_idx, expert_out)
return expert_cache
class Timesteps(nn.Module):
def __init__(self, num_channels: int, downscale_freq_shift: float = 0.0,
scale: float = 1.0, max_period: int = 10000):
super().__init__()
self.num_channels = num_channels
half_dim = num_channels // 2
# precompute the “inv_freq” vector once
exponent = -math.log(max_period) * torch.arange(
half_dim, dtype=torch.float32
) / (half_dim - downscale_freq_shift)
inv_freq = torch.exp(exponent)
# pad
if num_channels % 2 == 1:
# well pad a zero at the end of the cos-half
inv_freq = torch.cat([inv_freq, inv_freq.new_zeros(1)])
# register to buffer so it moves with the device
self.register_buffer("inv_freq", inv_freq, persistent = False)
self.scale = scale
def forward(self, timesteps: torch.Tensor):
x = timesteps.float().unsqueeze(1) * self.inv_freq.to(timesteps.device).unsqueeze(0)
# fused CUDA kernels for sin and cos
sin_emb = x.sin()
cos_emb = x.cos()
emb = torch.cat([sin_emb, cos_emb], dim = 1)
# scale factor
if self.scale != 1.0:
emb = emb * self.scale
# If we padded inv_freq for odd, emb is already wide enough; otherwise:
if emb.shape[1] > self.num_channels:
emb = emb[:, :self.num_channels]
return emb
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size = 256, cond_proj_dim = None, operations = None, device = None, dtype = None):
super().__init__()
self.mlp = nn.Sequential(
operations.Linear(hidden_size, frequency_embedding_size, bias=True, device = device, dtype = dtype),
nn.GELU(),
operations.Linear(frequency_embedding_size, hidden_size, bias=True, device = device, dtype = dtype),
)
self.frequency_embedding_size = frequency_embedding_size
if cond_proj_dim is not None:
self.cond_proj = operations.Linear(cond_proj_dim, frequency_embedding_size, bias=False, device = device, dtype = dtype)
self.time_embed = Timesteps(hidden_size)
def forward(self, timesteps, condition):
timestep_embed = self.time_embed(timesteps).type(self.mlp[0].weight.dtype)
if condition is not None:
cond_embed = self.cond_proj(condition)
timestep_embed = timestep_embed + cond_embed
time_conditioned = self.mlp(timestep_embed)
# for broadcasting with image tokens
return time_conditioned.unsqueeze(1)
class MLP(nn.Module):
def __init__(self, *, width: int, operations = None, device = None, dtype = None):
super().__init__()
self.width = width
self.fc1 = operations.Linear(width, width * 4, device = device, dtype = dtype)
self.fc2 = operations.Linear(width * 4, width, device = device, dtype = dtype)
self.gelu = nn.GELU()
def forward(self, x):
return self.fc2(self.gelu(self.fc1(x)))
class CrossAttention(nn.Module):
def __init__(
self,
qdim,
kdim,
num_heads,
qkv_bias=True,
qk_norm=False,
norm_layer=nn.LayerNorm,
use_fp16: bool = False,
operations = None,
dtype = None,
device = None,
**kwargs,
):
super().__init__()
self.qdim = qdim
self.kdim = kdim
self.num_heads = num_heads
self.head_dim = self.qdim // num_heads
self.scale = self.head_dim ** -0.5
self.to_q = operations.Linear(qdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
self.to_k = operations.Linear(kdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
self.to_v = operations.Linear(kdim, qdim, bias=qkv_bias, device = device, dtype = dtype)
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
if norm_layer == nn.LayerNorm:
norm_layer = operations.LayerNorm
else:
norm_layer = operations.RMSNorm
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.out_proj = operations.Linear(qdim, qdim, bias=True, device = device, dtype = dtype)
def forward(self, x, y):
b, s1, _ = x.shape
_, s2, _ = y.shape
y = y.to(next(self.to_k.parameters()).dtype)
q = self.to_q(x)
k = self.to_k(y)
v = self.to_v(y)
kv = torch.cat((k, v), dim=-1)
split_size = kv.shape[-1] // self.num_heads // 2
kv = kv.view(1, -1, self.num_heads, split_size * 2)
k, v = torch.split(kv, split_size, dim=-1)
q = q.view(b, s1, self.num_heads, self.head_dim)
k = k.view(b, s2, self.num_heads, self.head_dim)
v = v.reshape(b, s2, self.num_heads * self.head_dim)
q = self.q_norm(q)
k = self.k_norm(k)
x = optimized_attention(
q.reshape(b, s1, self.num_heads * self.head_dim),
k.reshape(b, s2, self.num_heads * self.head_dim),
v,
heads=self.num_heads,
)
out = self.out_proj(x)
return out
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads,
qkv_bias = True,
qk_norm = False,
norm_layer = nn.LayerNorm,
use_fp16: bool = False,
operations = None,
device = None,
dtype = None
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = self.dim // num_heads
self.scale = self.head_dim ** -0.5
self.to_q = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
self.to_k = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
self.to_v = operations.Linear(dim, dim, bias = qkv_bias, device = device, dtype = dtype)
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
if norm_layer == nn.LayerNorm:
norm_layer = operations.LayerNorm
else:
norm_layer = operations.RMSNorm
self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps = eps, device = device, dtype = dtype) if qk_norm else nn.Identity()
self.out_proj = operations.Linear(dim, dim, device = device, dtype = dtype)
def forward(self, x):
B, N, _ = x.shape
query = self.to_q(x)
key = self.to_k(x)
value = self.to_v(x)
qkv_combined = torch.cat((query, key, value), dim=-1)
split_size = qkv_combined.shape[-1] // self.num_heads // 3
qkv = qkv_combined.view(1, -1, self.num_heads, split_size * 3)
query, key, value = torch.split(qkv, split_size, dim=-1)
query = query.reshape(B, N, self.num_heads, self.head_dim)
key = key.reshape(B, N, self.num_heads, self.head_dim)
value = value.reshape(B, N, self.num_heads * self.head_dim)
query = self.q_norm(query)
key = self.k_norm(key)
x = optimized_attention(
query.reshape(B, N, self.num_heads * self.head_dim),
key.reshape(B, N, self.num_heads * self.head_dim),
value,
heads=self.num_heads,
)
x = self.out_proj(x)
return x
class HunYuanDiTBlock(nn.Module):
def __init__(
self,
hidden_size,
c_emb_size,
num_heads,
text_states_dim=1024,
qk_norm=False,
norm_layer=nn.LayerNorm,
qk_norm_layer=True,
qkv_bias=True,
skip_connection=True,
timested_modulate=False,
use_moe: bool = False,
num_experts: int = 8,
moe_top_k: int = 2,
use_fp16: bool = False,
operations = None,
device = None, dtype = None
):
super().__init__()
# eps can't be 1e-6 in fp16 mode because of numerical stability issues
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
self.norm1 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm,
norm_layer=qk_norm_layer, use_fp16 = use_fp16, device = device, dtype = dtype, operations = operations)
self.norm2 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.timested_modulate = timested_modulate
if self.timested_modulate:
self.default_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(c_emb_size, hidden_size, bias=True, device = device, dtype = dtype)
)
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=qkv_bias,
qk_norm=qk_norm, norm_layer=qk_norm_layer, use_fp16 = use_fp16,
device = device, dtype = dtype, operations = operations)
self.norm3 = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
if skip_connection:
self.skip_norm = norm_layer(hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, device = device, dtype = dtype)
else:
self.skip_linear = None
self.use_moe = use_moe
if self.use_moe:
self.moe = MoEBlock(
hidden_size,
num_experts = num_experts,
moe_top_k = moe_top_k,
dropout = 0.0,
ff_inner_dim = int(hidden_size * 4.0),
device = device, dtype = dtype,
operations = operations
)
else:
self.mlp = MLP(width=hidden_size, operations=operations, device = device, dtype = dtype)
def forward(self, hidden_states, conditioning=None, text_states=None, skip_tensor=None):
if self.skip_linear is not None:
combined = torch.cat([skip_tensor, hidden_states], dim=-1)
hidden_states = self.skip_linear(combined)
hidden_states = self.skip_norm(hidden_states)
# self attention
if self.timested_modulate:
modulation_shift = self.default_modulation(conditioning).unsqueeze(dim=1)
hidden_states = hidden_states + modulation_shift
self_attn_out = self.attn1(self.norm1(hidden_states))
hidden_states = hidden_states + self_attn_out
# cross attention
hidden_states = hidden_states + self.attn2(self.norm2(hidden_states), text_states)
# MLP Layer
mlp_input = self.norm3(hidden_states)
if self.use_moe:
hidden_states = hidden_states + self.moe(mlp_input)
else:
hidden_states = hidden_states + self.mlp(mlp_input)
return hidden_states
class FinalLayer(nn.Module):
def __init__(self, final_hidden_size, out_channels, operations, use_fp16: bool = False, device = None, dtype = None):
super().__init__()
if use_fp16:
eps = 1.0 / 65504
else:
eps = 1e-6
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine = True, eps = eps, device = device, dtype = dtype)
self.linear = operations.Linear(final_hidden_size, out_channels, bias = True, device = device, dtype = dtype)
def forward(self, x):
x = self.norm_final(x)
x = x[:, 1:]
x = self.linear(x)
return x
class HunYuanDiTPlain(nn.Module):
# init with the defaults values from https://huggingface.co/tencent/Hunyuan3D-2.1/blob/main/hunyuan3d-dit-v2-1/config.yaml
def __init__(
self,
in_channels: int = 64,
hidden_size: int = 2048,
context_dim: int = 1024,
depth: int = 21,
num_heads: int = 16,
qk_norm: bool = True,
qkv_bias: bool = False,
num_moe_layers: int = 6,
guidance_cond_proj_dim = 2048,
norm_type = 'layer',
num_experts: int = 8,
moe_top_k: int = 2,
use_fp16: bool = False,
dtype = None,
device = None,
operations = None,
**kwargs
):
self.dtype = dtype
super().__init__()
self.depth = depth
self.in_channels = in_channels
self.out_channels = in_channels
self.num_heads = num_heads
self.hidden_size = hidden_size
norm = operations.LayerNorm if norm_type == 'layer' else operations.RMSNorm
qk_norm = operations.RMSNorm
self.context_dim = context_dim
self.guidance_cond_proj_dim = guidance_cond_proj_dim
self.x_embedder = operations.Linear(in_channels, hidden_size, bias = True, device = device, dtype = dtype)
self.t_embedder = TimestepEmbedder(hidden_size, hidden_size * 4, cond_proj_dim = guidance_cond_proj_dim, device = device, dtype = dtype, operations = operations)
# HUnYuanDiT Blocks
self.blocks = nn.ModuleList([
HunYuanDiTBlock(hidden_size=hidden_size,
c_emb_size=hidden_size,
num_heads=num_heads,
text_states_dim=context_dim,
qk_norm=qk_norm,
norm_layer = norm,
qk_norm_layer = qk_norm,
skip_connection=layer > depth // 2,
qkv_bias=qkv_bias,
use_moe=True if depth - layer <= num_moe_layers else False,
num_experts=num_experts,
moe_top_k=moe_top_k,
use_fp16 = use_fp16,
device = device, dtype = dtype, operations = operations)
for layer in range(depth)
])
self.depth = depth
self.final_layer = FinalLayer(hidden_size, self.out_channels, use_fp16 = use_fp16, operations = operations, device = device, dtype = dtype)
def forward(self, x, t, context, transformer_options = {}, **kwargs):
x = x.movedim(-1, -2)
uncond_emb, cond_emb = context.chunk(2, dim = 0)
context = torch.cat([cond_emb, uncond_emb], dim = 0)
main_condition = context
t = 1.0 - t
time_embedded = self.t_embedder(t, condition = kwargs.get('guidance_cond'))
x = x.to(dtype = next(self.x_embedder.parameters()).dtype)
x_embedded = self.x_embedder(x)
combined = torch.cat([time_embedded, x_embedded], dim=1)
def block_wrap(args):
return block(
args["x"],
args["t"],
args["cond"],
skip_tensor=args.get("skip"),)
skip_stack = []
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for idx, block in enumerate(self.blocks):
if idx <= self.depth // 2:
skip_input = None
else:
skip_input = skip_stack.pop()
if ("block", idx) in blocks_replace:
combined = blocks_replace[("block", idx)](
{
"x": combined,
"t": time_embedded,
"cond": main_condition,
"skip": skip_input,
},
{"original_block": block_wrap},
)
else:
combined = block(combined, time_embedded, main_condition, skip_tensor=skip_input)
if idx < self.depth // 2:
skip_stack.append(combined)
output = self.final_layer(combined)
output = output.movedim(-2, -1) * (-1.0)
cond_emb, uncond_emb = output.chunk(2, dim = 0)
return torch.cat([uncond_emb, cond_emb])

View File

@ -6,7 +6,6 @@ import comfy.ldm.flux.layers
import comfy.ldm.modules.diffusionmodules.mmdit
from comfy.ldm.modules.attention import optimized_attention
from dataclasses import dataclass
from einops import repeat
@ -40,6 +39,10 @@ class HunyuanVideoParams:
patch_size: list
qkv_bias: bool
guidance_embed: bool
byt5: bool
meanflow: bool
use_cond_type_embedding: bool
vision_in_dim: int
class SelfAttentionRef(nn.Module):
@ -78,13 +81,13 @@ class TokenRefinerBlock(nn.Module):
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, x, c, mask):
def forward(self, x, c, mask, transformer_options={}):
mod1, mod2 = self.adaLN_modulation(c).chunk(2, dim=1)
norm_x = self.norm1(x)
qkv = self.self_attn.qkv(norm_x)
q, k, v = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, self.heads, -1).permute(2, 0, 3, 1, 4)
attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True)
attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True, transformer_options=transformer_options)
x = x + self.self_attn.proj(attn) * mod1.unsqueeze(1)
x = x + self.mlp(self.norm2(x)) * mod2.unsqueeze(1)
@ -115,14 +118,14 @@ class IndividualTokenRefiner(nn.Module):
]
)
def forward(self, x, c, mask):
def forward(self, x, c, mask, transformer_options={}):
m = None
if mask is not None:
m = mask.view(mask.shape[0], 1, 1, mask.shape[1]).repeat(1, 1, mask.shape[1], 1)
m = m + m.transpose(2, 3)
for block in self.blocks:
x = block(x, c, m)
x = block(x, c, m, transformer_options=transformer_options)
return x
@ -150,17 +153,45 @@ class TokenRefiner(nn.Module):
x,
timesteps,
mask,
transformer_options={},
):
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
# m = mask.float().unsqueeze(-1)
# c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise
c = x.sum(dim=1) / x.shape[1]
if x.dtype == torch.float16:
c = x.float().sum(dim=1) / x.shape[1]
else:
c = x.sum(dim=1) / x.shape[1]
c = t + self.c_embedder(c.to(x.dtype))
x = self.input_embedder(x)
x = self.individual_token_refiner(x, c, mask)
x = self.individual_token_refiner(x, c, mask, transformer_options=transformer_options)
return x
class ByT5Mapper(nn.Module):
def __init__(self, in_dim, out_dim, hidden_dim, out_dim1, use_res=False, dtype=None, device=None, operations=None):
super().__init__()
self.layernorm = operations.LayerNorm(in_dim, dtype=dtype, device=device)
self.fc1 = operations.Linear(in_dim, hidden_dim, dtype=dtype, device=device)
self.fc2 = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
self.fc3 = operations.Linear(out_dim, out_dim1, dtype=dtype, device=device)
self.use_res = use_res
self.act_fn = nn.GELU()
def forward(self, x):
if self.use_res:
res = x
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
x2 = self.act_fn(x)
x2 = self.fc3(x2)
if self.use_res:
x2 = x2 + res
return x2
class HunyuanVideo(nn.Module):
"""
Transformer model for flow matching on sequences.
@ -169,11 +200,15 @@ class HunyuanVideo(nn.Module):
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.dtype = dtype
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
params = HunyuanVideoParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
self.use_cond_type_embedding = params.use_cond_type_embedding
self.vision_in_dim = params.vision_in_dim
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
@ -185,9 +220,13 @@ class HunyuanVideo(nn.Module):
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=True, dtype=dtype, device=device, operations=operations)
self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=len(self.patch_size) == 3, dtype=dtype, device=device, operations=operations)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
if params.vec_in_dim is not None:
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.vector_in = None
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
)
@ -215,9 +254,38 @@ class HunyuanVideo(nn.Module):
]
)
if params.byt5:
self.byt5_in = ByT5Mapper(
in_dim=1472,
out_dim=2048,
hidden_dim=2048,
out_dim1=self.hidden_size,
use_res=False,
dtype=dtype, device=device, operations=operations
)
else:
self.byt5_in = None
if params.meanflow:
self.time_r_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.time_r_in = None
if final_layer:
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
# HunyuanVideo 1.5 specific modules
if self.vision_in_dim is not None:
from comfy.ldm.wan.model import MLPProj
self.vision_in = MLPProj(in_dim=self.vision_in_dim, out_dim=self.hidden_size, operation_settings=operation_settings)
else:
self.vision_in = None
if self.use_cond_type_embedding:
# 0: text_encoder feature 1: byt5 feature 2: vision_encoder feature
self.cond_type_embedding = nn.Embedding(3, self.hidden_size)
else:
self.cond_type_embedding = None
def forward_orig(
self,
img: Tensor,
@ -226,10 +294,13 @@ class HunyuanVideo(nn.Module):
txt_ids: Tensor,
txt_mask: Tensor,
timesteps: Tensor,
y: Tensor,
y: Tensor = None,
txt_byt5=None,
clip_fea=None,
guidance: Tensor = None,
guiding_frame_index=None,
ref_latent=None,
disable_time_r=False,
control=None,
transformer_options={},
) -> Tensor:
@ -240,6 +311,14 @@ class HunyuanVideo(nn.Module):
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
if (self.time_r_in is not None) and (not disable_time_r):
w = torch.where(transformer_options['sigmas'][0] == transformer_options['sample_sigmas'])[0] # This most likely could be improved
if len(w) > 0:
timesteps_r = transformer_options['sample_sigmas'][w[0] + 1]
timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype)
vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype))
vec = (vec + vec_r) / 2
if ref_latent is not None:
ref_latent_ids = self.img_ids(ref_latent)
ref_latent = self.img_in(ref_latent)
@ -250,13 +329,17 @@ class HunyuanVideo(nn.Module):
if guiding_frame_index is not None:
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
if self.vector_in is not None:
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
else:
vec = torch.cat([(token_replace_vec).unsqueeze(1), (vec).unsqueeze(1)], dim=1)
frame_tokens = (initial_shape[-1] // self.patch_size[-1]) * (initial_shape[-2] // self.patch_size[-2])
modulation_dims = [(0, frame_tokens, 0), (frame_tokens, None, 1)]
modulation_dims_txt = [(0, None, 1)]
else:
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
if self.vector_in is not None:
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
modulation_dims = None
modulation_dims_txt = None
@ -267,7 +350,32 @@ class HunyuanVideo(nn.Module):
if txt_mask is not None and not torch.is_floating_point(txt_mask):
txt_mask = (txt_mask - 1).to(img.dtype) * torch.finfo(img.dtype).max
txt = self.txt_in(txt, timesteps, txt_mask)
txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options)
if self.cond_type_embedding is not None:
self.cond_type_embedding.to(txt.device)
cond_emb = self.cond_type_embedding(torch.zeros_like(txt[:, :, 0], device=txt.device, dtype=torch.long))
txt = txt + cond_emb.to(txt.dtype)
if self.byt5_in is not None and txt_byt5 is not None:
txt_byt5 = self.byt5_in(txt_byt5)
if self.cond_type_embedding is not None:
cond_emb = self.cond_type_embedding(torch.ones_like(txt_byt5[:, :, 0], device=txt_byt5.device, dtype=torch.long))
txt_byt5 = txt_byt5 + cond_emb.to(txt_byt5.dtype)
txt = torch.cat((txt_byt5, txt), dim=1) # byt5 first for HunyuanVideo1.5
else:
txt = torch.cat((txt, txt_byt5), dim=1)
txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1)
if clip_fea is not None:
txt_vision_states = self.vision_in(clip_fea)
if self.cond_type_embedding is not None:
cond_emb = self.cond_type_embedding(2 * torch.ones_like(txt_vision_states[:, :, 0], dtype=torch.long, device=txt_vision_states.device))
txt_vision_states = txt_vision_states + cond_emb
txt = torch.cat((txt_vision_states.to(txt.dtype), txt), dim=1)
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
ids = torch.cat((img_ids, txt_ids), dim=1)
pe = self.pe_embedder(ids)
@ -285,14 +393,14 @@ class HunyuanVideo(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"])
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims_img=args["modulation_dims_img"], modulation_dims_txt=args["modulation_dims_txt"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims_img': modulation_dims, 'modulation_dims_txt': modulation_dims_txt, 'transformer_options': transformer_options}, {"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt)
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims_img=modulation_dims, modulation_dims_txt=modulation_dims_txt, transformer_options=transformer_options)
if control is not None: # Controlnet
control_i = control.get("input")
@ -307,13 +415,13 @@ class HunyuanVideo(nn.Module):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"])
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"], modulation_dims=args["modulation_dims"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims}, {"original_block": block_wrap})
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask, 'modulation_dims': modulation_dims, 'transformer_options': transformer_options}, {"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims)
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims, transformer_options=transformer_options)
if control is not None: # Controlnet
control_o = control.get("output")
@ -328,12 +436,16 @@ class HunyuanVideo(nn.Module):
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
shape = initial_shape[-3:]
shape = initial_shape[-len(self.patch_size):]
for i in range(len(shape)):
shape[i] = shape[i] // self.patch_size[i]
img = img.reshape([img.shape[0]] + shape + [self.out_channels] + self.patch_size)
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
if img.ndim == 8:
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
else:
img = img.permute(0, 3, 1, 4, 2, 5)
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3])
return img
def img_ids(self, x):
@ -348,16 +460,30 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
return repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
def img_ids_2d(self, x):
bs, c, h, w = x.shape
patch_size = self.patch_size
h_len = ((h + (patch_size[0] // 2)) // patch_size[0])
w_len = ((w + (patch_size[1] // 2)) // patch_size[1])
img_ids = torch.zeros((h_len, w_len, 2), device=x.device, dtype=x.dtype)
img_ids[:, :, 0] = img_ids[:, :, 0] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, guidance, attention_mask, guiding_frame_index, ref_latent, control, transformer_options, **kwargs)
).execute(x, timestep, context, y, txt_byt5, clip_fea, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
img_ids = self.img_ids(x)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, ref_latent, control=control, transformer_options=transformer_options)
def _forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
bs = x.shape[0]
if len(self.patch_size) == 3:
img_ids = self.img_ids(x)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
else:
img_ids = self.img_ids_2d(x)
txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, clip_fea, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
return out

View File

@ -0,0 +1,120 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm, ResnetBlock, VideoConv3d
import model_management, model_patcher
class SRResidualCausalBlock3D(nn.Module):
def __init__(self, channels: int):
super().__init__()
self.block = nn.Sequential(
VideoConv3d(channels, channels, kernel_size=3),
nn.SiLU(inplace=True),
VideoConv3d(channels, channels, kernel_size=3),
nn.SiLU(inplace=True),
VideoConv3d(channels, channels, kernel_size=3),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.block(x)
class SRModel3DV2(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int = 64,
num_blocks: int = 6,
global_residual: bool = False,
):
super().__init__()
self.in_conv = VideoConv3d(in_channels, hidden_channels, kernel_size=3)
self.blocks = nn.ModuleList([SRResidualCausalBlock3D(hidden_channels) for _ in range(num_blocks)])
self.out_conv = VideoConv3d(hidden_channels, out_channels, kernel_size=3)
self.global_residual = bool(global_residual)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
y = self.in_conv(x)
for blk in self.blocks:
y = blk(y)
y = self.out_conv(y)
if self.global_residual and (y.shape == residual.shape):
y = y + residual
return y
class Upsampler(nn.Module):
def __init__(
self,
z_channels: int,
out_channels: int,
block_out_channels: tuple[int, ...],
num_res_blocks: int = 2,
):
super().__init__()
self.num_res_blocks = num_res_blocks
self.block_out_channels = block_out_channels
self.z_channels = z_channels
ch = block_out_channels[0]
self.conv_in = VideoConv3d(z_channels, ch, kernel_size=3)
self.up = nn.ModuleList()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_shortcut=False,
conv_op=VideoConv3d, norm_op=RMS_norm)
for j in range(num_res_blocks + 1)])
ch = tgt
self.up.append(stage)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, out_channels, kernel_size=3)
def forward(self, z):
"""
Args:
z: (B, C, T, H, W)
target_shape: (H, W)
"""
# z to block_in
repeats = self.block_out_channels[0] // (self.z_channels)
x = self.conv_in(z) + z.repeat_interleave(repeats=repeats, dim=1)
# upsampling
for stage in self.up:
for blk in stage.block:
x = blk(x)
out = self.conv_out(F.silu(self.norm_out(x)))
return out
UPSAMPLERS = {
"720p": SRModel3DV2,
"1080p": Upsampler,
}
class HunyuanVideo15SRModel():
def __init__(self, model_type, config):
self.load_device = model_management.vae_device()
offload_device = model_management.vae_offload_device()
self.dtype = model_management.vae_dtype(self.load_device)
self.model_class = UPSAMPLERS.get(model_type)
self.model = self.model_class(**config).eval()
self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=True)
def get_sd(self):
return self.model.state_dict()
def resample_latent(self, latent):
model_management.load_model_gpu(self.patcher)
return self.model(latent.to(self.load_device))

