From d52697457608a045cafc3b6d6cb89f0a49ba0709 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 18 Nov 2025 13:46:19 -0800 Subject: [PATCH 001/271] Fix hunyuan 3d 2.0 (#10792) --- comfy/ldm/flux/math.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py index 158420290..6a22df8bc 100644 --- a/comfy/ldm/flux/math.py +++ b/comfy/ldm/flux/math.py @@ -7,7 +7,8 @@ import comfy.model_management def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor: - q, k = apply_rope(q, k, pe) + if pe is not None: + q, k = apply_rope(q, k, pe) heads = q.shape[1] x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options) return x From 24fdb92edf2e96fe757c480aa7f12be5bdfa3a15 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 19 Nov 2025 00:26:44 +0200 Subject: [PATCH 002/271] feat(api-nodes): add new Gemini model (#10789) --- comfy_api_nodes/apis/gemini_api.py | 231 +++++++++++++++++++++++++++-- comfy_api_nodes/nodes_gemini.py | 47 +++--- 2 files changed, 246 insertions(+), 32 deletions(-) diff --git a/comfy_api_nodes/apis/gemini_api.py b/comfy_api_nodes/apis/gemini_api.py index 2bf28bf93..f63e02693 100644 --- a/comfy_api_nodes/apis/gemini_api.py +++ b/comfy_api_nodes/apis/gemini_api.py @@ -1,22 +1,229 @@ -from typing import Optional +from datetime import date +from enum import Enum +from typing import Any -from comfy_api_nodes.apis import GeminiGenerationConfig, GeminiContent, GeminiSafetySetting, GeminiSystemInstructionContent, GeminiTool, GeminiVideoMetadata -from pydantic import BaseModel +from pydantic import BaseModel, Field + + +class GeminiSafetyCategory(str, Enum): + HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT" + HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH" + HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT" + HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT" + + +class GeminiSafetyThreshold(str, Enum): + OFF = "OFF" + BLOCK_NONE = "BLOCK_NONE" + BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE" + BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE" + BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH" + + +class GeminiSafetySetting(BaseModel): + category: GeminiSafetyCategory + threshold: GeminiSafetyThreshold + + +class GeminiRole(str, Enum): + user = "user" + model = "model" + + +class GeminiMimeType(str, Enum): + application_pdf = "application/pdf" + audio_mpeg = "audio/mpeg" + audio_mp3 = "audio/mp3" + audio_wav = "audio/wav" + image_png = "image/png" + image_jpeg = "image/jpeg" + image_webp = "image/webp" + text_plain = "text/plain" + video_mov = "video/mov" + video_mpeg = "video/mpeg" + video_mp4 = "video/mp4" + video_mpg = "video/mpg" + video_avi = "video/avi" + video_wmv = "video/wmv" + video_mpegps = "video/mpegps" + video_flv = "video/flv" + + +class GeminiInlineData(BaseModel): + data: str | None = Field( + None, + description="The base64 encoding of the image, PDF, or video to include inline in the prompt. " + "When including media inline, you must also specify the media type (mimeType) of the data. Size limit: 20MB", + ) + mimeType: GeminiMimeType | None = Field(None) + + +class GeminiPart(BaseModel): + inlineData: GeminiInlineData | None = Field(None) + text: str | None = Field(None) + + +class GeminiTextPart(BaseModel): + text: str | None = Field(None) + + +class GeminiContent(BaseModel): + parts: list[GeminiPart] = Field(...) + role: GeminiRole = Field(..., examples=["user"]) + + +class GeminiSystemInstructionContent(BaseModel): + parts: list[GeminiTextPart] = Field( + ..., + description="A list of ordered parts that make up a single message. " + "Different parts may have different IANA MIME types.", + ) + role: GeminiRole = Field( + ..., + description="The identity of the entity that creates the message. " + "The following values are supported: " + "user: This indicates that the message is sent by a real person, typically a user-generated message. " + "model: This indicates that the message is generated by the model. " + "The model value is used to insert messages from model into the conversation during multi-turn conversations. " + "For non-multi-turn conversations, this field can be left blank or unset.", + ) + + +class GeminiFunctionDeclaration(BaseModel): + description: str | None = Field(None) + name: str = Field(...) + parameters: dict[str, Any] = Field(..., description="JSON schema for the function parameters") + + +class GeminiTool(BaseModel): + functionDeclarations: list[GeminiFunctionDeclaration] | None = Field(None) + + +class GeminiOffset(BaseModel): + nanos: int | None = Field(None, ge=0, le=999999999) + seconds: int | None = Field(None, ge=-315576000000, le=315576000000) + + +class GeminiVideoMetadata(BaseModel): + endOffset: GeminiOffset | None = Field(None) + startOffset: GeminiOffset | None = Field(None) + + +class GeminiGenerationConfig(BaseModel): + maxOutputTokens: int | None = Field(None, ge=16, le=8192) + seed: int | None = Field(None) + stopSequences: list[str] | None = Field(None) + temperature: float | None = Field(1, ge=0.0, le=2.0) + topK: int | None = Field(40, ge=1) + topP: float | None = Field(0.95, ge=0.0, le=1.0) class GeminiImageConfig(BaseModel): - aspectRatio: Optional[str] = None + aspectRatio: str | None = Field(None) + resolution: str | None = Field(None) class GeminiImageGenerationConfig(GeminiGenerationConfig): - responseModalities: Optional[list[str]] = None - imageConfig: Optional[GeminiImageConfig] = None + responseModalities: list[str] | None = Field(None) + imageConfig: GeminiImageConfig | None = Field(None) class GeminiImageGenerateContentRequest(BaseModel): - contents: list[GeminiContent] - generationConfig: Optional[GeminiImageGenerationConfig] = None - safetySettings: Optional[list[GeminiSafetySetting]] = None - systemInstruction: Optional[GeminiSystemInstructionContent] = None - tools: Optional[list[GeminiTool]] = None - videoMetadata: Optional[GeminiVideoMetadata] = None + contents: list[GeminiContent] = Field(...) + generationConfig: GeminiImageGenerationConfig | None = Field(None) + safetySettings: list[GeminiSafetySetting] | None = Field(None) + systemInstruction: GeminiSystemInstructionContent | None = Field(None) + tools: list[GeminiTool] | None = Field(None) + videoMetadata: GeminiVideoMetadata | None = Field(None) + + +class GeminiGenerateContentRequest(BaseModel): + contents: list[GeminiContent] = Field(...) + generationConfig: GeminiGenerationConfig | None = Field(None) + safetySettings: list[GeminiSafetySetting] | None = Field(None) + systemInstruction: GeminiSystemInstructionContent | None = Field(None) + tools: list[GeminiTool] | None = Field(None) + videoMetadata: GeminiVideoMetadata | None = Field(None) + + +class Modality(str, Enum): + MODALITY_UNSPECIFIED = "MODALITY_UNSPECIFIED" + TEXT = "TEXT" + IMAGE = "IMAGE" + VIDEO = "VIDEO" + AUDIO = "AUDIO" + DOCUMENT = "DOCUMENT" + + +class ModalityTokenCount(BaseModel): + modality: Modality | None = None + tokenCount: int | None = Field(None, description="Number of tokens for the given modality.") + + +class Probability(str, Enum): + NEGLIGIBLE = "NEGLIGIBLE" + LOW = "LOW" + MEDIUM = "MEDIUM" + HIGH = "HIGH" + UNKNOWN = "UNKNOWN" + + +class GeminiSafetyRating(BaseModel): + category: GeminiSafetyCategory | None = None + probability: Probability | None = Field( + None, + description="The probability that the content violates the specified safety category", + ) + + +class GeminiCitation(BaseModel): + authors: list[str] | None = None + endIndex: int | None = None + license: str | None = None + publicationDate: date | None = None + startIndex: int | None = None + title: str | None = None + uri: str | None = None + + +class GeminiCitationMetadata(BaseModel): + citations: list[GeminiCitation] | None = None + + +class GeminiCandidate(BaseModel): + citationMetadata: GeminiCitationMetadata | None = None + content: GeminiContent | None = None + finishReason: str | None = None + safetyRatings: list[GeminiSafetyRating] | None = None + + +class GeminiPromptFeedback(BaseModel): + blockReason: str | None = None + blockReasonMessage: str | None = None + safetyRatings: list[GeminiSafetyRating] | None = None + + +class GeminiUsageMetadata(BaseModel): + cachedContentTokenCount: int | None = Field( + None, + description="Output only. Number of tokens in the cached part in the input (the cached content).", + ) + candidatesTokenCount: int | None = Field(None, description="Number of tokens in the response(s).") + candidatesTokensDetails: list[ModalityTokenCount] | None = Field( + None, description="Breakdown of candidate tokens by modality." + ) + promptTokenCount: int | None = Field( + None, + description="Number of tokens in the request. When cachedContent is set, this is still the total effective prompt size meaning this includes the number of tokens in the cached content.", + ) + promptTokensDetails: list[ModalityTokenCount] | None = Field( + None, description="Breakdown of prompt tokens by modality." + ) + thoughtsTokenCount: int | None = Field(None, description="Number of tokens present in thoughts output.") + toolUsePromptTokenCount: int | None = Field(None, description="Number of tokens present in tool-use prompt(s).") + + +class GeminiGenerateContentResponse(BaseModel): + candidates: list[GeminiCandidate] | None = Field(None) + promptFeedback: GeminiPromptFeedback | None = Field(None) + usageMetadata: GeminiUsageMetadata | None = Field(None) diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index 67f2469ad..6e746eebd 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -3,8 +3,6 @@ API Nodes for Gemini Multimodal LLM Usage via Remote API See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference """ -from __future__ import annotations - import base64 import json import os @@ -12,7 +10,7 @@ import time import uuid from enum import Enum from io import BytesIO -from typing import Literal, Optional +from typing import Literal import torch from typing_extensions import override @@ -20,18 +18,17 @@ from typing_extensions import override import folder_paths from comfy_api.latest import IO, ComfyExtension, Input from comfy_api.util import VideoCodec, VideoContainer -from comfy_api_nodes.apis import ( +from comfy_api_nodes.apis.gemini_api import ( GeminiContent, GeminiGenerateContentRequest, GeminiGenerateContentResponse, - GeminiInlineData, - GeminiMimeType, - GeminiPart, -) -from comfy_api_nodes.apis.gemini_api import ( GeminiImageConfig, GeminiImageGenerateContentRequest, GeminiImageGenerationConfig, + GeminiInlineData, + GeminiMimeType, + GeminiPart, + GeminiRole, ) from comfy_api_nodes.util import ( ApiEndpoint, @@ -57,6 +54,7 @@ class GeminiModel(str, Enum): gemini_2_5_flash_preview_04_17 = "gemini-2.5-flash-preview-04-17" gemini_2_5_pro = "gemini-2.5-pro" gemini_2_5_flash = "gemini-2.5-flash" + gemini_3_0_pro = "gemini-3-pro-preview" class GeminiImageModel(str, Enum): @@ -103,6 +101,16 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera Returns: List of response parts matching the requested type. """ + if response.candidates is None: + if response.promptFeedback.blockReason: + feedback = response.promptFeedback + raise ValueError( + f"Gemini API blocked the request. Reason: {feedback.blockReason} ({feedback.blockReasonMessage})" + ) + raise NotImplementedError( + "Gemini returned no response candidates. " + "Please report to ComfyUI repository with the example of workflow to reproduce this." + ) parts = [] for part in response.candidates[0].content.parts: if part_type == "text" and hasattr(part, "text") and part.text: @@ -272,10 +280,10 @@ class GeminiNode(IO.ComfyNode): prompt: str, model: str, seed: int, - images: Optional[torch.Tensor] = None, - audio: Optional[Input.Audio] = None, - video: Optional[Input.Video] = None, - files: Optional[list[GeminiPart]] = None, + images: torch.Tensor | None = None, + audio: Input.Audio | None = None, + video: Input.Video | None = None, + files: list[GeminiPart] | None = None, ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) @@ -300,7 +308,7 @@ class GeminiNode(IO.ComfyNode): data=GeminiGenerateContentRequest( contents=[ GeminiContent( - role="user", + role=GeminiRole.user, parts=parts, ) ] @@ -308,7 +316,6 @@ class GeminiNode(IO.ComfyNode): response_model=GeminiGenerateContentResponse, ) - # Get result output output_text = get_text_from_response(response) if output_text: # Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button. @@ -406,7 +413,7 @@ class GeminiInputFiles(IO.ComfyNode): ) @classmethod - def execute(cls, file: str, GEMINI_INPUT_FILES: Optional[list[GeminiPart]] = None) -> IO.NodeOutput: + def execute(cls, file: str, GEMINI_INPUT_FILES: list[GeminiPart] | None = None) -> IO.NodeOutput: """Loads and formats input files for Gemini API.""" if GEMINI_INPUT_FILES is None: GEMINI_INPUT_FILES = [] @@ -421,7 +428,7 @@ class GeminiImage(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="GeminiImageNode", - display_name="Google Gemini Image", + display_name="Nano Banana (Google Gemini Image)", category="api node/image/Gemini", description="Edit images synchronously via Google API.", inputs=[ @@ -488,8 +495,8 @@ class GeminiImage(IO.ComfyNode): prompt: str, model: str, seed: int, - images: Optional[torch.Tensor] = None, - files: Optional[list[GeminiPart]] = None, + images: torch.Tensor | None = None, + files: list[GeminiPart] | None = None, aspect_ratio: str = "auto", ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) @@ -510,7 +517,7 @@ class GeminiImage(IO.ComfyNode): endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"), data=GeminiImageGenerateContentRequest( contents=[ - GeminiContent(role="user", parts=parts), + GeminiContent(role=GeminiRole.user, parts=parts), ], generationConfig=GeminiImageGenerationConfig( responseModalities=["TEXT", "IMAGE"], From b5c8be8b1db44ded07cb1b437b9f33ebff5848c1 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 18 Nov 2025 19:37:20 -0500 Subject: [PATCH 003/271] ComfyUI 0.3.70 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 1e554eb9f..9b77aabe9 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.3.69" +__version__ = "0.3.70" diff --git a/pyproject.toml b/pyproject.toml index a14b383b3..289b7145b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.3.69" +version = "0.3.70" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 17027f2a6a20a31e2c6f3be2b1a06f39ad3a68d9 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 18 Nov 2025 19:36:03 -0800 Subject: [PATCH 004/271] Add a way to disable the final norm in the llama based TE models. (#10794) --- comfy/text_encoders/llama.py | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-) diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index c050759fe..feb44bbb0 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -32,6 +32,7 @@ class Llama2Config: q_norm = None k_norm = None rope_scale = None + final_norm: bool = True @dataclass class Qwen25_3BConfig: @@ -53,6 +54,7 @@ class Qwen25_3BConfig: q_norm = None k_norm = None rope_scale = None + final_norm: bool = True @dataclass class Qwen25_7BVLI_Config: @@ -74,6 +76,7 @@ class Qwen25_7BVLI_Config: q_norm = None k_norm = None rope_scale = None + final_norm: bool = True @dataclass class Gemma2_2B_Config: @@ -96,6 +99,7 @@ class Gemma2_2B_Config: k_norm = None sliding_attention = None rope_scale = None + final_norm: bool = True @dataclass class Gemma3_4B_Config: @@ -118,6 +122,7 @@ class Gemma3_4B_Config: k_norm = "gemma3" sliding_attention = [False, False, False, False, False, 1024] rope_scale = [1.0, 8.0] + final_norm: bool = True class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None): @@ -366,7 +371,12 @@ class Llama2_(nn.Module): transformer(config, index=i, device=device, dtype=dtype, ops=ops) for i in range(config.num_hidden_layers) ]) - self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) + + if config.final_norm: + self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) + else: + self.norm = None + # self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype) def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]): @@ -421,14 +431,16 @@ class Llama2_(nn.Module): if i == intermediate_output: intermediate = x.clone() - x = self.norm(x) + if self.norm is not None: + x = self.norm(x) + if all_intermediate is not None: all_intermediate.append(x.unsqueeze(1).clone()) if all_intermediate is not None: intermediate = torch.cat(all_intermediate, dim=1) - if intermediate is not None and final_layer_norm_intermediate: + if intermediate is not None and final_layer_norm_intermediate and self.norm is not None: intermediate = self.norm(intermediate) return x, intermediate From 65ee24c9789b93660ebe978a3186486f105298c2 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 19 Nov 2025 11:25:28 +0200 Subject: [PATCH 005/271] change display name of PreviewAny node to "Preview as Text" (#10796) --- comfy_extras/nodes_preview_any.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_preview_any.py b/comfy_extras/nodes_preview_any.py index e749fa6ae..139b07c93 100644 --- a/comfy_extras/nodes_preview_any.py +++ b/comfy_extras/nodes_preview_any.py @@ -39,5 +39,5 @@ NODE_CLASS_MAPPINGS = { } NODE_DISPLAY_NAME_MAPPINGS = { - "PreviewAny": "Preview Any", + "PreviewAny": "Preview as Text", } From 6a1d3a1ae131f3fff7f45a7e835eb10e9d1338ee Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Thu, 20 Nov 2025 00:49:01 +0200 Subject: [PATCH 006/271] convert hunyuan3d.py to V3 schema (#10664) --- comfy_api/latest/__init__.py | 4 +- comfy_api/latest/_io.py | 5 +- comfy_api/latest/_util/__init__.py | 3 + comfy_api/latest/_util/geometry_types.py | 12 + comfy_extras/nodes_hunyuan3d.py | 274 +++++++++++++---------- 5 files changed, 178 insertions(+), 120 deletions(-) create mode 100644 comfy_api/latest/_util/geometry_types.py diff --git a/comfy_api/latest/__init__.py b/comfy_api/latest/__init__.py index b7a3fa9c1..176ae36e0 100644 --- a/comfy_api/latest/__init__.py +++ b/comfy_api/latest/__init__.py @@ -7,7 +7,7 @@ from comfy_api.internal.singleton import ProxiedSingleton from comfy_api.internal.async_to_sync import create_sync_class from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents -from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents +from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL from . import _io as io from . import _ui as ui # from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401 @@ -104,6 +104,8 @@ class Types: VideoCodec = VideoCodec VideoContainer = VideoContainer VideoComponents = VideoComponents + MESH = MESH + VOXEL = VOXEL ComfyAPI = ComfyAPI_latest diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 0b701260f..863254ce7 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -27,6 +27,7 @@ from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classpr prune_dict, shallow_clone_class) from comfy_api.latest._resources import Resources, ResourcesLocal from comfy_execution.graph_utils import ExecutionBlocker +from ._util import MESH, VOXEL # from comfy_extras.nodes_images import SVG as SVG_ # NOTE: needs to be moved before can be imported due to circular reference @@ -656,11 +657,11 @@ class LossMap(ComfyTypeIO): @comfytype(io_type="VOXEL") class Voxel(ComfyTypeIO): - Type = Any # TODO: VOXEL class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3 + Type = VOXEL @comfytype(io_type="MESH") class Mesh(ComfyTypeIO): - Type = Any # TODO: MESH class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3 + Type = MESH @comfytype(io_type="HOOKS") class Hooks(ComfyTypeIO): diff --git a/comfy_api/latest/_util/__init__.py b/comfy_api/latest/_util/__init__.py index 9019c46db..fc5431dda 100644 --- a/comfy_api/latest/_util/__init__.py +++ b/comfy_api/latest/_util/__init__.py @@ -1,8 +1,11 @@ from .video_types import VideoContainer, VideoCodec, VideoComponents +from .geometry_types import VOXEL, MESH __all__ = [ # Utility Types "VideoContainer", "VideoCodec", "VideoComponents", + "VOXEL", + "MESH", ] diff --git a/comfy_api/latest/_util/geometry_types.py b/comfy_api/latest/_util/geometry_types.py new file mode 100644 index 000000000..385122778 --- /dev/null +++ b/comfy_api/latest/_util/geometry_types.py @@ -0,0 +1,12 @@ +import torch + + +class VOXEL: + def __init__(self, data: torch.Tensor): + self.data = data + + +class MESH: + def __init__(self, vertices: torch.Tensor, faces: torch.Tensor): + self.vertices = vertices + self.faces = faces diff --git a/comfy_extras/nodes_hunyuan3d.py b/comfy_extras/nodes_hunyuan3d.py index f6e71e0a8..adca14f62 100644 --- a/comfy_extras/nodes_hunyuan3d.py +++ b/comfy_extras/nodes_hunyuan3d.py @@ -7,63 +7,79 @@ from comfy.ldm.modules.diffusionmodules.mmdit import get_1d_sincos_pos_embed_fro import folder_paths import comfy.model_management from comfy.cli_args import args +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO, Types +from comfy_api.latest._util import MESH, VOXEL # only for backward compatibility if someone import it from this file (will be removed later) # noqa -class EmptyLatentHunyuan3Dv2: + +class EmptyLatentHunyuan3Dv2(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "resolution": ("INT", {"default": 3072, "min": 1, "max": 8192}), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="EmptyLatentHunyuan3Dv2", + category="latent/3d", + inputs=[ + IO.Int.Input("resolution", default=3072, min=1, max=8192), + IO.Int.Input("batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."), + ], + outputs=[ + IO.Latent.Output(), + ] + ) - RETURN_TYPES = ("LATENT",) - FUNCTION = "generate" - - CATEGORY = "latent/3d" - - def generate(self, resolution, batch_size): + @classmethod + def execute(cls, resolution, batch_size) -> IO.NodeOutput: latent = torch.zeros([batch_size, 64, resolution], device=comfy.model_management.intermediate_device()) - return ({"samples": latent, "type": "hunyuan3dv2"}, ) + return IO.NodeOutput({"samples": latent, "type": "hunyuan3dv2"}) -class Hunyuan3Dv2Conditioning: + generate = execute # TODO: remove + + +class Hunyuan3Dv2Conditioning(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"clip_vision_output": ("CLIP_VISION_OUTPUT",), - }} + def define_schema(cls): + return IO.Schema( + node_id="Hunyuan3Dv2Conditioning", + category="conditioning/video_models", + inputs=[ + IO.ClipVisionOutput.Input("clip_vision_output"), + ], + outputs=[ + IO.Conditioning.Output(display_name="positive"), + IO.Conditioning.Output(display_name="negative"), + ] + ) - RETURN_TYPES = ("CONDITIONING", "CONDITIONING") - RETURN_NAMES = ("positive", "negative") - - FUNCTION = "encode" - - CATEGORY = "conditioning/video_models" - - def encode(self, clip_vision_output): + @classmethod + def execute(cls, clip_vision_output) -> IO.NodeOutput: embeds = clip_vision_output.last_hidden_state positive = [[embeds, {}]] negative = [[torch.zeros_like(embeds), {}]] - return (positive, negative) + return IO.NodeOutput(positive, negative) + + encode = execute # TODO: remove -class Hunyuan3Dv2ConditioningMultiView: +class Hunyuan3Dv2ConditioningMultiView(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {}, - "optional": {"front": ("CLIP_VISION_OUTPUT",), - "left": ("CLIP_VISION_OUTPUT",), - "back": ("CLIP_VISION_OUTPUT",), - "right": ("CLIP_VISION_OUTPUT",), }} + def define_schema(cls): + return IO.Schema( + node_id="Hunyuan3Dv2ConditioningMultiView", + category="conditioning/video_models", + inputs=[ + IO.ClipVisionOutput.Input("front", optional=True), + IO.ClipVisionOutput.Input("left", optional=True), + IO.ClipVisionOutput.Input("back", optional=True), + IO.ClipVisionOutput.Input("right", optional=True), + ], + outputs=[ + IO.Conditioning.Output(display_name="positive"), + IO.Conditioning.Output(display_name="negative"), + ] + ) - RETURN_TYPES = ("CONDITIONING", "CONDITIONING") - RETURN_NAMES = ("positive", "negative") - - FUNCTION = "encode" - - CATEGORY = "conditioning/video_models" - - def encode(self, front=None, left=None, back=None, right=None): + @classmethod + def execute(cls, front=None, left=None, back=None, right=None) -> IO.NodeOutput: all_embeds = [front, left, back, right] out = [] pos_embeds = None @@ -76,29 +92,35 @@ class Hunyuan3Dv2ConditioningMultiView: embeds = torch.cat(out, dim=1) positive = [[embeds, {}]] negative = [[torch.zeros_like(embeds), {}]] - return (positive, negative) + return IO.NodeOutput(positive, negative) + + encode = execute # TODO: remove -class VOXEL: - def __init__(self, data): - self.data = data - -class VAEDecodeHunyuan3D: +class VAEDecodeHunyuan3D(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"samples": ("LATENT", ), - "vae": ("VAE", ), - "num_chunks": ("INT", {"default": 8000, "min": 1000, "max": 500000}), - "octree_resolution": ("INT", {"default": 256, "min": 16, "max": 512}), - }} - RETURN_TYPES = ("VOXEL",) - FUNCTION = "decode" + def define_schema(cls): + return IO.Schema( + node_id="VAEDecodeHunyuan3D", + category="latent/3d", + inputs=[ + IO.Latent.Input("samples"), + IO.Vae.Input("vae"), + IO.Int.Input("num_chunks", default=8000, min=1000, max=500000), + IO.Int.Input("octree_resolution", default=256, min=16, max=512), + ], + outputs=[ + IO.Voxel.Output(), + ] + ) - CATEGORY = "latent/3d" + @classmethod + def execute(cls, vae, samples, num_chunks, octree_resolution) -> IO.NodeOutput: + voxels = Types.VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution})) + return IO.NodeOutput(voxels) + + decode = execute # TODO: remove - def decode(self, vae, samples, num_chunks, octree_resolution): - voxels = VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution})) - return (voxels, ) def voxel_to_mesh(voxels, threshold=0.5, device=None): if