Enhanced CUDNN toggle to manage benchmarking and support additional input/output types.

This commit is contained in:
Christopher Anderson 2025-08-26 04:44:56 +10:00
parent 972495d95b
commit e7ead9e910

View File

@ -1,5 +1,13 @@
import torch
class AnyType(str):
"""A special class that is always equal in not equal comparisons. Credit to pythongosssss"""
def __ne__(self, __value: object) -> bool:
return False
anyType = AnyType("*")
class CUDNNToggleAutoPassthrough:
@classmethod
def INPUT_TYPES(cls):
@ -10,34 +18,36 @@ class CUDNNToggleAutoPassthrough:
"latent": ("LATENT",),
"audio": ("AUDIO",),
"image": ("IMAGE",),
"wan_model": ("WANVIDEOMODEL",),
"any_input": (anyType, {}),
},
"required": {
"enable_cudnn": ("BOOLEAN", {"default": True}),
"cudnn_benchmark": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("MODEL", "CONDITIONING", "LATENT", "AUDIO", "IMAGE")
RETURN_NAMES = ("model", "conditioning", "latent", "audio", "image")
RETURN_TYPES = ("MODEL", "CONDITIONING", "LATENT", "AUDIO", "IMAGE", "WANVIDEOMODEL", anyType, "BOOLEAN", "BOOLEAN")
RETURN_NAMES = ("model", "conditioning", "latent", "audio", "image", "wan_model", "any_output", "prev_cudnn", "prev_benchmark")
FUNCTION = "toggle"
CATEGORY = "utils"
def toggle(self, enable_cudnn, model=None, conditioning=None, latent=None, audio=None, image=None):
def toggle(self, enable_cudnn, cudnn_benchmark, any_input=None, wan_model=None, model=None, conditioning=None, latent=None, audio=None, image=None):
prev_cudnn = torch.backends.cudnn.enabled
prev_benchmark = torch.backends.cudnn.benchmark
torch.backends.cudnn.enabled = enable_cudnn
torch.backends.cudnn.benchmark = enable_cudnn
print(f"[CUDNN_TOGGLE] torch.backends.cudnn.enabled set to {enable_cudnn}")
torch.backends.cudnn.benchmark = cudnn_benchmark
if enable_cudnn != prev_cudnn:
print(f"[CUDNN_TOGGLE] torch.backends.cudnn.enabled set to {enable_cudnn} (was {prev_cudnn})")
else:
print(f"[CUDNN_TOGGLE] torch.backends.cudnn.enabled still set to {enable_cudnn}")
return_tuple = (None, None, None, None, None)
if model is not None:
return_tuple = (model, None, None, None, None)
elif conditioning is not None:
return_tuple = (None, conditioning, None, None, None)
elif latent is not None:
return_tuple = (None, None, latent, None, None)
elif audio is not None:
return_tuple = (None, None, None, audio, None)
elif image is not None:
return_tuple = (None, None, None, None, image)
if cudnn_benchmark != prev_benchmark:
print(f"[CUDNN_TOGGLE] torch.backends.cudnn.benchmark set to {cudnn_benchmark} (was {prev_benchmark})")
else:
print(f"[CUDNN_TOGGLE] torch.backends.cudnn.benchmark still set to {cudnn_benchmark}")
return_tuple = (model, conditioning, latent, audio, image, wan_model, any_input, prev_cudnn, prev_benchmark)
return return_tuple
NODE_CLASS_MAPPINGS = {