View File

@ -0,0 +1,136 @@
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock
import comfy.ops
ops = comfy.ops.disable_weight_init
class PixelShuffle2D(nn.Module):
def __init__(self, in_dim, out_dim, op=ops.Conv2d):
super().__init__()
self.conv = op(in_dim, out_dim >> 2, 3, 1, 1)
self.ratio = (in_dim << 2) // out_dim
def forward(self, x):
b, c, h, w = x.shape
h2, w2 = h >> 1, w >> 1
y = self.conv(x).view(b, -1, h2, 2, w2, 2).permute(0, 3, 5, 1, 2, 4).reshape(b, -1, h2, w2)
r = x.view(b, c, h2, 2, w2, 2).permute(0, 3, 5, 1, 2, 4).reshape(b, c << 2, h2, w2)
return y + r.view(b, y.shape[1], self.ratio, h2, w2).mean(2)
class PixelUnshuffle2D(nn.Module):
def __init__(self, in_dim, out_dim, op=ops.Conv2d):
super().__init__()
self.conv = op(in_dim, out_dim << 2, 3, 1, 1)
self.scale = (out_dim << 2) // in_dim
def forward(self, x):
b, c, h, w = x.shape
h2, w2 = h << 1, w << 1
y = self.conv(x).view(b, 2, 2, -1, h, w).permute(0, 3, 4, 1, 5, 2).reshape(b, -1, h2, w2)
r = x.repeat_interleave(self.scale, 1).view(b, 2, 2, -1, h, w).permute(0, 3, 4, 1, 5, 2).reshape(b, -1, h2, w2)
return y + r
class Encoder(nn.Module):
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
ffactor_spatial, downsample_match_channel=True, **_):
super().__init__()
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
self.conv_in = ops.Conv2d(in_channels, block_out_channels[0], 3, 1, 1)
self.down = nn.ModuleList()
ch = block_out_channels[0]
depth = (ffactor_spatial >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=ops.Conv2d)
for j in range(num_res_blocks)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and downsample_match_channel else ch
stage.downsample = PixelShuffle2D(ch, nxt, ops.Conv2d)
ch = nxt
self.down.append(stage)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv2d)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.norm_out = ops.GroupNorm(32, ch, 1e-6, True)
self.conv_out = ops.Conv2d(ch, z_channels << 1, 3, 1, 1)
def forward(self, x):
x = self.conv_in(x)
for stage in self.down:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'downsample'):
x = stage.downsample(x)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
b, c, h, w = x.shape
grp = c // (self.z_channels << 1)
skip = x.view(b, c // grp, grp, h, w).mean(2)
return self.conv_out(F.silu(self.norm_out(x))) + skip
class Decoder(nn.Module):
def __init__(self, z_channels, out_channels, block_out_channels, num_res_blocks,
ffactor_spatial, upsample_match_channel=True, **_):
super().__init__()
block_out_channels = block_out_channels[::-1]
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
ch = block_out_channels[0]
self.conv_in = ops.Conv2d(z_channels, ch, 3, 1, 1)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv2d)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=ops.Conv2d)
self.up = nn.ModuleList()
depth = (ffactor_spatial >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_op=ops.Conv2d)
for j in range(num_res_blocks + 1)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and upsample_match_channel else ch
stage.upsample = PixelUnshuffle2D(ch, nxt, ops.Conv2d)
ch = nxt
self.up.append(stage)
self.norm_out = ops.GroupNorm(32, ch, 1e-6, True)
self.conv_out = ops.Conv2d(ch, out_channels, 3, 1, 1)
def forward(self, z):
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
for stage in self.up:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'upsample'):
x = stage.upsample(x)
return self.conv_out(F.silu(self.norm_out(x)))

View File

@ -0,0 +1,363 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d, Normalize
import comfy.ops
import comfy.ldm.models.autoencoder
import comfy.model_management
ops = comfy.ops.disable_weight_init
class NoPadConv3d(nn.Module):
def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs):
super().__init__()
self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs)
def forward(self, x):
return self.conv(x)
def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None):
x = xl[0]
xl.clear()
if conv_carry_out is not None:
to_push = x[:, :, -2:, :, :].clone()
conv_carry_out.append(to_push)
if isinstance(op, NoPadConv3d):
if conv_carry_in is None:
x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate')
else:
carry_len = conv_carry_in[0].shape[2]
x = torch.cat([conv_carry_in.pop(0), x], dim=2)
x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate')
out = op(x)
return out
class RMS_norm(nn.Module):
def __init__(self, dim):
super().__init__()
shape = (dim, 1, 1, 1)
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.empty(shape))
def forward(self, x):
return F.normalize(x, dim=1) * self.scale * comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device)
class DnSmpl(nn.Module):
def __init__(self, ic, oc, tds=True, refiner_vae=True, op=VideoConv3d):
super().__init__()
fct = 2 * 2 * 2 if tds else 1 * 2 * 2
assert oc % fct == 0
self.conv = op(ic, oc // fct, kernel_size=3, stride=1, padding=1)
self.refiner_vae = refiner_vae
self.tds = tds
self.gs = fct * ic // oc
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
r1 = 2 if self.tds else 1
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
if self.tds and self.refiner_vae and conv_carry_in is None:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2)
hf = hf.permute(0, 4, 6, 1, 2, 3, 5)
hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2)
hf = torch.cat([hf, hf], dim=1)
h = h[:, :, 1:, :, :]
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
xf = xf.reshape(b, ci, f, ht // 2, 2, wd // 2, 2)
xf = xf.permute(0, 4, 6, 1, 2, 3, 5)
xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2)
B, C, T, H, W = xf.shape
xf = xf.view(B, hf.shape[1], self.gs // 2, T, H, W).mean(dim=2)
x = x[:, :, 1:, :, :]
if h.shape[2] == 0:
return hf + xf
b, c, frms, ht, wd = h.shape
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
b, ci, frms, ht, wd = x.shape
nf = frms // r1
x = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
x = x.permute(0, 3, 5, 7, 1, 2, 4, 6)
x = x.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = x.shape
x = x.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
if self.tds and self.refiner_vae and conv_carry_in is None:
h = torch.cat([hf, h], dim=2)
x = torch.cat([xf, x], dim=2)
return h + x
class UpSmpl(nn.Module):
def __init__(self, ic, oc, tus=True, refiner_vae=True, op=VideoConv3d):
super().__init__()
fct = 2 * 2 * 2 if tus else 1 * 2 * 2
self.conv = op(ic, oc * fct, kernel_size=3, stride=1, padding=1)
self.refiner_vae = refiner_vae
self.tus = tus
self.rp = fct * oc // ic
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
r1 = 2 if self.tus else 1
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
if self.tus and self.refiner_vae and conv_carry_in is None:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
nc = c // (2 * 2)
hf = hf.reshape(b, 2, 2, nc, f, ht, wd)
hf = hf.permute(0, 3, 4, 5, 1, 6, 2)
hf = hf.reshape(b, nc, f, ht * 2, wd * 2)
hf = hf[:, : hf.shape[1] // 2]
h = h[:, :, 1:, :, :]
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
xf = xf.repeat_interleave(repeats=self.rp // 2, dim=1)
b, c, f, ht, wd = xf.shape
nc = c // (2 * 2)
xf = xf.reshape(b, 2, 2, nc, f, ht, wd)
xf = xf.permute(0, 3, 4, 5, 1, 6, 2)
xf = xf.reshape(b, nc, f, ht * 2, wd * 2)
x = x[:, :, 1:, :, :]
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
x = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = x.shape
nc = c // (r1 * 2 * 2)
x = x.reshape(b, r1, 2, 2, nc, frms, ht, wd)
x = x.permute(0, 4, 5, 1, 6, 2, 7, 3)
x = x.reshape(b, nc, frms * r1, ht * 2, wd * 2)
if self.tus and self.refiner_vae and conv_carry_in is None:
h = torch.cat([hf, h], dim=2)
x = torch.cat([xf, x], dim=2)
return h + x
class HunyuanRefinerResnetBlock(ResnetBlock):
def __init__(self, in_channels, out_channels, conv_op=NoPadConv3d, norm_op=RMS_norm):
super().__init__(in_channels=in_channels, out_channels=out_channels, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
h = x
h = [ self.swish(self.norm1(x)) ]
h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
h = [ self.dropout(self.swish(self.norm2(h))) ]
h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x+h
class Encoder(nn.Module):
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
ffactor_spatial, ffactor_temporal, downsample_match_channel=True, refiner_vae=True, **_):
super().__init__()
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
self.ffactor_temporal = ffactor_temporal
self.refiner_vae = refiner_vae
if self.refiner_vae:
conv_op = NoPadConv3d
norm_op = RMS_norm
else:
conv_op = ops.Conv3d
norm_op = Normalize
self.conv_in = conv_op(in_channels, block_out_channels[0], 3, 1, 1)
self.down = nn.ModuleList()
ch = block_out_channels[0]
depth = (ffactor_spatial >> 1).bit_length()
depth_temporal = ((ffactor_spatial // self.ffactor_temporal) >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([HunyuanRefinerResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
conv_op=conv_op, norm_op=norm_op)
for j in range(num_res_blocks)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and downsample_match_channel else ch
stage.downsample = DnSmpl(ch, nxt, tds=i >= depth_temporal, refiner_vae=self.refiner_vae, op=conv_op)
ch = nxt
self.down.append(stage)
self.mid = nn.Module()
self.mid.block_1 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
self.mid.block_2 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.norm_out = norm_op(ch)
self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1)
self.regul = comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer()
def forward(self, x):
if not self.refiner_vae and x.shape[2] == 1:
x = x.expand(-1, -1, self.ffactor_temporal, -1, -1)
if self.refiner_vae:
xl = [x[:, :, :1, :, :]]
if x.shape[2] > self.ffactor_temporal:
xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // self.ffactor_temporal) * self.ffactor_temporal, :, :], self.ffactor_temporal * 2, dim=2)
x = xl
else:
x = [x]
out = []
conv_carry_in = None
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
x1 = [ x1 ]
x1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out)
for stage in self.down:
for blk in stage.block:
x1 = blk(x1, conv_carry_in, conv_carry_out)
if hasattr(stage, 'downsample'):
x1 = stage.downsample(x1, conv_carry_in, conv_carry_out)
out.append(x1)
conv_carry_in = conv_carry_out
if len(out) > 1:
out = torch.cat(out, dim=2)
else:
out = out[0]
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(out)))
del out
b, c, t, h, w = x.shape
grp = c // (self.z_channels << 1)
skip = x.view(b, c // grp, grp, t, h, w).mean(2)
out = conv_carry_causal_3d([F.silu(self.norm_out(x))], self.conv_out) + skip
if self.refiner_vae:
out = self.regul(out)[0]
return out
class Decoder(nn.Module):
def __init__(self, z_channels, out_channels, block_out_channels, num_res_blocks,
ffactor_spatial, ffactor_temporal, upsample_match_channel=True, refiner_vae=True, **_):
super().__init__()
block_out_channels = block_out_channels[::-1]
self.z_channels = z_channels
self.block_out_channels = block_out_channels
self.num_res_blocks = num_res_blocks
self.refiner_vae = refiner_vae
if self.refiner_vae:
conv_op = NoPadConv3d
norm_op = RMS_norm
else:
conv_op = ops.Conv3d
norm_op = Normalize
ch = block_out_channels[0]
self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1)
self.mid = nn.Module()
self.mid.block_1 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
self.mid.block_2 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.up = nn.ModuleList()
depth = (ffactor_spatial >> 1).bit_length()
depth_temporal = (ffactor_temporal >> 1).bit_length()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([HunyuanRefinerResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
conv_op=conv_op, norm_op=norm_op)
for j in range(num_res_blocks + 1)])
ch = tgt
if i < depth:
nxt = block_out_channels[i + 1] if i + 1 < len(block_out_channels) and upsample_match_channel else ch
stage.upsample = UpSmpl(ch, nxt, tus=i < depth_temporal, refiner_vae=self.refiner_vae, op=conv_op)
ch = nxt
self.up.append(stage)
self.norm_out = norm_op(ch)
self.conv_out = conv_op(ch, out_channels, 3, stride=1, padding=1)
def forward(self, z):
x = conv_carry_causal_3d([z], self.conv_in) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
if self.refiner_vae:
x = torch.split(x, 2, dim=2)
else:
x = [ x ]
out = []
conv_carry_in = None
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
for stage in self.up:
for blk in stage.block:
x1 = blk(x1, conv_carry_in, conv_carry_out)
if hasattr(stage, 'upsample'):
x1 = stage.upsample(x1, conv_carry_in, conv_carry_out)
x1 = [ F.silu(self.norm_out(x1)) ]
x1 = conv_carry_causal_3d(x1, self.conv_out, conv_carry_in, conv_carry_out)
out.append(x1)
conv_carry_in = conv_carry_out
del x
if len(out) > 1:
out = torch.cat(out, dim=2)
else:
out = out[0]
if not self.refiner_vae:
if z.shape[-3] == 1:
out = out[:, :, -1:]
return out

View File

@ -3,12 +3,11 @@ from torch import nn
import comfy.patcher_extension
import comfy.ldm.modules.attention
import comfy.ldm.common_dit
from einops import rearrange
import math
from typing import Dict, Optional, Tuple
from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
from comfy.ldm.flux.math import apply_rope1
def get_timestep_embedding(
timesteps: torch.Tensor,
@ -238,20 +237,6 @@ class FeedForward(nn.Module):
return self.net(x)
def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one
cos_freqs = freqs_cis[0]
sin_freqs = freqs_cis[1]
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
t1, t2 = t_dup.unbind(dim=-1)
t_dup = torch.stack((-t2, t1), dim=-1)
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
return out
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
super().__init__()
@ -271,7 +256,7 @@ class CrossAttention(nn.Module):
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, mask=None, pe=None):
def forward(self, x, context=None, mask=None, pe=None, transformer_options={}):
q = self.to_q(x)
context = x if context is None else context
k = self.to_k(context)
@ -281,13 +266,13 @@ class CrossAttention(nn.Module):
k = self.k_norm(k)
if pe is not None:
q = apply_rotary_emb(q, pe)
k = apply_rotary_emb(k, pe)
q = apply_rope1(q.unsqueeze(1), pe).squeeze(1)
k = apply_rope1(k.unsqueeze(1), pe).squeeze(1)
if mask is None:
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
else:
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision, transformer_options=transformer_options)
return self.to_out(out)
@ -303,15 +288,20 @@ class BasicTransformerBlock(nn.Module):
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None):
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe) * gate_msa
attn1_input = comfy.ldm.common_dit.rms_norm(x)
attn1_input = torch.addcmul(attn1_input, attn1_input, scale_msa).add_(shift_msa)
attn1_input = self.attn1(attn1_input, pe=pe, transformer_options=transformer_options)
x.addcmul_(attn1_input, gate_msa)
del attn1_input
x += self.attn2(x, context=context, mask=attention_mask)
x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options)
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
x += self.ff(y) * gate_mlp
y = comfy.ldm.common_dit.rms_norm(x)
y = torch.addcmul(y, y, scale_mlp).add_(shift_mlp)
x.addcmul_(self.ff(y), gate_mlp)
return x
@ -327,41 +317,35 @@ def get_fractional_positions(indices_grid, max_pos):
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
dtype = torch.float32 #self.dtype
dtype = torch.float32
device = indices_grid.device
# Get fractional positions and compute frequency indices
fractional_positions = get_fractional_positions(indices_grid, max_pos)
indices = theta ** torch.linspace(0, 1, dim // 6, device=device, dtype=dtype) * math.pi / 2
start = 1
end = theta
device = fractional_positions.device
# Compute frequencies and apply cos/sin
freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2)
cos_vals = freqs.cos().repeat_interleave(2, dim=-1)
sin_vals = freqs.sin().repeat_interleave(2, dim=-1)
indices = theta ** (
torch.linspace(
math.log(start, theta),
math.log(end, theta),
dim // 6,
device=device,
dtype=dtype,
)
)
indices = indices.to(dtype=dtype)
indices = indices * math.pi / 2
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
# Pad if dim is not divisible by 6
if dim % 6 != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
return cos_freq.to(out_dtype), sin_freq.to(out_dtype)
padding_size = dim % 6
cos_vals = torch.cat([torch.ones_like(cos_vals[:, :, :padding_size]), cos_vals], dim=-1)
sin_vals = torch.cat([torch.zeros_like(sin_vals[:, :, :padding_size]), sin_vals], dim=-1)
# Reshape and extract one value per pair (since repeat_interleave duplicates each value)
cos_vals = cos_vals.reshape(*cos_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
sin_vals = sin_vals.reshape(*sin_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
# Build rotation matrix [[cos, -sin], [sin, cos]] and add heads dimension
freqs_cis = torch.stack([
torch.stack([cos_vals, -sin_vals], dim=-1),
torch.stack([sin_vals, cos_vals], dim=-1)
], dim=-2).unsqueeze(1) # [B, 1, N, dim//2, 2, 2]
return freqs_cis
class LTXVModel(torch.nn.Module):
@ -479,10 +463,10 @@ class LTXVModel(torch.nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(
@ -490,7 +474,8 @@ class LTXVModel(torch.nn.Module):
context=context,
attention_mask=attention_mask,
timestep=timestep,
pe=pe
pe=pe,
transformer_options=transformer_options,
)
# 3. Output
@ -500,7 +485,7 @@ class LTXVModel(torch.nn.Module):
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
x = self.norm_out(x)
# Modulation
x = x * (1 + scale) + shift
x = torch.addcmul(x, x, scale).add_(shift)
x = self.proj_out(x)
x = self.patchifier.unpatchify(

View File

@ -104,6 +104,7 @@ class JointAttention(nn.Module):
x: torch.Tensor,
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
transformer_options={},
) -> torch.Tensor:
"""
@ -140,7 +141,7 @@ class JointAttention(nn.Module):
if n_rep >= 1:
xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True)
output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True, transformer_options=transformer_options)
return self.out(output)
@ -268,6 +269,7 @@ class JointTransformerBlock(nn.Module):
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor]=None,
transformer_options={},
):
"""
Perform a forward pass through the TransformerBlock.
@ -290,6 +292,7 @@ class JointTransformerBlock(nn.Module):
modulate(self.attention_norm1(x), scale_msa),
x_mask,
freqs_cis,
transformer_options=transformer_options,
)
)
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
@ -304,6 +307,7 @@ class JointTransformerBlock(nn.Module):
self.attention_norm1(x),
x_mask,
freqs_cis,
transformer_options=transformer_options,
)
)
x = x + self.ffn_norm2(
@ -494,7 +498,7 @@ class NextDiT(nn.Module):
return imgs
def patchify_and_embed(
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens, transformer_options={}
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
bsz = len(x)
pH = pW = self.patch_size
@ -518,7 +522,7 @@ class NextDiT(nn.Module):
max_cap_len = max(l_effective_cap_len)
max_img_len = max(l_effective_img_len)
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.float32, device=device)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
@ -527,10 +531,22 @@ class NextDiT(nn.Module):
H_tokens, W_tokens = H // pH, W // pW
assert H_tokens * W_tokens == img_len
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
rope_options = transformer_options.get("rope_options", None)
h_scale = 1.0
w_scale = 1.0
h_start = 0
w_start = 0
if rope_options is not None:
h_scale = rope_options.get("scale_y", 1.0)
w_scale = rope_options.get("scale_x", 1.0)
h_start = rope_options.get("shift_y", 0.0)
w_start = rope_options.get("shift_x", 0.0)
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.float32, device=device)
position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
row_ids = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten()
col_ids = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten()
position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
position_ids[i, cap_len:cap_len+img_len, 2] = col_ids
@ -554,7 +570,7 @@ class NextDiT(nn.Module):
# refine context
for layer in self.context_refiner:
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options)
# refine image
flat_x = []
@ -573,7 +589,7 @@ class NextDiT(nn.Module):
padded_img_embed = self.x_embedder(padded_img_embed)
padded_img_mask = padded_img_mask.unsqueeze(1)
for layer in self.noise_refiner:
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t)
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t, transformer_options=transformer_options)
if cap_mask is not None:
mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
@ -616,12 +632,13 @@ class NextDiT(nn.Module):
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
transformer_options = kwargs.get("transformer_options", {})
x_is_tensor = isinstance(x, torch.Tensor)
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens)
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options)
freqs_cis = freqs_cis.to(x.device)
for layer in self.layers:
x = layer(x, mask, freqs_cis, adaln_input)
x = layer(x, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
x = self.final_layer(x, adaln_input)
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w]

View File

View File

@ -0,0 +1,120 @@
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
from torch import nn, sin, pow
from torch.nn import Parameter
import comfy.model_management
class Snake(nn.Module):
'''
Implementation of a sine-based periodic activation function
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter
References:
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snake(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
'''
Initialization.
INPUT:
- in_features: shape of the input
- alpha: trainable parameter
alpha is initialized to 1 by default, higher values = higher-frequency.
alpha will be trained along with the rest of your model.
'''
super(Snake, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale:
self.alpha = Parameter(torch.empty(in_features))
else:
self.alpha = Parameter(torch.empty(in_features))
self.alpha.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
'''
Forward pass of the function.
Applies the function to the input elementwise.
Snake = x + 1/a * sin^2 (xa)
'''
alpha = comfy.model_management.cast_to(self.alpha, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
if self.alpha_logscale:
alpha = torch.exp(alpha)
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x
class SnakeBeta(nn.Module):
'''
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
'''
Initialization.
INPUT:
- in_features: shape of the input
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
'''
super(SnakeBeta, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale:
self.alpha = Parameter(torch.empty(in_features))
self.beta = Parameter(torch.empty(in_features))
else:
self.alpha = Parameter(torch.empty(in_features))
self.beta = Parameter(torch.empty(in_features))
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
'''
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta = x + 1/b * sin^2 (xa)
'''
alpha = comfy.model_management.cast_to(self.alpha, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
beta = comfy.model_management.cast_to(self.beta, dtype=x.dtype, device=x.device).unsqueeze(0).unsqueeze(-1)
if self.alpha_logscale:
alpha = torch.exp(alpha)
beta = torch.exp(beta)
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x

View File

@ -0,0 +1,157 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import comfy.model_management
if 'sinc' in dir(torch):
sinc = torch.sinc
else:
# This code is adopted from adefossez's julius.core.sinc under the MIT License
# https://adefossez.github.io/julius/julius/core.html
# LICENSE is in incl_licenses directory.
def sinc(x: torch.Tensor):
"""
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
"""
return torch.where(x == 0,
torch.tensor(1., device=x.device, dtype=x.dtype),
torch.sin(math.pi * x) / math.pi / x)
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
# https://adefossez.github.io/julius/julius/lowpass.html
# LICENSE is in incl_licenses directory.
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
even = (kernel_size % 2 == 0)
half_size = kernel_size // 2
#For kaiser window
delta_f = 4 * half_width
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
if A > 50.:
beta = 0.1102 * (A - 8.7)
elif A >= 21.:
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
else:
beta = 0.
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
if even:
time = (torch.arange(-half_size, half_size) + 0.5)
else:
time = torch.arange(kernel_size) - half_size
if cutoff == 0:
filter_ = torch.zeros_like(time)
else:
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
# Normalize filter to have sum = 1, otherwise we will have a small leakage
# of the constant component in the input signal.
filter_ /= filter_.sum()
filter = filter_.view(1, 1, kernel_size)
return filter
class LowPassFilter1d(nn.Module):
def __init__(self,
cutoff=0.5,
half_width=0.6,
stride: int = 1,
padding: bool = True,
padding_mode: str = 'replicate',
kernel_size: int = 12):
# kernel_size should be even number for stylegan3 setup,
# in this implementation, odd number is also possible.
super().__init__()
if cutoff < -0.:
raise ValueError("Minimum cutoff must be larger than zero.")
if cutoff > 0.5:
raise ValueError("A cutoff above 0.5 does not make sense.")
self.kernel_size = kernel_size
self.even = (kernel_size % 2 == 0)
self.pad_left = kernel_size // 2 - int(self.even)
self.pad_right = kernel_size // 2
self.stride = stride
self.padding = padding
self.padding_mode = padding_mode
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
self.register_buffer("filter", filter)
#input [B, C, T]
def forward(self, x):
_, C, _ = x.shape
if self.padding:
x = F.pad(x, (self.pad_left, self.pad_right),
mode=self.padding_mode)
out = F.conv1d(x, comfy.model_management.cast_to(self.filter.expand(C, -1, -1), dtype=x.dtype, device=x.device),
stride=self.stride, groups=C)
return out
class UpSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
self.stride = ratio
self.pad = self.kernel_size // ratio - 1
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
half_width=0.6 / ratio,
kernel_size=self.kernel_size)
self.register_buffer("filter", filter)
# x: [B, C, T]
def forward(self, x):
_, C, _ = x.shape
x = F.pad(x, (self.pad, self.pad), mode='replicate')
x = self.ratio * F.conv_transpose1d(
x, comfy.model_management.cast_to(self.filter.expand(C, -1, -1), dtype=x.dtype, device=x.device), stride=self.stride, groups=C)
x = x[..., self.pad_left:-self.pad_right]
return x
class DownSample1d(nn.Module):
def __init__(self, ratio=2, kernel_size=None):
super().__init__()
self.ratio = ratio
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
half_width=0.6 / ratio,
stride=ratio,
kernel_size=self.kernel_size)
def forward(self, x):
xx = self.lowpass(x)
return xx
class Activation1d(nn.Module):
def __init__(self,
activation,
up_ratio: int = 2,
down_ratio: int = 2,
up_kernel_size: int = 12,
down_kernel_size: int = 12):
super().__init__()
self.up_ratio = up_ratio
self.down_ratio = down_ratio
self.act = activation
self.upsample = UpSample1d(up_ratio, up_kernel_size)
self.downsample = DownSample1d(down_ratio, down_kernel_size)
# x: [B,C,T]
def forward(self, x):
x = self.upsample(x)
x = self.act(x)
x = self.downsample(x)
return x

View File

@ -0,0 +1,156 @@
from typing import Literal
import torch
import torch.nn as nn
from .distributions import DiagonalGaussianDistribution
from .vae import VAE_16k
from .bigvgan import BigVGANVocoder
import logging
try:
import torchaudio
except:
logging.warning("torchaudio missing, MMAudio VAE model will be broken")
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, *, norm_fn):
return norm_fn(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes, norm_fn):
output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn)
return output
class MelConverter(nn.Module):
def __init__(
self,
*,
sampling_rate: float,
n_fft: int,
num_mels: int,
hop_size: int,
win_size: int,
fmin: float,
fmax: float,
norm_fn,
):
super().__init__()
self.sampling_rate = sampling_rate
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.norm_fn = norm_fn
# mel = librosa_mel_fn(sr=self.sampling_rate,
# n_fft=self.n_fft,
# n_mels=self.num_mels,
# fmin=self.fmin,
# fmax=self.fmax)
# mel_basis = torch.from_numpy(mel).float()
mel_basis = torch.empty((num_mels, 1 + n_fft // 2))
hann_window = torch.hann_window(self.win_size)
self.register_buffer('mel_basis', mel_basis)
self.register_buffer('hann_window', hann_window)
@property
def device(self):
return self.mel_basis.device
def forward(self, waveform: torch.Tensor, center: bool = False) -> torch.Tensor:
waveform = waveform.clamp(min=-1., max=1.).to(self.device)
waveform = torch.nn.functional.pad(
waveform.unsqueeze(1),
[int((self.n_fft - self.hop_size) / 2),
int((self.n_fft - self.hop_size) / 2)],
mode='reflect')
waveform = waveform.squeeze(1)
spec = torch.stft(waveform,
self.n_fft,
hop_length=self.hop_size,
win_length=self.win_size,
window=self.hann_window,
center=center,
pad_mode='reflect',
normalized=False,
onesided=True,
return_complex=True)
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(self.mel_basis, spec)
spec = spectral_normalize_torch(spec, self.norm_fn)
return spec
class AudioAutoencoder(nn.Module):
def __init__(
self,
*,
# ckpt_path: str,
mode=Literal['16k', '44k'],
need_vae_encoder: bool = True,
):
super().__init__()
assert mode == "16k", "Only 16k mode is supported currently."
self.mel_converter = MelConverter(sampling_rate=16_000,
n_fft=1024,
num_mels=80,
hop_size=256,
win_size=1024,
fmin=0,
fmax=8_000,
norm_fn=torch.log10)
self.vae = VAE_16k().eval()
bigvgan_config = {
"resblock": "1",
"num_mels": 80,
"upsample_rates": [4, 4, 2, 2, 2, 2],
"upsample_kernel_sizes": [8, 8, 4, 4, 4, 4],
"upsample_initial_channel": 1536,
"resblock_kernel_sizes": [3, 7, 11],
"resblock_dilation_sizes": [
[1, 3, 5],
[1, 3, 5],
[1, 3, 5],
],
"activation": "snakebeta",
"snake_logscale": True,
}
self.vocoder = BigVGANVocoder(
bigvgan_config
).eval()
@torch.inference_mode()
def encode_audio(self, x) -> DiagonalGaussianDistribution:
# x: (B * L)
mel = self.mel_converter(x)
dist = self.vae.encode(mel)
return dist
@torch.no_grad()
def decode(self, z):
mel_decoded = self.vae.decode(z)
audio = self.vocoder(mel_decoded)
audio = torchaudio.functional.resample(audio, 16000, 44100)
return audio
@torch.no_grad()
def encode(self, audio):
audio = audio.mean(dim=1)
audio = torchaudio.functional.resample(audio, 44100, 16000)
dist = self.encode_audio(audio)
return dist.mean