device is None: @@ -396,24 +418,24 @@ def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None): return final_vertices, faces -class MESH: - def __init__(self, vertices, faces): - self.vertices = vertices - self.faces = faces - -class VoxelToMeshBasic: +class VoxelToMeshBasic(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"voxel": ("VOXEL", ), - "threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}), - }} - RETURN_TYPES = ("MESH",) - FUNCTION = "decode" + def define_schema(cls): + return IO.Schema( + node_id="VoxelToMeshBasic", + category="3d", + inputs=[ + IO.Voxel.Input("voxel"), + IO.Float.Input("threshold", default=0.6, min=-1.0, max=1.0, step=0.01), + ], + outputs=[ + IO.Mesh.Output(), + ] + ) - CATEGORY = "3d" - - def decode(self, voxel, threshold): + @classmethod + def execute(cls, voxel, threshold) -> IO.NodeOutput: vertices = [] faces = [] for x in voxel.data: @@ -421,21 +443,29 @@ class VoxelToMeshBasic: vertices.append(v) faces.append(f) - return (MESH(torch.stack(vertices), torch.stack(faces)), ) + return IO.NodeOutput(Types.MESH(torch.stack(vertices), torch.stack(faces))) -class VoxelToMesh: + decode = execute # TODO: remove + + +class VoxelToMesh(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"voxel": ("VOXEL", ), - "algorithm": (["surface net", "basic"], ), - "threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}), - }} - RETURN_TYPES = ("MESH",) - FUNCTION = "decode" + def define_schema(cls): + return IO.Schema( + node_id="VoxelToMesh", + category="3d", + inputs=[ + IO.Voxel.Input("voxel"), + IO.Combo.Input("algorithm", options=["surface net", "basic"]), + IO.Float.Input("threshold", default=0.6, min=-1.0, max=1.0, step=0.01), + ], + outputs=[ + IO.Mesh.Output(), + ] + ) - CATEGORY = "3d" - - def decode(self, voxel, algorithm, threshold): + @classmethod + def execute(cls, voxel, algorithm, threshold) -> IO.NodeOutput: vertices = [] faces = [] @@ -449,7 +479,9 @@ class VoxelToMesh: vertices.append(v) faces.append(f) - return (MESH(torch.stack(vertices), torch.stack(faces)), ) + return IO.NodeOutput(Types.MESH(torch.stack(vertices), torch.stack(faces))) + + decode = execute # TODO: remove def save_glb(vertices, faces, filepath, metadata=None): @@ -581,31 +613,32 @@ def save_glb(vertices, faces, filepath, metadata=None): return filepath -class SaveGLB: +class SaveGLB(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"mesh": ("MESH", ), - "filename_prefix": ("STRING", {"default": "mesh/ComfyUI"}), }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, } + def define_schema(cls): + return IO.Schema( + node_id="SaveGLB", + category="3d", + is_output_node=True, + inputs=[ + IO.Mesh.Input("mesh"), + IO.String.Input("filename_prefix", default="mesh/ComfyUI"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo] + ) - RETURN_TYPES = () - FUNCTION = "save" - - OUTPUT_NODE = True - - CATEGORY = "3d" - - def save(self, mesh, filename_prefix, prompt=None, extra_pnginfo=None): + @classmethod + def execute(cls, mesh, filename_prefix) -> IO.NodeOutput: full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory()) results = [] metadata = {} if not args.disable_metadata: - if prompt is not None: - metadata["prompt"] = json.dumps(prompt) - if extra_pnginfo is not None: - for x in extra_pnginfo: - metadata[x] = json.dumps(extra_pnginfo[x]) + if cls.hidden.prompt is not None: + metadata["prompt"] = json.dumps(cls.hidden.prompt) + if cls.hidden.extra_pnginfo is not None: + for x in cls.hidden.extra_pnginfo: + metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x]) for i in range(mesh.vertices.shape[0]): f = f"{filename}_{counter:05}_.glb" @@ -616,15 +649,22 @@ class SaveGLB: "type": "output" }) counter += 1 - return {"ui": {"3d": results}} + return IO.NodeOutput(ui={"3d": results}) -NODE_CLASS_MAPPINGS = { - "EmptyLatentHunyuan3Dv2": EmptyLatentHunyuan3Dv2, - "Hunyuan3Dv2Conditioning": Hunyuan3Dv2Conditioning, - "Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView, - "VAEDecodeHunyuan3D": VAEDecodeHunyuan3D, - "VoxelToMeshBasic": VoxelToMeshBasic, - "VoxelToMesh": VoxelToMesh, - "SaveGLB": SaveGLB, -} +class Hunyuan3dExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + EmptyLatentHunyuan3Dv2, + Hunyuan3Dv2Conditioning, + Hunyuan3Dv2ConditioningMultiView, + VAEDecodeHunyuan3D, + VoxelToMeshBasic, + VoxelToMesh, + SaveGLB, + ] + + +async def comfy_entrypoint() -> Hunyuan3dExtension: + return Hunyuan3dExtension() From 7601e89255cde24667d3b4e6022f1385d901748b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 19 Nov 2025 17:17:15 -0800 Subject: [PATCH 007/271] Fix workflow name. (#10806) --- .github/workflows/release-stable-all.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/release-stable-all.yml b/.github/workflows/release-stable-all.yml index f7de3a7c3..9274b4170 100644 --- a/.github/workflows/release-stable-all.yml +++ b/.github/workflows/release-stable-all.yml @@ -14,7 +14,7 @@ jobs: contents: "write" packages: "write" pull-requests: "read" - name: "Release NVIDIA Default (cu129)" + name: "Release NVIDIA Default (cu130)" uses: ./.github/workflows/stable-release.yml with: git_tag: ${{ inputs.git_tag }} From 394348f5caaa062eac11a57e2997aacccd4246eb Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Thu, 20 Nov 2025 03:44:04 +0200 Subject: [PATCH 008/271] feat(api-nodes): add Topaz API nodes (#10755) --- comfy_api_nodes/apis/topaz_api.py | 133 ++++++++++ comfy_api_nodes/nodes_topaz.py | 421 ++++++++++++++++++++++++++++++ comfy_api_nodes/util/client.py | 9 +- nodes.py | 1 + 4 files changed, 560 insertions(+), 4 deletions(-) create mode 100644 comfy_api_nodes/apis/topaz_api.py create mode 100644 comfy_api_nodes/nodes_topaz.py diff --git a/comfy_api_nodes/apis/topaz_api.py b/comfy_api_nodes/apis/topaz_api.py new file mode 100644 index 000000000..4d9e62e72 --- /dev/null +++ b/comfy_api_nodes/apis/topaz_api.py @@ -0,0 +1,133 @@ +from typing import Optional, Union + +from pydantic import BaseModel, Field + + +class ImageEnhanceRequest(BaseModel): + model: str = Field("Reimagine") + output_format: str = Field("jpeg") + subject_detection: str = Field("All") + face_enhancement: bool = Field(True) + face_enhancement_creativity: float = Field(0, description="Is ignored if face_enhancement is false") + face_enhancement_strength: float = Field(0.8, description="Is ignored if face_enhancement is false") + source_url: str = Field(...) + output_width: Optional[int] = Field(None) + output_height: Optional[int] = Field(None) + crop_to_fill: bool = Field(False) + prompt: Optional[str] = Field(None, description="Text prompt for creative upscaling guidance") + creativity: int = Field(3, description="Creativity settings range from 1 to 9") + face_preservation: str = Field("true", description="To preserve the identity of characters") + color_preservation: str = Field("true", description="To preserve the original color") + + +class ImageAsyncTaskResponse(BaseModel): + process_id: str = Field(...) + + +class ImageStatusResponse(BaseModel): + process_id: str = Field(...) + status: str = Field(...) + progress: Optional[int] = Field(None) + credits: int = Field(...) + + +class ImageDownloadResponse(BaseModel): + download_url: str = Field(...) + expiry: int = Field(...) + + +class Resolution(BaseModel): + width: int = Field(...) + height: int = Field(...) + + +class CreateCreateVideoRequestSource(BaseModel): + container: str = Field(...) + size: int = Field(..., description="Size of the video file in bytes") + duration: int = Field(..., description="Duration of the video file in seconds") + frameCount: int = Field(..., description="Total number of frames in the video") + frameRate: int = Field(...) + resolution: Resolution = Field(...) + + +class VideoFrameInterpolationFilter(BaseModel): + model: str = Field(...) + slowmo: Optional[int] = Field(None) + fps: int = Field(...) + duplicate: bool = Field(...) + duplicate_threshold: float = Field(...) + + +class VideoEnhancementFilter(BaseModel): + model: str = Field(...) + auto: Optional[str] = Field(None, description="Auto, Manual, Relative") + focusFixLevel: Optional[str] = Field(None, description="Downscales video input for correction of blurred subjects") + compression: Optional[float] = Field(None, description="Strength of compression recovery") + details: Optional[float] = Field(None, description="Amount of detail reconstruction") + prenoise: Optional[float] = Field(None, description="Amount of noise to add to input to reduce over-smoothing") + noise: Optional[float] = Field(None, description="Amount of noise reduction") + halo: Optional[float] = Field(None, description="Amount of halo reduction") + preblur: Optional[float] = Field(None, description="Anti-aliasing and deblurring strength") + blur: Optional[float] = Field(None, description="Amount of sharpness applied") + grain: Optional[float] = Field(None, description="Grain after AI model processing") + grainSize: Optional[float] = Field(None, description="Size of generated grain") + recoverOriginalDetailValue: Optional[float] = Field(None, description="Source details into the output video") + creativity: Optional[str] = Field(None, description="Creativity level(high, low) for slc-1 only") + isOptimizedMode: Optional[bool] = Field(None, description="Set to true for Starlight Creative (slc-1) only") + + +class OutputInformationVideo(BaseModel): + resolution: Resolution = Field(...) + frameRate: int = Field(...) + audioCodec: Optional[str] = Field(..., description="Required if audioTransfer is Copy or Convert") + audioTransfer: str = Field(..., description="Copy, Convert, None") + dynamicCompressionLevel: str = Field(..., description="Low, Mid, High") + + +class Overrides(BaseModel): + isPaidDiffusion: bool = Field(True) + + +class CreateVideoRequest(BaseModel): + source: CreateCreateVideoRequestSource = Field(...) + filters: list[Union[VideoFrameInterpolationFilter, VideoEnhancementFilter]] = Field(...) + output: OutputInformationVideo = Field(...) + overrides: Overrides = Field(Overrides(isPaidDiffusion=True)) + + +class CreateVideoResponse(BaseModel): + requestId: str = Field(...) + + +class VideoAcceptResponse(BaseModel): + uploadId: str = Field(...) + urls: list[str] = Field(...) + + +class VideoCompleteUploadRequestPart(BaseModel): + partNum: int = Field(...) + eTag: str = Field(...) + + +class VideoCompleteUploadRequest(BaseModel): + uploadResults: list[VideoCompleteUploadRequestPart] = Field(...) + + +class VideoCompleteUploadResponse(BaseModel): + message: str = Field(..., description="Confirmation message") + + +class VideoStatusResponseEstimates(BaseModel): + cost: list[int] = Field(...) + + +class VideoStatusResponseDownloadUrl(BaseModel): + url: str = Field(...) + + +class VideoStatusResponse(BaseModel): + status: str = Field(...) + estimates: Optional[VideoStatusResponseEstimates] = Field(None) + progress: Optional[float] = Field(None) + message: Optional[str] = Field("") + download: Optional[VideoStatusResponseDownloadUrl] = Field(None) diff --git a/comfy_api_nodes/nodes_topaz.py b/comfy_api_nodes/nodes_topaz.py new file mode 100644 index 000000000..79c7bf43d --- /dev/null +++ b/comfy_api_nodes/nodes_topaz.py @@ -0,0 +1,421 @@ +import builtins +from io import BytesIO + +import aiohttp +import torch +from typing_extensions import override + +from comfy_api.input.video_types import VideoInput +from comfy_api.latest import IO, ComfyExtension +from comfy_api_nodes.apis import topaz_api +from comfy_api_nodes.util import ( + ApiEndpoint, + download_url_to_image_tensor, + download_url_to_video_output, + get_fs_object_size, + get_number_of_images, + poll_op, + sync_op, + upload_images_to_comfyapi, + validate_container_format_is_mp4, +) + +UPSCALER_MODELS_MAP = { + "Starlight (Astra) Fast": "slf-1", + "Starlight (Astra) Creative": "slc-1", +} +UPSCALER_VALUES_MAP = { + "FullHD (1080p)": 1920, + "4K (2160p)": 3840, +} + + +class TopazImageEnhance(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="TopazImageEnhance", + display_name="Topaz Image Enhance", + category="api node/image/Topaz", + description="Industry-standard upscaling and image enhancement.", + inputs=[ + IO.Combo.Input("model", options=["Reimagine"]), + IO.Image.Input("image"), + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="Optional text prompt for creative upscaling guidance.", + optional=True, + ), + IO.Combo.Input( + "subject_detection", + options=["All", "Foreground", "Background"], + optional=True, + ), + IO.Boolean.Input( + "face_enhancement", + default=True, + optional=True, + tooltip="Enhance faces (if present) during processing.", + ), + IO.Float.Input( + "face_enhancement_creativity", + default=0.0, + min=0.0, + max=1.0, + step=0.01, + display_mode=IO.NumberDisplay.number, + optional=True, + tooltip="Set the creativity level for face enhancement.", + ), + IO.Float.Input( + "face_enhancement_strength", + default=1.0, + min=0.0, + max=1.0, + step=0.01, + display_mode=IO.NumberDisplay.number, + optional=True, + tooltip="Controls how sharp enhanced faces are relative to the background.", + ), + IO.Boolean.Input( + "crop_to_fill", + default=False, + optional=True, + tooltip="By default, the image is letterboxed when the output aspect ratio differs. " + "Enable to crop the image to fill the output dimensions.", + ), + IO.Int.Input( + "output_width", + default=0, + min=0, + max=32000, + step=1, + display_mode=IO.NumberDisplay.number, + optional=True, + tooltip="Zero value means to calculate automatically (usually it will be original size or output_height if specified).", + ), + IO.Int.Input( + "output_height", + default=0, + min=0, + max=32000, + step=1, + display_mode=IO.NumberDisplay.number, + optional=True, + tooltip="Zero value means to output in the same height as original or output width.", + ), + IO.Int.Input( + "creativity", + default=3, + min=1, + max=9, + step=1, + display_mode=IO.NumberDisplay.slider, + optional=True, + ), + IO.Boolean.Input( + "face_preservation", + default=True, + optional=True, + tooltip="Preserve subjects' facial identity.", + ), + IO.Boolean.Input( + "color_preservation", + default=True, + optional=True, + tooltip="Preserve the original colors.", + ), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + image: torch.Tensor, + prompt: str = "", + subject_detection: str = "All", + face_enhancement: bool = True, + face_enhancement_creativity: float = 1.0, + face_enhancement_strength: float = 0.8, + crop_to_fill: bool = False, + output_width: int = 0, + output_height: int = 0, + creativity: int = 3, + face_preservation: bool = True, + color_preservation: bool = True, + ) -> IO.NodeOutput: + if get_number_of_images(image) != 1: + raise ValueError("Only one input image is supported.") + download_url = await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png") + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/topaz/image/v1/enhance-gen/async", method="POST"), + response_model=topaz_api.ImageAsyncTaskResponse, + data=topaz_api.ImageEnhanceRequest( + model=model, + prompt=prompt, + subject_detection=subject_detection, + face_enhancement=face_enhancement, + face_enhancement_creativity=face_enhancement_creativity, + face_enhancement_strength=face_enhancement_strength, + crop_to_fill=crop_to_fill, + output_width=output_width if output_width else None, + output_height=output_height if output_height else None, + creativity=creativity, + face_preservation=str(face_preservation).lower(), + color_preservation=str(color_preservation).lower(), + source_url=download_url[0], + output_format="png", + ), + content_type="multipart/form-data", + ) + + await poll_op( + cls, + poll_endpoint=ApiEndpoint(path=f"/proxy/topaz/image/v1/status/{initial_response.process_id}"), + response_model=topaz_api.ImageStatusResponse, + status_extractor=lambda x: x.status, + progress_extractor=lambda x: getattr(x, "progress", 0), + price_extractor=lambda x: x.credits * 0.08, + poll_interval=8.0, + max_poll_attempts=160, + estimated_duration=60, + ) + + results = await sync_op( + cls, + ApiEndpoint(path=f"/proxy/topaz/image/v1/download/{initial_response.process_id}"), + response_model=topaz_api.ImageDownloadResponse, + monitor_progress=False, + ) + return IO.NodeOutput(await download_url_to_image_tensor(results.download_url)) + + +class TopazVideoEnhance(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="TopazVideoEnhance", + display_name="Topaz Video Enhance", + category="api node/video/Topaz", + description="Breathe new life into video with powerful upscaling and recovery technology.", + inputs=[ + IO.Video.Input("video"), + IO.Boolean.Input("upscaler_enabled", default=True), + IO.Combo.Input("upscaler_model", options=list(UPSCALER_MODELS_MAP.keys())), + IO.Combo.Input("upscaler_resolution", options=list(UPSCALER_VALUES_MAP.keys())), + IO.Combo.Input( + "upscaler_creativity", + options=["low", "middle", "high"], + default="low", + tooltip="Creativity level (applies only to Starlight (Astra) Creative).", + optional=True, + ), + IO.Boolean.Input("interpolation_enabled", default=False, optional=True), + IO.Combo.Input("interpolation_model", options=["apo-8"], default="apo-8", optional=True), + IO.Int.Input( + "interpolation_slowmo", + default=1, + min=1, + max=16, + display_mode=IO.NumberDisplay.number, + tooltip="Slow-motion factor applied to the input video. " + "For example, 2 makes the output twice as slow and doubles the duration.", + optional=True, + ), + IO.Int.Input( + "interpolation_frame_rate", + default=60, + min=15, + max=240, + display_mode=IO.NumberDisplay.number, + tooltip="Output frame rate.", + optional=True, + ), + IO.Boolean.Input( + "interpolation_duplicate", + default=False, + tooltip="Analyze the input for duplicate frames and remove them.", + optional=True, + ), + IO.Float.Input( + "interpolation_duplicate_threshold", + default=0.01, + min=0.001, + max=0.1, + step=0.001, + display_mode=IO.NumberDisplay.number, + tooltip="Detection sensitivity for duplicate frames.", + optional=True, + ), + IO.Combo.Input( + "dynamic_compression_level", + options=["Low", "Mid", "High"], + default="Low", + tooltip="CQP level.", + optional=True, + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + video: VideoInput, + upscaler_enabled: bool, + upscaler_model: str, + upscaler_resolution: str, + upscaler_creativity: str = "low", + interpolation_enabled: bool = False, + interpolation_model: str = "apo-8", + interpolation_slowmo: int = 1, + interpolation_frame_rate: int = 60, + interpolation_duplicate: bool = False, + interpolation_duplicate_threshold: float = 0.01, + dynamic_compression_level: str = "Low", + ) -> IO.NodeOutput: + if upscaler_enabled is False and interpolation_enabled is False: + raise ValueError("There is nothing to do: both upscaling and interpolation are disabled.") + src_width, src_height = video.get_dimensions() + video_components = video.get_components() + src_frame_rate = int(video_components.frame_rate) + duration_sec = video.get_duration() + estimated_frames = int(duration_sec * src_frame_rate) + validate_container_format_is_mp4(video) + src_video_stream = video.get_stream_source() + target_width = src_width + target_height = src_height + target_frame_rate = src_frame_rate + filters = [] + if upscaler_enabled: + target_width = UPSCALER_VALUES_MAP[upscaler_resolution] + target_height = UPSCALER_VALUES_MAP[upscaler_resolution] + filters.append( + topaz_api.VideoEnhancementFilter( + model=UPSCALER_MODELS_MAP[upscaler_model], + creativity=(upscaler_creativity if UPSCALER_MODELS_MAP[upscaler_model] == "slc-1" else None), + isOptimizedMode=(True if UPSCALER_MODELS_MAP[upscaler_model] == "slc-1" else None), + ), + ) + if interpolation_enabled: + target_frame_rate = interpolation_frame_rate + filters.append( + topaz_api.VideoFrameInterpolationFilter( + model=interpolation_model, + slowmo=interpolation_slowmo, + fps=interpolation_frame_rate, + duplicate=interpolation_duplicate, + duplicate_threshold=interpolation_duplicate_threshold, + ), + ) + initial_res = await sync_op( + cls, + ApiEndpoint(path="/proxy/topaz/video/", method="POST"), + response_model=topaz_api.CreateVideoResponse, + data=topaz_api.CreateVideoRequest( + source=topaz_api.CreateCreateVideoRequestSource( + container="mp4", + size=get_fs_object_size(src_video_stream), + duration=int(duration_sec), + frameCount=estimated_frames, + frameRate=src_frame_rate, + resolution=topaz_api.Resolution(width=src_width, height=src_height), + ), + filters=filters, + output=topaz_api.OutputInformationVideo( + resolution=topaz_api.Resolution(width=target_width, height=target_height), + frameRate=target_frame_rate, + audioCodec="AAC", + audioTransfer="Copy", + dynamicCompressionLevel=dynamic_compression_level, + ), + ), + wait_label="Creating task", + final_label_on_success="Task created", + ) + upload_res = await sync_op( + cls, + ApiEndpoint( + path=f"/proxy/topaz/video/{initial_res.requestId}/accept", + method="PATCH", + ), + response_model=topaz_api.VideoAcceptResponse, + wait_label="Preparing upload", + final_label_on_success="Upload started", + ) + if len(upload_res.urls) > 1: + raise NotImplementedError( + "Large files are not currently supported. Please open an issue in the ComfyUI repository." + ) + async with aiohttp.ClientSession(headers={"Content-Type": "video/mp4"}) as session: + if isinstance(src_video_stream, BytesIO): + src_video_stream.seek(0) + async with session.put(upload_res.urls[0], data=src_video_stream, raise_for_status=True) as res: + upload_etag = res.headers["Etag"] + else: + with builtins.open(src_video_stream, "rb") as video_file: + async with session.put(upload_res.urls[0], data=video_file, raise_for_status=True) as res: + upload_etag = res.headers["Etag"] + await sync_op( + cls, + ApiEndpoint( + path=f"/proxy/topaz/video/{initial_res.requestId}/complete-upload", + method="PATCH", + ), + response_model=topaz_api.VideoCompleteUploadResponse, + data=topaz_api.VideoCompleteUploadRequest( + uploadResults=[ + topaz_api.VideoCompleteUploadRequestPart( + partNum=1, + eTag=upload_etag, + ), + ], + ), + wait_label="Finalizing upload", + final_label_on_success="Upload completed", + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/topaz/video/{initial_res.requestId}/status"), + response_model=topaz_api.VideoStatusResponse, + status_extractor=lambda x: x.status, + progress_extractor=lambda x: getattr(x, "progress", 0), + price_extractor=lambda x: (x.estimates.cost[0] * 0.08 if x.estimates and x.estimates.cost[0] else None), + poll_interval=10.0, + max_poll_attempts=320, + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.download.url)) + + +class TopazExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + TopazImageEnhance, + TopazVideoEnhance, + ] + + +async def comfy_entrypoint() -> TopazExtension: + return TopazExtension() diff --git a/comfy_api_nodes/util/client.py b/comfy_api_nodes/util/client.py index 2d5dcd648..ad6e3c0d0 100644 --- a/comfy_api_nodes/util/client.py +++ b/comfy_api_nodes/util/client.py @@ -77,9 +77,9 @@ class _PollUIState: _RETRY_STATUS = {408, 429, 500, 502, 503, 504} -COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done"] -FAILED_STATUSES = ["cancelled", "canceled", "fail", "failed", "error"] -QUEUED_STATUSES = ["created", "queued", "queueing", "submitted"] +COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done", "complete"] +FAILED_STATUSES = ["cancelled", "canceled", "canceling", "fail", "failed", "error"] +QUEUED_STATUSES = ["created", "queued", "queueing", "submitted", "initializing"] async def sync_op( @@ -424,7 +424,8 @@ def _display_text( if status: display_lines.append(f"Status: {status.capitalize() if isinstance(status, str) else status}") if price is not None: - display_lines.append(f"Price: ${float(price):,.4f}") + p = f"{float(price):,.4f}".rstrip("0").rstrip(".") + display_lines.append(f"Price: ${p}") if text is not None: display_lines.append(text) if display_lines: diff --git a/nodes.py b/nodes.py index f6aeedc78..ac14e39a7 100644 --- a/nodes.py +++ b/nodes.py @@ -2359,6 +2359,7 @@ async def init_builtin_api_nodes(): "nodes_pika.py", "nodes_runway.py", "nodes_sora.py", + "nodes_topaz.py", "nodes_tripo.py", "nodes_moonvalley.py", "nodes_rodin.py", From cb96d4d18c78ee09d5fd70954ffcb4ad2c7f0d7a Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 19 Nov 2025 20:56:23 -0800 Subject: [PATCH 009/271] Disable workaround on newer cudnn. (#10807) --- comfy/ops.