mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-12 23:30:56 +08:00
Add support for live previews on separate stream
This commit is contained in:
parent
0b50d4c0db
commit
e7cc72cee0
@ -6,18 +6,29 @@ import comfy.model_management
|
||||
import folder_paths
|
||||
import comfy.utils
|
||||
import logging
|
||||
from contextlib import nullcontext
|
||||
import threading
|
||||
|
||||
MAX_PREVIEW_RESOLUTION = args.preview_size
|
||||
|
||||
def preview_to_image(latent_image):
|
||||
latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1
|
||||
.mul(0xFF) # to 0..255
|
||||
)
|
||||
if comfy.model_management.directml_enabled:
|
||||
latents_ubyte = latents_ubyte.to(dtype=torch.uint8)
|
||||
latents_ubyte = latents_ubyte.to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device))
|
||||
if args.preview_stream:
|
||||
preview_stream = torch.cuda.Stream()
|
||||
preview_context = torch.cuda.stream(preview_stream)
|
||||
else:
|
||||
preview_context = nullcontext()
|
||||
|
||||
return Image.fromarray(latents_ubyte.numpy())
|
||||
def preview_to_image(preview_image: torch.Tensor):
|
||||
# no reason why any of this has to happen on GPU, also non-blocking transfers to cpu aren't safe ever
|
||||
# but we don't care about it blocking because the main stream is fine
|
||||
preview_image = preview_image.cpu()
|
||||
|
||||
preview_image.add_(1.0)
|
||||
preview_image.div_(2.0)
|
||||
preview_image.clamp_(0, 1) # change scale from -1..1 to 0..1 and clamp
|
||||
preview_image.mul_(255.) # change to uint8 range
|
||||
preview_image.round_() # default behavior when casting is truncate which is wrong for image processing
|
||||
|
||||
return Image.fromarray(preview_image.to(dtype=torch.uint8).numpy())
|
||||
|
||||
class LatentPreviewer:
|
||||
def decode_latent_to_preview(self, x0):
|
||||
@ -97,12 +108,23 @@ def prepare_callback(model, steps, x0_output_dict=None):
|
||||
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
def callback(step, x0, x, total_steps):
|
||||
if x0_output_dict is not None:
|
||||
x0_output_dict["x0"] = x0
|
||||
@torch.inference_mode
|
||||
def worker():
|
||||
if x0_output_dict is not None:
|
||||
x0_output_dict["x0"] = x0
|
||||
|
||||
preview_bytes = None
|
||||
if previewer:
|
||||
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
|
||||
pbar.update_absolute(step + 1, total_steps, preview_bytes)
|
||||
preview_bytes = None
|
||||
if previewer:
|
||||
with preview_context:
|
||||
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
|
||||
pbar.update_absolute(step + 1, total_steps, preview_bytes)
|
||||
|
||||
if args.preview_stream:
|
||||
# must wait for default stream to catch up else we will decode a garbage tensor
|
||||
# the default stream will not, under any circumstances, stop because of this
|
||||
preview_stream.wait_stream(torch.cuda.default_stream())
|
||||
threading.Thread(target=worker, daemon=True).start()
|
||||
else: worker() # no point in threading this off if there's no separate stream
|
||||
|
||||
return callback
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user