View File

@ -0,0 +1,219 @@
# Copyright (c) 2022 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import torch
import torch.nn as nn
from types import SimpleNamespace
from . import activations
from .alias_free_torch import Activation1d
import comfy.ops
ops = comfy.ops.disable_weight_init
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
class AMPBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
super(AMPBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
ops.Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0])),
ops.Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])),
ops.Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]))
])
self.convs2 = nn.ModuleList([
ops.Conv1d(channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1)),
ops.Conv1d(channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1)),
ops.Conv1d(channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1))
])
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
class AMPBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
super(AMPBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
ops.Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0])),
ops.Conv1d(channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))
])
self.num_layers = len(self.convs) # total number of conv layers
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
def forward(self, x):
for c, a in zip(self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
return x
class BigVGANVocoder(torch.nn.Module):
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
def __init__(self, h):
super().__init__()
if isinstance(h, dict):
h = SimpleNamespace(**h)
self.h = h
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
# pre conv
self.conv_pre = ops.Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
# transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(
nn.ModuleList([
ops.ConvTranspose1d(h.upsample_initial_channel // (2**i),
h.upsample_initial_channel // (2**(i + 1)),
k,
u,
padding=(k - u) // 2)
]))
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2**(i + 1))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
# post conv
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'."
)
self.conv_post = ops.Conv1d(ch, 1, 7, 1, padding=3)
def forward(self, x):
# pre conv
x = self.conv_pre(x)
for i in range(self.num_upsamples):
# upsampling
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# post conv
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x

View File

@ -0,0 +1,92 @@
import torch
import numpy as np
class AbstractDistribution:
def sample(self):
raise NotImplementedError()
def mode(self):
raise NotImplementedError()
class DiracDistribution(AbstractDistribution):
def __init__(self, value):
self.value = value
def sample(self):
return self.value
def mode(self):
return self.value
class DiagonalGaussianDistribution(object):
def __init__(self, parameters, deterministic=False):
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean, device=self.parameters.device)
def sample(self):
x = self.mean + self.std * torch.randn(self.mean.shape, device=self.parameters.device)
return x
def kl(self, other=None):
if self.deterministic:
return torch.Tensor([0.])
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean, 2)
+ self.var - 1.0 - self.logvar,
dim=[1, 2, 3])
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
dim=[1, 2, 3])
def nll(self, sample, dims=[1,2,3]):
if self.deterministic:
return torch.Tensor([0.])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims)
def mode(self):
return self.mean
def normal_kl(mean1, logvar1, mean2, logvar2):
"""
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
Compute the KL divergence between two gaussians.
Shapes are automatically broadcasted, so batches can be compared to
scalars, among other use cases.
"""
tensor = None
for obj in (mean1, logvar1, mean2, logvar2):
if isinstance(obj, torch.Tensor):
tensor = obj
break
assert tensor is not None, "at least one argument must be a Tensor"
# Force variances to be Tensors. Broadcasting helps convert scalars to
# Tensors, but it does not work for torch.exp().
logvar1, logvar2 = [
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
for x in (logvar1, logvar2)
]
return 0.5 * (
-1.0
+ logvar2
- logvar1
+ torch.exp(logvar1 - logvar2)
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
)

View File

@ -0,0 +1,358 @@
import logging
from typing import Optional
import torch
import torch.nn as nn
from .vae_modules import (AttnBlock1D, Downsample1D, ResnetBlock1D,
Upsample1D, nonlinearity)
from .distributions import DiagonalGaussianDistribution
import comfy.ops
ops = comfy.ops.disable_weight_init
log = logging.getLogger()
DATA_MEAN_80D = [
-1.6058, -1.3676, -1.2520, -1.2453, -1.2078, -1.2224, -1.2419, -1.2439, -1.2922, -1.2927,
-1.3170, -1.3543, -1.3401, -1.3836, -1.3907, -1.3912, -1.4313, -1.4152, -1.4527, -1.4728,
-1.4568, -1.5101, -1.5051, -1.5172, -1.5623, -1.5373, -1.5746, -1.5687, -1.6032, -1.6131,
-1.6081, -1.6331, -1.6489, -1.6489, -1.6700, -1.6738, -1.6953, -1.6969, -1.7048, -1.7280,
-1.7361, -1.7495, -1.7658, -1.7814, -1.7889, -1.8064, -1.8221, -1.8377, -1.8417, -1.8643,
-1.8857, -1.8929, -1.9173, -1.9379, -1.9531, -1.9673, -1.9824, -2.0042, -2.0215, -2.0436,
-2.0766, -2.1064, -2.1418, -2.1855, -2.2319, -2.2767, -2.3161, -2.3572, -2.3954, -2.4282,
-2.4659, -2.5072, -2.5552, -2.6074, -2.6584, -2.7107, -2.7634, -2.8266, -2.8981, -2.9673
]
DATA_STD_80D = [
1.0291, 1.0411, 1.0043, 0.9820, 0.9677, 0.9543, 0.9450, 0.9392, 0.9343, 0.9297, 0.9276, 0.9263,
0.9242, 0.9254, 0.9232, 0.9281, 0.9263, 0.9315, 0.9274, 0.9247, 0.9277, 0.9199, 0.9188, 0.9194,
0.9160, 0.9161, 0.9146, 0.9161, 0.9100, 0.9095, 0.9145, 0.9076, 0.9066, 0.9095, 0.9032, 0.9043,
0.9038, 0.9011, 0.9019, 0.9010, 0.8984, 0.8983, 0.8986, 0.8961, 0.8962, 0.8978, 0.8962, 0.8973,
0.8993, 0.8976, 0.8995, 0.9016, 0.8982, 0.8972, 0.8974, 0.8949, 0.8940, 0.8947, 0.8936, 0.8939,
0.8951, 0.8956, 0.9017, 0.9167, 0.9436, 0.9690, 1.0003, 1.0225, 1.0381, 1.0491, 1.0545, 1.0604,
1.0761, 1.0929, 1.1089, 1.1196, 1.1176, 1.1156, 1.1117, 1.1070
]
DATA_MEAN_128D = [
-3.3462, -2.6723, -2.4893, -2.3143, -2.2664, -2.3317, -2.1802, -2.4006, -2.2357, -2.4597,
-2.3717, -2.4690, -2.5142, -2.4919, -2.6610, -2.5047, -2.7483, -2.5926, -2.7462, -2.7033,
-2.7386, -2.8112, -2.7502, -2.9594, -2.7473, -3.0035, -2.8891, -2.9922, -2.9856, -3.0157,
-3.1191, -2.9893, -3.1718, -3.0745, -3.1879, -3.2310, -3.1424, -3.2296, -3.2791, -3.2782,
-3.2756, -3.3134, -3.3509, -3.3750, -3.3951, -3.3698, -3.4505, -3.4509, -3.5089, -3.4647,
-3.5536, -3.5788, -3.5867, -3.6036, -3.6400, -3.6747, -3.7072, -3.7279, -3.7283, -3.7795,
-3.8259, -3.8447, -3.8663, -3.9182, -3.9605, -3.9861, -4.0105, -4.0373, -4.0762, -4.1121,
-4.1488, -4.1874, -4.2461, -4.3170, -4.3639, -4.4452, -4.5282, -4.6297, -4.7019, -4.7960,
-4.8700, -4.9507, -5.0303, -5.0866, -5.1634, -5.2342, -5.3242, -5.4053, -5.4927, -5.5712,
-5.6464, -5.7052, -5.7619, -5.8410, -5.9188, -6.0103, -6.0955, -6.1673, -6.2362, -6.3120,
-6.3926, -6.4797, -6.5565, -6.6511, -6.8130, -6.9961, -7.1275, -7.2457, -7.3576, -7.4663,
-7.6136, -7.7469, -7.8815, -8.0132, -8.1515, -8.3071, -8.4722, -8.7418, -9.3975, -9.6628,
-9.7671, -9.8863, -9.9992, -10.0860, -10.1709, -10.5418, -11.2795, -11.3861
]
DATA_STD_128D = [
2.3804, 2.4368, 2.3772, 2.3145, 2.2803, 2.2510, 2.2316, 2.2083, 2.1996, 2.1835, 2.1769, 2.1659,
2.1631, 2.1618, 2.1540, 2.1606, 2.1571, 2.1567, 2.1612, 2.1579, 2.1679, 2.1683, 2.1634, 2.1557,
2.1668, 2.1518, 2.1415, 2.1449, 2.1406, 2.1350, 2.1313, 2.1415, 2.1281, 2.1352, 2.1219, 2.1182,
2.1327, 2.1195, 2.1137, 2.1080, 2.1179, 2.1036, 2.1087, 2.1036, 2.1015, 2.1068, 2.0975, 2.0991,
2.0902, 2.1015, 2.0857, 2.0920, 2.0893, 2.0897, 2.0910, 2.0881, 2.0925, 2.0873, 2.0960, 2.0900,
2.0957, 2.0958, 2.0978, 2.0936, 2.0886, 2.0905, 2.0845, 2.0855, 2.0796, 2.0840, 2.0813, 2.0817,
2.0838, 2.0840, 2.0917, 2.1061, 2.1431, 2.1976, 2.2482, 2.3055, 2.3700, 2.4088, 2.4372, 2.4609,
2.4731, 2.4847, 2.5072, 2.5451, 2.5772, 2.6147, 2.6529, 2.6596, 2.6645, 2.6726, 2.6803, 2.6812,
2.6899, 2.6916, 2.6931, 2.6998, 2.7062, 2.7262, 2.7222, 2.7158, 2.7041, 2.7485, 2.7491, 2.7451,
2.7485, 2.7233, 2.7297, 2.7233, 2.7145, 2.6958, 2.6788, 2.6439, 2.6007, 2.4786, 2.2469, 2.1877,
2.1392, 2.0717, 2.0107, 1.9676, 1.9140, 1.7102, 0.9101, 0.7164
]
class VAE(nn.Module):
def __init__(
self,
*,
data_dim: int,
embed_dim: int,
hidden_dim: int,
):
super().__init__()
if data_dim == 80:
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_80D, dtype=torch.float32))
self.data_std = nn.Buffer(torch.tensor(DATA_STD_80D, dtype=torch.float32))
elif data_dim == 128:
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_128D, dtype=torch.float32))
self.data_std = nn.Buffer(torch.tensor(DATA_STD_128D, dtype=torch.float32))
self.data_mean = self.data_mean.view(1, -1, 1)
self.data_std = self.data_std.view(1, -1, 1)
self.encoder = Encoder1D(
dim=hidden_dim,
ch_mult=(1, 2, 4),
num_res_blocks=2,
attn_layers=[3],
down_layers=[0],
in_dim=data_dim,
embed_dim=embed_dim,
)
self.decoder = Decoder1D(
dim=hidden_dim,
ch_mult=(1, 2, 4),
num_res_blocks=2,
attn_layers=[3],
down_layers=[0],
in_dim=data_dim,
out_dim=data_dim,
embed_dim=embed_dim,
)
self.embed_dim = embed_dim
# self.quant_conv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, 1)
# self.post_quant_conv = nn.Conv1d(embed_dim, embed_dim, 1)
self.initialize_weights()
def initialize_weights(self):
pass
def encode(self, x: torch.Tensor, normalize: bool = True) -> DiagonalGaussianDistribution:
if normalize:
x = self.normalize(x)
moments = self.encoder(x)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z: torch.Tensor, unnormalize: bool = True) -> torch.Tensor:
dec = self.decoder(z)
if unnormalize:
dec = self.unnormalize(dec)
return dec
def normalize(self, x: torch.Tensor) -> torch.Tensor:
return (x - comfy.model_management.cast_to(self.data_mean, dtype=x.dtype, device=x.device)) / comfy.model_management.cast_to(self.data_std, dtype=x.dtype, device=x.device)
def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
return x * comfy.model_management.cast_to(self.data_std, dtype=x.dtype, device=x.device) + comfy.model_management.cast_to(self.data_mean, dtype=x.dtype, device=x.device)
def forward(
self,
x: torch.Tensor,
sample_posterior: bool = True,
rng: Optional[torch.Generator] = None,
normalize: bool = True,
unnormalize: bool = True,
) -> tuple[torch.Tensor, DiagonalGaussianDistribution]:
posterior = self.encode(x, normalize=normalize)
if sample_posterior:
z = posterior.sample(rng)
else:
z = posterior.mode()
dec = self.decode(z, unnormalize=unnormalize)
return dec, posterior
def load_weights(self, src_dict) -> None:
self.load_state_dict(src_dict, strict=True)
@property
def device(self) -> torch.device:
return next(self.parameters()).device
def get_last_layer(self):
return self.decoder.conv_out.weight
def remove_weight_norm(self):
return self
class Encoder1D(nn.Module):
def __init__(self,
*,
dim: int,
ch_mult: tuple[int] = (1, 2, 4, 8),
num_res_blocks: int,
attn_layers: list[int] = [],
down_layers: list[int] = [],
resamp_with_conv: bool = True,
in_dim: int,
embed_dim: int,
double_z: bool = True,
kernel_size: int = 3,
clip_act: float = 256.0):
super().__init__()
self.dim = dim
self.num_layers = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_dim
self.clip_act = clip_act
self.down_layers = down_layers
self.attn_layers = attn_layers
self.conv_in = ops.Conv1d(in_dim, self.dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
in_ch_mult = (1, ) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
# downsampling
self.down = nn.ModuleList()
for i_level in range(self.num_layers):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = dim * in_ch_mult[i_level]
block_out = dim * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock1D(in_dim=block_in,
out_dim=block_out,
kernel_size=kernel_size,
use_norm=True))
block_in = block_out
if i_level in attn_layers:
attn.append(AttnBlock1D(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level in down_layers:
down.downsample = Downsample1D(block_in, resamp_with_conv)
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock1D(in_dim=block_in,
out_dim=block_in,
kernel_size=kernel_size,
use_norm=True)
self.mid.attn_1 = AttnBlock1D(block_in)
self.mid.block_2 = ResnetBlock1D(in_dim=block_in,
out_dim=block_in,
kernel_size=kernel_size,
use_norm=True)
# end
self.conv_out = ops.Conv1d(block_in,
2 * embed_dim if double_z else embed_dim,
kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
self.learnable_gain = nn.Parameter(torch.zeros([]))
def forward(self, x):
# downsampling
h = self.conv_in(x)
for i_level in range(self.num_layers):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
h = h.clamp(-self.clip_act, self.clip_act)
if i_level in self.down_layers:
h = self.down[i_level].downsample(h)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
h = h.clamp(-self.clip_act, self.clip_act)
# end
h = nonlinearity(h)
h = self.conv_out(h) * (self.learnable_gain + 1)
return h
class Decoder1D(nn.Module):
def __init__(self,
*,
dim: int,
out_dim: int,
ch_mult: tuple[int] = (1, 2, 4, 8),
num_res_blocks: int,
attn_layers: list[int] = [],
down_layers: list[int] = [],
kernel_size: int = 3,
resamp_with_conv: bool = True,
in_dim: int,
embed_dim: int,
clip_act: float = 256.0):
super().__init__()
self.ch = dim
self.num_layers = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_dim
self.clip_act = clip_act
self.down_layers = [i + 1 for i in down_layers] # each downlayer add one
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = dim * ch_mult[self.num_layers - 1]
# z to block_in
self.conv_in = ops.Conv1d(embed_dim, block_in, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
self.mid.attn_1 = AttnBlock1D(block_in)
self.mid.block_2 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_layers)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = dim * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(ResnetBlock1D(in_dim=block_in, out_dim=block_out, use_norm=True))
block_in = block_out
if i_level in attn_layers:
attn.append(AttnBlock1D(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level in self.down_layers:
up.upsample = Upsample1D(block_in, resamp_with_conv)
self.up.insert(0, up) # prepend to get consistent order
# end
self.conv_out = ops.Conv1d(block_in, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
self.learnable_gain = nn.Parameter(torch.zeros([]))
def forward(self, z):
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
h = h.clamp(-self.clip_act, self.clip_act)
# upsampling
for i_level in reversed(range(self.num_layers)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
h = h.clamp(-self.clip_act, self.clip_act)
if i_level in self.down_layers:
h = self.up[i_level].upsample(h)
h = nonlinearity(h)
h = self.conv_out(h) * (self.learnable_gain + 1)
return h
def VAE_16k(**kwargs) -> VAE:
return VAE(data_dim=80, embed_dim=20, hidden_dim=384, **kwargs)
def VAE_44k(**kwargs) -> VAE:
return VAE(data_dim=128, embed_dim=40, hidden_dim=512, **kwargs)
def get_my_vae(name: str, **kwargs) -> VAE:
if name == '16k':
return VAE_16k(**kwargs)
if name == '44k':
return VAE_44k(**kwargs)
raise ValueError(f'Unknown model: {name}')

View File

@ -0,0 +1,121 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import vae_attention
import math
import comfy.ops
ops = comfy.ops.disable_weight_init
def nonlinearity(x):
# swish
return torch.nn.functional.silu(x) / 0.596
def mp_sum(a, b, t=0.5):
return a.lerp(b, t) / math.sqrt((1 - t)**2 + t**2)
def normalize(x, dim=None, eps=1e-4):
if dim is None:
dim = list(range(1, x.ndim))
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
norm = torch.add(eps, norm, alpha=math.sqrt(norm.numel() / x.numel()))
return x / norm.to(x.dtype)
class ResnetBlock1D(nn.Module):
def __init__(self, *, in_dim, out_dim=None, conv_shortcut=False, kernel_size=3, use_norm=True):
super().__init__()
self.in_dim = in_dim
out_dim = in_dim if out_dim is None else out_dim
self.out_dim = out_dim
self.use_conv_shortcut = conv_shortcut
self.use_norm = use_norm
self.conv1 = ops.Conv1d(in_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
self.conv2 = ops.Conv1d(out_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
if self.in_dim != self.out_dim:
if self.use_conv_shortcut:
self.conv_shortcut = ops.Conv1d(in_dim, out_dim, kernel_size=kernel_size, padding=kernel_size // 2, bias=False)
else:
self.nin_shortcut = ops.Conv1d(in_dim, out_dim, kernel_size=1, padding=0, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# pixel norm
if self.use_norm:
x = normalize(x, dim=1)
h = x
h = nonlinearity(h)
h = self.conv1(h)
h = nonlinearity(h)
h = self.conv2(h)
if self.in_dim != self.out_dim:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return mp_sum(x, h, t=0.3)
class AttnBlock1D(nn.Module):
def __init__(self, in_channels, num_heads=1):
super().__init__()
self.in_channels = in_channels
self.num_heads = num_heads
self.qkv = ops.Conv1d(in_channels, in_channels * 3, kernel_size=1, padding=0, bias=False)
self.proj_out = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
self.optimized_attention = vae_attention()
def forward(self, x):
h = x
y = self.qkv(h)
y = y.reshape(y.shape[0], -1, 3, y.shape[-1])
q, k, v = normalize(y, dim=1).unbind(2)
h = self.optimized_attention(q, k, v)
h = self.proj_out(h)
return mp_sum(x, h, t=0.3)
class Upsample1D(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = ops.Conv1d(in_channels, in_channels, kernel_size=3, padding=1, bias=False)
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode='nearest-exact') # support 3D tensor(B,C,T)
if self.with_conv:
x = self.conv(x)
return x
class Downsample1D(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv1 = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
self.conv2 = ops.Conv1d(in_channels, in_channels, kernel_size=1, padding=0, bias=False)
def forward(self, x):
if self.with_conv:
x = self.conv1(x)
x = F.avg_pool1d(x, kernel_size=2, stride=2)
if self.with_conv:
x = self.conv2(x)
return x

View File

@ -26,6 +26,12 @@ class DiagonalGaussianRegularizer(torch.nn.Module):
z = posterior.mode()
return z, None
class EmptyRegularizer(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
return z, None
class AbstractAutoencoder(torch.nn.Module):
"""

View File

@ -5,8 +5,9 @@ import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional
from typing import Optional, Any, Callable, Union
import logging
import functools
from .diffusionmodules.util import AlphaBlender, timestep_embedding
from .sub_quadratic_attention import efficient_dot_product_attention
@ -17,23 +18,45 @@ if model_management.xformers_enabled():
import xformers
import xformers.ops
if model_management.sage_attention_enabled():
try:
from sageattention import sageattn
except ModuleNotFoundError as e:
SAGE_ATTENTION_IS_AVAILABLE = False
try:
from sageattention import sageattn
SAGE_ATTENTION_IS_AVAILABLE = True
except ImportError as e:
if model_management.sage_attention_enabled():
if e.name == "sageattention":
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
else:
raise e
exit(-1)
if model_management.flash_attention_enabled():
try:
from flash_attn import flash_attn_func
except ModuleNotFoundError:
FLASH_ATTENTION_IS_AVAILABLE = False
try:
from flash_attn import flash_attn_func
FLASH_ATTENTION_IS_AVAILABLE = True
except ImportError:
if model_management.flash_attention_enabled():
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn")
exit(-1)
REGISTERED_ATTENTION_FUNCTIONS = {}
def register_attention_function(name: str, func: Callable):
# avoid replacing existing functions
if name not in REGISTERED_ATTENTION_FUNCTIONS:
REGISTERED_ATTENTION_FUNCTIONS[name] = func
else:
logging.warning(f"Attention function {name} already registered, skipping registration.")
def get_attention_function(name: str, default: Any=...) -> Union[Callable, None]:
if name == "optimized":
return optimized_attention
elif name not in REGISTERED_ATTENTION_FUNCTIONS:
if default is ...:
raise KeyError(f"Attention function {name} not found.")
else:
return default
return REGISTERED_ATTENTION_FUNCTIONS[name]
from comfy.cli_args import args
import comfy.ops
ops = comfy.ops.disable_weight_init
@ -91,7 +114,27 @@ class FeedForward(nn.Module):
def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
def wrap_attn(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
remove_attn_wrapper_key = False
try:
if "_inside_attn_wrapper" not in kwargs:
transformer_options = kwargs.get("transformer_options", None)
remove_attn_wrapper_key = True
kwargs["_inside_attn_wrapper"] = True
if transformer_options is not None:
if "optimized_attention_override" in transformer_options:
return transformer_options["optimized_attention_override"](func, *args, **kwargs)
return func(*args, **kwargs)
finally:
if remove_attn_wrapper_key:
del kwargs["_inside_attn_wrapper"]
return wrapper
@wrap_attn
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
attn_precision = get_attn_precision(attn_precision, q.dtype)
if skip_reshape:
@ -159,8 +202,8 @@ def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
)
return out
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
attn_precision = get_attn_precision(attn_precision, query.dtype)
if skip_reshape:
@ -230,7 +273,8 @@ def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None,
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
return hidden_states
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
attn_precision = get_attn_precision(attn_precision, q.dtype)
if skip_reshape:
@ -359,7 +403,8 @@ try:
except:
pass
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
b = q.shape[0]
dim_head = q.shape[-1]
# check to make sure xformers isn't broken
@ -374,7 +419,7 @@ def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_resh
disabled_xformers = True
if disabled_xformers:
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape, **kwargs)
if skip_reshape:
# b h k d -> b k h d
@ -427,8 +472,8 @@ else:
#TODO: other GPUs ?
SDP_BATCH_LIMIT = 2**31
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
@ -470,8 +515,8 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head)
return out
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout = "HND"
@ -501,7 +546,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
lambda t: t.transpose(1, 2),
(q, k, v),
)
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape, **kwargs)
if tensor_layout == "HND":
if not skip_output_reshape:
@ -534,8 +579,8 @@ except AttributeError as error:
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
assert False, f"Could not define flash_attn_wrapper: {FLASH_ATTN_ERROR}"
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
@wrap_attn
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
@ -555,7 +600,8 @@ def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
mask = mask.unsqueeze(1)
try:
assert mask is None
if mask is not None:
raise RuntimeError("Mask must not be set for Flash attention")
out = flash_attn_wrapper(
q.transpose(1, 2),
k.transpose(1, 2),
@ -597,6 +643,19 @@ else:
optimized_attention_masked = optimized_attention
# register core-supported attention functions
if SAGE_ATTENTION_IS_AVAILABLE:
register_attention_function("sage", attention_sage)
if FLASH_ATTENTION_IS_AVAILABLE:
register_attention_function("flash", attention_flash)
if model_management.xformers_enabled():
register_attention_function("xformers", attention_xformers)
register_attention_function("pytorch", attention_pytorch)
register_attention_function("sub_quad", attention_sub_quad)
register_attention_function("split", attention_split)
def optimized_attention_for_device(device, mask=False, small_input=False):
if small_input:
if model_management.pytorch_attention_enabled():
@ -629,7 +688,7 @@ class CrossAttention(nn.Module):
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, value=None, mask=None):
def forward(self, x, context=None, value=None, mask=None, transformer_options={}):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
@ -640,9 +699,9 @@ class CrossAttention(nn.Module):
v = self.to_v(context)
if mask is None:
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
else:
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision, transformer_options=transformer_options)
return self.to_out(out)
@ -746,7 +805,7 @@ class BasicTransformerBlock(nn.Module):
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
n = self.attn1.to_out(n)
else:
n = self.attn1(n, context=context_attn1, value=value_attn1)
n = self.attn1(n, context=context_attn1, value=value_attn1, transformer_options=transformer_options)
if "attn1_output_patch" in transformer_patches:
patch = transformer_patches["attn1_output_patch"]
@ -786,7 +845,7 @@ class BasicTransformerBlock(nn.Module):
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
n = self.attn2.to_out(n)
else:
n = self.attn2(n, context=context_attn2, value=value_attn2)
n = self.attn2(n, context=context_attn2, value=value_attn2, transformer_options=transformer_options)
if "attn2_output_patch" in transformer_patches:
patch = transformer_patches["attn2_output_patch"]
@ -1017,7 +1076,7 @@ class SpatialVideoTransformer(SpatialTransformer):
B, S, C = x_mix.shape
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
x_mix = mix_block(x_mix, context=time_context, transformer_options=transformer_options)
x_mix = rearrange(
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
)