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy/ops.py b/comfy/ops.py index 2a90a5ba2..640622fd1 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -58,7 +58,8 @@ except (ModuleNotFoundError, TypeError): NVIDIA_MEMORY_CONV_BUG_WORKAROUND = False try: if comfy.model_management.is_nvidia(): - if torch.backends.cudnn.version() >= 91002 and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10): + cudnn_version = torch.backends.cudnn.version() + if (cudnn_version >= 91002 and cudnn_version < 91500) and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10): #TODO: change upper bound version once it's fixed' NVIDIA_MEMORY_CONV_BUG_WORKAROUND = True logging.info("working around nvidia conv3d memory bug.") From 87b0359392219841c2214e1eb06678840cae470e Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Wed, 19 Nov 2025 22:36:56 -0800 Subject: [PATCH 010/271] Update server templates handler to use new multi-package distribution (comfyui-workflow-templates versions >=0.3) (#10791) * update templates for monorepo * refactor --- app/frontend_management.py | 67 ++++++++++++++++++++++++++++++++++++-- requirements.txt | 2 +- server.py | 32 ++++++++++++++---- 3 files changed, 92 insertions(+), 9 deletions(-) diff --git a/app/frontend_management.py b/app/frontend_management.py index cce0c117d..bdaa85812 100644 --- a/app/frontend_management.py +++ b/app/frontend_management.py @@ -10,7 +10,8 @@ import importlib from dataclasses import dataclass from functools import cached_property from pathlib import Path -from typing import TypedDict, Optional +from typing import Dict, TypedDict, Optional +from aiohttp import web from importlib.metadata import version import requests @@ -257,7 +258,54 @@ comfyui-frontend-package is not installed. sys.exit(-1) @classmethod - def templates_path(cls) -> str: + def template_asset_map(cls) -> Optional[Dict[str, str]]: + """Return a mapping of template asset names to their absolute paths.""" + try: + from comfyui_workflow_templates import ( + get_asset_path, + iter_templates, + ) + except ImportError: + logging.error( + f""" +********** ERROR *********** + +comfyui-workflow-templates is not installed. + +{frontend_install_warning_message()} + +********** ERROR *********** +""".strip() + ) + return None + + try: + template_entries = list(iter_templates()) + except Exception as exc: + logging.error(f"Failed to enumerate workflow templates: {exc}") + return None + + asset_map: Dict[str, str] = {} + try: + for entry in template_entries: + for asset in entry.assets: + asset_map[asset.filename] = get_asset_path( + entry.template_id, asset.filename + ) + except Exception as exc: + logging.error(f"Failed to resolve template asset paths: {exc}") + return None + + if not asset_map: + logging.error("No workflow template assets found. Did the packages install correctly?") + return None + + return asset_map + + + @classmethod + def legacy_templates_path(cls) -> Optional[str]: + """Return the legacy templates directory shipped inside the meta package.""" try: import comfyui_workflow_templates @@ -276,6 +324,7 @@ comfyui-workflow-templates is not installed. ********** ERROR *********** """.strip() ) + return None @classmethod def embedded_docs_path(cls) -> str: @@ -392,3 +441,17 @@ comfyui-workflow-templates is not installed. logging.info("Falling back to the default frontend.") check_frontend_version() return cls.default_frontend_path() + @classmethod + def template_asset_handler(cls): + assets = cls.template_asset_map() + if not assets: + return None + + async def serve_template(request: web.Request) -> web.StreamResponse: + rel_path = request.match_info.get("path", "") + target = assets.get(rel_path) + if target is None: + raise web.HTTPNotFound() + return web.FileResponse(target) + + return serve_template diff --git a/requirements.txt b/requirements.txt index 249c36dee..36c39f338 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.28.8 -comfyui-workflow-templates==0.2.11 +comfyui-workflow-templates==0.3.1 comfyui-embedded-docs==0.3.1 torch torchsde diff --git a/server.py b/server.py index d059d3dc9..d9d5c491f 100644 --- a/server.py +++ b/server.py @@ -30,7 +30,7 @@ import comfy.model_management from comfy_api import feature_flags import node_helpers from comfyui_version import __version__ -from app.frontend_management import FrontendManager +from app.frontend_management import FrontendManager, parse_version from comfy_api.internal import _ComfyNodeInternal from app.user_manager import UserManager @@ -849,11 +849,31 @@ class PromptServer(): for name, dir in nodes.EXTENSION_WEB_DIRS.items(): self.app.add_routes([web.static('/extensions/' + name, dir)]) - workflow_templates_path = FrontendManager.templates_path() - if workflow_templates_path: - self.app.add_routes([ - web.static('/templates', workflow_templates_path) - ]) + installed_templates_version = FrontendManager.get_installed_templates_version() + use_legacy_templates = True + if installed_templates_version: + try: + use_legacy_templates = ( + parse_version(installed_templates_version) + < parse_version("0.3.0") + ) + except Exception as exc: + logging.warning( + "Unable to parse templates version '%s': %s", + installed_templates_version, + exc, + ) + + if use_legacy_templates: + workflow_templates_path = FrontendManager.legacy_templates_path() + if workflow_templates_path: + self.app.add_routes([ + web.static('/templates', workflow_templates_path) + ]) + else: + handler = FrontendManager.template_asset_handler() + if handler: + self.app.router.add_get("/templates/{path:.*}", handler) # Serve embedded documentation from the package embedded_docs_path = FrontendManager.embedded_docs_path() From f5e66d5e47271253edad5c4eddd817b0d6a23340 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 20 Nov 2025 12:08:03 -0800 Subject: [PATCH 011/271] Fix ImageBatch with different channel count. (#10815) --- nodes.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/nodes.py b/nodes.py index ac14e39a7..75e820e66 100644 --- a/nodes.py +++ b/nodes.py @@ -1852,6 +1852,10 @@ class ImageBatch: CATEGORY = "image" def batch(self, image1, image2): + if image1.shape[-1] != image2.shape[-1]: + channels = min(image1.shape[-1], image2.shape[-1]) + image1 = image1[..., :channels] + image2 = image2[..., :channels] if image1.shape[1:] != image2.shape[1:]: image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1) s = torch.cat((image1, image2), dim=0) From 9e00ce5b76ec04be37375310512a443605b95077 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Thu, 20 Nov 2025 14:42:46 -0800 Subject: [PATCH 012/271] Make Batch Images node add alpha channel when one of the inputs has it (#10816) * When one Batch Image input has alpha and one does not, add empty alpha channel * Use torch.nn.functional.pad --- nodes.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/nodes.py b/nodes.py index 75e820e66..030371633 100644 --- a/nodes.py +++ b/nodes.py @@ -1853,9 +1853,10 @@ class ImageBatch: def batch(self, image1, image2): if image1.shape[-1] != image2.shape[-1]: - channels = min(image1.shape[-1], image2.shape[-1]) - image1 = image1[..., :channels] - image2 = image2[..., :channels] + if image1.shape[-1] > image2.shape[-1]: + image2 = torch.nn.functional.pad(image2, (0,1), mode='constant', value=1.0) + else: + image1 = torch.nn.functional.pad(image1, (0,1), mode='constant', value=1.0) if image1.shape[1:] != image2.shape[1:]: image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1) s = torch.cat((image1, image2), dim=0) From 7b8389578e88dcd13b1cf6aea5404047298c9183 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 21 Nov 2025 02:17:47 +0200 Subject: [PATCH 013/271] feat(api-nodes): add Nano Banana Pro (#10814) * feat(api-nodes): add Nano Banana Pro * frontend bump to 1.28.9 --- comfy_api_nodes/apis/gemini_api.py | 5 +- comfy_api_nodes/nodes_gemini.py | 205 ++++++++++++++++++++++++++++- comfy_api_nodes/util/client.py | 13 +- requirements.txt | 2 +- 4 files changed, 215 insertions(+), 10 deletions(-) diff --git a/comfy_api_nodes/apis/gemini_api.py b/comfy_api_nodes/apis/gemini_api.py index f63e02693..710f173f1 100644 --- a/comfy_api_nodes/apis/gemini_api.py +++ b/comfy_api_nodes/apis/gemini_api.py @@ -68,7 +68,7 @@ class GeminiTextPart(BaseModel): class GeminiContent(BaseModel): - parts: list[GeminiPart] = Field(...) + parts: list[GeminiPart] = Field([]) role: GeminiRole = Field(..., examples=["user"]) @@ -120,7 +120,7 @@ class GeminiGenerationConfig(BaseModel): class GeminiImageConfig(BaseModel): aspectRatio: str | None = Field(None) - resolution: str | None = Field(None) + imageSize: str | None = Field(None) class GeminiImageGenerationConfig(GeminiGenerationConfig): @@ -227,3 +227,4 @@ class GeminiGenerateContentResponse(BaseModel): candidates: list[GeminiCandidate] | None = Field(None) promptFeedback: GeminiPromptFeedback | None = Field(None) usageMetadata: GeminiUsageMetadata | None = Field(None) + modelVersion: str | None = Field(None) diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index 6e746eebd..be752c885 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -29,11 +29,13 @@ from comfy_api_nodes.apis.gemini_api import ( GeminiMimeType, GeminiPart, GeminiRole, + Modality, ) from comfy_api_nodes.util import ( ApiEndpoint, audio_to_base64_string, bytesio_to_image_tensor, + get_number_of_images, sync_op, tensor_to_base64_string, validate_string, @@ -147,6 +149,49 @@ def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Te return torch.cat(image_tensors, dim=0) +def calculate_tokens_price(response: GeminiGenerateContentResponse) -> float | None: + if not response.modelVersion: + return None + # Define prices (Cost per 1,000,000 tokens), see https://cloud.google.com/vertex-ai/generative-ai/pricing + if response.modelVersion in ("gemini-2.5-pro-preview-05-06", "gemini-2.5-pro"): + input_tokens_price = 1.25 + output_text_tokens_price = 10.0 + output_image_tokens_price = 0.0 + elif response.modelVersion in ( + "gemini-2.5-flash-preview-04-17", + "gemini-2.5-flash", + ): + input_tokens_price = 0.30 + output_text_tokens_price = 2.50 + output_image_tokens_price = 0.0 + elif response.modelVersion in ( + "gemini-2.5-flash-image-preview", + "gemini-2.5-flash-image", + ): + input_tokens_price = 0.30 + output_text_tokens_price = 2.50 + output_image_tokens_price = 30.0 + elif response.modelVersion == "gemini-3-pro-preview": + input_tokens_price = 2 + output_text_tokens_price = 12.0 + output_image_tokens_price = 0.0 + elif response.modelVersion == "gemini-3-pro-image-preview": + input_tokens_price = 2 + output_text_tokens_price = 12.0 + output_image_tokens_price = 120.0 + else: + return None + final_price = response.usageMetadata.promptTokenCount * input_tokens_price + for i in response.usageMetadata.candidatesTokensDetails: + if i.modality == Modality.IMAGE: + final_price += output_image_tokens_price * i.tokenCount # for Nano Banana models + else: + final_price += output_text_tokens_price * i.tokenCount + if response.usageMetadata.thoughtsTokenCount: + final_price += output_text_tokens_price * response.usageMetadata.thoughtsTokenCount + return final_price / 1_000_000.0 + + class GeminiNode(IO.ComfyNode): """ Node to generate text responses from a Gemini model. @@ -314,6 +359,7 @@ class GeminiNode(IO.ComfyNode): ] ), response_model=GeminiGenerateContentResponse, + price_extractor=calculate_tokens_price, ) output_text = get_text_from_response(response) @@ -476,6 +522,13 @@ class GeminiImage(IO.ComfyNode): "or otherwise generates 1:1 squares.", optional=True, ), + IO.Combo.Input( + "response_modalities", + options=["IMAGE+TEXT", "IMAGE"], + tooltip="Choose 'IMAGE' for image-only output, or " + "'IMAGE+TEXT' to return both the generated image and a text response.", + optional=True, + ), ], outputs=[ IO.Image.Output(), @@ -498,6 +551,7 @@ class GeminiImage(IO.ComfyNode): images: torch.Tensor | None = None, files: list[GeminiPart] | None = None, aspect_ratio: str = "auto", + response_modalities: str = "IMAGE+TEXT", ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) parts: list[GeminiPart] = [GeminiPart(text=prompt)] @@ -520,17 +574,16 @@ class GeminiImage(IO.ComfyNode): GeminiContent(role=GeminiRole.user, parts=parts), ], generationConfig=GeminiImageGenerationConfig( - responseModalities=["TEXT", "IMAGE"], + responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]), imageConfig=None if aspect_ratio == "auto" else image_config, ), ), response_model=GeminiGenerateContentResponse, + price_extractor=calculate_tokens_price, ) - output_image = get_image_from_response(response) output_text = get_text_from_response(response) if output_text: - # Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button. render_spec = { "node_id": cls.hidden.unique_id, "component": "ChatHistoryWidget", @@ -551,9 +604,150 @@ class GeminiImage(IO.ComfyNode): "display_component", render_spec, ) + return IO.NodeOutput(get_image_from_response(response), output_text) - output_text = output_text or "Empty response from Gemini model..." - return IO.NodeOutput(output_image, output_text) + +class GeminiImage2(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="GeminiImage2Node", + display_name="Nano Banana Pro (Google Gemini Image)", + category="api node/image/Gemini", + description="Generate or edit images synchronously via Google Vertex API.", + inputs=[ + IO.String.Input( + "prompt", + multiline=True, + tooltip="Text prompt describing the image to generate or the edits to apply. " + "Include any constraints, styles, or details the model should follow.", + default="", + ), + IO.Combo.Input( + "model", + options=["gemini-3-pro-image-preview"], + ), + IO.Int.Input( + "seed", + default=42, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="When the seed is fixed to a specific value, the model makes a best effort to provide " + "the same response for repeated requests. Deterministic output isn't guaranteed. " + "Also, changing the model or parameter settings, such as the temperature, " + "can cause variations in the response even when you use the same seed value. " + "By default, a random seed value is used.", + ), + IO.Combo.Input( + "aspect_ratio", + options=["auto", "1:1", "2:3", "3:2", "3:4", "4:3", "4:5", "5:4", "9:16", "16:9", "21:9"], + default="auto", + tooltip="If set to 'auto', matches your input image's aspect ratio; " + "if no image is provided, generates a 1:1 square.", + ), + IO.Combo.Input( + "resolution", + options=["1K", "2K", "4K"], + tooltip="Target output resolution. For 2K/4K the native Gemini upscaler is used.", + ), + IO.Combo.Input( + "response_modalities", + options=["IMAGE+TEXT", "IMAGE"], + tooltip="Choose 'IMAGE' for image-only output, or " + "'IMAGE+TEXT' to return both the generated image and a text response.", + ), + IO.Image.Input( + "images", + optional=True, + tooltip="Optional reference image(s). " + "To include multiple images, use the Batch Images node (up to 14).", + ), + IO.Custom("GEMINI_INPUT_FILES").Input( + "files", + optional=True, + tooltip="Optional file(s) to use as context for the model. " + "Accepts inputs from the Gemini Generate Content Input Files node.", + ), + ], + outputs=[ + IO.Image.Output(), + IO.String.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + prompt: str, + model: str, + seed: int, + aspect_ratio: str, + resolution: str, + response_modalities: str, + images: torch.Tensor | None = None, + files: list[GeminiPart] | None = None, + ) -> IO.NodeOutput: + validate_string(prompt, strip_whitespace=True, min_length=1) + + parts: list[GeminiPart] = [GeminiPart(text=prompt)] + if images is not None: + if get_number_of_images(images) > 14: + raise ValueError("The current maximum number of supported images is 14.") + parts.extend(create_image_parts(images)) + if files is not None: + parts.extend(files) + + image_config = GeminiImageConfig(imageSize=resolution) + if aspect_ratio != "auto": + image_config.aspectRatio = aspect_ratio + + response = await sync_op( + cls, + ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"), + data=GeminiImageGenerateContentRequest( + contents=[ + GeminiContent(role=GeminiRole.user, parts=parts), + ], + generationConfig=GeminiImageGenerationConfig( + responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]), + imageConfig=image_config, + ), + ), + response_model=GeminiGenerateContentResponse, + price_extractor=calculate_tokens_price, + ) + + output_text = get_text_from_response(response) + if output_text: + render_spec = { + "node_id": cls.hidden.unique_id, + "component": "ChatHistoryWidget", + "props": { + "history": json.dumps( + [ + { + "prompt": prompt, + "response": output_text, + "response_id": str(uuid.uuid4()), + "timestamp": time.time(), + } + ] + ), + }, + } + PromptServer.instance.send_sync( + "display_component", + render_spec, + ) + return IO.NodeOutput(get_image_from_response(response), output_text) class GeminiExtension(ComfyExtension): @@ -562,6 +756,7 @@ class GeminiExtension(ComfyExtension): return [ GeminiNode, GeminiImage, + GeminiImage2, GeminiInputFiles, ] diff --git a/comfy_api_nodes/util/client.py b/comfy_api_nodes/util/client.py index ad6e3c0d0..bf01d7d36 100644 --- a/comfy_api_nodes/util/client.py +++ b/comfy_api_nodes/util/client.py @@ -63,6 +63,7 @@ class _RequestConfig: estimated_total: Optional[int] = None final_label_on_success: Optional[str] = "Completed" progress_origin_ts: Optional[float] = None + price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None @dataclass @@ -87,6 +88,7 @@ async def sync_op( endpoint: ApiEndpoint, *, response_model: Type[M], + price_extractor: Optional[Callable[[M], Optional[float]]] = None, data: Optional[BaseModel] = None, files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] = None, content_type: str = "application/json", @@ -104,6 +106,7 @@ async def sync_op( raw = await sync_op_raw( cls, endpoint, + price_extractor=_wrap_model_extractor(response_model, price_extractor), data=data, files=files, content_type=content_type, @@ -175,6 +178,7 @@ async def sync_op_raw( cls: type[IO.ComfyNode], endpoint: ApiEndpoint, *, + price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None, data: Optional[Union[dict[str, Any], BaseModel]] = None, files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] = None, content_type: str = "application/json", @@ -216,6 +220,7 @@ async def sync_op_raw( estimated_total=estimated_duration, final_label_on_success=final_label_on_success, progress_origin_ts=progress_origin_ts, + price_extractor=price_extractor, ) return await _request_base(cfg, expect_binary=as_binary) @@ -425,7 +430,8 @@ def _display_text( display_lines.append(f"Status: {status.capitalize() if isinstance(status, str) else status}") if price is not None: p = f"{float(price):,.4f}".rstrip("0").rstrip(".") - display_lines.append(f"Price: ${p}") + if p != "0": + display_lines.append(f"Price: ${p}") if text is not None: display_lines.append(text) if display_lines: @@ -581,6 +587,7 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool): delay = cfg.retry_delay operation_succeeded: bool = False final_elapsed_seconds: Optional[int] = None + extracted_price: Optional[float] = None while True: attempt += 1 stop_event = asyncio.Event() @@ -768,6 +775,8 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool): except json.JSONDecodeError: payload = {"_raw": text} response_content_to_log = payload if isinstance(payload, dict) else text + with contextlib.suppress(Exception): + extracted_price = cfg.price_extractor(payload) if cfg.price_extractor else None operation_succeeded = True final_elapsed_seconds = int(time.monotonic() - start_time) try: @@ -872,7 +881,7 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool): else int(time.monotonic() - start_time) ), estimated_total=cfg.estimated_total, - price=None, + price=extracted_price, is_queued=False, processing_elapsed_seconds=final_elapsed_seconds, ) diff --git a/requirements.txt b/requirements.txt index 36c39f338..8c1946f3d 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.28.8 +comfyui-frontend-package==1.28.9 comfyui-workflow-templates==0.3.1 comfyui-embedded-docs==0.3.1 torch From b75d349f25ccb702895c6f1b8af7aded63a7f7e2 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 21 Nov 2025 02:33:54 +0200 Subject: [PATCH 014/271] fix(KlingLipSyncAudioToVideoNode): convert audio to mp3 format (#10811) --- comfy_api_nodes/nodes_kling.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 7b23e9cf9..36852038b 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -518,7 +518,9 @@ async def execute_lipsync( # Upload the audio file to Comfy API and get download URL if audio: - audio_url = await upload_audio_to_comfyapi(cls, audio) + audio_url = await upload_audio_to_comfyapi( + cls, audio, container_format="mp3", codec_name="libmp3lame", mime_type="audio/mpeg", filename="output.mp3" + ) logging.info("Uploaded audio to Comfy API. URL: %s", audio_url) else: audio_url = None From 10e90a5757906ecdb71b84d41173813d7f62c140 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Thu, 20 Nov 2025 18:20:52 -0800 Subject: [PATCH 015/271] bump comfyui-workflow-templates for nano banana 2 (#10818) * bump templates * bump templates --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 8c1946f3d..624aa7362 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.28.9 -comfyui-workflow-templates==0.3.1 +comfyui-workflow-templates==0.6.0 comfyui-embedded-docs==0.3.1 torch torchsde From 943b3b615d40542ea19bc8ff8ad2950c0a094605 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 20 Nov 2025 19:44:43 -0800 Subject: [PATCH 016/271] HunyuanVideo 1.5 (#10819) * init * update * Update model.py * Update model.py * remove print * Fix text encoding * Prevent empty negative prompt Really doesn't work otherwise * fp16 works * I2V * Update model_base.py * Update nodes_hunyuan.py * Better latent rgb factors * Use the correct sigclip output... * Support HunyuanVideo1.5 SR model * whitespaces... * Proper latent channel count * SR model fixes This also still needs timesteps scheduling based on the noise scale, can be used with two samplers too already * vae_refiner: roll the convolution through temporal Work in progress. Roll the convolution through time using 2-latent-frame chunks and a FIFO queue for the convolution seams. * Support HunyuanVideo15 latent resampler * fix * Some cleanup Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> * Proper hyvid15 I2V channels Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> * Fix TokenRefiner for fp16 Otherwise x.sum has infs, just in case only casting if input is fp16, I don't know if necessary. * Bugfix for the HunyuanVideo15 SR model * vae_refiner: roll the convolution through temporal II Roll the convolution through time using 2-latent-frame chunks and a FIFO queue for the convolution seams. Added support for encoder, lowered to 1 latent frame to save more VRAM, made work for Hunyuan Image 3.0 (as code shared). Fixed names, cleaned up code. * Allow any number of input frames in VAE. * Better VAE encode mem estimation. * Lowvram fix. * Fix hunyuan image 2.1 refiner. * Fix mistake. * Name changes. * Rename. * Whitespace. * Fix. * Fix. --------- Co-authored-by: kijai <40791699+kijai@users.noreply.github.com> Co-authored-by: Rattus --- comfy/latent_formats.py | 60 ++++ comfy/ldm/hunyuan_video/model.py | 54 +++- comfy/ldm/hunyuan_video/upsampler.py | 120 ++++++++ comfy/ldm/hunyuan_video/vae_refiner.py | 284 +++++++++++------- comfy/model_base.py | 91 ++++++ comfy/model_detection.py | 10 + comfy/sd.py | 12 +- comfy/supported_models.py | 50 ++- comfy/text_encoders/hunyuan_video.py | 9 + comfy/text_encoders/qwen_image.py | 4 +- comfy_api/latest/_io.py | 4 + comfy_extras/nodes_hunyuan.py | 201 ++++++++++++- folder_paths.py | 2 + .../put_latent_upscale_models_here | 0 nodes.py | 2 +- 15 files changed, 777 insertions(+), 126 deletions(-) create mode 100644 comfy/ldm/hunyuan_video/upsampler.py create mode 100644 models/latent_upscale_models/put_latent_upscale_models_here diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index 77e642a94..204fc048d 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -611,6 +611,66 @@ class HunyuanImage21Refiner(LatentFormat): latent_dimensions = 3 scale_factor = 1.03682 + def process_in(self, latent): + out = latent * self.scale_factor + out = torch.cat((out[:, :, :1], out), dim=2) + out = out.permute(0, 2, 1, 3, 4) + b, f_times_2, c, h, w = out.shape + out = out.reshape(b, f_times_2 // 2, 2 * c, h, w) + out = out.permute(0, 2, 1, 3, 4).contiguous() + return out + + def process_out(self, latent): + z = latent / self.scale_factor + z = z.permute(0, 2, 1, 3, 4) + b, f, c, h, w = z.shape + z = z.reshape(b, f, 2, c // 2, h, w) + z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w) + z = z.permute(0, 2, 1, 3, 4) + z = z[:, :, 1:] + return z + +class HunyuanVideo15(LatentFormat): + latent_rgb_factors = [ + [ 0.0568, -0.0521, -0.0131], + [ 0.0014, 0.0735, 0.0326], + [ 0.0186, 0.0531, -0.0138], + [-0.0031, 0.0051, 0.0288], + [ 0.0110, 0.0556, 0.0432], + [-0.0041, -0.0023, -0.0485], + [ 0.0530, 0.0413, 0.0253], + [ 0.0283, 0.0251, 0.0339], + [ 0.0277, -0.0372, -0.0093], + [ 0.0393, 0.0944, 0.1131], + [ 0.0020, 0.0251, 0.0037], + [-0.0017, 0.0012, 0.0234], + [ 0.0468, 0.0436, 0.0203], + [ 0.0354, 0.0439, -0.0233], + [ 0.0090, 0.0123, 0.0346], + [ 0.0382, 0.0029, 0.0217], + [ 0.0261, -0.0300, 0.0030], + [-0.0088, -0.0220, -0.0283], + [-0.0272, -0.0121, -0.0363], + [-0.0664, -0.0622, 0.0144], + [ 0.0414, 0.0479, 0.0529], + [ 0.0355, 0.0612, -0.0247], + [ 0.0147, 0.0264, 0.0174], + [ 0.0438, 0.0038, 0.0542], + [ 0.0431, -0.0573, -0.0033], + [-0.0162, -0.0211, -0.0406], + [-0.0487, -0.0295, -0.0393], + [ 0.0005, -0.0109, 0.0253], + [ 0.0296, 0.0591, 0.0353], + [ 0.0119, 0.0181, -0.0306], + [-0.0085, -0.0362, 0.0229], + [ 0.0005, -0.0106, 0.0242] + ] + + latent_rgb_factors_bias = [ 0.0456, -0.0202, -0.0644] + latent_channels = 32 + latent_dimensions = 3 + scale_factor = 1.03682 + class Hunyuan3Dv2(LatentFormat): latent_channels = 64 latent_dimensions = 1 diff --git a/comfy/ldm/hunyuan_video/model.py b/comfy/ldm/hunyuan_video/model.py index 5132e6c07..f75c6e0e1 100644 --- a/comfy/ldm/hunyuan_video/model.py +++ b/comfy/ldm/hunyuan_video/model.py @@ -6,7 +6,6 @@ import comfy.ldm.flux.layers import comfy.ldm.modules.diffusionmodules.mmdit from comfy.ldm.modules.attention import optimized_attention - from dataclasses import dataclass from einops import repeat @@ -42,6 +41,8 @@ class HunyuanVideoParams: guidance_embed: bool byt5: bool meanflow: bool + use_cond_type_embedding: bool + vision_in_dim: int class SelfAttentionRef(nn.Module): @@ -157,7 +158,10 @@ class TokenRefiner(nn.Module): t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype)) # m = mask.float().unsqueeze(-1) # c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise - c = x.sum(dim=1) / x.shape[1] + if x.dtype == torch.float16: + c = x.float().sum(dim=1) / x.shape[1] + else: + c = x.sum(dim=1) / x.shape[1] c = t + self.c_embedder(c.to(x.dtype)) x = self.input_embedder(x) @@ -196,11 +200,15 @@ class HunyuanVideo(nn.Module): def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs): super().