View File

@ -606,7 +606,7 @@ def block_mixing(*args, use_checkpoint=True, **kwargs):
return _block_mixing(*args, **kwargs)
def _block_mixing(context, x, context_block, x_block, c):
def _block_mixing(context, x, context_block, x_block, c, transformer_options={}):
context_qkv, context_intermediates = context_block.pre_attention(context, c)
if x_block.x_block_self_attn:
@ -622,6 +622,7 @@ def _block_mixing(context, x, context_block, x_block, c):
attn = optimized_attention(
qkv[0], qkv[1], qkv[2],
heads=x_block.attn.num_heads,
transformer_options=transformer_options,
)
context_attn, x_attn = (
attn[:, : context_qkv[0].shape[1]],
@ -637,6 +638,7 @@ def _block_mixing(context, x, context_block, x_block, c):
attn2 = optimized_attention(
x_qkv2[0], x_qkv2[1], x_qkv2[2],
heads=x_block.attn2.num_heads,
transformer_options=transformer_options,
)
x = x_block.post_attention_x(x_attn, attn2, *x_intermediates)
else:
@ -958,10 +960,10 @@ class MMDiT(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"])
out["txt"], out["img"] = self.joint_blocks[i](args["txt"], args["img"], c=args["vec"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": c_mod, "transformer_options": transformer_options}, {"original_block": block_wrap})
context = out["txt"]
x = out["img"]
else:
@ -970,6 +972,7 @@ class MMDiT(nn.Module):
x,
c=c_mod,
use_checkpoint=self.use_checkpoint,
transformer_options=transformer_options,
)
if control is not None:
control_o = control.get("output")

View File

@ -145,7 +145,7 @@ class Downsample(nn.Module):
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
dropout, temb_channels=512, conv_op=ops.Conv2d):
dropout=0.0, temb_channels=512, conv_op=ops.Conv2d, norm_op=Normalize):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
@ -153,7 +153,7 @@ class ResnetBlock(nn.Module):
self.use_conv_shortcut = conv_shortcut
self.swish = torch.nn.SiLU(inplace=True)
self.norm1 = Normalize(in_channels)
self.norm1 = norm_op(in_channels)
self.conv1 = conv_op(in_channels,
out_channels,
kernel_size=3,
@ -162,7 +162,7 @@ class ResnetBlock(nn.Module):
if temb_channels > 0:
self.temb_proj = ops.Linear(temb_channels,
out_channels)
self.norm2 = Normalize(out_channels)
self.norm2 = norm_op(out_channels)
self.dropout = torch.nn.Dropout(dropout, inplace=True)
self.conv2 = conv_op(out_channels,
out_channels,
@ -183,7 +183,7 @@ class ResnetBlock(nn.Module):
stride=1,
padding=0)
def forward(self, x, temb):
def forward(self, x, temb=None):
h = x
h = self.norm1(h)
h = self.swish(h)
@ -305,11 +305,11 @@ def vae_attention():
return normal_attention
class AttnBlock(nn.Module):
def __init__(self, in_channels, conv_op=ops.Conv2d):
def __init__(self, in_channels, conv_op=ops.Conv2d, norm_op=Normalize):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.norm = norm_op(in_channels)
self.q = conv_op(in_channels,
in_channels,
kernel_size=1,

View File

@ -120,7 +120,7 @@ class Attention(nn.Module):
nn.Dropout(0.0)
)
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None) -> torch.Tensor:
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, transformer_options={}) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
query = self.to_q(hidden_states)
@ -146,7 +146,7 @@ class Attention(nn.Module):
key = key.repeat_interleave(self.heads // self.kv_heads, dim=1)
value = value.repeat_interleave(self.heads // self.kv_heads, dim=1)
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True)
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True, transformer_options=transformer_options)
hidden_states = self.to_out[0](hidden_states)
return hidden_states
@ -182,16 +182,16 @@ class OmniGen2TransformerBlock(nn.Module):
self.norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.ffn_norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None, transformer_options={}) -> torch.Tensor:
if self.modulation:
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb, transformer_options=transformer_options)
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
else:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb, transformer_options=transformer_options)
hidden_states = hidden_states + self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
@ -390,7 +390,7 @@ class OmniGen2Transformer2DModel(nn.Module):
ref_img_sizes, img_sizes,
)
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb):
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb, transformer_options={}):
batch_size = len(hidden_states)
hidden_states = self.x_embedder(hidden_states)
@ -405,17 +405,17 @@ class OmniGen2Transformer2DModel(nn.Module):
shift += ref_img_len
for layer in self.noise_refiner:
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb, transformer_options=transformer_options)
if ref_image_hidden_states is not None:
for layer in self.ref_image_refiner:
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb)
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb, transformer_options=transformer_options)
hidden_states = torch.cat([ref_image_hidden_states, hidden_states], dim=1)
return hidden_states
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, **kwargs):
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, transformer_options={}, **kwargs):
B, C, H, W = x.shape
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
_, _, H_padded, W_padded = hidden_states.shape
@ -444,7 +444,7 @@ class OmniGen2Transformer2DModel(nn.Module):
)
for layer in self.context_refiner:
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb, transformer_options=transformer_options)
img_len = hidden_states.shape[1]
combined_img_hidden_states = self.img_patch_embed_and_refine(
@ -453,13 +453,14 @@ class OmniGen2Transformer2DModel(nn.Module):
noise_rotary_emb, ref_img_rotary_emb,
l_effective_ref_img_len, l_effective_img_len,
temb,
transformer_options=transformer_options,
)
hidden_states = torch.cat([text_hidden_states, combined_img_hidden_states], dim=1)
attention_mask = None
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb, transformer_options=transformer_options)
hidden_states = self.norm_out(hidden_states, temb)

View File

@ -44,7 +44,7 @@ class QwenImageControlNetModel(QwenImageTransformer2DModel):
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states) + self.controlnet_x_embedder(hint)

View File

@ -10,6 +10,7 @@ from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
import comfy.ldm.common_dit
import comfy.patcher_extension
from comfy.ldm.flux.math import apply_rope1
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
@ -132,34 +133,36 @@ class Attention(nn.Module):
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = hidden_states.shape[0]
seq_img = hidden_states.shape[1]
seq_txt = encoder_hidden_states.shape[1]
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
# Project and reshape to BHND format (batch, heads, seq, dim)
img_query = self.to_q(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous()
img_key = self.to_k(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous()
img_value = self.to_v(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2)
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_query = self.add_q_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous()
txt_key = self.add_k_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous()
txt_value = self.add_v_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2)
img_query = self.norm_q(img_query)
img_key = self.norm_k(img_key)
txt_query = self.norm_added_q(txt_query)
txt_key = self.norm_added_k(txt_key)
joint_query = torch.cat([txt_query, img_query], dim=1)
joint_key = torch.cat([txt_key, img_key], dim=1)
joint_value = torch.cat([txt_value, img_value], dim=1)
joint_query = torch.cat([txt_query, img_query], dim=2)
joint_key = torch.cat([txt_key, img_key], dim=2)
joint_value = torch.cat([txt_value, img_value], dim=2)
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
joint_query = apply_rope1(joint_query, image_rotary_emb)
joint_key = apply_rope1(joint_key, image_rotary_emb)
joint_query = joint_query.flatten(start_dim=2)
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads,
attention_mask, transformer_options=transformer_options,
skip_reshape=True)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
img_attn_output = joint_hidden_states[:, seq_txt:, :]
@ -226,33 +229,39 @@ class QwenImageTransformerBlock(nn.Module):
encoder_hidden_states_mask: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
img_mod_params = self.img_mod(temb)
txt_mod_params = self.txt_mod(temb)
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
img_normed = self.img_norm1(hidden_states)
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
txt_normed = self.txt_norm1(encoder_hidden_states)
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
img_modulated, img_gate1 = self._modulate(self.img_norm1(hidden_states), img_mod1)
del img_mod1
txt_modulated, txt_gate1 = self._modulate(self.txt_norm1(encoder_hidden_states), txt_mod1)
del txt_mod1
img_attn_output, txt_attn_output = self.attn(
hidden_states=img_modulated,
encoder_hidden_states=txt_modulated,
encoder_hidden_states_mask=encoder_hidden_states_mask,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
del img_modulated
del txt_modulated
hidden_states = hidden_states + img_gate1 * img_attn_output
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
del img_attn_output
del txt_attn_output
del img_gate1
del txt_gate1
img_normed2 = self.img_norm2(hidden_states)
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
img_modulated2, img_gate2 = self._modulate(self.img_norm2(hidden_states), img_mod2)
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
txt_normed2 = self.txt_norm2(encoder_hidden_states)
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
txt_modulated2, txt_gate2 = self._modulate(self.txt_norm2(encoder_hidden_states), txt_mod2)
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
return encoder_hidden_states, hidden_states
@ -410,7 +419,7 @@ class QwenImageTransformer2DModel(nn.Module):
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states)
@ -434,9 +443,9 @@ class QwenImageTransformer2DModel(nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"])
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
else:
@ -446,11 +455,12 @@ class QwenImageTransformer2DModel(nn.Module):
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i})
out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i, "transformer_options": transformer_options})
hidden_states = out["img"]
encoder_hidden_states = out["txt"]
@ -459,7 +469,7 @@ class QwenImageTransformer2DModel(nn.Module):
if i < len(control_i):
add = control_i[i]
if add is not None:
hidden_states += add
hidden_states[:, :add.shape[1]] += add
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)

View File

@ -4,11 +4,11 @@ import math
import torch
import torch.nn as nn
from einops import repeat
from einops import rearrange
from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
from comfy.ldm.flux.math import apply_rope1
import comfy.ldm.common_dit
import comfy.model_management
import comfy.patcher_extension
@ -34,7 +34,9 @@ class WanSelfAttention(nn.Module):
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6, operation_settings={}):
eps=1e-6,
kv_dim=None,
operation_settings={}):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
@ -43,16 +45,18 @@ class WanSelfAttention(nn.Module):
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
if kv_dim is None:
kv_dim = dim
# layers
self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.k = operation_settings.get("operations").Linear(kv_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v = operation_settings.get("operations").Linear(kv_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, freqs):
def forward(self, x, freqs, transformer_options={}):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
@ -60,21 +64,26 @@ class WanSelfAttention(nn.Module):
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# query, key, value function
def qkv_fn(x):
def qkv_fn_q(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n * d)
return q, k, v
return apply_rope1(q, freqs)
q, k, v = qkv_fn(x)
q, k = apply_rope(q, k, freqs)
def qkv_fn_k(x):
k = self.norm_k(self.k(x)).view(b, s, n, d)
return apply_rope1(k, freqs)
#These two are VRAM hogs, so we want to do all of q computation and
#have pytorch garbage collect the intermediates on the sub function
#return before we touch k
q = qkv_fn_q(x)
k = qkv_fn_k(x)
x = optimized_attention(
q.view(b, s, n * d),
k.view(b, s, n * d),
v,
self.v(x).view(b, s, n * d),
heads=self.num_heads,
transformer_options=transformer_options,
)
x = self.o(x)
@ -83,7 +92,7 @@ class WanSelfAttention(nn.Module):
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context, **kwargs):
def forward(self, x, context, transformer_options={}, **kwargs):
r"""
Args:
x(Tensor): Shape [B, L1, C]
@ -95,7 +104,7 @@ class WanT2VCrossAttention(WanSelfAttention):
v = self.v(context)
# compute attention
x = optimized_attention(q, k, v, heads=self.num_heads)
x = optimized_attention(q, k, v, heads=self.num_heads, transformer_options=transformer_options)
x = self.o(x)
return x
@ -116,7 +125,7 @@ class WanI2VCrossAttention(WanSelfAttention):
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, context, context_img_len):
def forward(self, x, context, context_img_len, transformer_options={}):
r"""
Args:
x(Tensor): Shape [B, L1, C]
@ -131,9 +140,9 @@ class WanI2VCrossAttention(WanSelfAttention):
v = self.v(context)
k_img = self.norm_k_img(self.k_img(context_img))
v_img = self.v_img(context_img)
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads)
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads, transformer_options=transformer_options)
# compute attention
x = optimized_attention(q, k, v, heads=self.num_heads)
x = optimized_attention(q, k, v, heads=self.num_heads, transformer_options=transformer_options)
# output
x = x + img_x
@ -153,7 +162,10 @@ def repeat_e(e, x):
repeats = x.size(1) // e.size(1)
if repeats == 1:
return e
return torch.repeat_interleave(e, repeats, dim=1)
if repeats * e.size(1) == x.size(1):
return torch.repeat_interleave(e, repeats, dim=1)
else:
return torch.repeat_interleave(e, repeats + 1, dim=1)[:, :x.size(1)]
class WanAttentionBlock(nn.Module):
@ -203,6 +215,7 @@ class WanAttentionBlock(nn.Module):
freqs,
context,
context_img_len=257,
transformer_options={},
):
r"""
Args:
@ -219,14 +232,16 @@ class WanAttentionBlock(nn.Module):
# assert e[0].dtype == torch.float32
# self-attention
x = x.contiguous() # otherwise implicit in LayerNorm
y = self.self_attn(
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
freqs)
freqs, transformer_options=transformer_options)
x = torch.addcmul(x, y, repeat_e(e[2], x))
del y
# cross-attention & ffn
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len)
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len, transformer_options=transformer_options)
y = self.ffn(torch.addcmul(repeat_e(e[3], x), self.norm2(x), 1 + repeat_e(e[4], x)))
x = torch.addcmul(x, y, repeat_e(e[5], x))
return x
@ -393,6 +408,7 @@ class WanModel(torch.nn.Module):
eps=1e-6,
flf_pos_embed_token_number=None,
in_dim_ref_conv=None,
wan_attn_block_class=WanAttentionBlock,
image_model=None,
device=None,
dtype=None,
@ -470,8 +486,8 @@ class WanModel(torch.nn.Module):
# blocks
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
self.blocks = nn.ModuleList([
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
wan_attn_block_class(cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
for _ in range(num_layers)
])
@ -556,12 +572,12 @@ class WanModel(torch.nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
# head
x = self.head(x, e)
@ -573,6 +589,40 @@ class WanModel(torch.nn.Module):
x = self.unpatchify(x, grid_sizes)
return x
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}):
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
if steps_t is None:
steps_t = t_len
if steps_h is None:
steps_h = h_len
if steps_w is None:
steps_w = w_len
h_start = 0
w_start = 0
rope_options = transformer_options.get("rope_options", None)
if rope_options is not None:
t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
t_start += rope_options.get("shift_t", 0.0)
h_start += rope_options.get("shift_y", 0.0)
w_start += rope_options.get("shift_x", 0.0)
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
freqs = self.rope_embedder(img_ids).movedim(1, 2)
return freqs
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
@ -584,26 +634,16 @@ class WanModel(torch.nn.Module):
bs, c, t, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
t_len = t
if time_dim_concat is not None:
time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size)
x = torch.cat([x, time_dim_concat], dim=2)
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
t_len = x.shape[2]
if self.ref_conv is not None and "reference_latent" in kwargs:
t_len += 1
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
freqs = self.rope_embedder(img_ids).movedim(1, 2)
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options)
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
def unpatchify(self, x, grid_sizes):
@ -727,17 +767,17 @@ class VaceWanModel(WanModel):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
ii = self.vace_layers_mapping.get(i, None)
if ii is not None:
for iii in range(len(c)):
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
x += c_skip * vace_strength[iii]
del c_skip
# head
@ -826,12 +866,724 @@ class CameraWanModel(WanModel):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
class CausalConv1d(nn.Module):
def __init__(self,
chan_in,
chan_out,
kernel_size=3,
stride=1,
dilation=1,
pad_mode='replicate',
operations=None,
**kwargs):
super().__init__()
self.pad_mode = pad_mode
padding = (kernel_size - 1, 0) # T
self.time_causal_padding = padding
self.conv = operations.Conv1d(
chan_in,
chan_out,
kernel_size,
stride=stride,
dilation=dilation,
**kwargs)
def forward(self, x):
x = torch.nn.functional.pad(x, self.time_causal_padding, mode=self.pad_mode)
return self.conv(x)
class MotionEncoder_tc(nn.Module):
def __init__(self,
in_dim: int,
hidden_dim: int,
num_heads: int,
need_global=True,
dtype=None,
device=None,
operations=None,):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.num_heads = num_heads
self.need_global = need_global
self.conv1_local = CausalConv1d(in_dim, hidden_dim // 4 * num_heads, 3, stride=1, operations=operations, **factory_kwargs)
if need_global:
self.conv1_global = CausalConv1d(
in_dim, hidden_dim // 4, 3, stride=1, operations=operations, **factory_kwargs)
self.norm1 = operations.LayerNorm(
hidden_dim // 4,
elementwise_affine=False,
eps=1e-6,
**factory_kwargs)
self.act = nn.SiLU()
self.conv2 = CausalConv1d(hidden_dim // 4, hidden_dim // 2, 3, stride=2, operations=operations, **factory_kwargs)
self.conv3 = CausalConv1d(hidden_dim // 2, hidden_dim, 3, stride=2, operations=operations, **factory_kwargs)
if need_global:
self.final_linear = operations.Linear(hidden_dim, hidden_dim, **factory_kwargs)
self.norm1 = operations.LayerNorm(
hidden_dim // 4,
elementwise_affine=False,
eps=1e-6,
**factory_kwargs)
self.norm2 = operations.LayerNorm(
hidden_dim // 2,
elementwise_affine=False,
eps=1e-6,
**factory_kwargs)
self.norm3 = operations.LayerNorm(
hidden_dim, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs))
def forward(self, x):
x = rearrange(x, 'b t c -> b c t')
x_ori = x.clone()
b, c, t = x.shape
x = self.conv1_local(x)
x = rearrange(x, 'b (n c) t -> (b n) t c', n=self.num_heads)
x = self.norm1(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv2(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm2(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv3(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm3(x)
x = self.act(x)
x = rearrange(x, '(b n) t c -> b t n c', b=b)
padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1)
x = torch.cat([x, padding], dim=-2)
x_local = x.clone()
if not self.need_global:
return x_local
x = self.conv1_global(x_ori)
x = rearrange(x, 'b c t -> b t c')
x = self.norm1(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv2(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm2(x)
x = self.act(x)
x = rearrange(x, 'b t c -> b c t')
x = self.conv3(x)
x = rearrange(x, 'b c t -> b t c')
x = self.norm3(x)
x = self.act(x)
x = self.final_linear(x)
x = rearrange(x, '(b n) t c -> b t n c', b=b)
return x, x_local
class CausalAudioEncoder(nn.Module):
def __init__(self,
dim=5120,
num_layers=25,
out_dim=2048,
video_rate=8,
num_token=4,
need_global=False,
dtype=None,
device=None,
operations=None):
super().__init__()
self.encoder = MotionEncoder_tc(
in_dim=dim,
hidden_dim=out_dim,
num_heads=num_token,
need_global=need_global, dtype=dtype, device=device, operations=operations)
weight = torch.empty((1, num_layers, 1, 1), dtype=dtype, device=device)
self.weights = torch.nn.Parameter(weight)
self.act = torch.nn.SiLU()
def forward(self, features):
# features B * num_layers * dim * video_length
weights = self.act(comfy.model_management.cast_to(self.weights, dtype=features.dtype, device=features.device))
weights_sum = weights.sum(dim=1, keepdims=True)
weighted_feat = ((features * weights) / weights_sum).sum(
dim=1) # b dim f
weighted_feat = weighted_feat.permute(0, 2, 1) # b f dim
res = self.encoder(weighted_feat) # b f n dim
return res # b f n dim
class AdaLayerNorm(nn.Module):
def __init__(self, embedding_dim, output_dim=None, norm_elementwise_affine=False, norm_eps=1e-5, dtype=None, device=None, operations=None):
super().__init__()
output_dim = output_dim or embedding_dim * 2
self.silu = nn.SiLU()
self.linear = operations.Linear(embedding_dim, output_dim, dtype=dtype, device=device)
self.norm = operations.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine, dtype=dtype, device=device)
def forward(self, x, temb):
temb = self.linear(self.silu(temb))
shift, scale = temb.chunk(2, dim=1)
shift = shift[:, None, :]
scale = scale[:, None, :]
x = self.norm(x) * (1 + scale) + shift
return x
class AudioInjector_WAN(nn.Module):
def __init__(self,
dim=2048,
num_heads=32,
inject_layer=[0, 27],
root_net=None,
enable_adain=False,
adain_dim=2048,
adain_mode=None,
dtype=None,
device=None,
operations=None):
super().__init__()
self.enable_adain = enable_adain
self.adain_mode = adain_mode
self.injected_block_id = {}
audio_injector_id = 0
for inject_id in inject_layer:
self.injected_block_id[inject_id] = audio_injector_id
audio_injector_id += 1
self.injector = nn.ModuleList([
WanT2VCrossAttention(
dim=dim,
num_heads=num_heads,
qk_norm=True, operation_settings={"operations": operations, "device": device, "dtype": dtype}
) for _ in range(audio_injector_id)
])
self.injector_pre_norm_feat = nn.ModuleList([
operations.LayerNorm(
dim,
elementwise_affine=False,
eps=1e-6, dtype=dtype, device=device
) for _ in range(audio_injector_id)
])
self.injector_pre_norm_vec = nn.ModuleList([
operations.LayerNorm(
dim,
elementwise_affine=False,
eps=1e-6, dtype=dtype, device=device
) for _ in range(audio_injector_id)
])
if enable_adain:
self.injector_adain_layers = nn.ModuleList([
AdaLayerNorm(
output_dim=dim * 2, embedding_dim=adain_dim, dtype=dtype, device=device, operations=operations)
for _ in range(audio_injector_id)
])
if adain_mode != "attn_norm":
self.injector_adain_output_layers = nn.ModuleList(
[operations.Linear(dim, dim, dtype=dtype, device=device) for _ in range(audio_injector_id)])
def forward(self, x, block_id, audio_emb, audio_emb_global, seq_len):
audio_attn_id = self.injected_block_id.get(block_id, None)
if audio_attn_id is None:
return x
num_frames = audio_emb.shape[1]
input_hidden_states = rearrange(x[:, :seq_len], "b (t n) c -> (b t) n c", t=num_frames)
if self.enable_adain and self.adain_mode == "attn_norm":
audio_emb_global = rearrange(audio_emb_global, "b t n c -> (b t) n c")
adain_hidden_states = self.injector_adain_layers[audio_attn_id](input_hidden_states, temb=audio_emb_global[:, 0])
attn_hidden_states = adain_hidden_states
else:
attn_hidden_states = self.injector_pre_norm_feat[audio_attn_id](input_hidden_states)
audio_emb = rearrange(audio_emb, "b t n c -> (b t) n c", t=num_frames)
attn_audio_emb = audio_emb
residual_out = self.injector[audio_attn_id](x=attn_hidden_states, context=attn_audio_emb)
residual_out = rearrange(
residual_out, "(b t) n c -> b (t n) c", t=num_frames)
x[:, :seq_len] = x[:, :seq_len] + residual_out
return x
class FramePackMotioner(nn.Module):
def __init__(
self,
inner_dim=1024,
num_heads=16, # Used to indicate the number of heads in the backbone network; unrelated to this module's design
zip_frame_buckets=[
1, 2, 16
], # Three numbers representing the number of frames sampled for patch operations from the nearest to the farthest frames
drop_mode="drop", # If not "drop", it will use "padd", meaning padding instead of deletion
dtype=None,
device=None,
operations=None):
super().__init__()
self.proj = operations.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2), dtype=dtype, device=device)
self.proj_2x = operations.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4), dtype=dtype, device=device)
self.proj_4x = operations.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8), dtype=dtype, device=device)
self.zip_frame_buckets = zip_frame_buckets
self.inner_dim = inner_dim
self.num_heads = num_heads
self.drop_mode = drop_mode
def forward(self, motion_latents, rope_embedder, add_last_motion=2):
lat_height, lat_width = motion_latents.shape[3], motion_latents.shape[4]
padd_lat = torch.zeros(motion_latents.shape[0], 16, sum(self.zip_frame_buckets), lat_height, lat_width).to(device=motion_latents.device, dtype=motion_latents.dtype)
overlap_frame = min(padd_lat.shape[2], motion_latents.shape[2])
if overlap_frame > 0:
padd_lat[:, :, -overlap_frame:] = motion_latents[:, :, -overlap_frame:]
if add_last_motion < 2 and self.drop_mode != "drop":
zero_end_frame = sum(self.zip_frame_buckets[:len(self.zip_frame_buckets) - add_last_motion - 1])
padd_lat[:, :, -zero_end_frame:] = 0
clean_latents_4x, clean_latents_2x, clean_latents_post = padd_lat[:, :, -sum(self.zip_frame_buckets):, :, :].split(self.zip_frame_buckets[::-1], dim=2) # 16, 2 ,1
# patchfy
clean_latents_post = self.proj(clean_latents_post).flatten(2).transpose(1, 2)
clean_latents_2x = self.proj_2x(clean_latents_2x)
l_2x_shape = clean_latents_2x.shape
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
clean_latents_4x = self.proj_4x(clean_latents_4x)
l_4x_shape = clean_latents_4x.shape
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
if add_last_motion < 2 and self.drop_mode == "drop":
clean_latents_post = clean_latents_post[:, :
0] if add_last_motion < 2 else clean_latents_post
clean_latents_2x = clean_latents_2x[:, :
0] if add_last_motion < 1 else clean_latents_2x
motion_lat = torch.cat([clean_latents_post, clean_latents_2x, clean_latents_4x], dim=1)
rope_post = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-1, device=motion_latents.device, dtype=motion_latents.dtype)
rope_2x = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-3, steps_h=l_2x_shape[-2], steps_w=l_2x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
rope_4x = rope_embedder.rope_encode(4, lat_height, lat_width, t_start=-19, steps_h=l_4x_shape[-2], steps_w=l_4x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
rope = torch.cat([rope_post, rope_2x, rope_4x], dim=1)
return motion_lat, rope
class WanModel_S2V(WanModel):
def __init__(self,
model_type='s2v',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
audio_dim=1024,
num_audio_token=4,
enable_adain=True,
cond_dim=16,
audio_inject_layers=[0, 4, 8, 12, 16, 20, 24, 27, 30, 33, 36, 39],
adain_mode="attn_norm",
framepack_drop_mode="padd",
image_model=None,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, image_model=image_model, device=device, dtype=dtype, operations=operations)
self.trainable_cond_mask = operations.Embedding(3, self.dim, device=device, dtype=dtype)
self.casual_audio_encoder = CausalAudioEncoder(
dim=audio_dim,
out_dim=self.dim,
num_token=num_audio_token,
need_global=enable_adain, dtype=dtype, device=device, operations=operations)
if cond_dim > 0:
self.cond_encoder = operations.Conv3d(
cond_dim,
self.dim,
kernel_size=self.patch_size,
stride=self.patch_size, device=device, dtype=dtype)
self.audio_injector = AudioInjector_WAN(
dim=self.dim,
num_heads=self.num_heads,
inject_layer=audio_inject_layers,
root_net=self,
enable_adain=enable_adain,
adain_dim=self.dim,
adain_mode=adain_mode,
dtype=dtype, device=device, operations=operations
)
self.frame_packer = FramePackMotioner(
inner_dim=self.dim,
num_heads=self.num_heads,
zip_frame_buckets=[1, 2, 16],
drop_mode=framepack_drop_mode,
dtype=dtype, device=device, operations=operations)
def forward_orig(
self,
x,
t,
context,
audio_embed=None,
reference_latent=None,
control_video=None,
reference_motion=None,
clip_fea=None,
freqs=None,
transformer_options={},
**kwargs,
):
if audio_embed is not None:
num_embeds = x.shape[-3] * 4
audio_emb_global, audio_emb = self.casual_audio_encoder(audio_embed[:, :, :, :num_embeds])
else:
audio_emb = None
# embeddings
bs, _, time, height, width = x.shape
x = self.patch_embedding(x.float()).to(x.dtype)
if control_video is not None:
x = x + self.cond_encoder(control_video)
if t.ndim == 1:
t = t.unsqueeze(1).repeat(1, x.shape[2])
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
seq_len = x.size(1)
cond_mask_weight = comfy.model_management.cast_to(self.trainable_cond_mask.weight, dtype=x.dtype, device=x.device).unsqueeze(1).unsqueeze(1)
x = x + cond_mask_weight[0]
if reference_latent is not None:
ref = self.patch_embedding(reference_latent.float()).to(x.dtype)
ref = ref.flatten(2).transpose(1, 2)
freqs_ref = self.rope_encode(reference_latent.shape[-3], reference_latent.shape[-2], reference_latent.shape[-1], t_start=max(30, time + 9), device=x.device, dtype=x.dtype)
ref = ref + cond_mask_weight[1]
x = torch.cat([x, ref], dim=1)
freqs = torch.cat([freqs, freqs_ref], dim=1)
t = torch.cat([t, torch.zeros((t.shape[0], reference_latent.shape[-3]), device=t.device, dtype=t.dtype)], dim=1)
del ref, freqs_ref
if reference_motion is not None:
motion_encoded, freqs_motion = self.frame_packer(reference_motion, self)
motion_encoded = motion_encoded + cond_mask_weight[2]
x = torch.cat([x, motion_encoded], dim=1)
freqs = torch.cat([freqs, freqs_motion], dim=1)
t = torch.repeat_interleave(t, 2, dim=1)
t = torch.cat([t, torch.zeros((t.shape[0], 3), device=t.device, dtype=t.dtype)], dim=1)
del motion_encoded, freqs_motion
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
e = e.reshape(t.shape[0], -1, e.shape[-1])
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
# context
context = self.text_embedding(context)
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context)
if audio_emb is not None:
x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
class WanT2VCrossAttentionGather(WanSelfAttention):
def forward(self, x, context, transformer_options={}, **kwargs):
r"""
Args:
x(Tensor): Shape [B, L1, C] - video tokens
context(Tensor): Shape [B, L2, C] - audio tokens with shape [B, frames*16, 1536]
"""
b, n, d = x.size(0), self.num_heads, self.head_dim
q = self.norm_q(self.q(x))
k = self.norm_k(self.k(context))
v = self.v(context)
# Handle audio temporal structure (16 tokens per frame)
k = k.reshape(-1, 16, n, d).transpose(1, 2)
v = v.reshape(-1, 16, n, d).transpose(1, 2)
# Handle video spatial structure
q = q.reshape(k.shape[0], -1, n, d).transpose(1, 2)
x = optimized_attention(q, k, v, heads=self.num_heads, skip_reshape=True, skip_output_reshape=True, transformer_options=transformer_options)
x = x.transpose(1, 2).reshape(b, -1, n * d)
x = self.o(x)
return x
class AudioCrossAttentionWrapper(nn.Module):
def __init__(self, dim, kv_dim, num_heads, qk_norm=True, eps=1e-6, operation_settings={}):
super().__init__()
self.audio_cross_attn = WanT2VCrossAttentionGather(dim, num_heads, qk_norm=qk_norm, kv_dim=kv_dim, eps=eps, operation_settings=operation_settings)
self.norm1_audio = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x, audio, transformer_options={}):
x = x + self.audio_cross_attn(self.norm1_audio(x), audio, transformer_options=transformer_options)
return x
class WanAttentionBlockAudio(WanAttentionBlock):
def __init__(self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6, operation_settings={}):
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings)
self.audio_cross_attn_wrapper = AudioCrossAttentionWrapper(dim, 1536, num_heads, qk_norm, eps, operation_settings=operation_settings)
def forward(
self,
x,
e,
freqs,
context,
context_img_len=257,
audio=None,
transformer_options={},
):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, 6, C]
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
# assert e.dtype == torch.float32
if e.ndim < 4:
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
else:
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device).unsqueeze(0) + e).unbind(2)
# assert e[0].dtype == torch.float32
# self-attention
y = self.self_attn(
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
freqs, transformer_options=transformer_options)
x = torch.addcmul(x, y, repeat_e(e[2], x))
# cross-attention & ffn
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len, transformer_options=transformer_options)
if audio is not None:
x = self.audio_cross_attn_wrapper(x, audio, transformer_options=transformer_options)
y = self.ffn(torch.addcmul(repeat_e(e[3], x), self.norm2(x), 1 + repeat_e(e[4], x)))
x = torch.addcmul(x, y, repeat_e(e[5], x))
return x
class DummyAdapterLayer(nn.Module):
def __init__(self, layer):
super().__init__()
self.layer = layer
def forward(self, *args, **kwargs):
return self.layer(*args, **kwargs)
class AudioProjModel(nn.Module):
def __init__(
self,
seq_len=5,
blocks=13, # add a new parameter blocks
channels=768, # add a new parameter channels
intermediate_dim=512,
output_dim=1536,
context_tokens=16,
device=None,
dtype=None,
operations=None,
):
super().__init__()
self.seq_len = seq_len
self.blocks = blocks
self.channels = channels
self.input_dim = seq_len * blocks * channels # update input_dim to be the product of blocks and channels.
self.intermediate_dim = intermediate_dim
self.context_tokens = context_tokens
self.output_dim = output_dim
# define multiple linear layers
self.audio_proj_glob_1 = DummyAdapterLayer(operations.Linear(self.input_dim, intermediate_dim, dtype=dtype, device=device))
self.audio_proj_glob_2 = DummyAdapterLayer(operations.Linear(intermediate_dim, intermediate_dim, dtype=dtype, device=device))
self.audio_proj_glob_3 = DummyAdapterLayer(operations.Linear(intermediate_dim, context_tokens * output_dim, dtype=dtype, device=device))
self.audio_proj_glob_norm = DummyAdapterLayer(operations.LayerNorm(output_dim, dtype=dtype, device=device))
def forward(self, audio_embeds):
video_length = audio_embeds.shape[1]
audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c")
batch_size, window_size, blocks, channels = audio_embeds.shape
audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels)
audio_embeds = torch.relu(self.audio_proj_glob_1(audio_embeds))
audio_embeds = torch.relu(self.audio_proj_glob_2(audio_embeds))
context_tokens = self.audio_proj_glob_3(audio_embeds).reshape(batch_size, self.context_tokens, self.output_dim)
context_tokens = self.audio_proj_glob_norm(context_tokens)
context_tokens = rearrange(context_tokens, "(bz f) m c -> bz f m c", f=video_length)
return context_tokens
class HumoWanModel(WanModel):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='humo',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None,
audio_token_num=16,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, wan_attn_block_class=WanAttentionBlockAudio, image_model=image_model, device=device, dtype=dtype, operations=operations)
self.audio_proj = AudioProjModel(seq_len=8, blocks=5, channels=1280, intermediate_dim=512, output_dim=1536, context_tokens=audio_token_num, dtype=dtype, device=device, operations=operations)
def forward_orig(
self,
x,
t,
context,
freqs=None,
audio_embed=None,
reference_latent=None,
transformer_options={},
**kwargs,
):
bs, _, time, height, width = x.shape
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
e = e.reshape(t.shape[0], -1, e.shape[-1])
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
if reference_latent is not None:
ref = self.patch_embedding(reference_latent.float()).to(x.dtype)
ref = ref.flatten(2).transpose(1, 2)
freqs_ref = self.rope_encode(reference_latent.shape[-3], reference_latent.shape[-2], reference_latent.shape[-1], t_start=time, device=x.device, dtype=x.dtype)
x = torch.cat([x, ref], dim=1)
freqs = torch.cat([freqs, freqs_ref], dim=1)
del ref, freqs_ref
# context
context = self.text_embedding(context)
context_img_len = None
if audio_embed is not None:
if reference_latent is not None:
zero_audio_pad = torch.zeros(audio_embed.shape[0], reference_latent.shape[-3], *audio_embed.shape[2:], device=audio_embed.device, dtype=audio_embed.dtype)
audio_embed = torch.cat([audio_embed, zero_audio_pad], dim=1)
audio = self.audio_proj(audio_embed).permute(0, 3, 1, 2).flatten(2).transpose(1, 2)
else:
audio = None
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, audio=audio, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, audio=audio, transformer_options=transformer_options)
# head
x = self.head(x, e)

View File

@ -0,0 +1,548 @@
from torch import nn
import torch
from typing import Tuple, Optional
from einops import rearrange
import torch.nn.functional as F
import math
from .model import WanModel, sinusoidal_embedding_1d
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
class CausalConv1d(nn.Module):
def __init__(self, chan_in, chan_out, kernel_size=3, stride=1, dilation=1, pad_mode="replicate", operations=None, **kwargs):
super().__init__()
self.pad_mode = pad_mode
padding = (kernel_size - 1, 0) # T
self.time_causal_padding = padding
self.conv = operations.Conv1d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs)
def forward(self, x):
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
return self.conv(x)
class FaceEncoder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int, num_heads=int, dtype=None, device=None, operations=None):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.num_heads = num_heads
self.conv1_local = CausalConv1d(in_dim, 1024 * num_heads, 3, stride=1, operations=operations, **factory_kwargs)
self.norm1 = operations.LayerNorm(hidden_dim // 8, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.act = nn.SiLU()
self.conv2 = CausalConv1d(1024, 1024, 3, stride=2, operations=operations, **factory_kwargs)
self.conv3 = CausalConv1d(1024, 1024, 3, stride=2, operations=operations, **factory_kwargs)
self.out_proj = operations.Linear(1024, hidden_dim, **factory_kwargs)
self.norm1 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.norm2 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.norm3 = operations.LayerNorm(1024, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs))
def forward(self, x):
x = rearrange(x, "b t c -> b c t")
b, c, t = x.shape
x = self.conv1_local(x)
x = rearrange(x, "b (n c) t -> (b n) t c", n=self.num_heads)
x = self.norm1(x)
x = self.act(x)
x = rearrange(x, "b t c -> b c t")
x = self.conv2(x)
x = rearrange(x, "b c t -> b t c")
x = self.norm2(x)
x = self.act(x)
x = rearrange(x, "b t c -> b c t")
x = self.conv3(x)
x = rearrange(x, "b c t -> b t c")
x = self.norm3(x)
x = self.act(x)
x = self.out_proj(x)
x = rearrange(x, "(b n) t c -> b t n c", b=b)
padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1)
x = torch.cat([x, padding], dim=-2)
x_local = x.clone()
return x_local
def get_norm_layer(norm_layer, operations=None):
"""
Get the normalization layer.
Args:
norm_layer (str): The type of normalization layer.
Returns:
norm_layer (nn.Module): The normalization layer.
"""
if norm_layer == "layer":
return operations.LayerNorm
elif norm_layer == "rms":
return operations.RMSNorm
else:
raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")
class FaceAdapter(nn.Module):
def __init__(
self,
hidden_dim: int,
heads_num: int,
qk_norm: bool = True,
qk_norm_type: str = "rms",
num_adapter_layers: int = 1,
dtype=None, device=None, operations=None
):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.hidden_size = hidden_dim
self.heads_num = heads_num
self.fuser_blocks = nn.ModuleList(
[
FaceBlock(
self.hidden_size,
self.heads_num,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
operations=operations,
**factory_kwargs,
)
for _ in range(num_adapter_layers)
]
)
def forward(
self,
x: torch.Tensor,
motion_embed: torch.Tensor,
idx: int,
freqs_cis_q: Tuple[torch.Tensor, torch.Tensor] = None,
freqs_cis_k: Tuple[torch.Tensor, torch.Tensor] = None,
) -> torch.Tensor:
return self.fuser_blocks[idx](x, motion_embed, freqs_cis_q, freqs_cis_k)
class FaceBlock(nn.Module):
def __init__(
self,
hidden_size: int,
heads_num: int,
qk_norm: bool = True,
qk_norm_type: str = "rms",
qk_scale: float = None,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
operations=None
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.deterministic = False
self.hidden_size = hidden_size
self.heads_num = heads_num
head_dim = hidden_size // heads_num
self.scale = qk_scale or head_dim**-0.5
self.linear1_kv = operations.Linear(hidden_size, hidden_size * 2, **factory_kwargs)
self.linear1_q = operations.Linear(hidden_size, hidden_size, **factory_kwargs)
self.linear2 = operations.Linear(hidden_size, hidden_size, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type, operations=operations)
self.q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.pre_norm_feat = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.pre_norm_motion = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
def forward(
self,
x: torch.Tensor,
motion_vec: torch.Tensor,
motion_mask: Optional[torch.Tensor] = None,
# use_context_parallel=False,
) -> torch.Tensor:
B, T, N, C = motion_vec.shape
T_comp = T
x_motion = self.pre_norm_motion(motion_vec)
x_feat = self.pre_norm_feat(x)
kv = self.linear1_kv(x_motion)
q = self.linear1_q(x_feat)
k, v = rearrange(kv, "B L N (K H D) -> K B L N H D", K=2, H=self.heads_num)
q = rearrange(q, "B S (H D) -> B S H D", H=self.heads_num)
# Apply QK-Norm if needed.
q = self.q_norm(q).to(v)
k = self.k_norm(k).to(v)
k = rearrange(k, "B L N H D -> (B L) N H D")
v = rearrange(v, "B L N H D -> (B L) N H D")
q = rearrange(q, "B (L S) H D -> (B L) S (H D)", L=T_comp)
attn = optimized_attention(q, k, v, heads=self.heads_num)
attn = rearrange(attn, "(B L) S C -> B (L S) C", L=T_comp)
output = self.linear2(attn)
if motion_mask is not None:
output = output * rearrange(motion_mask, "B T H W -> B (T H W)").unsqueeze(-1)
return output
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/ops/upfirdn2d/upfirdn2d.py#L162
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
_, minor, in_h, in_w = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, minor, in_h, 1, in_w, 1)
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0)]
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
return out[:, :, ::down_y, ::down_x]
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/ops/fused_act/fused_act.py#L81
class FusedLeakyReLU(torch.nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5, dtype=None, device=None):
super().__init__()
self.bias = torch.nn.Parameter(torch.empty(1, channel, 1, 1, dtype=dtype, device=device))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return fused_leaky_relu(input, comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype), self.negative_slope, self.scale)
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return F.leaky_relu(input + bias, negative_slope) * scale
class Blur(torch.nn.Module):
def __init__(self, kernel, pad, dtype=None, device=None):
super().__init__()
kernel = torch.tensor(kernel, dtype=dtype, device=device)
kernel = kernel[None, :] * kernel[:, None]
kernel = kernel / kernel.sum()
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
return upfirdn2d(input, comfy.model_management.cast_to(self.kernel, dtype=input.dtype, device=input.device), pad=self.pad)
#https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L590
class ScaledLeakyReLU(torch.nn.Module):
def __init__(self, negative_slope=0.2):
super().__init__()
self.negative_slope = negative_slope
def forward(self, input):
return F.leaky_relu(input, negative_slope=self.negative_slope)
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L605
class EqualConv2d(torch.nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True, dtype=None, device=None, operations=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(out_channel, in_channel, kernel_size, kernel_size, device=device, dtype=dtype))
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
self.stride = stride
self.padding = padding
self.bias = torch.nn.Parameter(torch.empty(out_channel, device=device, dtype=dtype)) if bias else None
def forward(self, input):
if self.bias is None:
bias = None
else:
bias = comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype)
return F.conv2d(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale, bias=bias, stride=self.stride, padding=self.padding)
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L134
class EqualLinear(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None, dtype=None, device=None, operations=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(out_dim, in_dim, device=device, dtype=dtype))
self.bias = torch.nn.Parameter(torch.empty(out_dim, device=device, dtype=dtype)) if bias else None
self.activation = activation
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.bias is None:
bias = None
else:
bias = comfy.model_management.cast_to(self.bias, device=input.device, dtype=input.dtype) * self.lr_mul
if self.activation:
out = F.linear(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale)
return fused_leaky_relu(out, bias)
return F.linear(input, comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) * self.scale, bias=bias)
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L654
class ConvLayer(torch.nn.Sequential):
def __init__(self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, dtype=None, device=None, operations=None):
layers = []
if downsample:
factor = 2
p = (len(blur_kernel) - factor) + (kernel_size - 1)
layers.append(Blur(blur_kernel, pad=((p + 1) // 2, p // 2)))
stride, padding = 2, 0
else:
stride, padding = 1, kernel_size // 2
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias and not activate, dtype=dtype, device=device, operations=operations))
if activate:
layers.append(FusedLeakyReLU(out_channel) if bias else ScaledLeakyReLU(0.2))
super().__init__(*layers)
# https://github.com/XPixelGroup/BasicSR/blob/8d56e3a045f9fb3e1d8872f92ee4a4f07f886b0a/basicsr/archs/stylegan2_arch.py#L704
class ResBlock(torch.nn.Module):
def __init__(self, in_channel, out_channel, dtype=None, device=None, operations=None):
super().__init__()
self.conv1 = ConvLayer(in_channel, in_channel, 3, dtype=dtype, device=device, operations=operations)
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True, dtype=dtype, device=device, operations=operations)
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False, dtype=dtype, device=device, operations=operations)
def forward(self, input):
out = self.conv2(self.conv1(input))
skip = self.skip(input)
return (out + skip) / math.sqrt(2)
class EncoderApp(torch.nn.Module):
def __init__(self, w_dim=512, dtype=None, device=None, operations=None):
super().__init__()
kwargs = {"device": device, "dtype": dtype, "operations": operations}
self.convs = torch.nn.ModuleList([
ConvLayer(3, 32, 1, **kwargs), ResBlock(32, 64, **kwargs),
ResBlock(64, 128, **kwargs), ResBlock(128, 256, **kwargs),
ResBlock(256, 512, **kwargs), ResBlock(512, 512, **kwargs),
ResBlock(512, 512, **kwargs), ResBlock(512, 512, **kwargs),
EqualConv2d(512, w_dim, 4, padding=0, bias=False, **kwargs)
])
def forward(self, x):
h = x
for conv in self.convs:
h = conv(h)
return h.squeeze(-1).squeeze(-1)
class Encoder(torch.nn.Module):
def __init__(self, dim=512, motion_dim=20, dtype=None, device=None, operations=None):
super().__init__()
self.net_app = EncoderApp(dim, dtype=dtype, device=device, operations=operations)
self.fc = torch.nn.Sequential(*[EqualLinear(dim, dim, dtype=dtype, device=device, operations=operations) for _ in range(4)] + [EqualLinear(dim, motion_dim, dtype=dtype, device=device, operations=operations)])
def encode_motion(self, x):
return self.fc(self.net_app(x))
class Direction(torch.nn.Module):
def __init__(self, motion_dim, dtype=None, device=None, operations=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(512, motion_dim, device=device, dtype=dtype))
self.motion_dim = motion_dim
def forward(self, input):
stabilized_weight = comfy.model_management.cast_to(self.weight, device=input.device, dtype=input.dtype) + 1e-8 * torch.eye(512, self.motion_dim, device=input.device, dtype=input.dtype)
Q, _ = torch.linalg.qr(stabilized_weight.float())
if input is None:
return Q
return torch.sum(input.unsqueeze(-1) * Q.T.to(input.dtype), dim=1)
class Synthesis(torch.nn.Module):
def __init__(self, motion_dim, dtype=None, device=None, operations=None):
super().__init__()
self.direction = Direction(motion_dim, dtype=dtype, device=device, operations=operations)
class Generator(torch.nn.Module):
def __init__(self, style_dim=512, motion_dim=20, dtype=None, device=None, operations=None):
super().__init__()
self.enc = Encoder(style_dim, motion_dim, dtype=dtype, device=device, operations=operations)
self.dec = Synthesis(motion_dim, dtype=dtype, device=device, operations=operations)
def get_motion(self, img):
motion_feat = self.enc.encode_motion(img)
return self.dec.direction(motion_feat)
class AnimateWanModel(WanModel):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='animate',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
motion_encoder_dim=512,
image_model=None,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
self.pose_patch_embedding = operations.Conv3d(
16, dim, kernel_size=patch_size, stride=patch_size, device=device, dtype=dtype
)
self.motion_encoder = Generator(style_dim=512, motion_dim=20, device=device, dtype=dtype, operations=operations)
self.face_adapter = FaceAdapter(
heads_num=self.num_heads,
hidden_dim=self.dim,
num_adapter_layers=self.num_layers // 5,
device=device, dtype=dtype, operations=operations
)
self.face_encoder = FaceEncoder(
in_dim=motion_encoder_dim,
hidden_dim=self.dim,
num_heads=4,
device=device, dtype=dtype, operations=operations
)
def after_patch_embedding(self, x, pose_latents, face_pixel_values):
if pose_latents is not None:
pose_latents = self.pose_patch_embedding(pose_latents)
x[:, :, 1:pose_latents.shape[2] + 1] += pose_latents[:, :, :x.shape[2] - 1]
if face_pixel_values is None:
return x, None
b, c, T, h, w = face_pixel_values.shape
face_pixel_values = rearrange(face_pixel_values, "b c t h w -> (b t) c h w")
encode_bs = 8
face_pixel_values_tmp = []
for i in range(math.ceil(face_pixel_values.shape[0] / encode_bs)):
face_pixel_values_tmp.append(self.motion_encoder.get_motion(face_pixel_values[i * encode_bs: (i + 1) * encode_bs]))
motion_vec = torch.cat(face_pixel_values_tmp)
motion_vec = rearrange(motion_vec, "(b t) c -> b t c", t=T)
motion_vec = self.face_encoder(motion_vec)
B, L, H, C = motion_vec.shape
pad_face = torch.zeros(B, 1, H, C).type_as(motion_vec)
motion_vec = torch.cat([pad_face, motion_vec], dim=1)
if motion_vec.shape[1] < x.shape[2]:
B, L, H, C = motion_vec.shape
pad = torch.zeros(B, x.shape[2] - motion_vec.shape[1], H, C).type_as(motion_vec)
motion_vec = torch.cat([motion_vec, pad], dim=1)
else:
motion_vec = motion_vec[:, :x.shape[2]]
return x, motion_vec
def forward_orig(
self,
x,
t,
context,
clip_fea=None,
pose_latents=None,
face_pixel_values=None,
freqs=None,
transformer_options={},
**kwargs,
):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
x, motion_vec = self.after_patch_embedding(x, pose_latents, face_pixel_values)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
e = e.reshape(t.shape[0], -1, e.shape[-1])
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
full_ref = None
if self.ref_conv is not None:
full_ref = kwargs.get("reference_latent", None)
if full_ref is not None:
full_ref = self.ref_conv(full_ref).flatten(2).transpose(1, 2)
x = torch.concat((full_ref, x), dim=1)
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len, transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len, transformer_options=transformer_options)
if i % 5 == 0 and motion_vec is not None:
x = x + self.face_adapter.fuser_blocks[i // 5](x, motion_vec)
# head
x = self.head(x, e)
if full_ref is not None:
x = x[:, full_ref.shape[1]:]
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x

View File

@ -468,55 +468,46 @@ class WanVAE(nn.Module):
attn_scales, self.temperal_upsample, dropout)
def encode(self, x):
self.clear_cache()
conv_idx = [0]
feat_map = [None] * count_conv3d(self.decoder)
## cache
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
## 对encode输入的x按时间拆分为1、4、4、4....
for i in range(iter_):
self._enc_conv_idx = [0]
conv_idx = [0]
if i == 0:
out = self.encoder(
x[:, :, :1, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx)
feat_cache=feat_map,
feat_idx=conv_idx)
else:
out_ = self.encoder(
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx)
feat_cache=feat_map,
feat_idx=conv_idx)
out = torch.cat([out, out_], 2)
mu, log_var = self.conv1(out).chunk(2, dim=1)
self.clear_cache()
return mu
def decode(self, z):
self.clear_cache()
conv_idx = [0]
feat_map = [None] * count_conv3d(self.decoder)
# z: [b,c,t,h,w]
iter_ = z.shape[2]
x = self.conv2(z)
for i in range(iter_):
self._conv_idx = [0]
conv_idx = [0]
if i == 0:
out = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx)
feat_cache=feat_map,
feat_idx=conv_idx)
else:
out_ = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx)
feat_cache=feat_map,
feat_idx=conv_idx)
out = torch.cat([out, out_], 2)
self.clear_cache()
return out
def clear_cache(self):
self._conv_num = count_conv3d(self.decoder)
self._conv_idx = [0]
self._feat_map = [None] * self._conv_num
#cache encode
self._enc_conv_num = count_conv3d(self.encoder)
self._enc_conv_idx = [0]
self._enc_feat_map = [None] * self._enc_conv_num

View File

@ -657,51 +657,51 @@ class WanVAE(nn.Module):
)
def encode(self, x):
self.clear_cache()
conv_idx = [0]
feat_map = [None] * count_conv3d(self.encoder)
x = patchify(x, patch_size=2)
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
for i in range(iter_):
self._enc_conv_idx = [0]
conv_idx = [0]
if i == 0:
out = self.encoder(
x[:, :, :1, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx,
feat_cache=feat_map,
feat_idx=conv_idx,
)
else:
out_ = self.encoder(
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx,
feat_cache=feat_map,
feat_idx=conv_idx,
)
out = torch.cat([out, out_], 2)
mu, log_var = self.conv1(out).chunk(2, dim=1)
self.clear_cache()
return mu
def decode(self, z):
self.clear_cache()
conv_idx = [0]
feat_map = [None] * count_conv3d(self.decoder)
iter_ = z.shape[2]
x = self.conv2(z)
for i in range(iter_):
self._conv_idx = [0]
conv_idx = [0]
if i == 0:
out = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx,
feat_cache=feat_map,
feat_idx=conv_idx,
first_chunk=True,
)
else:
out_ = self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx,
feat_cache=feat_map,
feat_idx=conv_idx,
)
out = torch.cat([out, out_], 2)
out = unpatchify(out, patch_size=2)
self.clear_cache()
return out
def reparameterize(self, mu, log_var):
@ -715,12 +715,3 @@ class WanVAE(nn.Module):
return mu
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
return mu + std * torch.randn_like(std)
def clear_cache(self):
self._conv_num = count_conv3d(self.decoder)
self._conv_idx = [0]
self._feat_map = [None] * self._conv_num
# cache encode
self._enc_conv_num = count_conv3d(self.encoder)
self._enc_conv_idx = [0]
self._enc_feat_map = [None] * self._enc_conv_num