__init__() self.dtype = dtype + operation_settings = {"operations": operations, "device": device, "dtype": dtype} + params = HunyuanVideoParams(**kwargs) self.params = params self.patch_size = params.patch_size self.in_channels = params.in_channels self.out_channels = params.out_channels + self.use_cond_type_embedding = params.use_cond_type_embedding + self.vision_in_dim = params.vision_in_dim if params.hidden_size % params.num_heads != 0: raise ValueError( f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" @@ -266,6 +274,18 @@ class HunyuanVideo(nn.Module): if final_layer: self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations) + # HunyuanVideo 1.5 specific modules + if self.vision_in_dim is not None: + from comfy.ldm.wan.model import MLPProj + self.vision_in = MLPProj(in_dim=self.vision_in_dim, out_dim=self.hidden_size, operation_settings=operation_settings) + else: + self.vision_in = None + if self.use_cond_type_embedding: + # 0: text_encoder feature 1: byt5 feature 2: vision_encoder feature + self.cond_type_embedding = nn.Embedding(3, self.hidden_size) + else: + self.cond_type_embedding = None + def forward_orig( self, img: Tensor, @@ -276,6 +296,7 @@ class HunyuanVideo(nn.Module): timesteps: Tensor, y: Tensor = None, txt_byt5=None, + clip_fea=None, guidance: Tensor = None, guiding_frame_index=None, ref_latent=None, @@ -331,12 +352,31 @@ class HunyuanVideo(nn.Module): txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options) + if self.cond_type_embedding is not None: + self.cond_type_embedding.to(txt.device) + cond_emb = self.cond_type_embedding(torch.zeros_like(txt[:, :, 0], device=txt.device, dtype=torch.long)) + txt = txt + cond_emb.to(txt.dtype) + if self.byt5_in is not None and txt_byt5 is not None: txt_byt5 = self.byt5_in(txt_byt5) + if self.cond_type_embedding is not None: + cond_emb = self.cond_type_embedding(torch.ones_like(txt_byt5[:, :, 0], device=txt_byt5.device, dtype=torch.long)) + txt_byt5 = txt_byt5 + cond_emb.to(txt_byt5.dtype) + txt = torch.cat((txt_byt5, txt), dim=1) # byt5 first for HunyuanVideo1.5 + else: + txt = torch.cat((txt, txt_byt5), dim=1) txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype) - txt = torch.cat((txt, txt_byt5), dim=1) txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1) + if clip_fea is not None: + txt_vision_states = self.vision_in(clip_fea) + if self.cond_type_embedding is not None: + cond_emb = self.cond_type_embedding(2 * torch.ones_like(txt_vision_states[:, :, 0], dtype=torch.long, device=txt_vision_states.device)) + txt_vision_states = txt_vision_states + cond_emb + txt = torch.cat((txt_vision_states.to(txt.dtype), txt), dim=1) + extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype) + txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1) + ids = torch.cat((img_ids, txt_ids), dim=1) pe = self.pe_embedder(ids) @@ -430,14 +470,14 @@ class HunyuanVideo(nn.Module): img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) return repeat(img_ids, "h w c -> b (h w) c", b=bs) - def forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs): + def forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs): return comfy.patcher_extension.WrapperExecutor.new_class_executor( self._forward, self, comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) - ).execute(x, timestep, context, y, txt_byt5, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs) + ).execute(x, timestep, context, y, txt_byt5, clip_fea, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs) - def _forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs): + def _forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs): bs = x.shape[0] if len(self.patch_size) == 3: img_ids = self.img_ids(x) @@ -445,5 +485,5 @@ class HunyuanVideo(nn.Module): else: img_ids = self.img_ids_2d(x) txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype) - out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options) + out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, clip_fea, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options) return out diff --git a/comfy/ldm/hunyuan_video/upsampler.py b/comfy/ldm/hunyuan_video/upsampler.py new file mode 100644 index 000000000..9f5e91a59 --- /dev/null +++ b/comfy/ldm/hunyuan_video/upsampler.py @@ -0,0 +1,120 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm, ResnetBlock, VideoConv3d +import model_management, model_patcher + +class SRResidualCausalBlock3D(nn.Module): + def __init__(self, channels: int): + super().__init__() + self.block = nn.Sequential( + VideoConv3d(channels, channels, kernel_size=3), + nn.SiLU(inplace=True), + VideoConv3d(channels, channels, kernel_size=3), + nn.SiLU(inplace=True), + VideoConv3d(channels, channels, kernel_size=3), + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return x + self.block(x) + +class SRModel3DV2(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + hidden_channels: int = 64, + num_blocks: int = 6, + global_residual: bool = False, + ): + super().__init__() + self.in_conv = VideoConv3d(in_channels, hidden_channels, kernel_size=3) + self.blocks = nn.ModuleList([SRResidualCausalBlock3D(hidden_channels) for _ in range(num_blocks)]) + self.out_conv = VideoConv3d(hidden_channels, out_channels, kernel_size=3) + self.global_residual = bool(global_residual) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + residual = x + y = self.in_conv(x) + for blk in self.blocks: + y = blk(y) + y = self.out_conv(y) + if self.global_residual and (y.shape == residual.shape): + y = y + residual + return y + + +class Upsampler(nn.Module): + def __init__( + self, + z_channels: int, + out_channels: int, + block_out_channels: tuple[int, ...], + num_res_blocks: int = 2, + ): + super().__init__() + self.num_res_blocks = num_res_blocks + self.block_out_channels = block_out_channels + self.z_channels = z_channels + + ch = block_out_channels[0] + self.conv_in = VideoConv3d(z_channels, ch, kernel_size=3) + + self.up = nn.ModuleList() + + for i, tgt in enumerate(block_out_channels): + stage = nn.Module() + stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt, + out_channels=tgt, + temb_channels=0, + conv_shortcut=False, + conv_op=VideoConv3d, norm_op=RMS_norm) + for j in range(num_res_blocks + 1)]) + ch = tgt + self.up.append(stage) + + self.norm_out = RMS_norm(ch) + self.conv_out = VideoConv3d(ch, out_channels, kernel_size=3) + + def forward(self, z): + """ + Args: + z: (B, C, T, H, W) + target_shape: (H, W) + """ + # z to block_in + repeats = self.block_out_channels[0] // (self.z_channels) + x = self.conv_in(z) + z.repeat_interleave(repeats=repeats, dim=1) + + # upsampling + for stage in self.up: + for blk in stage.block: + x = blk(x) + + out = self.conv_out(F.silu(self.norm_out(x))) + return out + +UPSAMPLERS = { + "720p": SRModel3DV2, + "1080p": Upsampler, +} + +class HunyuanVideo15SRModel(): + def __init__(self, model_type, config): + self.load_device = model_management.vae_device() + offload_device = model_management.vae_offload_device() + self.dtype = model_management.vae_dtype(self.load_device) + self.model_class = UPSAMPLERS.get(model_type) + self.model = self.model_class(**config).eval() + + self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) + + def load_sd(self, sd): + return self.model.load_state_dict(sd, strict=True) + + def get_sd(self): + return self.model.state_dict() + + def resample_latent(self, latent): + model_management.load_model_gpu(self.patcher) + return self.model(latent.to(self.load_device)) diff --git a/comfy/ldm/hunyuan_video/vae_refiner.py b/comfy/ldm/hunyuan_video/vae_refiner.py index c2a0b507d..9f750dcc4 100644 --- a/comfy/ldm/hunyuan_video/vae_refiner.py +++ b/comfy/ldm/hunyuan_video/vae_refiner.py @@ -4,8 +4,40 @@ import torch.nn.functional as F from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d, Normalize import comfy.ops import comfy.ldm.models.autoencoder +import comfy.model_management ops = comfy.ops.disable_weight_init +class NoPadConv3d(nn.Module): + def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs): + super().__init__() + self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs) + + def forward(self, x): + return self.conv(x) + + +def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None): + + x = xl[0] + xl.clear() + + if conv_carry_out is not None: + to_push = x[:, :, -2:, :, :].clone() + conv_carry_out.append(to_push) + + if isinstance(op, NoPadConv3d): + if conv_carry_in is None: + x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate') + else: + carry_len = conv_carry_in[0].shape[2] + x = torch.cat([conv_carry_in.pop(0), x], dim=2) + x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate') + + out = op(x) + + return out + + class RMS_norm(nn.Module): def __init__(self, dim): super().__init__() @@ -14,7 +46,7 @@ class RMS_norm(nn.Module): self.gamma = nn.Parameter(torch.empty(shape)) def forward(self, x): - return F.normalize(x, dim=1) * self.scale * self.gamma + return F.normalize(x, dim=1) * self.scale * comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device) class DnSmpl(nn.Module): def __init__(self, ic, oc, tds=True, refiner_vae=True, op=VideoConv3d): @@ -27,11 +59,12 @@ class DnSmpl(nn.Module): self.tds = tds self.gs = fct * ic // oc - def forward(self, x): + def forward(self, x, conv_carry_in=None, conv_carry_out=None): r1 = 2 if self.tds else 1 - h = self.conv(x) + h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out) + + if self.tds and self.refiner_vae and conv_carry_in is None: - if self.tds and self.refiner_vae: hf = h[:, :, :1, :, :] b, c, f, ht, wd = hf.shape hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2) @@ -39,14 +72,7 @@ class DnSmpl(nn.Module): hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2) hf = torch.cat([hf, hf], dim=1) - hn = h[:, :, 1:, :, :] - b, c, frms, ht, wd = hn.shape - nf = frms // r1 - hn = hn.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2) - hn = hn.permute(0, 3, 5, 7, 1, 2, 4, 6) - hn = hn.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2) - - h = torch.cat([hf, hn], dim=2) + h = h[:, :, 1:, :, :] xf = x[:, :, :1, :, :] b, ci, f, ht, wd = xf.shape @@ -54,34 +80,32 @@ class DnSmpl(nn.Module): xf = xf.permute(0, 4, 6, 1, 2, 3, 5) xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2) B, C, T, H, W = xf.shape - xf = xf.view(B, h.shape[1], self.gs // 2, T, H, W).mean(dim=2) + xf = xf.view(B, hf.shape[1], self.gs // 2, T, H, W).mean(dim=2) - xn = x[:, :, 1:, :, :] - b, ci, frms, ht, wd = xn.shape - nf = frms // r1 - xn = xn.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2) - xn = xn.permute(0, 3, 5, 7, 1, 2, 4, 6) - xn = xn.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2) - B, C, T, H, W = xn.shape - xn = xn.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2) - sc = torch.cat([xf, xn], dim=2) - else: - b, c, frms, ht, wd = h.shape + x = x[:, :, 1:, :, :] - nf = frms // r1 - h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2) - h = h.permute(0, 3, 5, 7, 1, 2, 4, 6) - h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2) + if h.shape[2] == 0: + return hf + xf - b, ci, frms, ht, wd = x.shape - nf = frms // r1 - sc = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2) - sc = sc.permute(0, 3, 5, 7, 1, 2, 4, 6) - sc = sc.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2) - B, C, T, H, W = sc.shape - sc = sc.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2) + b, c, frms, ht, wd = h.shape + nf = frms // r1 + h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2) + h = h.permute(0, 3, 5, 7, 1, 2, 4, 6) + h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2) - return h + sc + b, ci, frms, ht, wd = x.shape + nf = frms // r1 + x = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2) + x = x.permute(0, 3, 5, 7, 1, 2, 4, 6) + x = x.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2) + B, C, T, H, W = x.shape + x = x.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2) + + if self.tds and self.refiner_vae and conv_carry_in is None: + h = torch.cat([hf, h], dim=2) + x = torch.cat([xf, x], dim=2) + + return h + x class UpSmpl(nn.Module): @@ -94,11 +118,11 @@ class UpSmpl(nn.Module): self.tus = tus self.rp = fct * oc // ic - def forward(self, x): + def forward(self, x, conv_carry_in=None, conv_carry_out=None): r1 = 2 if self.tus else 1 - h = self.conv(x) + h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out) - if self.tus and self.refiner_vae: + if self.tus and self.refiner_vae and conv_carry_in is None: hf = h[:, :, :1, :, :] b, c, f, ht, wd = hf.shape nc = c // (2 * 2) @@ -107,14 +131,7 @@ class UpSmpl(nn.Module): hf = hf.reshape(b, nc, f, ht * 2, wd * 2) hf = hf[:, : hf.shape[1] // 2] - hn = h[:, :, 1:, :, :] - b, c, frms, ht, wd = hn.shape - nc = c // (r1 * 2 * 2) - hn = hn.reshape(b, r1, 2, 2, nc, frms, ht, wd) - hn = hn.permute(0, 4, 5, 1, 6, 2, 7, 3) - hn = hn.reshape(b, nc, frms * r1, ht * 2, wd * 2) - - h = torch.cat([hf, hn], dim=2) + h = h[:, :, 1:, :, :] xf = x[:, :, :1, :, :] b, ci, f, ht, wd = xf.shape @@ -125,29 +142,43 @@ class UpSmpl(nn.Module): xf = xf.permute(0, 3, 4, 5, 1, 6, 2) xf = xf.reshape(b, nc, f, ht * 2, wd * 2) - xn = x[:, :, 1:, :, :] - xn = xn.repeat_interleave(repeats=self.rp, dim=1) - b, c, frms, ht, wd = xn.shape - nc = c // (r1 * 2 * 2) - xn = xn.reshape(b, r1, 2, 2, nc, frms, ht, wd) - xn = xn.permute(0, 4, 5, 1, 6, 2, 7, 3) - xn = xn.reshape(b, nc, frms * r1, ht * 2, wd * 2) - sc = torch.cat([xf, xn], dim=2) - else: - b, c, frms, ht, wd = h.shape - nc = c // (r1 * 2 * 2) - h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd) - h = h.permute(0, 4, 5, 1, 6, 2, 7, 3) - h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2) + x = x[:, :, 1:, :, :] - sc = x.repeat_interleave(repeats=self.rp, dim=1) - b, c, frms, ht, wd = sc.shape - nc = c // (r1 * 2 * 2) - sc = sc.reshape(b, r1, 2, 2, nc, frms, ht, wd) - sc = sc.permute(0, 4, 5, 1, 6, 2, 7, 3) - sc = sc.reshape(b, nc, frms * r1, ht * 2, wd * 2) + b, c, frms, ht, wd = h.shape + nc = c // (r1 * 2 * 2) + h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd) + h = h.permute(0, 4, 5, 1, 6, 2, 7, 3) + h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2) - return h + sc + x = x.repeat_interleave(repeats=self.rp, dim=1) + b, c, frms, ht, wd = x.shape + nc = c // (r1 * 2 * 2) + x = x.reshape(b, r1, 2, 2, nc, frms, ht, wd) + x = x.permute(0, 4, 5, 1, 6, 2, 7, 3) + x = x.reshape(b, nc, frms * r1, ht * 2, wd * 2) + + if self.tus and self.refiner_vae and conv_carry_in is None: + h = torch.cat([hf, h], dim=2) + x = torch.cat([xf, x], dim=2) + + return h + x + +class HunyuanRefinerResnetBlock(ResnetBlock): + def __init__(self, in_channels, out_channels, conv_op=NoPadConv3d, norm_op=RMS_norm): + super().__init__(in_channels=in_channels, out_channels=out_channels, temb_channels=0, conv_op=conv_op, norm_op=norm_op) + + def forward(self, x, conv_carry_in=None, conv_carry_out=None): + h = x + h = [ self.swish(self.norm1(x)) ] + h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) + + h = [ self.dropout(self.swish(self.norm2(h))) ] + h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) + + if self.in_channels != self.out_channels: + x = self.nin_shortcut(x) + + return x+h class Encoder(nn.Module): def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks, @@ -160,7 +191,7 @@ class Encoder(nn.Module): self.refiner_vae = refiner_vae if self.refiner_vae: - conv_op = VideoConv3d + conv_op = NoPadConv3d norm_op = RMS_norm else: conv_op = ops.Conv3d @@ -175,10 +206,9 @@ class Encoder(nn.Module): for i, tgt in enumerate(block_out_channels): stage = nn.Module() - stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt, - out_channels=tgt, - temb_channels=0, - conv_op=conv_op, norm_op=norm_op) + stage.block = nn.ModuleList([HunyuanRefinerResnetBlock(in_channels=ch if j == 0 else tgt, + out_channels=tgt, + conv_op=conv_op, norm_op=norm_op) for j in range(num_res_blocks)]) ch = tgt if i < depth: @@ -188,9 +218,9 @@ class Encoder(nn.Module): self.down.append(stage) self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op) + self.mid.block_1 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op) - self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op) + self.mid.block_2 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.norm_out = norm_op(ch) self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1) @@ -201,31 +231,50 @@ class Encoder(nn.Module): if not self.refiner_vae and x.shape[2] == 1: x = x.expand(-1, -1, self.ffactor_temporal, -1, -1) - x = self.conv_in(x) + if self.refiner_vae: + xl = [x[:, :, :1, :, :]] + if x.shape[2] > self.ffactor_temporal: + xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // self.ffactor_temporal) * self.ffactor_temporal, :, :], self.ffactor_temporal * 2, dim=2) + x = xl + else: + x = [x] + out = [] - for stage in self.down: - for blk in stage.block: - x = blk(x) - if hasattr(stage, 'downsample'): - x = stage.downsample(x) + conv_carry_in = None - x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x))) + for i, x1 in enumerate(x): + conv_carry_out = [] + if i == len(x) - 1: + conv_carry_out = None + x1 = [ x1 ] + x1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out) + + for stage in self.down: + for blk in stage.block: + x1 = blk(x1, conv_carry_in, conv_carry_out) + if hasattr(stage, 'downsample'): + x1 = stage.downsample(x1, conv_carry_in, conv_carry_out) + + out.append(x1) + conv_carry_in = conv_carry_out + + if len(out) > 1: + out = torch.cat(out, dim=2) + else: + out = out[0] + + x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(out))) + del out b, c, t, h, w = x.shape grp = c // (self.z_channels << 1) skip = x.view(b, c // grp, grp, t, h, w).mean(2) - out = self.conv_out(F.silu(self.norm_out(x))) + skip + out = conv_carry_causal_3d([F.silu(self.norm_out(x))], self.conv_out) + skip if self.refiner_vae: out = self.regul(out)[0] - out = torch.cat((out[:, :, :1], out), dim=2) - out = out.permute(0, 2, 1, 3, 4) - b, f_times_2, c, h, w = out.shape - out = out.reshape(b, f_times_2 // 2, 2 * c, h, w) - out = out.permute(0, 2, 1, 3, 4).contiguous() - return out class Decoder(nn.Module): @@ -239,7 +288,7 @@ class Decoder(nn.Module): self.refiner_vae = refiner_vae if self.refiner_vae: - conv_op = VideoConv3d + conv_op = NoPadConv3d norm_op = RMS_norm else: conv_op = ops.Conv3d @@ -249,9 +298,9 @@ class Decoder(nn.Module): self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1) self.mid = nn.Module() - self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op) + self.mid.block_1 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op) - self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op) + self.mid.block_2 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.up = nn.ModuleList() depth = (ffactor_spatial >> 1).bit_length() @@ -259,10 +308,9 @@ class Decoder(nn.Module): for i, tgt in enumerate(block_out_channels): stage = nn.Module() - stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt, - out_channels=tgt, - temb_channels=0, - conv_op=conv_op, norm_op=norm_op) + stage.block = nn.ModuleList([HunyuanRefinerResnetBlock(in_channels=ch if j == 0 else tgt, + out_channels=tgt, + conv_op=conv_op, norm_op=norm_op) for j in range(num_res_blocks + 1)]) ch = tgt if i < depth: @@ -275,27 +323,41 @@ class Decoder(nn.Module): self.conv_out = conv_op(ch, out_channels, 3, stride=1, padding=1) def forward(self, z): - if self.refiner_vae: - z = z.permute(0, 2, 1, 3, 4) - b, f, c, h, w = z.shape - z = z.reshape(b, f, 2, c // 2, h, w) - z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w) - z = z.permute(0, 2, 1, 3, 4) - z = z[:, :, 1:] - - x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1) + x = conv_carry_causal_3d([z], self.conv_in) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1) x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x))) - for stage in self.up: - for blk in stage.block: - x = blk(x) - if hasattr(stage, 'upsample'): - x = stage.upsample(x) + if self.refiner_vae: + x = torch.split(x, 2, dim=2) + else: + x = [ x ] + out = [] - out = self.conv_out(F.silu(self.norm_out(x))) + conv_carry_in = None + + for i, x1 in enumerate(x): + conv_carry_out = [] + if i == len(x) - 1: + conv_carry_out = None + for stage in self.up: + for blk in stage.block: + x1 = blk(x1, conv_carry_in, conv_carry_out) + if hasattr(stage, 'upsample'): + x1 = stage.upsample(x1, conv_carry_in, conv_carry_out) + + x1 = [ F.silu(self.norm_out(x1)) ] + x1 = conv_carry_causal_3d(x1, self.conv_out, conv_carry_in, conv_carry_out) + out.append(x1) + conv_carry_in = conv_carry_out + del x + + if len(out) > 1: + out = torch.cat(out, dim=2) + else: + out = out[0] if not self.refiner_vae: if z.shape[-3] == 1: out = out[:, :, -1:] return out + diff --git a/comfy/model_base.py b/comfy/model_base.py index 7c788d085..e14b552c5 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -1536,3 +1536,94 @@ class HunyuanImage21Refiner(HunyuanImage21): out = super().extra_conds(**kwargs) out['disable_time_r'] = comfy.conds.CONDConstant(True) return out + +class HunyuanVideo15(HunyuanVideo): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device) + + def concat_cond(self, **kwargs): + noise = kwargs.get("noise", None) + extra_channels = self.diffusion_model.img_in.proj.weight.shape[1] - noise.shape[1] - 1 #noise 32 img cond 32 + mask 1 + if extra_channels == 0: + return None + + image = kwargs.get("concat_latent_image", None) + device = kwargs["device"] + + if image is None: + shape_image = list(noise.shape) + shape_image[1] = extra_channels + image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device) + else: + latent_dim = self.latent_format.latent_channels + image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + for i in range(0, image.shape[1], latent_dim): + image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim]) + image = utils.resize_to_batch_size(image, noise.shape[0]) + + mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) + if mask is None: + mask = torch.zeros_like(noise)[:, :1] + else: + mask = 1.0 - mask + mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + if mask.shape[-3] < noise.shape[-3]: + mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0) + mask = utils.resize_to_batch_size(mask, noise.shape[0]) + + return torch.cat((image, mask), dim=1) + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + attention_mask = kwargs.get("attention_mask", None) + if attention_mask is not None: + if torch.numel(attention_mask) != attention_mask.sum(): + out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + + conditioning_byt5small = kwargs.get("conditioning_byt5small", None) + if conditioning_byt5small is not None: + out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small) + + guidance = kwargs.get("guidance", 6.0) + if guidance is not None: + out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance])) + + clip_vision_output = kwargs.get("clip_vision_output", None) + if clip_vision_output is not None: + out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.last_hidden_state) + + return out + +class HunyuanVideo15_SR_Distilled(HunyuanVideo15): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device) + + def concat_cond(self, **kwargs): + noise = kwargs.get("noise", None) + image = kwargs.get("concat_latent_image", None) + noise_augmentation = kwargs.get("noise_augmentation", 0.0) + device = kwargs["device"] + + if image is None: + image = torch.zeros([noise.shape[0], noise.shape[1] * 2 + 2, noise.shape[-3], noise.shape[-2], noise.shape[-1]], device=comfy.model_management.intermediate_device()) + else: + image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + #image = self.process_latent_in(image) # scaling wasn't applied in reference code + image = utils.resize_to_batch_size(image, noise.shape[0]) + lq_image_slice = slice(noise.shape[1] + 1, 2 * noise.shape[1] + 1) + if noise_augmentation > 0: + generator = torch.Generator(device="cpu") + generator.manual_seed(kwargs.get("seed", 0) - 10) + noise = torch.randn(image[:, lq_image_slice].shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device) + image[:, lq_image_slice] = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image[:, lq_image_slice] + else: + image[:, lq_image_slice] = 0.75 * image[:, lq_image_slice] + return image + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + out['disable_time_r'] = comfy.conds.CONDConstant(False) + return out diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 3142a7fc3..0131ca25a 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -186,6 +186,16 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys)) dit_config["guidance_embed"] = len(guidance_keys) > 0 + + # HunyuanVideo 1.5 + if '{}cond_type_embedding.weight'.format(key_prefix) in state_dict_keys: + dit_config["use_cond_type_embedding"] = True + else: + dit_config["use_cond_type_embedding"] = False + if '{}vision_in.proj.0.weight'.format(key_prefix) in state_dict_keys: + dit_config["vision_in_dim"] = state_dict['{}vision_in.proj.0.weight'.format(key_prefix)].shape[0] + else: + dit_config["vision_in_dim"] = None return dit_config if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight) diff --git a/comfy/sd.py b/comfy/sd.py index 9e5ebbf15..dc0905ada 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -441,20 +441,20 @@ class VAE: elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32: ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True} ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1] - self.latent_channels = 64 + self.latent_channels = 32 self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16) self.upscale_index_formula = (4, 16, 16) self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16) self.downscale_index_formula = (4, 16, 16) self.latent_dim = 3 - self.not_video = True + self.not_video = False self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32] self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"}, encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig}, decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig}) - self.memory_used_encode = lambda shape, dtype: (1400 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype) - self.memory_used_decode = lambda shape, dtype: (1400 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype) + self.memory_used_encode = lambda shape, dtype: (1400 * 9 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype) + self.memory_used_decode = lambda shape, dtype: (2800 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype) elif "decoder.conv_in.conv.weight" in sd: ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} ddconfig["conv3d"] = True @@ -911,6 +911,7 @@ class CLIPType(Enum): OMNIGEN2 = 17 QWEN_IMAGE = 18 HUNYUAN_IMAGE = 19 + HUNYUAN_VIDEO_15 = 20 def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): @@ -1126,6 +1127,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif clip_type == CLIPType.HUNYUAN_IMAGE: clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer + elif clip_type == CLIPType.HUNYUAN_VIDEO_15: + clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer else: clip_target.clip = sdxl_clip.SDXLClipModel clip_target.tokenizer = sdxl_clip.SDXLTokenizer diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 4064bdae1..2e64b85e8 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -1374,6 +1374,54 @@ class HunyuanImage21Refiner(HunyuanVideo): out = model_base.HunyuanImage21Refiner(self, device=device) return out -models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage] +class HunyuanVideo15(HunyuanVideo): + unet_config = { + "image_model": "hunyuan_video", + "vision_in_dim": 1152, + } + + sampling_settings = { + "shift": 7.0, + } + memory_usage_factor = 4.0 #TODO + supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] + + latent_format = latent_formats.HunyuanVideo15 + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.HunyuanVideo15(self, device=device) + return out + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect)) + + +class HunyuanVideo15_SR_Distilled(HunyuanVideo): + unet_config = { + "image_model": "hunyuan_video", + "vision_in_dim": 1152, + "in_channels": 98, + } + + sampling_settings = { + "shift": 2.0, + } + memory_usage_factor = 4.0 #TODO + supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] + + latent_format = latent_formats.HunyuanVideo15 + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.HunyuanVideo15_SR_Distilled(self, device=device) + return out + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect)) + +models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage] models += [SVD_img2vid] diff --git a/comfy/text_encoders/hunyuan_video.py b/comfy/text_encoders/hunyuan_video.py index b02148b33..557094f49 100644 --- a/comfy/text_encoders/hunyuan_video.py +++ b/comfy/text_encoders/hunyuan_video.py @@ -1,6 +1,7 @@ from comfy import sd1_clip import comfy.model_management import comfy.text_encoders.llama +from .hunyuan_image import HunyuanImageTokenizer from transformers import LlamaTokenizerFast import torch import os @@ -73,6 +74,14 @@ class HunyuanVideoTokenizer: return {} +class HunyuanVideo15Tokenizer(HunyuanImageTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + self.llama_template = "<|im_start|>system\nYou are a helpful assistant. Describe the video by detailing the following aspects:\n1. The main content and theme of the video.\n2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.\n3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.\n4. background environment, light, style and atmosphere.\n5. camera angles, movements, and transitions used in the video.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n" + + def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): + return super().tokenize_with_weights(text, return_word_ids, prevent_empty_text=True, **kwargs) + class HunyuanVideoClipModel(torch.nn.Module): def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}): super().__init__() diff --git a/comfy/text_encoders/qwen_image.py b/comfy/text_encoders/qwen_image.py index 40fa67937..c0d32a6ef 100644 --- a/comfy/text_encoders/qwen_image.py +++ b/comfy/text_encoders/qwen_image.py @@ -17,12 +17,14 @@ class QwenImageTokenizer(sd1_clip.SD1Tokenizer): self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n" self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n" - def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs): + def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], prevent_empty_text=False, **kwargs): skip_template = False if text.startswith('<|im_start|>'): skip_template = True if text.startswith('<|start_header_id|>'): skip_template = True + if prevent_empty_text and text == '': + text = ' ' if skip_template: llama_text = text diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 863254ce7..79c0722a9 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -629,6 +629,10 @@ class UpscaleModel(ComfyTypeIO): if TYPE_CHECKING: Type = ImageModelDescriptor +@comfytype(io_type="LATENT_UPSCALE_MODEL") +class LatentUpscaleModel(ComfyTypeIO): + Type = Any + @comfytype(io_type="AUDIO") class Audio(ComfyTypeIO): class AudioDict(TypedDict): diff --git a/comfy_extras/nodes_hunyuan.py b/comfy_extras/nodes_hunyuan.py index f7c34d059..5a2e8cc61 100644 --- a/comfy_extras/nodes_hunyuan.py +++ b/comfy_extras/nodes_hunyuan.py @@ -4,7 +4,8 @@ import torch import comfy.model_management from typing_extensions import override from comfy_api.latest import ComfyExtension, io - +from comfy.ldm.hunyuan_video.upsampler import HunyuanVideo15SRModel +import folder_paths class CLIPTextEncodeHunyuanDiT(io.ComfyNode): @classmethod @@ -57,6 +58,199 @@ class EmptyHunyuanLatentVideo(io.ComfyNode): generate = execute # TODO: remove +class EmptyHunyuanVideo15Latent(EmptyHunyuanLatentVideo): + @classmethod + def define_schema(cls): + schema = super().define_schema() + schema.node_id = "EmptyHunyuanVideo15Latent" + return schema + + @classmethod + def execute(cls, width, height, length, batch_size=1) -> io.NodeOutput: + # Using scale factor of 16 instead of 8 + latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device()) + return io.NodeOutput({"samples": latent}) + + generate = execute # TODO: remove + + +class HunyuanVideo15ImageToVideo(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="HunyuanVideo15ImageToVideo", + category="conditioning/video_models", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Vae.Input("vae"), + io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("length", default=33, min=1, max=nodes.MAX_RESOLUTION, step=4), + io.Int.Input("batch_size", default=1, min=1, max=4096), + io.Image.Input("start_image", optional=True), + io.ClipVisionOutput.Input("clip_vision_output", optional=True), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None) -> io.NodeOutput: + latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device()) + + if start_image is not None: + start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) + + encoded = vae.encode(start_image[:, :, :, :3]) + concat_latent_image = torch.zeros((latent.shape[0], 32, latent.shape[2], latent.shape[3], latent.shape[4]), device=comfy.model_management.intermediate_device()) + concat_latent_image[:, :, :encoded.shape[2], :, :] = encoded + + mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) + mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0 + + positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) + negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) + + if clip_vision_output is not None: + positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) + negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) + + out_latent = {} + out_latent["samples"] = latent + return io.NodeOutput(positive, negative, out_latent) + + +class HunyuanVideo15SuperResolution(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="HunyuanVideo15SuperResolution", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Vae.Input("vae", optional=True), + io.Image.Input("start_image", optional=True), + io.ClipVisionOutput.Input("clip_vision_output", optional=True), + io.Latent.Input("latent"), + io.Float.Input("noise_augmentation", default=0.70, min=0.0, max=1.0, step=0.01), + + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, positive, negative, latent, noise_augmentation, vae=None, start_image=None, clip_vision_output=None) -> io.NodeOutput: + in_latent = latent["samples"] + in_channels = in_latent.shape[1] + cond_latent = torch.zeros([in_latent.shape[0], in_channels * 2 + 2, in_latent.shape[-3], in_latent.shape[-2], in_latent.shape[-1]], device=comfy.model_management.intermediate_device()) + cond_latent[:, in_channels + 1 : 2 * in_channels + 1] = in_latent + cond_latent[:, 2 * in_channels + 1] = 1 + if start_image is not None: + start_image = comfy.utils.common_upscale(start_image.movedim(-1, 1), in_latent.shape[-1] * 16, in_latent.shape[-2] * 16, "bilinear", "center").movedim(1, -1) + encoded = vae.encode(start_image[:, :, :, :3]) + cond_latent[:, :in_channels, :encoded.shape[2], :, :] = encoded + cond_latent[:, in_channels + 1, 0] = 1 + + positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": cond_latent, "noise_augmentation": noise_augmentation}) + negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": cond_latent, "noise_augmentation": noise_augmentation}) + if clip_vision_output is not None: + positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) + negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) + + return io.NodeOutput(positive, negative, latent) + + +class LatentUpscaleModelLoader(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LatentUpscaleModelLoader", + display_name="Load Latent Upscale Model", + category="loaders", + inputs=[ + io.Combo.Input("model_name", options=folder_paths.get_filename_list("latent_upscale_models")), + ], + outputs=[ + io.LatentUpscaleModel.Output(), + ], + ) + + @classmethod + def execute(cls, model_name) -> io.NodeOutput: + model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name) + sd = comfy.utils.load_torch_file(model_path, safe_load=True) + + if "blocks.0.block.0.conv.weight" in sd: + config = { + "in_channels": sd["in_conv.conv.weight"].shape[1], + "out_channels": sd["out_conv.conv.weight"].shape[0], + "hidden_channels": sd["in_conv.conv.weight"].shape[0], + "num_blocks": len([k for k in sd.keys() if k.startswith("blocks.") and k.endswith(".block.0.conv.weight")]), + "global_residual": False, + } + model_type = "720p" + elif "up.0.block.0.conv1.conv.weight" in sd: + sd = {key.replace("nin_shortcut", "nin_shortcut.conv", 1): value for key, value in sd.items()} + config = { + "z_channels": sd["conv_in.conv.weight"].shape[1], + "out_channels": sd["conv_out.conv.weight"].shape[0], + "block_out_channels": tuple(sd[f"up.{i}.block.0.conv1.conv.weight"].shape[0] for i in range(len([k for k in sd.keys() if k.startswith("up.") and k.endswith(".block.0.conv1.conv.weight")]))), + } + model_type = "1080p" + + model = HunyuanVideo15SRModel(model_type, config) + model.load_sd(sd) + + return io.NodeOutput(model) + + +class HunyuanVideo15LatentUpscaleWithModel(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="HunyuanVideo15LatentUpscaleWithModel", + display_name="Hunyuan Video 15 Latent Upscale With Model", + category="latent", + inputs=[ + io.LatentUpscaleModel.Input("model"), + io.Latent.Input("samples"), + io.Combo.Input("upscale_method", options=["nearest-exact", "bilinear", "area", "bicubic", "bislerp"], default="bilinear"), + io.Int.Input("width", default=1280, min=0, max=16384, step=8), + io.Int.Input("height", default=720, min=0, max=16384, step=8), + io.Combo.Input("crop", options=["disabled", "center"]), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, model, samples, upscale_method, width, height, crop) -> io.NodeOutput: + if width == 0 and height == 0: + return io.NodeOutput(samples) + else: + if width == 0: + height = max(64, height) + width = max(64, round(samples["samples"].shape[-1] * height / samples["samples"].shape[-2])) + elif height == 0: + width = max(64, width) + height = max(64, round(samples["samples"].shape[-2] * width / samples["samples"].shape[-1])) + else: + width = max(64, width) + height = max(64, height) + s = comfy.utils.common_upscale(samples["samples"], width // 16, height // 16, upscale_method, crop) + s = model.resample_latent(s) + return io.NodeOutput({"samples": s.cpu().float()}) + + PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = ( "<|start_header_id|>system<|end_header_id|>\n\n\nDescribe the video by detailing the following aspects according to the reference image: " "1. The main content and theme of the video." @@ -210,6 +404,11 @@ class HunyuanExtension(ComfyExtension): CLIPTextEncodeHunyuanDiT, TextEncodeHunyuanVideo_ImageToVideo, EmptyHunyuanLatentVideo, + EmptyHunyuanVideo15Latent, + HunyuanVideo15ImageToVideo, + HunyuanVideo15SuperResolution, + HunyuanVideo15LatentUpscaleWithModel, + LatentUpscaleModelLoader, HunyuanImageToVideo, EmptyHunyuanImageLatent, HunyuanRefinerLatent, diff --git a/folder_paths.py b/folder_paths.py index f110d832b..ffdc4d020 100644 --- a/folder_paths.py +++ b/folder_paths.py @@ -38,6 +38,8 @@ folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], suppor folder_names_and_paths["upscale_models"] = ([os.path.join(models_dir, "upscale_models")], supported_pt_extensions) +folder_names_and_paths["latent_upscale_models"] = ([os.path.join(models_dir, "latent_upscale_models")], supported_pt_extensions) + folder_names_and_paths["custom_nodes"] = ([os.path.join(base_path, "custom_nodes")], set()) folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions) diff --git a/models/latent_upscale_models/put_latent_upscale_models_here b/models/latent_upscale_models/put_latent_upscale_models_here new file mode 100644 index 000000000..e69de29bb diff --git a/nodes.py b/nodes.py index 030371633..f023ae3b6 100644 --- a/nodes.py +++ b/nodes.py @@ -957,7 +957,7 @@ class DualCLIPLoader: def INPUT_TYPES(s): return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image"], ), + "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), From 33981237527a3d84d4e9c3b113f75d6dd37af6a4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 20 Nov 2025 20:39:37 -0800 Subject: [PATCH 017/271] Fix wrong path. (#10821) --- comfy_extras/nodes_hunyuan.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_hunyuan.py b/comfy_extras/nodes_hunyuan.py index 5a2e8cc61..aa36a471f 100644 --- a/comfy_extras/nodes_hunyuan.py +++ b/comfy_extras/nodes_hunyuan.py @@ -185,7 +185,7 @@ class LatentUpscaleModelLoader(io.ComfyNode): @classmethod def execute(cls, model_name) -> io.NodeOutput: - model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name) + model_path = folder_paths.get_full_path_or_raise("latent_upscale_models", model_name) sd = comfy.utils.load_torch_file(model_path, safe_load=True) if "blocks.0.block.0.conv.weight" in sd: From c55fd7481626d8bee8044ea7512ea996d13a1b90 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Fri, 21 Nov 2025 00:49:13 -0500 Subject: [PATCH 018/271] ComfyUI 0.3.71 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 9b77aabe9..b4655d553 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.3.70" +__version__ = "0.3.71" diff --git a/pyproject.toml b/pyproject.toml index 289b7145b..280dbaf53 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.3.70" +version = "0.3.71" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From ecb683b057a19f1a05d18d6d0b0ee9a6c6c8f4a0 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Fri, 21 Nov 2025 13:34:47 -0800 Subject: [PATCH 019/271] update frontend to 1.30 (#10793) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 624aa7362..f83d561c9 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.28.9 +comfyui-frontend-package==1.30.6 comfyui-workflow-templates==0.6.0 comfyui-embedded-docs==0.3.1 torch From 532938b16b544e4492ba0ffbe18b201b1a7bc55f Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 21 Nov 2025 14:51:55 -0800 Subject: [PATCH 020/271] --disable-api-nodes now sets CSP header to force frontend offline. (#10829) --- comfy/cli_args.py | 2 +- server.py | 19 +++++++++++++++++++ 2 files changed, 20 insertions(+), 1 deletion(-) diff --git a/comfy/cli_args.py b/comfy/cli_args.py index 2f30b72d2..d2b60e347 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -160,7 +160,7 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.") parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.") parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.") -parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.") +parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes. Also prevents the frontend from communicating with the internet.") parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.") diff --git a/server.py b/server.py index d9d5c491f..0fd2e49e3 100644 --- a/server.py +++ b/server.py @@ -164,6 +164,22 @@ def create_origin_only_middleware(): return origin_only_middleware + +def create_block_external_middleware(): + @web.middleware + async def block_external_middleware(request: web.Request, handler): + if request.method == "OPTIONS": + # Pre-flight request. Reply successfully: + response = web.Response() + else: + response = await handler(request) + + response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self'; frame-src 'self'; object-src 'self';" + return response + + return block_external_middleware + + class PromptServer(): def __init__(self, loop): PromptServer.instance = self @@ -193,6 +209,9 @@ class PromptServer(): else: middlewares.append(create_origin_only_middleware()) + if args.disable_api_nodes: + middlewares.append(create_block_external_middleware()) + max_upload_size = round(args.max_upload_size * 1024 * 1024) self.app = web.Application(client_max_size=max_upload_size, middlewares=middlewares) self.sockets = dict() From a9c35256bccd4018fbe74bf1e857cc18bd1900ed Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Sat, 22 Nov 2025 02:28:29 -0800 Subject: [PATCH 021/271] Update requirements.txt (#10834) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index f83d561c9..8e308cd6c 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.30.6 -comfyui-workflow-templates==0.6.0 +comfyui-workflow-templates==0.7.9 comfyui-embedded-docs==0.3.1 torch torchsde From d89c29f25992713ec3102017c189858a457f1215 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 22 Nov 2025 19:51:53 -0800 Subject: [PATCH 022/271] Add display names to Hunyuan latent video nodes. (#10837) --- comfy_extras/nodes_hunyuan.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy_extras/nodes_hunyuan.py b/comfy_extras/nodes_hunyuan.py index aa36a471f..32be182f1 100644 --- a/comfy_extras/nodes_hunyuan.py +++ b/comfy_extras/nodes_hunyuan.py @@ -38,6 +38,7 @@ class EmptyHunyuanLatentVideo(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="EmptyHunyuanLatentVideo", + display_name="Empty HunyuanVideo 1.0 Latent", category="latent/video", inputs=[ io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16), @@ -63,6 +64,7 @@ class EmptyHunyuanVideo15Latent(EmptyHunyuanLatentVideo): def define_schema(cls): schema = super().define_schema() schema.node_id = "EmptyHunyuanVideo15Latent" + schema.display_name = "Empty HunyuanVideo 1.5 Latent" return schema @classmethod @@ -71,8 +73,6 @@ class EmptyHunyuanVideo15Latent(EmptyHunyuanLatentVideo): latent = torch.zeros([batch_size, 32, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device()) return io.NodeOutput({"samples": latent}) - generate = execute # TODO: remove - class HunyuanVideo15ImageToVideo(io.ComfyNode): @classmethod From cbd68e3d587a1b345bdc6ebcd8a8c6ba1a9d3af3 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 23 Nov 2025 01:55:22 -0800 Subject: [PATCH 023/271] Add better error message for common error. (#10846) --- comfy/cldm/cldm.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy/cldm/cldm.py b/comfy/cldm/cldm.py index ec01665e2..c93c2e909 100644 --- a/comfy/cldm/cldm.py +++ b/comfy/cldm/cldm.py @@ -413,7 +413,8 @@ class ControlNet(nn.Module): out_middle = [] if self.num_classes is not None: - assert y.shape[0] == x.shape[0] + if y is None: + raise ValueError("y is None, did you try using a controlnet for SDXL on SD1?") emb = emb + self.label_emb(y) h = x From f66183a54142be693ab858e9f1f06ed62439a92e Mon Sep 17 00:00:00 2001 From: guill Date: Sun, 23 Nov 2025 22:56:20 -0800 Subject: [PATCH 024/271] [fix] Fixes non-async public API access (#10857) It looks like the synchronous version of the public API broke due to an addition of `from __future__ import annotations`. This change updates the async-to-sync adapter to work with both types of type annotations. --- comfy_api/internal/async_to_sync.py | 47 ++++++--- tests/execution/test_public_api.py | 153 ++++++++++++++++++++++++++++ 2 files changed, 184 insertions(+), 16 deletions(-) create mode 100644 tests/execution/test_public_api.py diff --git a/comfy_api/internal/async_to_sync.py b/comfy_api/internal/async_to_sync.py index f5f805a62..257ade82e 100644 --- a/comfy_api/internal/async_to_sync.py +++ b/comfy_api/internal/async_to_sync.py @@ -8,7 +8,7 @@ import os import textwrap import threading from enum import Enum -from typing import Optional, Type, get_origin, get_args +from typing import Optional, Type, get_origin, get_args, get_type_hints class TypeTracker: @@ -220,11 +220,18 @@ class AsyncToSyncConverter: self._async_instance = async_class(*args, **kwargs) # Handle annotated class attributes (like execution: Execution) - # Get all annotations from the class hierarchy - all_annotations = {} - for base_class in reversed(inspect.getmro(async_class)): - if hasattr(base_class, "__annotations__"): - all_annotations.update(base_class.__annotations__) + # Get all annotations from the class hierarchy and resolve string annotations + try: + # get_type_hints resolves string annotations to actual type objects + # This handles classes using 'from __future__ import annotations' + all_annotations = get_type_hints(async_class) + except Exception: + # Fallback to raw annotations if get_type_hints fails + # (e.g., for undefined forward references) + all_annotations = {} + for base_class in reversed(inspect.getmro(async_class)): + if hasattr(base_class, "__annotations__"): + all_annotations.update(base_class.__annotations__) # For each annotated attribute, check if it needs to be created or wrapped for attr_name, attr_type in all_annotations.items(): @@ -625,15 +632,19 @@ class AsyncToSyncConverter: """Extract class attributes that are classes themselves.""" class_attributes = [] + # Get resolved type hints to handle string annotations + try: + type_hints = get_type_hints(async_class) + except Exception: + type_hints = {} + # Look for class attributes that are classes for name, attr in sorted(inspect.getmembers(async_class)): if isinstance(attr, type) and not name.startswith("_"): class_attributes.append((name, attr)) - elif ( - hasattr(async_class, "__annotations__") - and name in async_class.__annotations__ - ): - annotation = async_class.__annotations__[name] + elif name in type_hints: + # Use resolved type hint instead of raw annotation + annotation = type_hints[name] if isinstance(annotation, type): class_attributes.append((name, annotation)) @@ -908,11 +919,15 @@ class AsyncToSyncConverter: attribute_mappings = {} # First check annotations for typed attributes (including from parent classes) - # Collect all annotations from the class hierarchy - all_annotations = {} - for base_class in reversed(inspect.getmro(async_class)): - if hasattr(base_class, "__annotations__"): - all_annotations.update(base_class.__annotations__) + # Resolve string annotations to actual types + try: + all_annotations = get_type_hints(async_class) + except Exception: + # Fallback to raw annotations + all_annotations = {} + for base_class in reversed(inspect.getmro(async_class)): + if hasattr(base_class, "__annotations__"): + all_annotations.update(base_class.