View File

@ -260,6 +260,10 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
for k in sdk:
hidden_size = model.model_config.unet_config.get("hidden_size", 0)
if k.endswith(".weight") and ".linear1." in k:
key_map["{}".format(k.replace(".linear1.weight", ".linear1_qkv"))] = (k, (0, 0, hidden_size * 3))
if isinstance(model, comfy.model_base.GenmoMochi):
for k in sdk:
@ -293,6 +297,12 @@ def model_lora_keys_unet(model, key_map={}):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
if isinstance(model, comfy.model_base.Omnigen2):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
if isinstance(model, comfy.model_base.QwenImage):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"): #QwenImage lora format

View File

@ -15,10 +15,29 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
def convert_lora_wan_fun(sd): #Wan Fun loras
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
def convert_uso_lora(sd):
sd_out = {}
for k in sd:
tensor = sd[k]
k_to = "diffusion_model.{}".format(k.replace(".down.weight", ".lora_down.weight")
.replace(".up.weight", ".lora_up.weight")
.replace(".qkv_lora2.", ".txt_attn.qkv.")
.replace(".qkv_lora1.", ".img_attn.qkv.")
.replace(".proj_lora1.", ".img_attn.proj.")
.replace(".proj_lora2.", ".txt_attn.proj.")
.replace(".qkv_lora.", ".linear1_qkv.")
.replace(".proj_lora.", ".linear2.")
.replace(".processor.", ".")
)
sd_out[k_to] = tensor
return sd_out
def convert_lora(sd):
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
return convert_lora_bfl_control(sd)
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
return convert_lora_wan_fun(sd)
if "single_blocks.37.processor.qkv_lora.up.weight" in sd and "double_blocks.18.processor.qkv_lora2.up.weight" in sd:
return convert_uso_lora(sd)
return sd

View File

@ -16,6 +16,8 @@
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import comfy.ldm.hunyuan3dv2_1
import comfy.ldm.hunyuan3dv2_1.hunyuandit
import torch
import logging
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
@ -37,9 +39,11 @@ import comfy.ldm.cosmos.model
import comfy.ldm.cosmos.predict2
import comfy.ldm.lumina.model
import comfy.ldm.wan.model
import comfy.ldm.wan.model_animate
import comfy.ldm.hunyuan3d.model
import comfy.ldm.hidream.model
import comfy.ldm.chroma.model
import comfy.ldm.chroma_radiance.model
import comfy.ldm.ace.model
import comfy.ldm.omnigen.omnigen2
import comfy.ldm.qwen_image.model
@ -130,10 +134,11 @@ class BaseModel(torch.nn.Module):
if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None:
fp8 = model_config.optimizations.get("fp8", False)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8, model_config=model_config)
else:
operations = model_config.custom_operations
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
self.diffusion_model.eval()
if comfy.model_management.force_channels_last():
self.diffusion_model.to(memory_format=torch.channels_last)
logging.debug("using channels last mode for diffusion model")
@ -150,6 +155,7 @@ class BaseModel(torch.nn.Module):
logging.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor
self.memory_usage_factor_conds = ()
self.memory_usage_shape_process = {}
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
@ -191,8 +197,14 @@ class BaseModel(torch.nn.Module):
extra_conds[o] = extra
t = self.process_timestep(t, x=x, **extra_conds)
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x)
if "latent_shapes" in extra_conds:
xc = utils.unpack_latents(xc, extra_conds.pop("latent_shapes"))
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds)
if len(model_output) > 1 and not torch.is_tensor(model_output):
model_output, _ = utils.pack_latents(model_output)
return self.model_sampling.calculate_denoised(sigma, model_output.float(), x)
def process_timestep(self, timestep, **kwargs):
return timestep
@ -321,6 +333,14 @@ class BaseModel(torch.nn.Module):
if self.model_config.scaled_fp8 is not None:
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
# Save mixed precision metadata
if hasattr(self.model_config, 'layer_quant_config') and self.model_config.layer_quant_config:
metadata = {
"format_version": "1.0",
"layers": self.model_config.layer_quant_config
}
unet_state_dict["_quantization_metadata"] = metadata
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
if self.model_type == ModelType.V_PREDICTION:
@ -350,8 +370,15 @@ class BaseModel(torch.nn.Module):
input_shapes = [input_shape]
for c in self.memory_usage_factor_conds:
shape = cond_shapes.get(c, None)
if shape is not None and len(shape) > 0:
input_shapes += shape
if shape is not None:
if c in self.memory_usage_shape_process:
out = []
for s in shape:
out.append(self.memory_usage_shape_process[c](s))
shape = out
if len(shape) > 0:
input_shapes += shape
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
@ -657,7 +684,6 @@ class Lotus(BaseModel):
class StableCascade_C(BaseModel):
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
super().__init__(model_config, model_type, device=device, unet_model=StageC)
self.diffusion_model.eval().requires_grad_(False)
def extra_conds(self, **kwargs):
out = {}
@ -686,7 +712,6 @@ class StableCascade_C(BaseModel):
class StableCascade_B(BaseModel):
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
super().__init__(model_config, model_type, device=device, unet_model=StageB)
self.diffusion_model.eval().requires_grad_(False)
def extra_conds(self, **kwargs):
out = {}
@ -1102,9 +1127,10 @@ class WAN21(BaseModel):
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
latent_dim = self.latent_format.latent_channels
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], 16):
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
for i in range(0, image.shape[1], latent_dim):
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
image = utils.resize_to_batch_size(image, noise.shape[0])
if extra_channels != image.shape[1] + 4:
@ -1201,18 +1227,107 @@ class WAN21_Camera(WAN21):
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
return out
class WAN22(BaseModel):
class WAN21_HuMo(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.HumoWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
noise = kwargs.get("noise", None)
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
audio_embed = kwargs.get("audio_embed", None)
if audio_embed is not None:
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
if "c_concat" not in out: # 1.7B model
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
else:
noise_shape = list(noise.shape)
noise_shape[1] += 4
concat_latent = torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)
zero_vae_values_first = torch.tensor([0.8660, -0.4326, -0.0017, -0.4884, -0.5283, 0.9207, -0.9896, 0.4433, -0.5543, -0.0113, 0.5753, -0.6000, -0.8346, -0.3497, -0.1926, -0.6938]).view(1, 16, 1, 1, 1)
zero_vae_values_second = torch.tensor([1.0869, -1.2370, 0.0206, -0.4357, -0.6411, 2.0307, -1.5972, 1.2659, -0.8595, -0.4654, 0.9638, -1.6330, -1.4310, -0.1098, -0.3856, -1.4583]).view(1, 16, 1, 1, 1)
zero_vae_values = torch.tensor([0.8642, -1.8583, 0.1577, 0.1350, -0.3641, 2.5863, -1.9670, 1.6065, -1.0475, -0.8678, 1.1734, -1.8138, -1.5933, -0.7721, -0.3289, -1.3745]).view(1, 16, 1, 1, 1)
concat_latent[:, 4:] = zero_vae_values
concat_latent[:, 4:, :1] = zero_vae_values_first
concat_latent[:, 4:, 1:2] = zero_vae_values_second
out['c_concat'] = comfy.conds.CONDNoiseShape(concat_latent)
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
ref_latent = self.process_latent_in(reference_latents[-1])
ref_latent_shape = list(ref_latent.shape)
ref_latent_shape[1] += 4 + ref_latent_shape[1]
ref_latent_full = torch.zeros(ref_latent_shape, device=ref_latent.device, dtype=ref_latent.dtype)
ref_latent_full[:, 20:] = ref_latent
ref_latent_full[:, 16:20] = 1.0
out['reference_latent'] = comfy.conds.CONDRegular(ref_latent_full)
return out
class WAN22_Animate(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model_animate.AnimateWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
face_video_pixels = kwargs.get("face_video_pixels", None)
if face_video_pixels is not None:
out['face_pixel_values'] = comfy.conds.CONDRegular(face_video_pixels)
pose_latents = kwargs.get("pose_video_latent", None)
if pose_latents is not None:
out['pose_latents'] = comfy.conds.CONDRegular(self.process_latent_in(pose_latents))
return out
class WAN22_S2V(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel_S2V)
self.memory_usage_factor_conds = ("reference_latent", "reference_motion")
self.memory_usage_shape_process = {"reference_motion": lambda shape: [shape[0], shape[1], 1.5, shape[-2], shape[-1]]}
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
audio_embed = kwargs.get("audio_embed", None)
if audio_embed is not None:
out['audio_embed'] = comfy.conds.CONDRegular(audio_embed)
reference_latents = kwargs.get("reference_latents", None)
if reference_latents is not None:
out['reference_latent'] = comfy.conds.CONDRegular(self.process_latent_in(reference_latents[-1]))
reference_motion = kwargs.get("reference_motion", None)
if reference_motion is not None:
out['reference_motion'] = comfy.conds.CONDRegular(self.process_latent_in(reference_motion))
control_video = kwargs.get("control_video", None)
if control_video is not None:
out['control_video'] = comfy.conds.CONDRegular(self.process_latent_in(control_video))
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['reference_latent'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
reference_motion = kwargs.get("reference_motion", None)
if reference_motion is not None:
out['reference_motion'] = reference_motion.shape
return out
class WAN22(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.WanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
denoise_mask = kwargs.get("denoise_mask", None)
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
return out
@ -1241,6 +1356,21 @@ class Hunyuan3Dv2(BaseModel):
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class Hunyuan3Dv2_1(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan3dv2_1.hunyuandit.HunYuanDiTPlain)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
guidance = kwargs.get("guidance", 5.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class HiDream(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hidream.model.HiDreamImageTransformer2DModel)
@ -1262,8 +1392,8 @@ class HiDream(BaseModel):
return out
class Chroma(Flux):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma.model.Chroma)
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.chroma.model.Chroma):
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
@ -1273,6 +1403,10 @@ class Chroma(Flux):
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class ChromaRadiance(Chroma):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma_radiance.model.ChromaRadiance)
class ACEStep(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.model.ACEStepTransformer2DModel)
@ -1350,3 +1484,146 @@ class QwenImage(BaseModel):
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out
class HunyuanImage21(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_byt5small = kwargs.get("conditioning_byt5small", None)
if conditioning_byt5small is not None:
out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small)
guidance = kwargs.get("guidance", 6.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class HunyuanImage21Refiner(HunyuanImage21):
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
image = kwargs.get("concat_latent_image", None)
noise_augmentation = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]
if image is None:
shape_image = list(noise.shape)
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = self.process_latent_in(image)
image = utils.resize_to_batch_size(image, noise.shape[0])
if noise_augmentation > 0:
generator = torch.Generator(device="cpu")
generator.manual_seed(kwargs.get("seed", 0) - 10)
noise = torch.randn(image.shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device)
image = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image
else:
image = 0.75 * image
return image
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
out['disable_time_r'] = comfy.conds.CONDConstant(True)
return out
class HunyuanVideo15(HunyuanVideo):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
extra_channels = self.diffusion_model.img_in.proj.weight.shape[1] - noise.shape[1] - 1 #noise 32 img cond 32 + mask 1
if extra_channels == 0:
return None
image = kwargs.get("concat_latent_image", None)
device = kwargs["device"]
if image is None:
shape_image = list(noise.shape)
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
latent_dim = self.latent_format.latent_channels
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], latent_dim):
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
image = utils.resize_to_batch_size(image, noise.shape[0])
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :1]
else:
mask = 1.0 - mask
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((image, mask), dim=1)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_byt5small = kwargs.get("conditioning_byt5small", None)
if conditioning_byt5small is not None:
out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small)
guidance = kwargs.get("guidance", 6.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
clip_vision_output = kwargs.get("clip_vision_output", None)
if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.last_hidden_state)
return out
class HunyuanVideo15_SR_Distilled(HunyuanVideo15):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
image = kwargs.get("concat_latent_image", None)
noise_augmentation = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]
if image is None:
image = torch.zeros([noise.shape[0], noise.shape[1] * 2 + 2, noise.shape[-3], noise.shape[-2], noise.shape[-1]], device=comfy.model_management.intermediate_device())
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
#image = self.process_latent_in(image) # scaling wasn't applied in reference code
image = utils.resize_to_batch_size(image, noise.shape[0])
lq_image_slice = slice(noise.shape[1] + 1, 2 * noise.shape[1] + 1)
if noise_augmentation > 0:
generator = torch.Generator(device="cpu")
generator.manual_seed(kwargs.get("seed", 0) - 10)
noise = torch.randn(image[:, lq_image_slice].shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device)
image[:, lq_image_slice] = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image[:, lq_image_slice]
else:
image[:, lq_image_slice] = 0.75 * image[:, lq_image_slice]
return image
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
out['disable_time_r'] = comfy.conds.CONDConstant(False)
return out

View File

@ -6,6 +6,20 @@ import math
import logging
import torch
def detect_layer_quantization(metadata):
quant_key = "_quantization_metadata"
if metadata is not None and quant_key in metadata:
quant_metadata = metadata.pop(quant_key)
quant_metadata = json.loads(quant_metadata)
if isinstance(quant_metadata, dict) and "layers" in quant_metadata:
logging.info(f"Found quantization metadata (version {quant_metadata.get('format_version', 'unknown')})")
return quant_metadata["layers"]
else:
raise ValueError("Invalid quantization metadata format")
return None
def count_blocks(state_dict_keys, prefix_string):
count = 0
while True:
@ -136,25 +150,55 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}txt_in.individual_token_refiner.blocks.0.norm1.weight'.format(key_prefix) in state_dict_keys: #Hunyuan Video
dit_config = {}
in_w = state_dict['{}img_in.proj.weight'.format(key_prefix)]
out_w = state_dict['{}final_layer.linear.weight'.format(key_prefix)]
dit_config["image_model"] = "hunyuan_video"
dit_config["in_channels"] = state_dict['{}img_in.proj.weight'.format(key_prefix)].shape[1] #SkyReels img2video has 32 input channels
dit_config["patch_size"] = [1, 2, 2]
dit_config["out_channels"] = 16
dit_config["vec_in_dim"] = 768
dit_config["context_in_dim"] = 4096
dit_config["hidden_size"] = 3072
dit_config["in_channels"] = in_w.shape[1] #SkyReels img2video has 32 input channels
dit_config["patch_size"] = list(in_w.shape[2:])
dit_config["out_channels"] = out_w.shape[0] // math.prod(dit_config["patch_size"])
if any(s.startswith('{}vector_in.'.format(key_prefix)) for s in state_dict_keys):
dit_config["vec_in_dim"] = 768
else:
dit_config["vec_in_dim"] = None
if len(dit_config["patch_size"]) == 2:
dit_config["axes_dim"] = [64, 64]
else:
dit_config["axes_dim"] = [16, 56, 56]
if any(s.startswith('{}time_r_in.'.format(key_prefix)) for s in state_dict_keys):
dit_config["meanflow"] = True
else:
dit_config["meanflow"] = False
dit_config["context_in_dim"] = state_dict['{}txt_in.input_embedder.weight'.format(key_prefix)].shape[1]
dit_config["hidden_size"] = in_w.shape[0]
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 24
dit_config["num_heads"] = in_w.shape[0] // 128
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
dit_config["axes_dim"] = [16, 56, 56]
dit_config["theta"] = 256
dit_config["qkv_bias"] = True
if '{}byt5_in.fc1.weight'.format(key_prefix) in state_dict:
dit_config["byt5"] = True
else:
dit_config["byt5"] = False
guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys))
dit_config["guidance_embed"] = len(guidance_keys) > 0
# HunyuanVideo 1.5
if '{}cond_type_embedding.weight'.format(key_prefix) in state_dict_keys:
dit_config["use_cond_type_embedding"] = True
else:
dit_config["use_cond_type_embedding"] = False
if '{}vision_in.proj.0.weight'.format(key_prefix) in state_dict_keys:
dit_config["vision_in_dim"] = state_dict['{}vision_in.proj.0.weight'.format(key_prefix)].shape[0]
else:
dit_config["vision_in_dim"] = None
return dit_config
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and '{}img_in.weight'.format(key_prefix) in state_dict_keys: #Flux
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
dit_config = {}
dit_config["image_model"] = "flux"
dit_config["in_channels"] = 16
@ -184,6 +228,18 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["out_dim"] = 3072
dit_config["hidden_dim"] = 5120
dit_config["n_layers"] = 5
if f"{key_prefix}nerf_blocks.0.norm.scale" in state_dict_keys: #Chroma Radiance
dit_config["image_model"] = "chroma_radiance"
dit_config["in_channels"] = 3
dit_config["out_channels"] = 3
dit_config["patch_size"] = 16
dit_config["nerf_hidden_size"] = 64
dit_config["nerf_mlp_ratio"] = 4
dit_config["nerf_depth"] = 4
dit_config["nerf_max_freqs"] = 8
dit_config["nerf_tile_size"] = 512
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
dit_config["nerf_embedder_dtype"] = torch.float32
else:
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
@ -333,8 +389,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["patch_size"] = 2
dit_config["in_channels"] = 16
dit_config["dim"] = 2304
dit_config["cap_feat_dim"] = 2304
dit_config["n_layers"] = 26
dit_config["cap_feat_dim"] = state_dict['{}cap_embedder.1.weight'.format(key_prefix)].shape[1]
dit_config["n_layers"] = count_blocks(state_dict_keys, '{}layers.'.format(key_prefix) + '{}.')
dit_config["n_heads"] = 24
dit_config["n_kv_heads"] = 8
dit_config["qk_norm"] = True
@ -368,6 +424,12 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["model_type"] = "camera"
else:
dit_config["model_type"] = "camera_2.2"
elif '{}casual_audio_encoder.encoder.final_linear.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "s2v"
elif '{}audio_proj.audio_proj_glob_1.layer.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "humo"
elif '{}face_adapter.fuser_blocks.0.k_norm.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "animate"
else:
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
@ -398,6 +460,20 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if f"{key_prefix}t_embedder.mlp.2.weight" in state_dict_keys: # Hunyuan 3D 2.1
dit_config = {}
dit_config["image_model"] = "hunyuan3d2_1"
dit_config["in_channels"] = state_dict[f"{key_prefix}x_embedder.weight"].shape[1]
dit_config["context_dim"] = 1024
dit_config["hidden_size"] = state_dict[f"{key_prefix}x_embedder.weight"].shape[0]
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 16
dit_config["depth"] = count_blocks(state_dict_keys, f"{key_prefix}blocks.{{}}")
dit_config["qkv_bias"] = False
dit_config["guidance_cond_proj_dim"] = None#f"{key_prefix}t_embedder.cond_proj.weight" in state_dict_keys
return dit_config
if '{}caption_projection.0.linear.weight'.format(key_prefix) in state_dict_keys: # HiDream
dit_config = {}
dit_config["image_model"] = "hidream"
@ -649,6 +725,12 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
else:
model_config.optimizations["fp8"] = True
# Detect per-layer quantization (mixed precision)
layer_quant_config = detect_layer_quantization(metadata)
if layer_quant_config:
model_config.layer_quant_config = layer_quant_config
logging.info(f"Detected mixed precision quantization: {len(layer_quant_config)} layers quantized")
return model_config
def unet_prefix_from_state_dict(state_dict):

View File

@ -22,6 +22,7 @@ from enum import Enum
from comfy.cli_args import args, PerformanceFeature
import torch
import sys
import importlib
import platform
import weakref
import gc
@ -88,6 +89,7 @@ if args.deterministic:
directml_enabled = False
if args.directml is not None:
logging.warning("WARNING: torch-directml barely works, is very slow, has not been updated in over 1 year and might be removed soon, please don't use it, there are better options.")
import torch_directml
directml_enabled = True
device_index = args.directml
@ -289,6 +291,24 @@ def is_amd():
return True
return False
def amd_min_version(device=None, min_rdna_version=0):
if not is_amd():
return False
if is_device_cpu(device):
return False
arch = torch.cuda.get_device_properties(device).gcnArchName
if arch.startswith('gfx') and len(arch) == 7:
try:
cmp_rdna_version = int(arch[4]) + 2
except:
cmp_rdna_version = 0
if cmp_rdna_version >= min_rdna_version:
return True
return False
MIN_WEIGHT_MEMORY_RATIO = 0.4
if is_nvidia():
MIN_WEIGHT_MEMORY_RATIO = 0.0
@ -311,24 +331,33 @@ except:
SUPPORT_FP8_OPS = args.supports_fp8_compute
AMD_RDNA2_AND_OLDER_ARCH = ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]
try:
if is_amd():
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
if not (any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH)):
torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD
logging.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.")
try:
rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2]))
except:
rocm_version = (6, -1)
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
ENABLE_PYTORCH_ATTENTION = True
# if torch_version_numeric >= (2, 8):
# if any((a in arch) for a in ["gfx1201"]):
# ENABLE_PYTORCH_ATTENTION = True
if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not.
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
ENABLE_PYTORCH_ATTENTION = True
if rocm_version >= (7, 0):
if any((a in arch) for a in ["gfx1201"]):
ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
if any((a in arch) for a in ["gfx1201", "gfx942", "gfx950"]): # TODO: more arches
if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx950"]): # TODO: more arches, "gfx942" gives error on pytorch nightly 2.10 1013 rocm7.0
SUPPORT_FP8_OPS = True
except:
@ -350,6 +379,9 @@ try:
except:
pass
if torch.cuda.is_available() and torch.backends.cudnn.is_available() and PerformanceFeature.AutoTune in args.fast:
torch.backends.cudnn.benchmark = True
try:
if torch_version_numeric >= (2, 5):
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
@ -472,6 +504,7 @@ class LoadedModel:
if use_more_vram == 0:
use_more_vram = 1e32
self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights)
real_model = self.model.model
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None:
@ -625,7 +658,9 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
if loaded_model.model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
for i in to_unload:
current_loaded_models.pop(i).model.detach(unpatch_all=False)
model_to_unload = current_loaded_models.pop(i)
model_to_unload.model.detach(unpatch_all=False)
model_to_unload.model_finalizer.detach()
total_memory_required = {}
for loaded_model in models_to_load:
@ -655,7 +690,10 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
current_free_mem = get_free_memory(torch_dev) + loaded_memory
lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
lowvram_model_memory = lowvram_model_memory - loaded_memory
if lowvram_model_memory == 0:
lowvram_model_memory = 0.1
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 0.1
@ -903,9 +941,7 @@ def vae_dtype(device=None, allowed_dtypes=[]):
if d == torch.float16 and should_use_fp16(device):
return d
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
# slowness still a problem on pytorch nightly 2.9.0.dev20250720+rocm6.4 tested on RDNA3
if d == torch.bfloat16 and (not is_amd()) and should_use_bf16(device):
if d == torch.bfloat16 and should_use_bf16(device):
return d
return torch.float32
@ -967,12 +1003,6 @@ def device_supports_non_blocking(device):
return False
return True
def device_should_use_non_blocking(device):
if not device_supports_non_blocking(device):
return False
return False
# return True #TODO: figure out why this causes memory issues on Nvidia and possibly others
def force_channels_last():
if args.force_channels_last:
return True
@ -987,6 +1017,16 @@ if args.async_offload:
NUM_STREAMS = 2
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
def current_stream(device):
if device is None:
return None
if is_device_cuda(device):
return torch.cuda.current_stream()
elif is_device_xpu(device):
return torch.xpu.current_stream()
else:
return None
stream_counters = {}
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
@ -995,21 +1035,17 @@ def get_offload_stream(device):
if device in STREAMS:
ss = STREAMS[device]
s = ss[stream_counter]
#Sync the oldest stream in the queue with the current
ss[stream_counter].wait_stream(current_stream(device))
stream_counter = (stream_counter + 1) % len(ss)
if is_device_cuda(device):
ss[stream_counter].wait_stream(torch.cuda.current_stream())
elif is_device_xpu(device):
ss[stream_counter].wait_stream(torch.xpu.current_stream())
stream_counters[device] = stream_counter
return s
return ss[stream_counter]
elif is_device_cuda(device):
ss = []
for k in range(NUM_STREAMS):
ss.append(torch.cuda.Stream(device=device, priority=0))
STREAMS[device] = ss
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
stream_counters[device] = stream_counter
return s
elif is_device_xpu(device):
@ -1018,18 +1054,14 @@ def get_offload_stream(device):
ss.append(torch.xpu.Stream(device=device, priority=0))
STREAMS[device] = ss
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
stream_counters[device] = stream_counter
return s
return None
def sync_stream(device, stream):
if stream is None:
if stream is None or current_stream(device) is None:
return
if is_device_cuda(device):
torch.cuda.current_stream().wait_stream(stream)
elif is_device_xpu(device):
torch.xpu.current_stream().wait_stream(stream)
current_stream(device).wait_stream(stream)
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
if device is None or weight.device == device:
@ -1054,6 +1086,79 @@ def cast_to_device(tensor, device, dtype, copy=False):
non_blocking = device_supports_non_blocking(device)
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
PINNED_MEMORY = {}
TOTAL_PINNED_MEMORY = 0
MAX_PINNED_MEMORY = -1
if not args.disable_pinned_memory:
if is_nvidia() or is_amd():
if WINDOWS:
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.45 # Windows limit is apparently 50%
else:
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95
logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024)))
def pin_memory(tensor):
global TOTAL_PINNED_MEMORY
if MAX_PINNED_MEMORY <= 0:
return False
if type(tensor) is not torch.nn.parameter.Parameter:
return False
if not is_device_cpu(tensor.device):
return False
if tensor.is_pinned():
#NOTE: Cuda does detect when a tensor is already pinned and would
#error below, but there are proven cases where this also queues an error
#on the GPU async. So dont trust the CUDA API and guard here
return False
if not tensor.is_contiguous():
return False
size = tensor.numel() * tensor.element_size()
if (TOTAL_PINNED_MEMORY + size) > MAX_PINNED_MEMORY:
return False
ptr = tensor.data_ptr()
if torch.cuda.cudart().cudaHostRegister(ptr, size, 1) == 0:
PINNED_MEMORY[ptr] = size
TOTAL_PINNED_MEMORY += size
return True
return False
def unpin_memory(tensor):
global TOTAL_PINNED_MEMORY
if MAX_PINNED_MEMORY <= 0:
return False
if not is_device_cpu(tensor.device):
return False
ptr = tensor.data_ptr()
size = tensor.numel() * tensor.element_size()
size_stored = PINNED_MEMORY.get(ptr, None)
if size_stored is None:
logging.warning("Tried to unpin tensor not pinned by ComfyUI")
return False
if size != size_stored:
logging.warning("Size of pinned tensor changed")
return False
if torch.cuda.cudart().cudaHostUnregister(ptr) == 0:
TOTAL_PINNED_MEMORY -= PINNED_MEMORY.pop(ptr)
if len(PINNED_MEMORY) == 0:
TOTAL_PINNED_MEMORY = 0
return True
return False
def sage_attention_enabled():
return args.use_sage_attention
@ -1306,7 +1411,7 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
if is_amd():
arch = torch.cuda.get_device_properties(device).gcnArchName
if any((a in arch) for a in ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]): # RDNA2 and older don't support bf16
if any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH): # RDNA2 and older don't support bf16
if manual_cast:
return True
return False

View File

@ -123,16 +123,30 @@ def move_weight_functions(m, device):
return memory
class LowVramPatch:
def __init__(self, key, patches):
def __init__(self, key, patches, convert_func=None, set_func=None):
self.key = key
self.patches = patches
self.convert_func = convert_func
self.set_func = set_func
def __call__(self, weight):
intermediate_dtype = weight.dtype
if self.convert_func is not None:
weight = self.convert_func(weight.to(dtype=torch.float32, copy=True), inplace=True)
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
intermediate_dtype = torch.float32
return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))
out = comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype)
if self.set_func is None:
return comfy.float.stochastic_rounding(out, weight.dtype, seed=string_to_seed(self.key))
else:
return self.set_func(out, seed=string_to_seed(self.key), return_weight=True)
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
out = comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
if self.set_func is not None:
return self.set_func(out, seed=string_to_seed(self.key), return_weight=True).to(dtype=intermediate_dtype)
else:
return out
def get_key_weight(model, key):
set_func = None
@ -224,6 +238,7 @@ class ModelPatcher:
self.force_cast_weights = False
self.patches_uuid = uuid.uuid4()
self.parent = None
self.pinned = set()
self.attachments: dict[str] = {}
self.additional_models: dict[str, list[ModelPatcher]] = {}
@ -261,6 +276,9 @@ class ModelPatcher:
self.size = comfy.model_management.module_size(self.model)
return self.size
def get_ram_usage(self):
return self.model_size()
def loaded_size(self):
return self.model.model_loaded_weight_memory
@ -280,6 +298,7 @@ class ModelPatcher:
n.backup = self.backup
n.object_patches_backup = self.object_patches_backup
n.parent = self
n.pinned = self.pinned
n.force_cast_weights = self.force_cast_weights
@ -433,6 +452,22 @@ class ModelPatcher:
def set_model_double_block_patch(self, patch):
self.set_model_patch(patch, "double_block")
def set_model_post_input_patch(self, patch):
self.set_model_patch(patch, "post_input")
def set_model_rope_options(self, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t, **kwargs):
rope_options = self.model_options["transformer_options"].get("rope_options", {})
rope_options["scale_x"] = scale_x
rope_options["scale_y"] = scale_y
rope_options["scale_t"] = scale_t
rope_options["shift_x"] = shift_x
rope_options["shift_y"] = shift_y
rope_options["shift_t"] = shift_t
self.model_options["transformer_options"]["rope_options"] = rope_options
def add_object_patch(self, name, obj):
self.object_patches[name] = obj
@ -601,6 +636,21 @@ class ModelPatcher:
else:
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
def pin_weight_to_device(self, key):
weight, set_func, convert_func = get_key_weight(self.model, key)
if comfy.model_management.pin_memory(weight):
self.pinned.add(key)
def unpin_weight(self, key):
if key in self.pinned:
weight, set_func, convert_func = get_key_weight(self.model, key)
comfy.model_management.unpin_memory(weight)
self.pinned.remove(key)
def unpin_all_weights(self):
for key in list(self.pinned):
self.unpin_weight(key)
def _load_list(self):
loading = []
for n, m in self.model.named_modules():
@ -622,9 +672,11 @@ class ModelPatcher:
mem_counter = 0
patch_counter = 0
lowvram_counter = 0
lowvram_mem_counter = 0
loading = self._load_list()
load_completely = []
offloaded = []
loading.sort(reverse=True)
for x in loading:
n = x[1]
@ -641,6 +693,7 @@ class ModelPatcher:
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
lowvram_counter += 1
lowvram_mem_counter += module_mem
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
continue
@ -654,16 +707,19 @@ class ModelPatcher:
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
m.weight_function = [LowVramPatch(weight_key, self.patches)]
_, set_func, convert_func = get_key_weight(self.model, weight_key)
m.weight_function = [LowVramPatch(weight_key, self.patches, convert_func, set_func)]
patch_counter += 1
if bias_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
m.bias_function = [LowVramPatch(bias_key, self.patches)]
_, set_func, convert_func = get_key_weight(self.model, bias_key)
m.bias_function = [LowVramPatch(bias_key, self.patches, convert_func, set_func)]
patch_counter += 1
cast_weight = True
offloaded.append((module_mem, n, m, params))
else:
if hasattr(m, "comfy_cast_weights"):
wipe_lowvram_weight(m)
@ -694,7 +750,9 @@ class ModelPatcher:
continue
for param in params:
self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to)
key = "{}.{}".format(n, param)
self.unpin_weight(key)
self.patch_weight_to_device(key, device_to=device_to)
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
m.comfy_patched_weights = True
@ -702,11 +760,17 @@ class ModelPatcher:
for x in load_completely:
x[2].to(device_to)
for x in offloaded:
n = x[1]
params = x[3]
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
if lowvram_counter > 0:
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), patch_counter))
self.model.model_lowvram = True
else:
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
self.model.model_lowvram = False
if full_load:
self.model.to(device_to)
@ -743,6 +807,7 @@ class ModelPatcher:
self.eject_model()
if unpatch_weights:
self.unpatch_hooks()
self.unpin_all_weights()
if self.model.model_lowvram:
for m in self.model.modules():
move_weight_functions(m, device_to)
@ -778,7 +843,7 @@ class ModelPatcher:
self.object_patches_backup.clear()
def partially_unload(self, device_to, memory_to_free=0):
def partially_unload(self, device_to, memory_to_free=0, force_patch_weights=False):
with self.use_ejected():
hooks_unpatched = False
memory_freed = 0
@ -822,11 +887,19 @@ class ModelPatcher:
module_mem += move_weight_functions(m, device_to)
if lowvram_possible:
if weight_key in self.patches:
m.weight_function.append(LowVramPatch(weight_key, self.patches))
patch_counter += 1
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
_, set_func, convert_func = get_key_weight(self.model, weight_key)
m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func))
patch_counter += 1
if bias_key in self.patches:
m.bias_function.append(LowVramPatch(bias_key, self.patches))
patch_counter += 1
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
_, set_func, convert_func = get_key_weight(self.model, bias_key)
m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func))
patch_counter += 1
cast_weight = True
if cast_weight:
@ -836,9 +909,13 @@ class ModelPatcher:
memory_freed += module_mem
logging.debug("freed {}".format(n))
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
self.model.model_lowvram = True
self.model.lowvram_patch_counter += patch_counter
self.model.model_loaded_weight_memory -= memory_freed
logging.info("loaded partially: {:.2f} MB loaded, lowvram patches: {}".format(self.model.model_loaded_weight_memory / (1024 * 1024), self.model.lowvram_patch_counter))
return memory_freed
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
@ -851,6 +928,9 @@ class ModelPatcher:
extra_memory += (used - self.model.model_loaded_weight_memory)
self.patch_model(load_weights=False)
if extra_memory < 0 and not unpatch_weights:
self.partially_unload(self.offload_device, -extra_memory, force_patch_weights=force_patch_weights)
return 0
full_load = False
if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0:
self.apply_hooks(self.forced_hooks, force_apply=True)
@ -1238,5 +1318,6 @@ class ModelPatcher:
self.clear_cached_hook_weights()
def __del__(self):
self.unpin_all_weights()
self.detach(unpatch_all=False)

View File

@ -21,17 +21,23 @@ def rescale_zero_terminal_snr_sigmas(sigmas):
alphas_bar[-1] = 4.8973451890853435e-08
return ((1 - alphas_bar) / alphas_bar) ** 0.5
def reshape_sigma(sigma, noise_dim):
if sigma.nelement() == 1:
return sigma.view(())
else:
return sigma.view(sigma.shape[:1] + (1,) * (noise_dim - 1))
class EPS:
def calculate_input(self, sigma, noise):
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
sigma = reshape_sigma(sigma, noise.ndim)
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
def calculate_denoised(self, sigma, model_output, model_input):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
sigma = reshape_sigma(sigma, model_output.ndim)
return model_input - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
sigma = reshape_sigma(sigma, noise.ndim)
if max_denoise:
noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
else:
@ -45,12 +51,12 @@ class EPS:
class V_PREDICTION(EPS):
def calculate_denoised(self, sigma, model_output, model_input):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
sigma = reshape_sigma(sigma, model_output.ndim)
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
class EDM(V_PREDICTION):
def calculate_denoised(self, sigma, model_output, model_input):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
sigma = reshape_sigma(sigma, model_output.ndim)
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
class CONST:
@ -58,15 +64,15 @@ class CONST:
return noise
def calculate_denoised(self, sigma, model_output, model_input):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
sigma = reshape_sigma(sigma, model_output.ndim)
return model_input - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
sigma = reshape_sigma(sigma, noise.ndim)
return sigma * noise + (1.0 - sigma) * latent_image
def inverse_noise_scaling(self, sigma, latent):
sigma = sigma.view(sigma.shape[:1] + (1,) * (latent.ndim - 1))
sigma = reshape_sigma(sigma, latent.ndim)
return latent / (1.0 - sigma)
class X0(EPS):
@ -80,16 +86,16 @@ class IMG_TO_IMG(X0):
class COSMOS_RFLOW:
def calculate_input(self, sigma, noise):
sigma = (sigma / (sigma + 1))
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
sigma = reshape_sigma(sigma, noise.ndim)
return noise * (1.0 - sigma)
def calculate_denoised(self, sigma, model_output, model_input):
sigma = (sigma / (sigma + 1))
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
sigma = reshape_sigma(sigma, model_output.ndim)
return model_input * (1.0 - sigma) - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
sigma = reshape_sigma(sigma, noise.ndim)
noise = noise * sigma
noise += latent_image
return noise

91
comfy/nested_tensor.py Normal file
View File

@ -0,0 +1,91 @@
import torch
class NestedTensor:
def __init__(self, tensors):
self.tensors = list(tensors)
self.is_nested = True
def _copy(self):
return NestedTensor(self.tensors)
def apply_operation(self, other, operation):
o = self._copy()
if isinstance(other, NestedTensor):
for i, t in enumerate(o.tensors):
o.tensors[i] = operation(t, other.tensors[i])
else:
for i, t in enumerate(o.tensors):
o.tensors[i] = operation(t, other)
return o
def __add__(self, b):
return self.apply_operation(b, lambda x, y: x + y)
def __sub__(self, b):
return self.apply_operation(b, lambda x, y: x - y)
def __mul__(self, b):
return self.apply_operation(b, lambda x, y: x * y)
# def __itruediv__(self, b):
# return self.apply_operation(b, lambda x, y: x / y)
def __truediv__(self, b):
return self.apply_operation(b, lambda x, y: x / y)
def __getitem__(self, *args, **kwargs):
return self.apply_operation(None, lambda x, y: x.__getitem__(*args, **kwargs))
def unbind(self):
return self.tensors
def to(self, *args, **kwargs):
o = self._copy()
for i, t in enumerate(o.tensors):
o.tensors[i] = t.to(*args, **kwargs)
return o
def new_ones(self, *args, **kwargs):
return self.tensors[0].new_ones(*args, **kwargs)
def float(self):
return self.to(dtype=torch.float)
def chunk(self, *args, **kwargs):
return self.apply_operation(None, lambda x, y: x.chunk(*args, **kwargs))
def size(self):
return self.tensors[0].size()
@property
def shape(self):
return self.tensors[0].shape
@property
def ndim(self):
dims = 0
for t in self.tensors:
dims = max(t.ndim, dims)
return dims
@property
def device(self):
return self.tensors[0].device
@property
def dtype(self):
return self.tensors[0].dtype
@property
def layout(self):
return self.tensors[0].layout
def cat_nested(tensors, *args, **kwargs):
cated_tensors = []
for i in range(len(tensors[0].tensors)):
tens = []
for j in range(len(tensors)):
tens.append(tensors[j].tensors[i])
cated_tensors.append(torch.cat(tens, *args, **kwargs))
return NestedTensor(cated_tensors)

View File

@ -24,13 +24,18 @@ import comfy.float
import comfy.rmsnorm
import contextlib
def run_every_op():
if torch.compiler.is_compiling():
return
comfy.model_management.throw_exception_if_processing_interrupted()
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
try:
if torch.cuda.is_available():
if torch.cuda.is_available() and comfy.model_management.WINDOWS:
from torch.nn.attention import SDPBackend, sdpa_kernel
import inspect
if "set_priority" in inspect.signature(sdpa_kernel).parameters:
@ -50,46 +55,90 @@ try:
except (ModuleNotFoundError, TypeError):
logging.warning("Could not set sdpa backend priority.")
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = False
try:
if comfy.model_management.is_nvidia():
cudnn_version = torch.backends.cudnn.version()
if (cudnn_version >= 91002 and cudnn_version < 91500) and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10):
#TODO: change upper bound version once it's fixed'
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = True
logging.info("working around nvidia conv3d memory bug.")
except:
pass
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
def cast_to_input(weight, input, non_blocking=False, copy=True):
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False):
# NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass
# offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This
# will add async-offload support to your cast and improve performance.
if input is not None:
if dtype is None:
dtype = input.dtype
if isinstance(input, QuantizedTensor):
dtype = input._layout_params["orig_dtype"]
else:
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
offload_stream = comfy.model_management.get_offload_stream(device)
if offloadable and (device != s.weight.device or
(s.bias is not None and device != s.bias.device)):
offload_stream = comfy.model_management.get_offload_stream(device)
else:
offload_stream = None
if offload_stream is not None:
wf_context = offload_stream
else:
wf_context = contextlib.nullcontext()
bias = None
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if s.bias is not None:
has_function = len(s.bias_function) > 0
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
if has_function:
weight_has_function = len(s.weight_function) > 0
bias_has_function = len(s.bias_function) > 0
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream)
bias = None
if s.bias is not None:
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
if bias_has_function:
with wf_context:
for f in s.bias_function:
bias = f(bias)
has_function = len(s.weight_function) > 0
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
if has_function:
if weight_has_function or weight.dtype != dtype:
with wf_context:
weight = weight.to(dtype=dtype)
for f in s.weight_function:
weight = f(weight)
comfy.model_management.sync_stream(device, offload_stream)
return weight, bias
if offloadable:
return weight, bias, offload_stream
else:
#Legacy function signature
return weight, bias
def uncast_bias_weight(s, weight, bias, offload_stream):
if offload_stream is None:
return
if weight is not None:
device = weight.device
else:
if bias is None:
return
device = bias.device
offload_stream.wait_stream(comfy.model_management.current_stream(device))
class CastWeightBiasOp:
comfy_cast_weights = False
@ -102,10 +151,13 @@ class disable_weight_init:
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = torch.nn.functional.linear(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
@ -116,10 +168,13 @@ class disable_weight_init:
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._conv_forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
@ -130,10 +185,13 @@ class disable_weight_init:
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._conv_forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
@ -143,11 +201,23 @@ class disable_weight_init:
def reset_parameters(self):
return None
def _conv_forward(self, input, weight, bias, *args, **kwargs):
if NVIDIA_MEMORY_CONV_BUG_WORKAROUND and weight.dtype in (torch.float16, torch.bfloat16):
out = torch.cudnn_convolution(input, weight, self.padding, self.stride, self.dilation, self.groups, benchmark=False, deterministic=False, allow_tf32=True)
if bias is not None:
out += bias.reshape((1, -1) + (1,) * (out.ndim - 2))
return out
else:
return super()._conv_forward(input, weight, bias, *args, **kwargs)
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._conv_forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
@ -158,10 +228,13 @@ class disable_weight_init:
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
@ -173,13 +246,17 @@ class disable_weight_init:
def forward_comfy_cast_weights(self, input):
if self.weight is not None:
weight, bias = cast_bias_weight(self, input)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
else:
weight = None
bias = None
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
offload_stream = None
x = torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
@ -192,13 +269,18 @@ class disable_weight_init:
def forward_comfy_cast_weights(self, input):
if self.weight is not None:
weight, bias = cast_bias_weight(self, input)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
else:
weight = None
return comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
# return torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
bias = None
offload_stream = None
x = comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
# x = torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
@ -214,12 +296,15 @@ class disable_weight_init:
input, output_size, self.stride, self.padding, self.kernel_size,
num_spatial_dims, self.dilation)
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.conv_transpose2d(
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = torch.nn.functional.conv_transpose2d(
input, weight, bias, self.stride, self.padding,
output_padding, self.groups, self.dilation)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
@ -235,12 +320,15 @@ class disable_weight_init:
input, output_size, self.stride, self.padding, self.kernel_size,
num_spatial_dims, self.dilation)
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.conv_transpose1d(
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = torch.nn.functional.conv_transpose1d(
input, weight, bias, self.stride, self.padding,
output_padding, self.groups, self.dilation)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
@ -255,10 +343,14 @@ class disable_weight_init:
output_dtype = out_dtype
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
out_dtype = None
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
weight, bias, offload_stream = cast_bias_weight(self, device=input.device, dtype=out_dtype, offloadable=True)
x = torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
@ -309,20 +401,18 @@ class manual_cast(disable_weight_init):
def fp8_linear(self, input):
"""
Legacy FP8 linear function for backward compatibility.
Uses QuantizedTensor subclass for dispatch.
"""
dtype = self.weight.dtype
if dtype not in [torch.float8_e4m3fn]:
return None
tensor_2d = False
if len(input.shape) == 2:
tensor_2d = True
input = input.unsqueeze(1)
input_shape = input.shape
input_dtype = input.dtype
if len(input.shape) == 3:
w, bias = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype)
w = w.t()
if input.ndim == 3 or input.ndim == 2:
w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True)
scale_weight = self.scale_weight
scale_input = self.scale_input
@ -334,23 +424,20 @@ def fp8_linear(self, input):
if scale_input is None:
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input)
input = input.reshape(-1, input_shape[2]).to(dtype).contiguous()
layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype}
quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight)
else:
scale_input = scale_input.to(input.device)
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype).contiguous()
quantized_input = QuantizedTensor.from_float(input, "TensorCoreFP8Layout", scale=scale_input, dtype=dtype)
if bias is not None:
o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
else:
o = torch._scaled_mm(input, w, out_dtype=input_dtype, scale_a=scale_input, scale_b=scale_weight)
# Wrap weight in QuantizedTensor - this enables unified dispatch
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
layout_params_weight = {'scale': scale_weight, 'orig_dtype': input_dtype}
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
if isinstance(o, tuple):
o = o[0]
if tensor_2d:
return o.reshape(input_shape[0], -1)
return o.reshape((-1, input_shape[1], self.weight.shape[0]))
uncast_bias_weight(self, w, bias, offload_stream)
return o
return None
@ -362,15 +449,18 @@ class fp8_ops(manual_cast):
return None
def forward_comfy_cast_weights(self, input):
try:
out = fp8_linear(self, input)
if out is not None:
return out
except Exception as e:
logging.info("Exception during fp8 op: {}".format(e))
if not self.training:
try:
out = fp8_linear(self, input)
if out is not None:
return out
except Exception as e:
logging.info("Exception during fp8 op: {}".format(e))
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = torch.nn.functional.linear(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
@ -398,12 +488,14 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
if out is not None:
return out
weight, bias = cast_bias_weight(self, input)
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
if weight.numel() < input.numel(): #TODO: optimize
return torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
x = torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
else:
return torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
x = torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def convert_weight(self, weight, inplace=False, **kwargs):
if inplace:
@ -412,8 +504,10 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
else:
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
def set_weight(self, weight, inplace_update=False, seed=None, **kwargs):
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
if return_weight:
return weight
if inplace_update:
self.weight.data.copy_(weight)
else:
@ -440,7 +534,120 @@ if CUBLAS_IS_AVAILABLE:
def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
# ==============================================================================
# Mixed Precision Operations
# ==============================================================================
from .quant_ops import QuantizedTensor, QUANT_ALGOS
class MixedPrecisionOps(disable_weight_init):
_layer_quant_config = {}
_compute_dtype = torch.bfloat16
class Linear(torch.nn.Module, CastWeightBiasOp):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
super().__init__()
self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype}
# self.factory_kwargs = {"device": device, "dtype": dtype}
self.in_features = in_features
self.out_features = out_features
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs))
else:
self.register_parameter("bias", None)
self.tensor_class = None
def reset_parameters(self):
return None
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys, error_msgs):
device = self.factory_kwargs["device"]
layer_name = prefix.rstrip('.')
weight_key = f"{prefix}weight"
weight = state_dict.pop(weight_key, None)
if weight is None:
raise ValueError(f"Missing weight for layer {layer_name}")
manually_loaded_keys = [weight_key]
if layer_name not in MixedPrecisionOps._layer_quant_config:
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
else:
quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None)
if quant_format is None:
raise ValueError(f"Unknown quantization format for layer {layer_name}")
qconfig = QUANT_ALGOS[quant_format]
self.layout_type = qconfig["comfy_tensor_layout"]
weight_scale_key = f"{prefix}weight_scale"
layout_params = {
'scale': state_dict.pop(weight_scale_key, None),
'orig_dtype': MixedPrecisionOps._compute_dtype,
'block_size': qconfig.get("group_size", None),
}
if layout_params['scale'] is not None:
manually_loaded_keys.append(weight_scale_key)
self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device), self.layout_type, layout_params),
requires_grad=False
)
for param_name in qconfig["parameters"]:
param_key = f"{prefix}{param_name}"
_v = state_dict.pop(param_key, None)
if _v is None:
continue
setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
manually_loaded_keys.append(param_key)
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
for key in manually_loaded_keys:
if key in missing_keys:
missing_keys.remove(key)
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, input, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
if (getattr(self, 'layout_type', None) is not None and
getattr(self, 'input_scale', None) is not None and
not isinstance(input, QuantizedTensor)):
input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype)
return self._forward(input, self.weight, self.bias)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None):
if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config:
MixedPrecisionOps._layer_quant_config = model_config.layer_quant_config
MixedPrecisionOps._compute_dtype = compute_dtype
logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers")
return MixedPrecisionOps
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)

View File

@ -150,7 +150,7 @@ def merge_nested_dicts(dict1: dict, dict2: dict, copy_dict1=True):
for key, value in dict2.items():
if isinstance(value, dict):
curr_value = merged_dict.setdefault(key, {})
merged_dict[key] = merge_nested_dicts(value, curr_value)
merged_dict[key] = merge_nested_dicts(curr_value, value)
elif isinstance(value, list):
merged_dict.setdefault(key, []).extend(value)
else:

View File

@ -0,0 +1,16 @@
import torch
# "Fake" VAE that converts from IMAGE B, H, W, C and values on the scale of 0..1
# to LATENT B, C, H, W and values on the scale of -1..1.
class PixelspaceConversionVAE(torch.nn.Module):
def __init__(self):
super().__init__()
self.pixel_space_vae = torch.nn.Parameter(torch.tensor(1.0))
def encode(self, pixels: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
return pixels
def decode(self, samples: torch.Tensor, *_args, **_kwargs) -> torch.Tensor:
return samples