__annotations__) for attr_name, attr_type in sorted(all_annotations.items()): for class_name, class_type in class_attributes: diff --git a/tests/execution/test_public_api.py b/tests/execution/test_public_api.py new file mode 100644 index 000000000..52bc2fcd8 --- /dev/null +++ b/tests/execution/test_public_api.py @@ -0,0 +1,153 @@ +""" +Tests for public ComfyAPI and ComfyAPISync functions. + +These tests verify that the public API methods work correctly in both sync and async contexts, +ensuring that the sync wrapper generation (via get_type_hints() in async_to_sync.py) correctly +handles string annotations from 'from __future__ import annotations'. +""" + +import pytest +import time +import subprocess +import torch +from pytest import fixture +from comfy_execution.graph_utils import GraphBuilder +from tests.execution.test_execution import ComfyClient + + +@pytest.mark.execution +class TestPublicAPI: + """Test suite for public ComfyAPI and ComfyAPISync methods.""" + + @fixture(scope="class", autouse=True) + def _server(self, args_pytest): + """Start ComfyUI server for testing.""" + pargs = [ + 'python', 'main.py', + '--output-directory', args_pytest["output_dir"], + '--listen', args_pytest["listen"], + '--port', str(args_pytest["port"]), + '--extra-model-paths-config', 'tests/execution/extra_model_paths.yaml', + '--cpu', + ] + p = subprocess.Popen(pargs) + yield + p.kill() + torch.cuda.empty_cache() + + @fixture(scope="class", autouse=True) + def shared_client(self, args_pytest, _server): + """Create shared client with connection retry.""" + client = ComfyClient() + n_tries = 5 + for i in range(n_tries): + time.sleep(4) + try: + client.connect(listen=args_pytest["listen"], port=args_pytest["port"]) + break + except ConnectionRefusedError: + if i == n_tries - 1: + raise + yield client + del client + torch.cuda.empty_cache() + + @fixture + def client(self, shared_client, request): + """Set test name for each test.""" + shared_client.set_test_name(f"public_api[{request.node.name}]") + yield shared_client + + @fixture + def builder(self, request): + """Create GraphBuilder for each test.""" + yield GraphBuilder(prefix=request.node.name) + + def test_sync_progress_update_executes(self, client: ComfyClient, builder: GraphBuilder): + """Test that TestSyncProgressUpdate executes without errors. + + This test validates that api_sync.execution.set_progress() works correctly, + which is the primary code path fixed by adding get_type_hints() to async_to_sync.py. + """ + g = builder + image = g.node("StubImage", content="BLACK", height=256, width=256, batch_size=1) + + # Use TestSyncProgressUpdate with short sleep + progress_node = g.node("TestSyncProgressUpdate", + value=image.out(0), + sleep_seconds=0.5) + output = g.node("SaveImage", images=progress_node.out(0)) + + # Execute workflow + result = client.run(g) + + # Verify execution + assert result.did_run(progress_node), "Progress node should have executed" + assert result.did_run(output), "Output node should have executed" + + # Verify output + images = result.get_images(output) + assert len(images) == 1, "Should have produced 1 image" + + def test_async_progress_update_executes(self, client: ComfyClient, builder: GraphBuilder): + """Test that TestAsyncProgressUpdate executes without errors. + + This test validates that await api.execution.set_progress() works correctly + in async contexts. + """ + g = builder + image = g.node("StubImage", content="WHITE", height=256, width=256, batch_size=1) + + # Use TestAsyncProgressUpdate with short sleep + progress_node = g.node("TestAsyncProgressUpdate", + value=image.out(0), + sleep_seconds=0.5) + output = g.node("SaveImage", images=progress_node.out(0)) + + # Execute workflow + result = client.run(g) + + # Verify execution + assert result.did_run(progress_node), "Async progress node should have executed" + assert result.did_run(output), "Output node should have executed" + + # Verify output + images = result.get_images(output) + assert len(images) == 1, "Should have produced 1 image" + + def test_sync_and_async_progress_together(self, client: ComfyClient, builder: GraphBuilder): + """Test both sync and async progress updates in same workflow. + + This test ensures that both ComfyAPISync and ComfyAPI can coexist and work + correctly in the same workflow execution. + """ + g = builder + image1 = g.node("StubImage", content="BLACK", height=256, width=256, batch_size=1) + image2 = g.node("StubImage", content="WHITE", height=256, width=256, batch_size=1) + + # Use both types of progress nodes + sync_progress = g.node("TestSyncProgressUpdate", + value=image1.out(0), + sleep_seconds=0.3) + async_progress = g.node("TestAsyncProgressUpdate", + value=image2.out(0), + sleep_seconds=0.3) + + # Create outputs + output1 = g.node("SaveImage", images=sync_progress.out(0)) + output2 = g.node("SaveImage", images=async_progress.out(0)) + + # Execute workflow + result = client.run(g) + + # Both should execute successfully + assert result.did_run(sync_progress), "Sync progress node should have executed" + assert result.did_run(async_progress), "Async progress node should have executed" + assert result.did_run(output1), "First output node should have executed" + assert result.did_run(output2), "Second output node should have executed" + + # Verify outputs + images1 = result.get_images(output1) + images2 = result.get_images(output2) + assert len(images1) == 1, "Should have produced 1 image from sync node" + assert len(images2) == 1, "Should have produced 1 image from async node" From 3bd71554a2df14b862cc5e1e875df37ba24af1ac Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Mon, 24 Nov 2025 19:48:37 +0200 Subject: [PATCH 025/271] fix(api-nodes): edge cases in responses for Gemini models (#10860) --- comfy_api_nodes/apis/gemini_api.py | 6 +++--- comfy_api_nodes/nodes_gemini.py | 21 +++++++++++---------- 2 files changed, 14 insertions(+), 13 deletions(-) diff --git a/comfy_api_nodes/apis/gemini_api.py b/comfy_api_nodes/apis/gemini_api.py index 710f173f1..d34590d28 100644 --- a/comfy_api_nodes/apis/gemini_api.py +++ b/comfy_api_nodes/apis/gemini_api.py @@ -113,9 +113,9 @@ class GeminiGenerationConfig(BaseModel): maxOutputTokens: int | None = Field(None, ge=16, le=8192) seed: int | None = Field(None) stopSequences: list[str] | None = Field(None) - temperature: float | None = Field(1, ge=0.0, le=2.0) - topK: int | None = Field(40, ge=1) - topP: float | None = Field(0.95, ge=0.0, le=1.0) + temperature: float | None = Field(None, ge=0.0, le=2.0) + topK: int | None = Field(None, ge=1) + topP: float | None = Field(None, ge=0.0, le=1.0) class GeminiImageConfig(BaseModel): diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index be752c885..938a20f84 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -104,14 +104,14 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera List of response parts matching the requested type. """ if response.candidates is None: - if response.promptFeedback.blockReason: + if response.promptFeedback and response.promptFeedback.blockReason: feedback = response.promptFeedback raise ValueError( f"Gemini API blocked the request. Reason: {feedback.blockReason} ({feedback.blockReasonMessage})" ) - raise NotImplementedError( - "Gemini returned no response candidates. " - "Please report to ComfyUI repository with the example of workflow to reproduce this." + raise ValueError( + "Gemini API returned no response candidates. If you are using the `IMAGE` modality, " + "try changing it to `IMAGE+TEXT` to view the model's reasoning and understand why image generation failed." ) parts = [] for part in response.candidates[0].content.parts: @@ -182,11 +182,12 @@ def calculate_tokens_price(response: GeminiGenerateContentResponse) -> float | N else: return None final_price = response.usageMetadata.promptTokenCount * input_tokens_price - for i in response.usageMetadata.candidatesTokensDetails: - if i.modality == Modality.IMAGE: - final_price += output_image_tokens_price * i.tokenCount # for Nano Banana models - else: - final_price += output_text_tokens_price * i.tokenCount + if response.usageMetadata.candidatesTokensDetails: + for i in response.usageMetadata.candidatesTokensDetails: + if i.modality == Modality.IMAGE: + final_price += output_image_tokens_price * i.tokenCount # for Nano Banana models + else: + final_price += output_text_tokens_price * i.tokenCount if response.usageMetadata.thoughtsTokenCount: final_price += output_text_tokens_price * response.usageMetadata.thoughtsTokenCount return final_price / 1_000_000.0 @@ -645,7 +646,7 @@ class GeminiImage2(IO.ComfyNode): options=["auto", "1:1", "2:3", "3:2", "3:4", "4:3", "4:5", "5:4", "9:16", "16:9", "21:9"], default="auto", tooltip="If set to 'auto', matches your input image's aspect ratio; " - "if no image is provided, generates a 1:1 square.", + "if no image is provided, a 16:9 square is usually generated.", ), IO.Combo.Input( "resolution", From 1286fcfe40b98052e4edbe9a02f12ad89ac74924 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Mon, 24 Nov 2025 20:24:29 +0200 Subject: [PATCH 026/271] add get_frame_count and get_frame_rate methods to VideoInput class (#10851) --- comfy_api/latest/_input/video_types.py | 28 ++++++++ comfy_api/latest/_input_impl/video_types.py | 72 +++++++++++++++++++++ comfy_api_nodes/nodes_topaz.py | 15 ++--- 3 files changed, 106 insertions(+), 9 deletions(-) diff --git a/comfy_api/latest/_input/video_types.py b/comfy_api/latest/_input/video_types.py index a335df4d0..87c81d73a 100644 --- a/comfy_api/latest/_input/video_types.py +++ b/comfy_api/latest/_input/video_types.py @@ -1,5 +1,6 @@ from __future__ import annotations from abc import ABC, abstractmethod +from fractions import Fraction from typing import Optional, Union, IO import io import av @@ -72,6 +73,33 @@ class VideoInput(ABC): frame_count = components.images.shape[0] return float(frame_count / components.frame_rate) + def get_frame_count(self) -> int: + """ + Returns the number of frames in the video. + + Default implementation uses :meth:`get_components`, which may require + loading all frames into memory. File-based implementations should + override this method and use container/stream metadata instead. + + Returns: + Total number of frames as an integer. + """ + return int(self.get_components().images.shape[0]) + + def get_frame_rate(self) -> Fraction: + """ + Returns the frame rate of the video. + + Default implementation materializes the video into memory via + `get_components()`. Subclasses that can inspect the underlying + container (e.g. `VideoFromFile`) should override this with a more + efficient implementation. + + Returns: + Frame rate as a Fraction. + """ + return self.get_components().frame_rate + def get_container_format(self) -> str: """ Returns the container format of the video (e.g., 'mp4', 'mov', 'avi'). diff --git a/comfy_api/latest/_input_impl/video_types.py b/comfy_api/latest/_input_impl/video_types.py index f646504c8..bde37f90a 100644 --- a/comfy_api/latest/_input_impl/video_types.py +++ b/comfy_api/latest/_input_impl/video_types.py @@ -121,6 +121,71 @@ class VideoFromFile(VideoInput): raise ValueError(f"Could not determine duration for file '{self.__file}'") + def get_frame_count(self) -> int: + """ + Returns the number of frames in the video without materializing them as + torch tensors. + """ + if isinstance(self.__file, io.BytesIO): + self.__file.seek(0) + + with av.open(self.__file, mode="r") as container: + video_stream = self._get_first_video_stream(container) + # 1. Prefer the frames field if available + if video_stream.frames and video_stream.frames > 0: + return int(video_stream.frames) + + # 2. Try to estimate from duration and average_rate using only metadata + if container.duration is not None and video_stream.average_rate: + duration_seconds = float(container.duration / av.time_base) + estimated_frames = int(round(duration_seconds * float(video_stream.average_rate))) + if estimated_frames > 0: + return estimated_frames + + if ( + getattr(video_stream, "duration", None) is not None + and getattr(video_stream, "time_base", None) is not None + and video_stream.average_rate + ): + duration_seconds = float(video_stream.duration * video_stream.time_base) + estimated_frames = int(round(duration_seconds * float(video_stream.average_rate))) + if estimated_frames > 0: + return estimated_frames + + # 3. Last resort: decode frames and count them (streaming) + frame_count = 0 + container.seek(0) + for packet in container.demux(video_stream): + for _ in packet.decode(): + frame_count += 1 + + if frame_count == 0: + raise ValueError(f"Could not determine frame count for file '{self.__file}'") + return frame_count + + def get_frame_rate(self) -> Fraction: + """ + Returns the average frame rate of the video using container metadata + without decoding all frames. + """ + if isinstance(self.__file, io.BytesIO): + self.__file.seek(0) + + with av.open(self.__file, mode="r") as container: + video_stream = self._get_first_video_stream(container) + # Preferred: use PyAV's average_rate (usually already a Fraction-like) + if video_stream.average_rate: + return Fraction(video_stream.average_rate) + + # Fallback: estimate from frames + duration if available + if video_stream.frames and container.duration: + duration_seconds = float(container.duration / av.time_base) + if duration_seconds > 0: + return Fraction(video_stream.frames / duration_seconds).limit_denominator() + + # Last resort: match get_components_internal default + return Fraction(1) + def get_container_format(self) -> str: """ Returns the container format of the video (e.g., 'mp4', 'mov', 'avi'). @@ -238,6 +303,13 @@ class VideoFromFile(VideoInput): packet.stream = stream_map[packet.stream] output_container.mux(packet) + def _get_first_video_stream(self, container: InputContainer): + video_stream = next((s for s in container.streams if s.type == "video"), None) + if video_stream is None: + raise ValueError(f"No video stream found in file '{self.__file}'") + return video_stream + + class VideoFromComponents(VideoInput): """ Class representing video input from tensors. diff --git a/comfy_api_nodes/nodes_topaz.py b/comfy_api_nodes/nodes_topaz.py index 79c7bf43d..f522756e5 100644 --- a/comfy_api_nodes/nodes_topaz.py +++ b/comfy_api_nodes/nodes_topaz.py @@ -5,8 +5,7 @@ import aiohttp import torch from typing_extensions import override -from comfy_api.input.video_types import VideoInput -from comfy_api.latest import IO, ComfyExtension +from comfy_api.latest import IO, ComfyExtension, Input from comfy_api_nodes.apis import topaz_api from comfy_api_nodes.util import ( ApiEndpoint, @@ -282,7 +281,7 @@ class TopazVideoEnhance(IO.ComfyNode): @classmethod async def execute( cls, - video: VideoInput, + video: Input.Video, upscaler_enabled: bool, upscaler_model: str, upscaler_resolution: str, @@ -297,12 +296,10 @@ class TopazVideoEnhance(IO.ComfyNode): ) -> IO.NodeOutput: if upscaler_enabled is False and interpolation_enabled is False: raise ValueError("There is nothing to do: both upscaling and interpolation are disabled.") - src_width, src_height = video.get_dimensions() - video_components = video.get_components() - src_frame_rate = int(video_components.frame_rate) - duration_sec = video.get_duration() - estimated_frames = int(duration_sec * src_frame_rate) validate_container_format_is_mp4(video) + src_width, src_height = video.get_dimensions() + src_frame_rate = int(video.get_frame_rate()) + duration_sec = video.get_duration() src_video_stream = video.get_stream_source() target_width = src_width target_height = src_height @@ -338,7 +335,7 @@ class TopazVideoEnhance(IO.ComfyNode): container="mp4", size=get_fs_object_size(src_video_stream), duration=int(duration_sec), - frameCount=estimated_frames, + frameCount=video.get_frame_count(), frameRate=src_frame_rate, resolution=topaz_api.Resolution(width=src_width, height=src_height), ), From 3d1fdaf9f448b34e4eba68bfd8e8de373ec0d22d Mon Sep 17 00:00:00 2001 From: Haoming <73768377+Haoming02@users.noreply.github.com> Date: Tue, 25 Nov 2025 02:30:40 +0800 Subject: [PATCH 027/271] block info (#10843) --- comfy/ldm/chroma/model.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/comfy/ldm/chroma/model.py b/comfy/ldm/chroma/model.py index 67bf70eb1..a72f8cc47 100644 --- a/comfy/ldm/chroma/model.py +++ b/comfy/ldm/chroma/model.py @@ -179,7 +179,10 @@ class Chroma(nn.Module): pe = self.pe_embedder(ids) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.double_blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.double_blocks): + transformer_options["block_index"] = i if i not in self.skip_mmdit: double_mod = ( self.get_modulations(mod_vectors, "double_img", idx=i), @@ -222,7 +225,10 @@ class Chroma(nn.Module): img = torch.cat((txt, img), 1) + transformer_options["total_blocks"] = len(self.single_blocks) + transformer_options["block_type"] = "single" for i, block in enumerate(self.single_blocks): + transformer_options["block_index"] = i if i not in self.skip_dit: single_mod = self.get_modulations(mod_vectors, "single", idx=i) if ("single_block", i) in blocks_replace: From 6a6d456c88723538e3d0e5e942f78109ece5b73d Mon Sep 17 00:00:00 2001 From: Haoming <73768377+Haoming02@users.noreply.github.com> Date: Tue, 25 Nov 2025 02:38:38 +0800 Subject: [PATCH 028/271] block info (#10842) --- comfy/ldm/qwen_image/model.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/comfy/ldm/qwen_image/model.py b/comfy/ldm/qwen_image/model.py index 427ea19c1..8c75670cd 100644 --- a/comfy/ldm/qwen_image/model.py +++ b/comfy/ldm/qwen_image/model.py @@ -439,7 +439,10 @@ class QwenImageTransformer2DModel(nn.Module): patches = transformer_options.get("patches", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.transformer_blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.transformer_blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} From b2ef58e2b17e73ca8cd376a1cdc976518ebbc168 Mon Sep 17 00:00:00 2001 From: Haoming <73768377+Haoming02@users.noreply.github.com> Date: Tue, 25 Nov 2025 02:40:09 +0800 Subject: [PATCH 029/271] block info (#10844) --- comfy/ldm/hunyuan_video/model.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/comfy/ldm/hunyuan_video/model.py b/comfy/ldm/hunyuan_video/model.py index f75c6e0e1..2749c53f5 100644 --- a/comfy/ldm/hunyuan_video/model.py +++ b/comfy/ldm/hunyuan_video/model.py @@ -389,7 +389,10 @@ class HunyuanVideo(nn.Module): attn_mask = None blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.double_blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.double_blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -411,7 +414,10 @@ class HunyuanVideo(nn.Module): img = torch.cat((img, txt), 1) + transformer_options["total_blocks"] = len(self.single_blocks) + transformer_options["block_type"] = "single" for i, block in enumerate(self.single_blocks): + transformer_options["block_index"] = i if ("single_block", i) in blocks_replace: def block_wrap(args): out = {} From 22a2644e57530ee40e13486ccd7c953b87072093 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 24 Nov 2025 16:45:54 -0800 Subject: [PATCH 030/271] Bump transformers version in requirements.txt (#10869) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 8e308cd6c..b7014f956 100644 --- a/requirements.txt +++ b/requirements.txt @@ -7,7 +7,7 @@ torchvision torchaudio numpy>=1.25.0 einops -transformers>=4.37.2 +transformers>=4.50.3 tokenizers>=0.13.3 sentencepiece safetensors>=0.4.2 From 25022e0b0965975b35bcaf28b153184d60a4f9de Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 24 Nov 2025 22:48:53 -0800 Subject: [PATCH 031/271] Cleanup and fix issues with text encoder quants. (#10872) --- comfy/model_patcher.py | 3 +- comfy/ops.py | 168 +++++++++--------- comfy/quant_ops.py | 12 ++ comfy/sd.py | 9 +- comfy/sd1_clip.py | 18 +- comfy/text_encoders/hunyuan_video.py | 3 + .../comfy_quant/test_mixed_precision.py | 17 +- 7 files changed, 128 insertions(+), 102 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index cf1b0d441..6551ced5a 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -231,7 +231,6 @@ class ModelPatcher: self.object_patches_backup = {} self.weight_wrapper_patches = {} self.model_options = {"transformer_options":{}} - self.model_size() self.load_device = load_device self.offload_device = offload_device self.weight_inplace_update = weight_inplace_update @@ -286,7 +285,7 @@ class ModelPatcher: return self.model.lowvram_patch_counter def clone(self): - n = self.__class__(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update) + n = self.__class__(self.model, self.load_device, self.offload_device, self.model_size(), weight_inplace_update=self.weight_inplace_update) n.patches = {} for k in self.patches: n.patches[k] = self.patches[k][:] diff --git a/comfy/ops.py b/comfy/ops.py index 640622fd1..af185ec24 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -540,113 +540,115 @@ if CUBLAS_IS_AVAILABLE: # ============================================================================== from .quant_ops import QuantizedTensor, QUANT_ALGOS -class MixedPrecisionOps(disable_weight_init): - _layer_quant_config = {} - _compute_dtype = torch.bfloat16 - class Linear(torch.nn.Module, CastWeightBiasOp): - def __init__( - self, - in_features: int, - out_features: int, - bias: bool = True, - device=None, - dtype=None, - ) -> None: - super().__init__() +def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False): + class MixedPrecisionOps(manual_cast): + _layer_quant_config = layer_quant_config + _compute_dtype = compute_dtype + _full_precision_mm = full_precision_mm - self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype} - # self.factory_kwargs = {"device": device, "dtype": dtype} + class Linear(torch.nn.Module, CastWeightBiasOp): + def __init__( + self, + in_features: int, + out_features: int, + bias: bool = True, + device=None, + dtype=None, + ) -> None: + super().__init__() - self.in_features = in_features - self.out_features = out_features - if bias: - self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs)) - else: - self.register_parameter("bias", None) + self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype} + # self.factory_kwargs = {"device": device, "dtype": dtype} - self.tensor_class = None + self.in_features = in_features + self.out_features = out_features + if bias: + self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs)) + else: + self.register_parameter("bias", None) - def reset_parameters(self): - return None + self.tensor_class = None + self._full_precision_mm = MixedPrecisionOps._full_precision_mm - def _load_from_state_dict(self, state_dict, prefix, local_metadata, - strict, missing_keys, unexpected_keys, error_msgs): + def reset_parameters(self): + return None - device = self.factory_kwargs["device"] - layer_name = prefix.rstrip('.') - weight_key = f"{prefix}weight" - weight = state_dict.pop(weight_key, None) - if weight is None: - raise ValueError(f"Missing weight for layer {layer_name}") + def _load_from_state_dict(self, state_dict, prefix, local_metadata, + strict, missing_keys, unexpected_keys, error_msgs): - manually_loaded_keys = [weight_key] + device = self.factory_kwargs["device"] + layer_name = prefix.rstrip('.') + weight_key = f"{prefix}weight" + weight = state_dict.pop(weight_key, None) + if weight is None: + raise ValueError(f"Missing weight for layer {layer_name}") - if layer_name not in MixedPrecisionOps._layer_quant_config: - self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False) - else: - quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None) - if quant_format is None: - raise ValueError(f"Unknown quantization format for layer {layer_name}") + manually_loaded_keys = [weight_key] - qconfig = QUANT_ALGOS[quant_format] - self.layout_type = qconfig["comfy_tensor_layout"] + if layer_name not in MixedPrecisionOps._layer_quant_config: + self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False) + else: + quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None) + if quant_format is None: + raise ValueError(f"Unknown quantization format for layer {layer_name}") - weight_scale_key = f"{prefix}weight_scale" - layout_params = { - 'scale': state_dict.pop(weight_scale_key, None), - 'orig_dtype': MixedPrecisionOps._compute_dtype, - 'block_size': qconfig.get("group_size", None), - } - if layout_params['scale'] is not None: - manually_loaded_keys.append(weight_scale_key) + qconfig = QUANT_ALGOS[quant_format] + self.layout_type = qconfig["comfy_tensor_layout"] - self.weight = torch.nn.Parameter( - QuantizedTensor(weight.to(device=device), self.layout_type, layout_params), - requires_grad=False - ) + weight_scale_key = f"{prefix}weight_scale" + layout_params = { + 'scale': state_dict.pop(weight_scale_key, None), + 'orig_dtype': MixedPrecisionOps._compute_dtype, + 'block_size': qconfig.get("group_size", None), + } + if layout_params['scale'] is not None: + manually_loaded_keys.append(weight_scale_key) - for param_name in qconfig["parameters"]: - param_key = f"{prefix}{param_name}" - _v = state_dict.pop(param_key, None) - if _v is None: - continue - setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False)) - manually_loaded_keys.append(param_key) + self.weight = torch.nn.Parameter( + QuantizedTensor(weight.to(device=device), self.layout_type, layout_params), + requires_grad=False + ) - super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) + for param_name in qconfig["parameters"]: + param_key = f"{prefix}{param_name}" + _v = state_dict.pop(param_key, None) + if _v is None: + continue + setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False)) + manually_loaded_keys.append(param_key) - for key in manually_loaded_keys: - if key in missing_keys: - missing_keys.remove(key) + super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) - def _forward(self, input, weight, bias): - return torch.nn.functional.linear(input, weight, bias) + for key in manually_loaded_keys: + if key in missing_keys: + missing_keys.remove(key) - def forward_comfy_cast_weights(self, input): - weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) - x = self._forward(input, weight, bias) - uncast_bias_weight(self, weight, bias, offload_stream) - return x + def _forward(self, input, weight, bias): + return torch.nn.functional.linear(input, weight, bias) - def