545
comfy/quant_ops.py Normal file
View File

@ -0,0 +1,545 @@
import torch
import logging
from typing import Tuple, Dict
_LAYOUT_REGISTRY = {}
_GENERIC_UTILS = {}
def register_layout_op(torch_op, layout_type):
"""
Decorator to register a layout-specific operation handler.
Args:
torch_op: PyTorch operation (e.g., torch.ops.aten.linear.default)
layout_type: Layout class (e.g., TensorCoreFP8Layout)
Example:
@register_layout_op(torch.ops.aten.linear.default, TensorCoreFP8Layout)
def fp8_linear(func, args, kwargs):
# FP8-specific linear implementation
...
"""
def decorator(handler_func):
if torch_op not in _LAYOUT_REGISTRY:
_LAYOUT_REGISTRY[torch_op] = {}
_LAYOUT_REGISTRY[torch_op][layout_type] = handler_func
return handler_func
return decorator
def register_generic_util(torch_op):
"""
Decorator to register a generic utility that works for all layouts.
Args:
torch_op: PyTorch operation (e.g., torch.ops.aten.detach.default)
Example:
@register_generic_util(torch.ops.aten.detach.default)
def generic_detach(func, args, kwargs):
# Works for any layout
...
"""
def decorator(handler_func):
_GENERIC_UTILS[torch_op] = handler_func
return handler_func
return decorator
def _get_layout_from_args(args):
for arg in args:
if isinstance(arg, QuantizedTensor):
return arg._layout_type
elif isinstance(arg, (list, tuple)):
for item in arg:
if isinstance(item, QuantizedTensor):
return item._layout_type
return None
def _move_layout_params_to_device(params, device):
new_params = {}
for k, v in params.items():
if isinstance(v, torch.Tensor):
new_params[k] = v.to(device=device)
else:
new_params[k] = v
return new_params
def _copy_layout_params(params):
new_params = {}
for k, v in params.items():
if isinstance(v, torch.Tensor):
new_params[k] = v.clone()
else:
new_params[k] = v
return new_params
def _copy_layout_params_inplace(src, dst, non_blocking=False):
for k, v in src.items():
if isinstance(v, torch.Tensor):
dst[k].copy_(v, non_blocking=non_blocking)
else:
dst[k] = v
class QuantizedLayout:
"""
Base class for quantization layouts.
A layout encapsulates the format-specific logic for quantization/dequantization
and provides a uniform interface for extracting raw tensors needed for computation.
New quantization formats should subclass this and implement the required methods.
"""
@classmethod
def quantize(cls, tensor, **kwargs) -> Tuple[torch.Tensor, Dict]:
raise NotImplementedError(f"{cls.__name__} must implement quantize()")
@staticmethod
def dequantize(qdata, **layout_params) -> torch.Tensor:
raise NotImplementedError("TensorLayout must implement dequantize()")
@classmethod
def get_plain_tensors(cls, qtensor) -> torch.Tensor:
raise NotImplementedError(f"{cls.__name__} must implement get_plain_tensors()")
class QuantizedTensor(torch.Tensor):
"""
Universal quantized tensor that works with any layout.
This tensor subclass uses a pluggable layout system to support multiple
quantization formats (FP8, INT4, INT8, etc.) without code duplication.
The layout_type determines format-specific behavior, while common operations
(detach, clone, to) are handled generically.
Attributes:
_qdata: The quantized tensor data
_layout_type: Layout class (e.g., TensorCoreFP8Layout)
_layout_params: Dict with layout-specific params (scale, zero_point, etc.)
"""
@staticmethod
def __new__(cls, qdata, layout_type, layout_params):
"""
Create a quantized tensor.
Args:
qdata: The quantized data tensor
layout_type: Layout class (subclass of QuantizedLayout)
layout_params: Dict with layout-specific parameters
"""
return torch.Tensor._make_wrapper_subclass(cls, qdata.shape, device=qdata.device, dtype=qdata.dtype, requires_grad=False)
def __init__(self, qdata, layout_type, layout_params):
self._qdata = qdata
self._layout_type = layout_type
self._layout_params = layout_params
def __repr__(self):
layout_name = self._layout_type
param_str = ", ".join(f"{k}={v}" for k, v in list(self._layout_params.items())[:2])
return f"QuantizedTensor(shape={self.shape}, layout={layout_name}, {param_str})"
@property
def layout_type(self):
return self._layout_type
def __tensor_flatten__(self):
"""
Tensor flattening protocol for proper device movement.
"""
inner_tensors = ["_qdata"]
ctx = {
"layout_type": self._layout_type,
}
tensor_params = {}
non_tensor_params = {}
for k, v in self._layout_params.items():
if isinstance(v, torch.Tensor):
tensor_params[k] = v
else:
non_tensor_params[k] = v
ctx["tensor_param_keys"] = list(tensor_params.keys())
ctx["non_tensor_params"] = non_tensor_params
for k, v in tensor_params.items():
attr_name = f"_layout_param_{k}"
object.__setattr__(self, attr_name, v)
inner_tensors.append(attr_name)
return inner_tensors, ctx
@staticmethod
def __tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride):
"""
Tensor unflattening protocol for proper device movement.
Reconstructs the QuantizedTensor after device movement.
"""
layout_type = ctx["layout_type"]
layout_params = dict(ctx["non_tensor_params"])
for key in ctx["tensor_param_keys"]:
attr_name = f"_layout_param_{key}"
layout_params[key] = inner_tensors[attr_name]
return QuantizedTensor(inner_tensors["_qdata"], layout_type, layout_params)
@classmethod
def from_float(cls, tensor, layout_type, **quantize_kwargs) -> 'QuantizedTensor':
qdata, layout_params = LAYOUTS[layout_type].quantize(tensor, **quantize_kwargs)
return cls(qdata, layout_type, layout_params)
def dequantize(self) -> torch.Tensor:
return LAYOUTS[self._layout_type].dequantize(self._qdata, **self._layout_params)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
# Step 1: Check generic utilities first (detach, clone, to, etc.)
if func in _GENERIC_UTILS:
return _GENERIC_UTILS[func](func, args, kwargs)
# Step 2: Check layout-specific handlers (linear, matmul, etc.)
layout_type = _get_layout_from_args(args)
if layout_type and func in _LAYOUT_REGISTRY:
handler = _LAYOUT_REGISTRY[func].get(layout_type)
if handler:
return handler(func, args, kwargs)
# Step 3: Fallback to dequantization
if isinstance(args[0] if args else None, QuantizedTensor):
logging.info(f"QuantizedTensor: Unhandled operation {func}, falling back to dequantization. kwargs={kwargs}")
return cls._dequant_and_fallback(func, args, kwargs)
@classmethod
def _dequant_and_fallback(cls, func, args, kwargs):
def dequant_arg(arg):
if isinstance(arg, QuantizedTensor):
return arg.dequantize()
elif isinstance(arg, (list, tuple)):
return type(arg)(dequant_arg(a) for a in arg)
return arg
new_args = dequant_arg(args)
new_kwargs = dequant_arg(kwargs)
return func(*new_args, **new_kwargs)
# ==============================================================================
# Generic Utilities (Layout-Agnostic Operations)
# ==============================================================================
def _create_transformed_qtensor(qt, transform_fn):
new_data = transform_fn(qt._qdata)
new_params = _copy_layout_params(qt._layout_params)
return QuantizedTensor(new_data, qt._layout_type, new_params)
def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"):
if target_dtype is not None and target_dtype != qt.dtype:
logging.warning(
f"QuantizedTensor: dtype conversion requested to {target_dtype}, "
f"but not supported for quantized tensors. Ignoring dtype."
)
if target_layout is not None and target_layout != torch.strided:
logging.warning(
f"QuantizedTensor: layout change requested to {target_layout}, "
f"but not supported. Ignoring layout."
)
# Handle device transfer
current_device = qt._qdata.device
if target_device is not None:
# Normalize device for comparison
if isinstance(target_device, str):
target_device = torch.device(target_device)
if isinstance(current_device, str):
current_device = torch.device(current_device)
if target_device != current_device:
logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}")
new_q_data = qt._qdata.to(device=target_device)
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params)
logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}")
return new_qt
logging.debug(f"QuantizedTensor.{op_name}: No device change needed, returning original")
return qt
@register_generic_util(torch.ops.aten.detach.default)
def generic_detach(func, args, kwargs):
"""Detach operation - creates a detached copy of the quantized tensor."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _create_transformed_qtensor(qt, lambda x: x.detach())
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.clone.default)
def generic_clone(func, args, kwargs):
"""Clone operation - creates a deep copy of the quantized tensor."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _create_transformed_qtensor(qt, lambda x: x.clone())
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten._to_copy.default)
def generic_to_copy(func, args, kwargs):
"""Device/dtype transfer operation - handles .to(device) calls."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _handle_device_transfer(
qt,
target_device=kwargs.get('device', None),
target_dtype=kwargs.get('dtype', None),
op_name="_to_copy"
)
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.to.dtype_layout)
def generic_to_dtype_layout(func, args, kwargs):
"""Handle .to(device) calls using the dtype_layout variant."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _handle_device_transfer(
qt,
target_device=kwargs.get('device', None),
target_dtype=kwargs.get('dtype', None),
target_layout=kwargs.get('layout', None),
op_name="to"
)
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.copy_.default)
def generic_copy_(func, args, kwargs):
qt_dest = args[0]
src = args[1]
non_blocking = args[2] if len(args) > 2 else False
if isinstance(qt_dest, QuantizedTensor):
if isinstance(src, QuantizedTensor):
# Copy from another quantized tensor
qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking)
qt_dest._layout_type = src._layout_type
_copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking)
else:
# Copy from regular tensor - just copy raw data
qt_dest._qdata.copy_(src)
return qt_dest
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten._has_compatible_shallow_copy_type.default)
def generic_has_compatible_shallow_copy_type(func, args, kwargs):
return True
@register_generic_util(torch.ops.aten.empty_like.default)
def generic_empty_like(func, args, kwargs):
"""Empty_like operation - creates an empty tensor with the same quantized structure."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
# Create empty tensor with same shape and dtype as the quantized data
hp_dtype = kwargs.pop('dtype', qt._layout_params["orig_dtype"])
new_qdata = torch.empty_like(qt._qdata, **kwargs)
# Handle device transfer for layout params
target_device = kwargs.get('device', new_qdata.device)
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
# Update orig_dtype if dtype is specified
new_params['orig_dtype'] = hp_dtype
return QuantizedTensor(new_qdata, qt._layout_type, new_params)
return func(*args, **kwargs)
# ==============================================================================
# FP8 Layout + Operation Handlers
# ==============================================================================
class TensorCoreFP8Layout(QuantizedLayout):
"""
Storage format:
- qdata: FP8 tensor (torch.float8_e4m3fn or torch.float8_e5m2)
- scale: Scalar tensor (float32) for dequantization
- orig_dtype: Original dtype before quantization (for casting back)
"""
@classmethod
def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn):
orig_dtype = tensor.dtype
if scale is None:
scale = torch.amax(tensor.abs()) / torch.finfo(dtype).max
if not isinstance(scale, torch.Tensor):
scale = torch.tensor(scale)
scale = scale.to(device=tensor.device, dtype=torch.float32)
tensor_scaled = tensor * (1.0 / scale).to(tensor.dtype)
# TODO: uncomment this if it's actually needed because the clamp has a small performance penality'
# lp_amax = torch.finfo(dtype).max
# torch.clamp(tensor_scaled, min=-lp_amax, max=lp_amax, out=tensor_scaled)
qdata = tensor_scaled.to(dtype, memory_format=torch.contiguous_format)
layout_params = {
'scale': scale,
'orig_dtype': orig_dtype
}
return qdata, layout_params
@staticmethod
def dequantize(qdata, scale, orig_dtype, **kwargs):
plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype)
return plain_tensor * scale
@classmethod
def get_plain_tensors(cls, qtensor):
return qtensor._qdata, qtensor._layout_params['scale']
QUANT_ALGOS = {
"float8_e4m3fn": {
"storage_t": torch.float8_e4m3fn,
"parameters": {"weight_scale", "input_scale"},
"comfy_tensor_layout": "TensorCoreFP8Layout",
},
}
LAYOUTS = {
"TensorCoreFP8Layout": TensorCoreFP8Layout,
}
@register_layout_op(torch.ops.aten.linear.default, "TensorCoreFP8Layout")
def fp8_linear(func, args, kwargs):
input_tensor = args[0]
weight = args[1]
bias = args[2] if len(args) > 2 else None
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight)
out_dtype = kwargs.get("out_dtype")
if out_dtype is None:
out_dtype = input_tensor._layout_params['orig_dtype']
weight_t = plain_weight.t()
tensor_2d = False
if len(plain_input.shape) == 2:
tensor_2d = True
plain_input = plain_input.unsqueeze(1)
input_shape = plain_input.shape
if len(input_shape) != 3:
return None
try:
output = torch._scaled_mm(
plain_input.reshape(-1, input_shape[2]).contiguous(),
weight_t,
bias=bias,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=out_dtype,
)
if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4
output = output[0]
if not tensor_2d:
output = output.reshape((-1, input_shape[1], weight.shape[0]))
if output.dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
output_scale = scale_a * scale_b
output_params = {
'scale': output_scale,
'orig_dtype': input_tensor._layout_params['orig_dtype']
}
return QuantizedTensor(output, "TensorCoreFP8Layout", output_params)
else:
return output
except Exception as e:
raise RuntimeError(f"FP8 _scaled_mm failed, falling back to dequantization: {e}")
# Case 2: DQ Fallback
if isinstance(weight, QuantizedTensor):
weight = weight.dequantize()
if isinstance(input_tensor, QuantizedTensor):
input_tensor = input_tensor.dequantize()
return torch.nn.functional.linear(input_tensor, weight, bias)
def fp8_mm_(input_tensor, weight, bias=None, out_dtype=None):
if out_dtype is None:
out_dtype = input_tensor._layout_params['orig_dtype']
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight)
output = torch._scaled_mm(
plain_input.contiguous(),
plain_weight,
bias=bias,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=out_dtype,
)
if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4
output = output[0]
return output
@register_layout_op(torch.ops.aten.addmm.default, "TensorCoreFP8Layout")
def fp8_addmm(func, args, kwargs):
input_tensor = args[1]
weight = args[2]
bias = args[0]
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
return fp8_mm_(input_tensor, weight, bias=bias, out_dtype=kwargs.get("out_dtype", None))
a = list(args)
if isinstance(args[0], QuantizedTensor):
a[0] = args[0].dequantize()
if isinstance(args[1], QuantizedTensor):
a[1] = args[1].dequantize()
if isinstance(args[2], QuantizedTensor):
a[2] = args[2].dequantize()
return func(*a, **kwargs)
@register_layout_op(torch.ops.aten.mm.default, "TensorCoreFP8Layout")
def fp8_mm(func, args, kwargs):
input_tensor = args[0]
weight = args[1]
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
return fp8_mm_(input_tensor, weight, bias=None, out_dtype=kwargs.get("out_dtype", None))
a = list(args)
if isinstance(args[0], QuantizedTensor):
a[0] = args[0].dequantize()
if isinstance(args[1], QuantizedTensor):
a[1] = args[1].dequantize()
return func(*a, **kwargs)
@register_layout_op(torch.ops.aten.view.default, "TensorCoreFP8Layout")
@register_layout_op(torch.ops.aten.t.default, "TensorCoreFP8Layout")
def fp8_func(func, args, kwargs):
input_tensor = args[0]
if isinstance(input_tensor, QuantizedTensor):
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
ar = list(args)
ar[0] = plain_input
return QuantizedTensor(func(*ar, **kwargs), "TensorCoreFP8Layout", input_tensor._layout_params)
return func(*args, **kwargs)

View File

@ -4,13 +4,9 @@ import comfy.samplers
import comfy.utils
import numpy as np
import logging
import comfy.nested_tensor
def prepare_noise(latent_image, seed, noise_inds=None):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
generator = torch.manual_seed(seed)
def prepare_noise_inner(latent_image, generator, noise_inds=None):
if noise_inds is None:
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
@ -21,10 +17,29 @@ def prepare_noise(latent_image, seed, noise_inds=None):
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return torch.cat(noises, axis=0)
def prepare_noise(latent_image, seed, noise_inds=None):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
generator = torch.manual_seed(seed)
if latent_image.is_nested:
tensors = latent_image.unbind()
noises = []
for t in tensors:
noises.append(prepare_noise_inner(t, generator, noise_inds))
noises = comfy.nested_tensor.NestedTensor(noises)
else:
noises = prepare_noise_inner(latent_image, generator, noise_inds)
return noises
def fix_empty_latent_channels(model, latent_image):
if latent_image.is_nested:
return latent_image
latent_format = model.get_model_object("latent_format") #Resize the empty latent image so it has the right number of channels
if latent_format.latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0:
latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_format.latent_channels, dim=1)

44
comfy/samplers.py Normal file → Executable file
View File

@ -306,17 +306,10 @@ def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tens
copy_dict1=False)
if patches is not None:
# TODO: replace with merge_nested_dicts function
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
transformer_options["patches"] = cur_patches
else:
transformer_options["patches"] = patches
transformer_options["patches"] = comfy.patcher_extension.merge_nested_dicts(
transformer_options.get("patches", {}),
patches
)
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["uuids"] = uuids[:]
@ -360,7 +353,7 @@ def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None):
if "sampler_cfg_function" in model_options:
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options, "input_cond": cond, "input_uncond": uncond}
cfg_result = x - model_options["sampler_cfg_function"](args)
else:
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
@ -390,7 +383,7 @@ def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_option
for fn in model_options.get("sampler_pre_cfg_function", []):
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
"input": x, "sigma": timestep, "model": model, "model_options": model_options}
out = fn(args)
out = fn(args)
return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
@ -729,7 +722,7 @@ class Sampler:
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_2m_sde_heun", "dpmpp_2m_sde_heun_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3", "sa_solver", "sa_solver_pece"]
@ -789,7 +782,7 @@ def ksampler(sampler_name, extra_options={}, inpaint_options={}):
return KSAMPLER(sampler_function, extra_options, inpaint_options)
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None):
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None, latent_shapes=None):
for k in conds:
conds[k] = conds[k][:]
resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device)
@ -799,7 +792,7 @@ def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=N
if hasattr(model, 'extra_conds'):
for k in conds:
conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed, latent_shapes=latent_shapes)
#make sure each cond area has an opposite one with the same area
for k in conds:
@ -969,11 +962,11 @@ class CFGGuider:
def predict_noise(self, x, timestep, model_options={}, seed=None):
return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)
def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed):
def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=None):
if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
latent_image = self.inner_model.process_latent_in(latent_image)
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed, latent_shapes=latent_shapes)
extra_model_options = comfy.model_patcher.create_model_options_clone(self.model_options)
extra_model_options.setdefault("transformer_options", {})["sample_sigmas"] = sigmas
@ -987,7 +980,7 @@ class CFGGuider:
samples = executor.execute(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
return self.inner_model.process_latent_out(samples.to(torch.float32))
def outer_sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
def outer_sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None, latent_shapes=None):
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
device = self.model_patcher.load_device
@ -1001,7 +994,7 @@ class CFGGuider:
try:
self.model_patcher.pre_run()
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=latent_shapes)
finally:
self.model_patcher.cleanup()
@ -1014,6 +1007,12 @@ class CFGGuider:
if sigmas.shape[-1] == 0:
return latent_image
if latent_image.is_nested:
latent_image, latent_shapes = comfy.utils.pack_latents(latent_image.unbind())
noise, _ = comfy.utils.pack_latents(noise.unbind())
else:
latent_shapes = [latent_image.shape]
self.conds = {}
for k in self.original_conds:
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
@ -1033,7 +1032,7 @@ class CFGGuider:
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, self.model_options, is_model_options=True)
)
output = executor.execute(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
output = executor.execute(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed, latent_shapes=latent_shapes)
finally:
cast_to_load_options(self.model_options, device=self.model_patcher.offload_device)
self.model_options = orig_model_options
@ -1041,6 +1040,9 @@ class CFGGuider:
self.model_patcher.restore_hook_patches()
del self.conds
if len(latent_shapes) > 1:
output = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(output, latent_shapes))
return output

View File

@ -17,6 +17,9 @@ import comfy.ldm.wan.vae
import comfy.ldm.wan.vae2_2
import comfy.ldm.hunyuan3d.vae
import comfy.ldm.ace.vae.music_dcae_pipeline
import comfy.ldm.hunyuan_video.vae
import comfy.ldm.mmaudio.vae.autoencoder
import comfy.pixel_space_convert
import yaml
import math
import os
@ -48,6 +51,7 @@ import comfy.text_encoders.hidream
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
import comfy.model_patcher
import comfy.lora
@ -139,6 +143,9 @@ class CLIP:
n.apply_hooks_to_conds = self.apply_hooks_to_conds
return n
def get_ram_usage(self):
return self.patcher.get_ram_usage()
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
return self.patcher.add_patches(patches, strength_patch, strength_model)
@ -272,8 +279,13 @@ class VAE:
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
sd = diffusers_convert.convert_vae_state_dict(sd)
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
if model_management.is_amd():
VAE_KL_MEM_RATIO = 2.73
else:
VAE_KL_MEM_RATIO = 1.0
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) * VAE_KL_MEM_RATIO #These are for AutoencoderKL and need tweaking (should be lower)
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) * VAE_KL_MEM_RATIO
self.downscale_ratio = 8
self.upscale_ratio = 8
self.latent_channels = 4
@ -283,10 +295,13 @@ class VAE:
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
self.disable_offload = False
self.not_video = False
self.size = None
self.downscale_index_formula = None
self.upscale_index_formula = None
self.extra_1d_channel = None
self.crop_input = True
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
@ -329,21 +344,50 @@ class VAE:
self.downscale_ratio = 32
self.latent_channels = 16
elif "decoder.conv_in.weight" in sd:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
ddconfig['ch_mult'] = [1, 2, 4]
self.downscale_ratio = 4
self.upscale_ratio = 4
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
if 'post_quant_conv.weight' in sd:
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
else:
if sd['decoder.conv_in.weight'].shape[1] == 64:
ddconfig = {"block_out_channels": [128, 256, 512, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 32, "downsample_match_channel": True, "upsample_match_channel": True}
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
self.downscale_ratio = 32
self.upscale_ratio = 32
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
encoder_config={'target': "comfy.ldm.hunyuan_video.vae.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
elif sd['decoder.conv_in.weight'].shape[1] == 32:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True, "refiner_vae": False}
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.not_video = True
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (2800 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (2800 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
else:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
ddconfig['ch_mult'] = [1, 2, 4]
self.downscale_ratio = 4
self.upscale_ratio = 4
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
if 'post_quant_conv.weight' in sd:
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
else:
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
elif "decoder.layers.1.layers.0.beta" in sd:
self.first_stage_model = AudioOobleckVAE()
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
@ -394,6 +438,23 @@ class VAE:
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
self.downscale_index_formula = (8, 32, 32)
self.working_dtypes = [torch.bfloat16, torch.float32]
elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True}
ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.latent_channels = 32
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.not_video = False
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (1400 * 9 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (2800 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
elif "decoder.conv_in.conv.weight" in sd:
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
ddconfig["conv3d"] = True
@ -446,17 +507,29 @@ class VAE:
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
# Hunyuan 3d v2 2.0 & 2.1
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
self.latent_dim = 1
ln_post = "geo_decoder.ln_post.weight" in sd
inner_size = sd["geo_decoder.output_proj.weight"].shape[1]
downsample_ratio = sd["post_kl.weight"].shape[0] // inner_size
mlp_expand = sd["geo_decoder.cross_attn_decoder.mlp.c_fc.weight"].shape[0] // inner_size
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) # TODO
self.memory_used_decode = lambda shape, dtype: (1024 * 1024 * 1024 * 2.0) * model_management.dtype_size(dtype) # TODO
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
def estimate_memory(shape, dtype, num_layers = 16, kv_cache_multiplier = 2):
batch, num_tokens, hidden_dim = shape
dtype_size = model_management.dtype_size(dtype)
total_mem = batch * num_tokens * hidden_dim * dtype_size * (1 + kv_cache_multiplier * num_layers)
return total_mem
# better memory estimations
self.memory_used_encode = lambda shape, dtype, num_layers = 8, kv_cache_multiplier = 0:\
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
self.memory_used_decode = lambda shape, dtype, num_layers = 16, kv_cache_multiplier = 2: \
estimate_memory(shape, dtype, num_layers, kv_cache_multiplier)
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE()
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
elif "vocoder.backbone.channel_layers.0.0.bias" in sd: #Ace Step Audio
self.first_stage_model = comfy.ldm.ace.vae.music_dcae_pipeline.MusicDCAE(source_sample_rate=44100)
self.memory_used_encode = lambda shape, dtype: (shape[2] * 330) * model_management.dtype_size(dtype)
@ -471,6 +544,34 @@ class VAE:
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.disable_offload = True
self.extra_1d_channel = 16
elif "pixel_space_vae" in sd:
self.first_stage_model = comfy.pixel_space_convert.PixelspaceConversionVAE()
self.memory_used_encode = lambda shape, dtype: (1 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.downscale_ratio = 1
self.upscale_ratio = 1
self.latent_channels = 3
self.latent_dim = 2
self.output_channels = 3
elif "vocoder.activation_post.downsample.lowpass.filter" in sd: #MMAudio VAE
sample_rate = 16000
if sample_rate == 16000:
mode = '16k'
else:
mode = '44k'
self.first_stage_model = comfy.ldm.mmaudio.vae.autoencoder.AudioAutoencoder(mode=mode)
self.memory_used_encode = lambda shape, dtype: (30 * shape[2]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (90 * shape[2] * 1411.2) * model_management.dtype_size(dtype)
self.latent_channels = 20
self.output_channels = 2
self.upscale_ratio = 512 * (44100 / sample_rate)
self.downscale_ratio = 512 * (44100 / sample_rate)
self.latent_dim = 1
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.float32]
self.crop_input = False
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@ -498,12 +599,25 @@ class VAE:
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
self.model_size()
def model_size(self):
if self.size is not None:
return self.size
self.size = comfy.model_management.module_size(self.first_stage_model)
return self.size
def get_ram_usage(self):
return self.model_size()
def throw_exception_if_invalid(self):
if self.first_stage_model is None:
raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.")
def vae_encode_crop_pixels(self, pixels):
if not self.crop_input:
return pixels
downscale_ratio = self.spacial_compression_encode()
dims = pixels.shape[1:-1]
@ -581,6 +695,7 @@ class VAE:
def decode(self, samples_in, vae_options={}):
self.throw_exception_if_invalid()
pixel_samples = None
do_tile = False
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
@ -596,6 +711,13 @@ class VAE:
pixel_samples[x:x+batch_number] = out
except model_management.OOM_EXCEPTION:
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
#NOTE: We don't know what tensors were allocated to stack variables at the time of the
#exception and the exception itself refs them all until we get out of this except block.
#So we just set a flag for tiler fallback so that tensor gc can happen once the
#exception is fully off the books.
do_tile = True
if do_tile:
dims = samples_in.ndim - 2
if dims == 1 or self.extra_1d_channel is not None:
pixel_samples = self.decode_tiled_1d(samples_in)
@ -642,8 +764,12 @@ class VAE:
self.throw_exception_if_invalid()
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
pixel_samples = pixel_samples.movedim(-1, 1)
do_tile = False
if self.latent_dim == 3 and pixel_samples.ndim < 5:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
if not self.not_video:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
else:
pixel_samples = pixel_samples.unsqueeze(2)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
@ -660,6 +786,13 @@ class VAE:
except model_management.OOM_EXCEPTION:
logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
#NOTE: We don't know what tensors were allocated to stack variables at the time of the
#exception and the exception itself refs them all until we get out of this except block.
#So we just set a flag for tiler fallback so that tensor gc can happen once the
#exception is fully off the books.
do_tile = True
if do_tile:
if self.latent_dim == 3:
tile = 256
overlap = tile // 4
@ -677,7 +810,10 @@ class VAE:
dims = self.latent_dim
pixel_samples = pixel_samples.movedim(-1, 1)
if dims == 3:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
if not self.not_video:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
else:
pixel_samples = pixel_samples.unsqueeze(2)
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
@ -734,6 +870,7 @@ class VAE:
except:
return None
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model
@ -773,6 +910,8 @@ class CLIPType(Enum):
ACE = 16
OMNIGEN2 = 17
QWEN_IMAGE = 18
HUNYUAN_IMAGE = 19
HUNYUAN_VIDEO_15 = 20
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@ -794,6 +933,8 @@ class TEModel(Enum):
GEMMA_2_2B = 9
QWEN25_3B = 10
QWEN25_7B = 11
BYT5_SMALL_GLYPH = 12
GEMMA_3_4B = 13
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@ -811,8 +952,13 @@ def detect_te_model(sd):
if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd:
return TEModel.T5_XXL_OLD
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
weight = sd['encoder.block.0.layer.0.SelfAttention.k.weight']
if weight.shape[0] == 384:
return TEModel.BYT5_SMALL_GLYPH
return TEModel.T5_BASE
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
if 'model.layers.0.self_attn.q_norm.weight' in sd:
return TEModel.GEMMA_3_4B
return TEModel.GEMMA_2_2B
if 'model.layers.0.self_attn.k_proj.bias' in sd:
weight = sd['model.layers.0.self_attn.k_proj.bias']
@ -917,6 +1063,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.GEMMA_3_4B:
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data), model_type="gemma3_4b")
clip_target.tokenizer = comfy.text_encoders.lumina2.NTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.LLAMA3_8:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
@ -925,8 +1075,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.omnigen2.Omnigen2Tokenizer
elif te_model == TEModel.QWEN25_7B:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
if clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(byt5=False, **llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
else:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
else:
# clip_l
if clip_type == CLIPType.SD3:
@ -970,6 +1124,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, **t5_kwargs, **llama_kwargs)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
elif clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
elif clip_type == CLIPType.HUNYUAN_VIDEO_15:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
@ -1120,7 +1280,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
return (model_patcher, clip, vae, clipvision)
def load_diffusion_model_state_dict(sd, model_options={}):
def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
"""
Loads a UNet diffusion model from a state dictionary, supporting both diffusers and regular formats.
@ -1154,7 +1314,7 @@ def load_diffusion_model_state_dict(sd, model_options={}):
weight_dtype = comfy.utils.weight_dtype(sd)
load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, "")
model_config = model_detection.model_config_from_unet(sd, "", metadata=metadata)
if model_config is not None:
new_sd = sd
@ -1188,7 +1348,10 @@ def load_diffusion_model_state_dict(sd, model_options={}):
else:
unet_dtype = dtype
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
if model_config.layer_quant_config is not None:
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
else:
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
if model_options.get("fp8_optimizations", False):
@ -1204,8 +1367,8 @@ def load_diffusion_model_state_dict(sd, model_options={}):
def load_diffusion_model(unet_path, model_options={}):
sd = comfy.utils.load_torch_file(unet_path)
model = load_diffusion_model_state_dict(sd, model_options=model_options)
sd, metadata = comfy.utils.load_torch_file(unet_path, return_metadata=True)
model = load_diffusion_model_state_dict(sd, model_options=model_options, metadata=metadata)
if model is None:
logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}\n{}".format(unet_path, model_detection_error_hint(unet_path, sd)))

Some files were not shown because too many files have changed in this diff Show More