forward(self, input, *args, **kwargs): - run_every_op() + def forward_comfy_cast_weights(self, input): + weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) + x = self._forward(input, weight, bias) + uncast_bias_weight(self, weight, bias, offload_stream) + return x - if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: - return self.forward_comfy_cast_weights(input, *args, **kwargs) - if (getattr(self, 'layout_type', None) is not None and - getattr(self, 'input_scale', None) is not None and - not isinstance(input, QuantizedTensor)): - input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype) - return self._forward(input, self.weight, self.bias) + def forward(self, input, *args, **kwargs): + run_every_op() + if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: + return self.forward_comfy_cast_weights(input, *args, **kwargs) + if (getattr(self, 'layout_type', None) is not None and + getattr(self, 'input_scale', None) is not None and + not isinstance(input, QuantizedTensor)): + input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype) + return self._forward(input, self.weight, self.bias) + return MixedPrecisionOps def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None): if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config: - MixedPrecisionOps._layer_quant_config = model_config.layer_quant_config - MixedPrecisionOps._compute_dtype = compute_dtype logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers") - return MixedPrecisionOps + return mixed_precision_ops(model_config.layer_quant_config, compute_dtype) fp8_compute = comfy.model_management.supports_fp8_compute(load_device) if scaled_fp8 is not None: diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index 1d058bece..905b4729e 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -338,6 +338,18 @@ def generic_copy_(func, args, kwargs): return func(*args, **kwargs) +@register_generic_util(torch.ops.aten.to.dtype) +def generic_to_dtype(func, args, kwargs): + """Handle .to(dtype) calls - dtype conversion only.""" + src = args[0] + if isinstance(src, QuantizedTensor): + # For dtype-only conversion, just change the orig_dtype, no real cast is needed + target_dtype = args[1] if len(args) > 1 else kwargs.get('dtype') + src._layout_params["orig_dtype"] = target_dtype + return src + return func(*args, **kwargs) + + @register_generic_util(torch.ops.aten._has_compatible_shallow_copy_type.default) def generic_has_compatible_shallow_copy_type(func, args, kwargs): return True diff --git a/comfy/sd.py b/comfy/sd.py index dc0905ada..b6df0bd61 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -917,7 +917,12 @@ class CLIPType(Enum): def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): clip_data = [] for p in ckpt_paths: - clip_data.append(comfy.utils.load_torch_file(p, safe_load=True)) + sd, metadata = comfy.utils.load_torch_file(p, safe_load=True, return_metadata=True) + if metadata is not None: + quant_metadata = metadata.get("_quantization_metadata", None) + if quant_metadata is not None: + sd["_quantization_metadata"] = quant_metadata + clip_data.append(sd) return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options) @@ -1142,6 +1147,8 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip parameters = 0 for c in clip_data: + if "_quantization_metadata" in c: + c.pop("_quantization_metadata") parameters += comfy.utils.calculate_parameters(c) tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options) diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index 3066de2d7..8f509bab1 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -109,13 +109,23 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): operations = model_options.get("custom_operations", None) scaled_fp8 = None + quantization_metadata = model_options.get("quantization_metadata", None) if operations is None: - scaled_fp8 = model_options.get("scaled_fp8", None) - if scaled_fp8 is not None: - operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8) + layer_quant_config = None + if quantization_metadata is not None: + layer_quant_config = json.loads(quantization_metadata).get("layers", None) + + if layer_quant_config is not None: + operations = comfy.ops.mixed_precision_ops(layer_quant_config, dtype, full_precision_mm=True) + logging.info(f"Using MixedPrecisionOps for text encoder: {len(layer_quant_config)} quantized layers") else: - operations = comfy.ops.manual_cast + # Fallback to scaled_fp8_ops for backward compatibility + scaled_fp8 = model_options.get("scaled_fp8", None) + if scaled_fp8 is not None: + operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8) + else: + operations = comfy.ops.manual_cast self.operations = operations self.transformer = model_class(config, dtype, device, self.operations) diff --git a/comfy/text_encoders/hunyuan_video.py b/comfy/text_encoders/hunyuan_video.py index 557094f49..0110517bb 100644 --- a/comfy/text_encoders/hunyuan_video.py +++ b/comfy/text_encoders/hunyuan_video.py @@ -18,6 +18,9 @@ def llama_detect(state_dict, prefix=""): if scaled_fp8_key in state_dict: out["llama_scaled_fp8"] = state_dict[scaled_fp8_key].dtype + if "_quantization_metadata" in state_dict: + out["llama_quantization_metadata"] = state_dict["_quantization_metadata"] + return out diff --git a/tests-unit/comfy_quant/test_mixed_precision.py b/tests-unit/comfy_quant/test_mixed_precision.py index f8d1fd04e..63361309f 100644 --- a/tests-unit/comfy_quant/test_mixed_precision.py +++ b/tests-unit/comfy_quant/test_mixed_precision.py @@ -37,11 +37,8 @@ class TestMixedPrecisionOps(unittest.TestCase): def test_all_layers_standard(self): """Test that model with no quantization works normally""" - # Configure no quantization - ops.MixedPrecisionOps._layer_quant_config = {} - # Create model - model = SimpleModel(operations=ops.MixedPrecisionOps) + model = SimpleModel(operations=ops.mixed_precision_ops({})) # Initialize weights manually model.layer1.weight = torch.nn.Parameter(torch.randn(20, 10, dtype=torch.bfloat16)) @@ -76,7 +73,6 @@ class TestMixedPrecisionOps(unittest.TestCase): "params": {} } } - ops.MixedPrecisionOps._layer_quant_config = layer_quant_config # Create state dict with mixed precision fp8_weight1 = torch.randn(20, 10, dtype=torch.float32).to(torch.float8_e4m3fn) @@ -99,7 +95,7 @@ class TestMixedPrecisionOps(unittest.TestCase): } # Create model and load state dict (strict=False because custom loading pops keys) - model = SimpleModel(operations=ops.MixedPrecisionOps) + model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) model.load_state_dict(state_dict, strict=False) # Verify weights are wrapped in QuantizedTensor @@ -132,7 +128,6 @@ class TestMixedPrecisionOps(unittest.TestCase): "params": {} } } - ops.MixedPrecisionOps._layer_quant_config = layer_quant_config # Create and load model fp8_weight = torch.randn(20, 10, dtype=torch.float32).to(torch.float8_e4m3fn) @@ -146,7 +141,7 @@ class TestMixedPrecisionOps(unittest.TestCase): "layer3.bias": torch.randn(40, dtype=torch.bfloat16), } - model = SimpleModel(operations=ops.MixedPrecisionOps) + model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) model.load_state_dict(state_dict1, strict=False) # Save state dict @@ -170,7 +165,6 @@ class TestMixedPrecisionOps(unittest.TestCase): "params": {} } } - ops.MixedPrecisionOps._layer_quant_config = layer_quant_config # Create and load model fp8_weight = torch.randn(20, 10, dtype=torch.float32).to(torch.float8_e4m3fn) @@ -184,7 +178,7 @@ class TestMixedPrecisionOps(unittest.TestCase): "layer3.bias": torch.randn(40, dtype=torch.bfloat16), } - model = SimpleModel(operations=ops.MixedPrecisionOps) + model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) model.load_state_dict(state_dict, strict=False) # Add a weight function (simulating LoRA) @@ -210,7 +204,6 @@ class TestMixedPrecisionOps(unittest.TestCase): "params": {} } } - ops.MixedPrecisionOps._layer_quant_config = layer_quant_config # Create state dict state_dict = { @@ -223,7 +216,7 @@ class TestMixedPrecisionOps(unittest.TestCase): } # Load should raise KeyError for unknown format in QUANT_FORMAT_MIXINS - model = SimpleModel(operations=ops.MixedPrecisionOps) + model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) with self.assertRaises(KeyError): model.load_state_dict(state_dict, strict=False) From b6805429b9c2f3aa919035bea849ecd1de3ac8e4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 24 Nov 2025 23:48:20 -0800 Subject: [PATCH 032/271] Allow pinning quantized tensors. (#10873) --- comfy/model_management.py | 6 +++++- comfy/quant_ops.py | 8 ++++++++ 2 files changed, 13 insertions(+), 1 deletion(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index a21df54b3..a9327ac80 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1098,13 +1098,14 @@ if not args.disable_pinned_memory: MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95 logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024))) +PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"]) def pin_memory(tensor): global TOTAL_PINNED_MEMORY if MAX_PINNED_MEMORY <= 0: return False - if type(tensor) is not torch.nn.parameter.Parameter: + if type(tensor).__name__ not in PINNING_ALLOWED_TYPES: return False if not is_device_cpu(tensor.device): @@ -1124,6 +1125,9 @@ def pin_memory(tensor): return False ptr = tensor.data_ptr() + if ptr == 0: + return False + if torch.cuda.cudart().cudaHostRegister(ptr, size, 1) == 0: PINNED_MEMORY[ptr] = size TOTAL_PINNED_MEMORY += size diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index 905b4729e..e938144a7 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -228,6 +228,14 @@ class QuantizedTensor(torch.Tensor): new_kwargs = dequant_arg(kwargs) return func(*new_args, **new_kwargs) + def data_ptr(self): + return self._qdata.data_ptr() + + def is_pinned(self): + return self._qdata.is_pinned() + + def is_contiguous(self): + return self._qdata.is_contiguous() # ============================================================================== # Generic Utilities (Layout-Agnostic Operations) From acfaa5c4a132e1c01bc9d94e76b0d667c899bfd1 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 24 Nov 2025 23:55:49 -0800 Subject: [PATCH 033/271] Don't try fp8 matrix mult in quantized ops if not supported by hardware. (#10874) --- comfy/ops.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index af185ec24..785aa1c9f 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -646,11 +646,12 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful return MixedPrecisionOps def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None): + fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular + if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config: logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers") - return mixed_precision_ops(model_config.layer_quant_config, compute_dtype) + return mixed_precision_ops(model_config.layer_quant_config, compute_dtype, full_precision_mm=not fp8_compute) - fp8_compute = comfy.model_management.supports_fp8_compute(load_device) if scaled_fp8 is not None: return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8) From 015a0599d08f1072155b9213d488b73e502fea3c Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 25 Nov 2025 00:23:19 -0800 Subject: [PATCH 034/271] I found a case where this is needed (#10875) --- comfy/quant_ops.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index e938144a7..0c16bcf8d 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -405,8 +405,8 @@ class TensorCoreFP8Layout(QuantizedLayout): tensor_scaled = tensor * (1.0 / scale).to(tensor.dtype) # TODO: uncomment this if it's actually needed because the clamp has a small performance penality' - # lp_amax = torch.finfo(dtype).max - # torch.clamp(tensor_scaled, min=-lp_amax, max=lp_amax, out=tensor_scaled) + lp_amax = torch.finfo(dtype).max + torch.clamp(tensor_scaled, min=-lp_amax, max=lp_amax, out=tensor_scaled) qdata = tensor_scaled.to(dtype, memory_format=torch.contiguous_format) layout_params = { From 6b573ae0cb11000a0330a35d9e31917c22c874a4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 25 Nov 2025 07:50:19 -0800 Subject: [PATCH 035/271] Flux 2 (#10879) --- comfy/latent_formats.py | 9 +++ comfy/ldm/flux/layers.py | 90 +++++++++++++++++++-------- comfy/ldm/flux/model.py | 80 ++++++++++++++++++------ comfy/ldm/models/autoencoder.py | 42 +++++++++++++ comfy/model_base.py | 23 +++++-- comfy/model_detection.py | 50 +++++++++++---- comfy/sd.py | 26 +++++++- comfy/supported_models.py | 34 +++++++++- comfy/text_encoders/flux.py | 107 +++++++++++++++++++++++++++++++- comfy/text_encoders/llama.py | 31 +++++++++ comfy_extras/nodes_flux.py | 80 +++++++++++++++++++++++- nodes.py | 2 +- 12 files changed, 506 insertions(+), 68 deletions(-) diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index 204fc048d..e98c7d6d8 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -178,6 +178,15 @@ class Flux(SD3): def process_out(self, latent): return (latent / self.scale_factor) + self.shift_factor +class Flux2(LatentFormat): + latent_channels = 128 + + def process_in(self, latent): + return latent + + def process_out(self, latent): + return latent + class Mochi(LatentFormat): latent_channels = 12 latent_dimensions = 3 diff --git a/comfy/ldm/flux/layers.py b/comfy/ldm/flux/layers.py index 23150a712..2472ab79c 100644 --- a/comfy/ldm/flux/layers.py +++ b/comfy/ldm/flux/layers.py @@ -48,11 +48,11 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10 return embedding class MLPEmbedder(nn.Module): - def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None): + def __init__(self, in_dim: int, hidden_dim: int, bias=True, dtype=None, device=None, operations=None): super().__init__() - self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device) + self.in_layer = operations.Linear(in_dim, hidden_dim, bias=bias, dtype=dtype, device=device) self.silu = nn.SiLU() - self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device) + self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=bias, dtype=dtype, device=device) def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) @@ -80,14 +80,14 @@ class QKNorm(torch.nn.Module): class SelfAttention(nn.Module): - def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None): + def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, dtype=None, device=None, operations=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) - self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) + self.proj = operations.Linear(dim, dim, bias=proj_bias, dtype=dtype, device=device) @dataclass @@ -98,11 +98,11 @@ class ModulationOut: class Modulation(nn.Module): - def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None): + def __init__(self, dim: int, double: bool, bias=True, dtype=None, device=None, operations=None): super().__init__() self.is_double = double self.multiplier = 6 if double else 3 - self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device) + self.lin = operations.Linear(dim, self.multiplier * dim, bias=bias, dtype=dtype, device=device) def forward(self, vec: Tensor) -> tuple: if vec.ndim == 2: @@ -129,8 +129,18 @@ def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None): return tensor +class SiLUActivation(nn.Module): + def __init__(self): + super().__init__() + self.gate_fn = nn.SiLU() + + def forward(self, x: Tensor) -> Tensor: + x1, x2 = x.chunk(2, dim=-1) + return self.gate_fn(x1) * x2 + + class DoubleStreamBlock(nn.Module): - def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, dtype=None, device=None, operations=None): + def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, dtype=None, device=None, operations=None): super().__init__() mlp_hidden_dim = int(hidden_size * mlp_ratio) @@ -142,27 +152,44 @@ class DoubleStreamBlock(nn.Module): self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) + self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations) self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.img_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), - nn.GELU(approximate="tanh"), - operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), - ) + + if mlp_silu_act: + self.img_mlp = nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device), + SiLUActivation(), + operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device), + ) + else: + self.img_mlp = nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), + nn.GELU(approximate="tanh"), + operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), + ) if self.modulation: self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) + self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations) self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.txt_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), - nn.GELU(approximate="tanh"), - operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), - ) + + if mlp_silu_act: + self.txt_mlp = nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device), + SiLUActivation(), + operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device), + ) + else: + self.txt_mlp = nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), + nn.GELU(approximate="tanh"), + operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), + ) + self.flipped_img_txt = flipped_img_txt def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}): @@ -246,6 +273,8 @@ class SingleStreamBlock(nn.Module): mlp_ratio: float = 4.0, qk_scale: float = None, modulation=True, + mlp_silu_act=False, + bias=True, dtype=None, device=None, operations=None @@ -257,17 +286,24 @@ class SingleStreamBlock(nn.Module): self.scale = qk_scale or head_dim**-0.5 self.mlp_hidden_dim = int(hidden_size * mlp_ratio) + + self.mlp_hidden_dim_first = self.mlp_hidden_dim + if mlp_silu_act: + self.mlp_hidden_dim_first = int(hidden_size * mlp_ratio * 2) + self.mlp_act = SiLUActivation() + else: + self.mlp_act = nn.GELU(approximate="tanh") + # qkv and mlp_in - self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device) + self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim_first, bias=bias, dtype=dtype, device=device) # proj and mlp_out - self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device) + self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, bias=bias, dtype=dtype, device=device) self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) self.hidden_size = hidden_size self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.mlp_act = nn.GELU(approximate="tanh") if modulation: self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) else: @@ -279,7 +315,7 @@ class SingleStreamBlock(nn.Module): else: mod = vec - qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) + qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim_first], dim=-1) q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) del qkv @@ -298,11 +334,11 @@ class SingleStreamBlock(nn.Module): class LastLayer(nn.Module): - def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None): + def __init__(self, hidden_size: int, patch_size: int, out_channels: int, bias=True, dtype=None, device=None, operations=None): super().__init__() self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) - self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)) + self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=bias, dtype=dtype, device=device) + self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=bias, dtype=dtype, device=device)) def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor: if vec.ndim == 2: diff --git a/comfy/ldm/flux/model.py b/comfy/ldm/flux/model.py index b9d36f202..1a24e6d95 100644 --- a/comfy/ldm/flux/model.py +++ b/comfy/ldm/flux/model.py @@ -15,6 +15,7 @@ from .layers import ( MLPEmbedder, SingleStreamBlock, timestep_embedding, + Modulation ) @dataclass @@ -33,6 +34,11 @@ class FluxParams: patch_size: int qkv_bias: bool guidance_embed: bool + global_modulation: bool = False + mlp_silu_act: bool = False + ops_bias: bool = True + default_ref_method: str = "offset" + ref_index_scale: float = 1.0 class Flux(nn.Module): @@ -58,13 +64,17 @@ class Flux(nn.Module): self.hidden_size = params.hidden_size self.num_heads = params.num_heads self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) - self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device) - self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) - self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations) + self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device) + self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) + if params.vec_in_dim is not None: + self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations) + else: + self.vector_in = None + self.guidance_in = ( - MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity() + MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity() ) - self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device) + self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device) self.double_blocks = nn.ModuleList( [ @@ -73,6 +83,9 @@ class Flux(nn.Module): self.num_heads, mlp_ratio=params.mlp_ratio, qkv_bias=params.qkv_bias, + modulation=params.global_modulation is False, + mlp_silu_act=params.mlp_silu_act, + proj_bias=params.ops_bias, dtype=dtype, device=device, operations=operations ) for _ in range(params.depth) @@ -81,13 +94,30 @@ class Flux(nn.Module): self.single_blocks = nn.ModuleList( [ - SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations) + SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) for _ in range(params.depth_single_blocks) ] ) if final_layer: - self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations) + self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) + + if params.global_modulation: + self.double_stream_modulation_img = Modulation( + self.hidden_size, + double=True, + bias=False, + dtype=dtype, device=device, operations=operations + ) + self.double_stream_modulation_txt = Modulation( + self.hidden_size, + double=True, + bias=False, + dtype=dtype, device=device, operations=operations + ) + self.single_stream_modulation = Modulation( + self.hidden_size, double=False, bias=False, dtype=dtype, device=device, operations=operations + ) def forward_orig( self, @@ -103,9 +133,6 @@ class Flux(nn.Module): attn_mask: Tensor = None, ) -> Tensor: - if y is None: - y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype) - patches = transformer_options.get("patches", {}) patches_replace = transformer_options.get("patches_replace", {}) if img.ndim != 3 or txt.ndim != 3: @@ -118,9 +145,17 @@ class Flux(nn.Module): if guidance is not None: vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype)) - vec = vec + self.vector_in(y[:, :self.params.vec_in_dim]) + if self.vector_in is not None: + if y is None: + y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype) + vec = vec + self.vector_in(y[:, :self.params.vec_in_dim]) + txt = self.txt_in(txt) + vec_orig = vec + if self.params.global_modulation: + vec = (self.double_stream_modulation_img(vec_orig), self.double_stream_modulation_txt(vec_orig)) + if "post_input" in patches: for p in patches["post_input"]: out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids}) @@ -177,6 +212,9 @@ class Flux(nn.Module): img = torch.cat((txt, img), 1) + if self.params.global_modulation: + vec, _ = self.single_stream_modulation(vec_orig) + for i, block in enumerate(self.single_blocks): if ("single_block", i) in blocks_replace: def block_wrap(args): @@ -207,7 +245,7 @@ class Flux(nn.Module): img = img[:, txt.shape[1] :, ...] - img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) + img = self.final_layer(img, vec_orig) # (N, T, patch_size ** 2 * out_channels) return img def process_img(self, x, index=0, h_offset=0, w_offset=0, transformer_options={}): @@ -234,10 +272,10 @@ class Flux(nn.Module): h_offset += rope_options.get("shift_y", 0.0) w_offset += rope_options.get("shift_x", 0.0) - img_ids = torch.zeros((steps_h, steps_w, 3), device=x.device, dtype=x.dtype) + img_ids = torch.zeros((steps_h, steps_w, len(self.params.axes_dim)), device=x.device, dtype=torch.float32) img_ids[:, :, 0] = img_ids[:, :, 1] + index - img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=steps_h, device=x.device, dtype=x.dtype).unsqueeze(1) - img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=steps_w, device=x.device, dtype=x.dtype).unsqueeze(0) + img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=steps_h, device=x.device, dtype=torch.float32).unsqueeze(1) + img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=steps_w, device=x.device, dtype=torch.float32).unsqueeze(0) return img, repeat(img_ids, "h w c -> b (h w) c", b=bs) def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs): @@ -259,10 +297,10 @@ class Flux(nn.Module): h = 0 w = 0 index = 0 - ref_latents_method = kwargs.get("ref_latents_method", "offset") + ref_latents_method = kwargs.get("ref_latents_method", self.params.default_ref_method) for ref in ref_latents: if ref_latents_method == "index": - index += 1 + index += self.params.ref_index_scale h_offset = 0 w_offset = 0 elif ref_latents_method == "uxo": @@ -286,7 +324,11 @@ class Flux(nn.Module): img = torch.cat([img, kontext], dim=1) img_ids = torch.cat([img_ids, kontext_ids], dim=1) - txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) + txt_ids = torch.zeros((bs, context.shape[1], len(self.params.axes_dim)), device=x.device, dtype=torch.float32) + + if len(self.params.axes_dim) == 4: # Flux 2 + txt_ids[:, :, 3] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32) + out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None)) out = out[:, :img_tokens] - return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig] + return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h_orig,:w_orig] diff --git a/comfy/ldm/models/autoencoder.py b/comfy/ldm/models/autoencoder.py index 611d36a1b..4f50810dc 100644 --- a/comfy/ldm/models/autoencoder.py +++ b/comfy/ldm/models/autoencoder.py @@ -9,6 +9,8 @@ from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistri from comfy.ldm.util import get_obj_from_str, instantiate_from_config from comfy.ldm.modules.ema import LitEma import comfy.ops +from einops import rearrange +import comfy.model_management class DiagonalGaussianRegularizer(torch.nn.Module): def __init__(self, sample: bool = False): @@ -179,6 +181,21 @@ class AutoencodingEngineLegacy(AutoencodingEngine): self.post_quant_conv = conv_op(embed_dim, ddconfig["z_channels"], 1) self.embed_dim = embed_dim + if ddconfig.get("batch_norm_latent", False): + self.bn_eps = 1e-4 + self.bn_momentum = 0.1 + self.ps = [2, 2] + self.bn = torch.nn.BatchNorm2d(math.prod(self.ps) * ddconfig["z_channels"], + eps=self.bn_eps, + momentum=self.bn_momentum, + affine=False, + track_running_stats=True, + ) + self.bn.eval() + else: + self.bn = None + + def get_autoencoder_params(self) -> list: params = super().get_autoencoder_params() return params @@ -201,11 +218,36 @@ class AutoencodingEngineLegacy(AutoencodingEngine): z = torch.cat(z, 0) z, reg_log = self.regularization(z) + + if self.bn is not None: + z = rearrange(z, + "... c (i pi) (j pj) -> ... (c pi pj) i j", + pi=self.ps[0], + pj=self.ps[1], + ) + + z = torch.nn.functional.batch_norm(z, + comfy.model_management.cast_to(self.bn.running_mean, dtype=z.dtype, device=z.device), + comfy.model_management.cast_to(self.bn.running_var, dtype=z.dtype, device=z.device), + momentum=self.bn_momentum, + eps=self.bn_eps) + if return_reg_log: return z, reg_log return z def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: + if self.bn is not None: + s = torch.sqrt(comfy.model_management.cast_to(self.bn.running_var.view(1, -1, 1, 1), dtype=z.dtype, device=z.device) + self.bn_eps) + m = comfy.model_management.cast_to(self.bn.running_mean.view(1, -1, 1, 1), dtype=z.dtype, device=z.device) + z = z * s + m + z = rearrange( + z, + "... (c pi pj) i j -> ... c (i pi) (j pj)", + pi=self.ps[0], + pj=self.ps[1], + ) + if self.max_batch_size is None: dec = self.post_quant_conv(z) dec = self.decoder(dec, **decoder_kwargs) diff --git a/comfy/model_base.py b/comfy/model_base.py index e14b552c5..cad79ecbd 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -898,12 +898,13 @@ class Flux(BaseModel): attention_mask = kwargs.get("attention_mask", None) if attention_mask is not None: shape = kwargs["noise"].shape - mask_ref_size = kwargs["attention_mask_img_shape"] - # the model will pad to the patch size, and then divide - # essentially dividing and rounding up - (h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size)) - attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok)) - out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) + mask_ref_size = kwargs.get("attention_mask_img_shape", None) + if mask_ref_size is not None: + # the model will pad to the patch size, and then divide + # essentially dividing and rounding up + (h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size)) + attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok)) + out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) guidance = kwargs.get("guidance", 3.5) if guidance is not None: @@ -928,6 +929,16 @@ class Flux(BaseModel): out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16]) return out +class Flux2(Flux): + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + target_text_len = 512 + if cross_attn.shape[1] < target_text_len: + cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, target_text_len - cross_attn.shape[1], 0)) + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + return out class GenmoMochi(BaseModel): def __init__(self, model_config, model_type=ModelType.FLOW, device=None): diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 0131ca25a..b2ba1459d 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -200,26 +200,54 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight) dit_config = {} - dit_config["image_model"] = "flux" + if '{}double_stream_modulation_img.lin.weight'.format(key_prefix) in state_dict_keys: + dit_config["image_model"] = "flux2" + dit_config["axes_dim"] = [32, 32, 32, 32] + dit_config["num_heads"] = 48 + dit_config["mlp_ratio"] = 3.0 + dit_config["theta"] = 2000 + dit_config["out_channels"] = 128 + dit_config["global_modulation"] = True + dit_config["vec_in_dim"] = None + dit_config["mlp_silu_act"] = True + dit_config["qkv_bias"] = False + dit_config["ops_bias"] = False + dit_config["default_ref_method"] = "index" + dit_config["ref_index_scale"] = 10.0 + patch_size = 1 + else: + dit_config["image_model"] = "flux" + dit_config["axes_dim"] = [16, 56, 56] + dit_config["num_heads"] = 24 + dit_config["mlp_ratio"] = 4.0 + dit_config["theta"] = 10000 + dit_config["out_channels"] = 16 + dit_config["qkv_bias"] = True + patch_size = 2 + dit_config["in_channels"] = 16 - patch_size = 2 + dit_config["hidden_size"] = 3072 + dit_config["context_in_dim"] = 4096 + dit_config["patch_size"] = patch_size in_key = "{}img_in.weight".format(key_prefix) if in_key in state_dict_keys: - dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size) - dit_config["out_channels"] = 16 + w = state_dict[in_key] + dit_config["in_channels"] = w.shape[1] // (patch_size * patch_size) + dit_config["hidden_size"] = w.shape[0] + + txt_in_key = "{}txt_in.weight".format(key_prefix) + if txt_in_key in state_dict_keys: + w = state_dict[txt_in_key] + dit_config["context_in_dim"] = w.shape[1] + dit_config["hidden_size"] = w.shape[0] + vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix) if vec_in_key in state_dict_keys: dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1] - dit_config["context_in_dim"] = 4096 - dit_config["hidden_size"] = 3072 - dit_config["mlp_ratio"] = 4.0 - dit_config["num_heads"] = 24 + dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.') dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.') - dit_config["axes_dim"] = [16, 56, 56] - dit_config["theta"] = 10000 - dit_config["qkv_bias"] = True if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma dit_config["image_model"] = "chroma" dit_config["in_channels"] = 64 diff --git a/comfy/sd.py b/comfy/sd.py index b6df0bd61..14dd8944c 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -356,7 +356,7 @@ class VAE: self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype) self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype) - elif sd['decoder.conv_in.weight'].shape[1] == 32: + elif sd['decoder.conv_in.weight'].shape[1] == 32 and sd['decoder.conv_in.weight'].ndim == 5: ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True, "refiner_vae": False} self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1] self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32] @@ -382,6 +382,17 @@ class VAE: self.upscale_ratio = 4 self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1] + if 'decoder.post_quant_conv.weight' in sd: + sd = comfy.utils.state_dict_prefix_replace(sd, {"decoder.post_quant_conv.": "post_quant_conv.", "encoder.quant_conv.": "quant_conv."}) + + if 'bn.running_mean' in sd: + ddconfig["batch_norm_latent"] = True + self.downscale_ratio *= 2 + self.upscale_ratio *= 2 + self.latent_channels *= 4 + old_memory_used_decode = self.memory_used_decode + self.memory_used_decode = lambda shape, dtype: old_memory_used_decode(shape, dtype) * 4.0 + if 'post_quant_conv.weight' in sd: self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1]) else: @@ -940,6 +951,8 @@ class TEModel(Enum): QWEN25_7B = 11 BYT5_SMALL_GLYPH = 12 GEMMA_3_4B = 13 + MISTRAL3_24B = 14 + MISTRAL3_24B_PRUNED_FLUX2 = 15 def detect_te_model(sd): if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: @@ -972,6 +985,13 @@ def detect_te_model(sd): if weight.shape[0] == 512: return TEModel.QWEN25_7B if "model.layers.0.post_attention_layernorm.weight" in sd: + weight = sd['model.layers.0.post_attention_layernorm.weight'] + if weight.shape[0] == 5120: + if "model.layers.39.post_attention_layernorm.weight" in sd: + return TEModel.MISTRAL3_24B + else: + return TEModel.MISTRAL3_24B_PRUNED_FLUX2 + return TEModel.LLAMA3_8 return None @@ -1086,6 +1106,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip else: clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer + elif te_model == TEModel.MISTRAL3_24B or te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2: + clip_target.clip = comfy.text_encoders.flux.flux2_te(**llama_detect(clip_data), pruned=te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2) + clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer + tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None) else: # clip_l if clip_type == CLIPType.SD3: diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 2e64b85e8..8fe8e63f6 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -741,6 +741,37 @@ class FluxSchnell(Flux): out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device) return out +class Flux2(Flux): + unet_config = { + "image_model": "flux2", + } + + sampling_settings = { + "shift": 2.02, + } + + unet_extra_config = {} + latent_format = latent_formats.Flux2 + + supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] + + vae_key_prefix = ["vae."] + text_encoder_key_prefix = ["text_encoders."] + + def __init__(self, unet_config): + super().__init__(unet_config) + self.memory_usage_factor = self.memory_usage_factor * (2.0 * 2.0) * 2.36 + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Flux2(self, device=device) + return out + + def clip_target(self, state_dict={}): + return None # TODO + pref = self.text_encoder_key_prefix[0] + t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect)) + class GenmoMochi(supported_models_base.BASE): unet_config = { "image_model": "mochi_preview", @@ -1422,6 +1453,7 @@ class HunyuanVideo15_SR_Distilled(HunyuanVideo): hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect)) -models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage] +models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2] + models += [SVD_img2vid] diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py index d61ef6668..8dbbca16e 100644 --- a/comfy/text_encoders/flux.py +++ b/comfy/text_encoders/flux.py @@ -1,10 +1,13 @@ from comfy import sd1_clip import comfy.text_encoders.t5 import comfy.text_encoders.sd3_clip +import comfy.text_encoders.llama import comfy.model_management -from transformers import T5TokenizerFast +from transformers import T5TokenizerFast, LlamaTokenizerFast import torch import os +import json +import base64 class T5XXLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): @@ -68,3 +71,105 @@ def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None): model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options) return FluxClipModel_ + +def load_mistral_tokenizer(data): + if torch.is_tensor(data): + data = data.numpy().tobytes() + + try: + from transformers.integrations.mistral import MistralConverter + except ModuleNotFoundError: + from transformers.models.pixtral.convert_pixtral_weights_to_hf import MistralConverter + + mistral_vocab = json.loads(data) + + special_tokens = {} + vocab = {} + + max_vocab = mistral_vocab["config"]["default_vocab_size"] + + for w in mistral_vocab["vocab"]: + r = w["rank"] + if r >= max_vocab: + continue + + vocab[base64.b64decode(w["token_bytes"])] = r + + for w in mistral_vocab["special_tokens"]: + if "token_bytes" in w: + special_tokens[base64.b64decode(w["token_bytes"])] = w["rank"] + else: + special_tokens[w["token_str"]] = w["rank"] + + all_special = [] + for v in special_tokens: + all_special.append(v) + + special_tokens.update(vocab) + vocab = special_tokens + return {"tokenizer_object": MistralConverter(vocab=vocab, additional_special_tokens=all_special).converted(), "legacy": False} + +class MistralTokenizerClass: + @staticmethod + def from_pretrained(path, **kwargs): + return LlamaTokenizerFast(**kwargs) + +class Mistral3Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + self.tekken_data = tokenizer_data.get("tekken_model", None) + super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data) + + def state_dict(self): + return {"tekken_model": self.tekken_data} + +class Flux2Tokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="mistral3_24b", tokenizer=Mistral3Tokenizer) + self.llama_template = '[SYSTEM_PROMPT]You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object\nattribution and actions without speculation.[/SYSTEM_PROMPT][INST]{}[/INST]' + + def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs): + if llama_template is None: + llama_text = self.llama_template.format(text) + else: + llama_text = llama_template.format(text) + + tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs) + return tokens + +class Mistral3_24BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}): + textmodel_json_config = {} + num_layers = model_options.get("num_layers", None) + if num_layers is not None: + textmodel_json_config["num_hidden_layers"] = num_layers + if num_layers < 40: + textmodel_json_config["final_norm"] = False + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 1, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Mistral3Small24B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + +class Flux2TEModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}, name="mistral3_24b", clip_model=Mistral3_24BModel): + super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options) + + def encode_token_weights(self, token_weight_pairs): + out, pooled, extra = super().encode_token_weights(token_weight_pairs) + + out = torch.stack((out[:, 10], out[:, 20], out[:, 30]), dim=1) + out = out.movedim(1, 2) + out = out.reshape(out.shape[0], out.shape[1], -1) + return out, pooled, extra + +def flux2_te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None, pruned=False): + class Flux2TEModel_(Flux2TEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + model_options = model_options.copy() + model_options["scaled_fp8"] = llama_scaled_fp8 + if dtype_llama is not None: + dtype = dtype_llama + if llama_quantization_metadata is not None: + model_options["quantization_metadata"] = llama_quantization_metadata + if pruned: + model_options = model_options.copy() + model_options["num_layers"] = 30 + super().__init__(device=device, dtype=dtype, model_options=model_options) + return Flux2TEModel_ diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index feb44bbb0..749ff581b 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -34,6 +34,28 @@ class Llama2Config: rope_scale = None final_norm: bool = True +@dataclass +class Mistral3Small24BConfig: + vocab_size: int = 131072 + hidden_size: int = 5120 + intermediate_size: int = 32768 + num_hidden_layers: int = 40 + num_attention_heads: int = 32 + num_key_value_heads: int = 8 + max_position_embeddings: int = 8192 + rms_norm_eps: float = 1e-5 + rope_theta: float = 1000000000.0 + transformer_type: str = "llama" + head_dim = 128 + rms_norm_add = False + mlp_activation = "silu" + qkv_bias = False + rope_dims = None + q_norm = None + k_norm = None + rope_scale = None + final_norm: bool = True + @dataclass class Qwen25_3BConfig: vocab_size: int = 151936 @@ -465,6 +487,15 @@ class Llama2(BaseLlama, torch.nn.Module): self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype +class Mistral3Small24B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Mistral3Small24BConfig(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.dtype = dtype + class Qwen25_3B(BaseLlama, torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() diff --git a/comfy_extras/nodes_flux.py b/comfy_extras/nodes_flux.py index ce1b2e89f..d9c4bba81 100644 --- a/comfy_extras/nodes_flux.py +++ b/comfy_extras/nodes_flux.py @@ -2,7 +2,10 @@ import node_helpers import comfy.utils from typing_extensions import override from comfy_api.latest import ComfyExtension, io - +import comfy.model_management +import torch +import math +import nodes class CLIPTextEncodeFlux(io.ComfyNode): @classmethod @@ -30,6 +33,27 @@ class CLIPTextEncodeFlux(io.ComfyNode): encode = execute # TODO: remove +class EmptyFlux2LatentImage(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="EmptyFlux2LatentImage", + display_name="Empty Flux 2 Latent", + category="latent", + inputs=[ + io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, width, height, batch_size=1) -> io.NodeOutput: + latent = torch.zeros([batch_size, 128, height // 16, width // 16], device=comfy.model_management.intermediate_device()) + return io.NodeOutput({"samples": latent}) class FluxGuidance(io.ComfyNode): @classmethod @@ -154,6 +178,58 @@ class FluxKontextMultiReferenceLatentMethod(io.ComfyNode): append = execute # TODO: remove +def generalized_time_snr_shift(t, mu: float, sigma: float): + return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) + + +def compute_empirical_mu(image_seq_len: int, num_steps: int) -> float: + a1, b1 = 8.73809524e-05, 1.89833333 + a2, b2 = 0.00016927, 0.45666666 + + if image_seq_len > 4300: + mu = a2 * image_seq_len + b2 + return float(mu) + + m_200 = a2 * image_seq_len + b2 + m_10 = a1 * image_seq_len + b1 + + a = (m_200 - m_10) / 190.0 + b = m_200 - 200.0 * a + mu = a * num_steps + b + + return float(mu) + + +def get_schedule(num_steps: int, image_seq_len: int) -> list[float]: + mu = compute_empirical_mu(image_seq_len, num_steps) + timesteps = torch.linspace(1, 0, num_steps + 1) + timesteps = generalized_time_snr_shift(timesteps, mu, 1.0) + return timesteps + + +class Flux2Scheduler(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="Flux2Scheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=4096), + io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=1), + io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[ + io.Sigmas.Output(), + ], + ) + + @classmethod + def execute(cls, steps, width, height) -> io.NodeOutput: + seq_len = (width * height / (16 * 16)) + sigmas = get_schedule(steps, round(seq_len)) + return io.NodeOutput(sigmas) + + class FluxExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: @@ -163,6 +239,8 @@ class FluxExtension(ComfyExtension): FluxDisableGuidance, FluxKontextImageScale, FluxKontextMultiReferenceLatentMethod, + EmptyFlux2LatentImage, + Flux2Scheduler, ] diff --git a/nodes.py b/nodes.py index f023ae3b6..f4835c02e 100644 --- a/nodes.py +++ b/nodes.py @@ -929,7 +929,7 @@ class CLIPLoader: @classmethod def INPUT_TYPES(s): return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image", "hunyuan_image"], ), + "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image", "hunyuan_image", "flux2"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), From 5c7b08ca58f5412b3a814b374793cacdb5b5f0a7 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 25 Nov 2025 18:09:07 +0200 Subject: [PATCH 036/271] [API Nodes] add Flux.2 Pro node (#10880) --- comfy_api_nodes/apis/bfl_api.py | 28 +++- comfy_api_nodes/nodes_bfl.py | 238 +++++++++++++++---------------- comfy_api_nodes/util/__init__.py | 2 + 3 files changed, 143 insertions(+), 125 deletions(-) diff --git a/comfy_api_nodes/apis/bfl_api.py b/comfy_api_nodes/apis/bfl_api.py index 0fc8c0607..d8d3557b3 100644 --- a/comfy_api_nodes/apis/bfl_api.py +++ b/comfy_api_nodes/apis/bfl_api.py @@ -70,6 +70,29 @@ class BFLFluxProGenerateRequest(BaseModel): # ) +class Flux2ProGenerateRequest(BaseModel): + prompt: str = Field(...) + width: int = Field(1024, description="Must be a multiple of 32.") + height: int = Field(768, description="Must be a multiple of 32.") + seed: int | None = Field(None) + prompt_upsampling: bool | None = Field(None) + input_image: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_2: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_3: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_4: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_5: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_6: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_7: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_8: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + input_image_9: str | None = Field(None, description="Base64 encoded image for image-to-image generation") + safety_tolerance: int | None = Field( + 5, description="Tolerance level for input and output moderation. Value 0 being most strict.", ge=0, le=5 + ) + output_format: str | None = Field( + "png", description="Output format for the generated image. Can be 'jpeg' or 'png'." + ) + + class BFLFluxKontextProGenerateRequest(BaseModel): prompt: str = Field(..., description='The text prompt for what you wannt to edit.') input_image: Optional[str] = Field(None, description='Image to edit in base64 format') @@ -109,8 +132,9 @@ class BFLFluxProUltraGenerateRequest(BaseModel): class BFLFluxProGenerateResponse(BaseModel): - id: str = Field(..., description='The unique identifier for the generation task.') - polling_url: str = Field(..., description='URL to poll for the generation result.') + id: str = Field(..., description="The unique identifier for the generation task.") + polling_url: str = Field(..., description="URL to poll for the generation result.") + cost: float | None = Field(None, description="Price in cents") class BFLStatus(str, Enum): diff --git a/comfy_api_nodes/nodes_bfl.py b/comfy_api_nodes/nodes_bfl.py index 1740fb377..8826dea0c 100644 --- a/comfy_api_nodes/nodes_bfl.py +++ b/comfy_api_nodes/nodes_bfl.py @@ -1,7 +1,7 @@ from inspect import cleandoc -from typing import Optional import torch +from pydantic import BaseModel from typing_extensions import override from comfy_api.latest import IO, ComfyExtension @@ -9,15 +9,16 @@ from comfy_api_nodes.apis.bfl_api import ( BFLFluxExpandImageRequest, BFLFluxFillImageRequest, BFLFluxKontextProGenerateRequest, - BFLFluxProGenerateRequest, BFLFluxProGenerateResponse, BFLFluxProUltraGenerateRequest, BFLFluxStatusResponse, BFLStatus, + Flux2ProGenerateRequest, ) from comfy_api_nodes.util import ( ApiEndpoint, download_url_to_image_tensor, + get_number_of_images, poll_op, resize_mask_to_image, sync_op, @@ -116,7 +117,7 @@ class FluxProUltraImageNode(IO.ComfyNode): prompt_upsampling: bool = False, raw: bool = False, seed: int = 0, - image_prompt: Optional[torch.Tensor] = None, + image_prompt: torch.Tensor | None = None, image_prompt_strength: float = 0.1, ) -> IO.NodeOutput: if image_prompt is None: @@ -230,7 +231,7 @@ class FluxKontextProImageNode(IO.ComfyNode): aspect_ratio: str, guidance: float, steps: int, - input_image: Optional[torch.Tensor] = None, + input_image: torch.Tensor | None = None, seed=0, prompt_upsampling=False, ) -> IO.NodeOutput: @@ -280,124 +281,6 @@ class FluxKontextMaxImageNode(FluxKontextProImageNode): DISPLAY_NAME = "Flux.1 Kontext [max] Image" -class FluxProImageNode(IO.ComfyNode): - """ - Generates images synchronously based on prompt and resolution. - """ - - @classmethod - def define_schema(cls) -> IO.Schema: - return IO.Schema( - node_id="FluxProImageNode", - display_name="Flux 1.1 [pro] Image", - category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), - inputs=[ - IO.String.Input( - "prompt", - multiline=True, - default="", - tooltip="Prompt for the image generation", - ), - IO.Boolean.Input( - "prompt_upsampling", - default=False, - tooltip="Whether to perform upsampling on the prompt. " - "If active, automatically modifies the prompt for more creative generation, " - "but results are nondeterministic (same seed will not produce exactly the same result).", - ), - IO.Int.Input( - "width", - default=1024, - min=256, - max=1440, - step=32, - ), - IO.Int.Input( - "height", - default=768, - min=256, - max=1440, - step=32, - ), - IO.Int.Input( - "seed", - default=0, - min=0, - max=0xFFFFFFFFFFFFFFFF, - control_after_generate=True, - tooltip="The random seed used for creating the noise.", - ), - IO.Image.Input( - "image_prompt", - optional=True, - ), - # "image_prompt_strength": ( - # IO.FLOAT, - # { - # "default": 0.1, - # "min": 0.0, - # "max": 1.0, - # "step": 0.01, - # "tooltip": "Blend between the prompt and the image prompt.", - # }, - # ), - ], - outputs=[IO.Image.Output()], - hidden=[ - IO.Hidden.auth_token_comfy_org, - IO.Hidden.api_key_comfy_org, - IO.Hidden.unique_id, - ], - is_api_node=True, - ) - - @classmethod - async def execute( - cls, - prompt: str, - prompt_upsampling, - width: int, - height: int, - seed=0, - image_prompt=None, - # image_prompt_strength=0.1, - ) -> IO.NodeOutput: - image_prompt = image_prompt if image_prompt is None else tensor_to_base64_string(image_prompt) - initial_response = await sync_op( - cls, - ApiEndpoint( - path="/proxy/bfl/flux-pro-1.1/generate", - method="POST", - ), - response_model=BFLFluxProGenerateResponse, - data=BFLFluxProGenerateRequest( - prompt=prompt, - prompt_upsampling=prompt_upsampling, - width=width, - height=height, - seed=seed, - image_prompt=image_prompt, - ), - ) - response = await poll_op( - cls, - ApiEndpoint(initial_response.polling_url), - response_model=BFLFluxStatusResponse, - status_extractor=lambda r: r.status, - progress_extractor=lambda r: r.progress, - completed_statuses=[BFLStatus.ready], - failed_statuses=[ - BFLStatus.request_moderated, - BFLStatus.content_moderated, - BFLStatus.error, - BFLStatus.task_not_found, - ], - queued_statuses=[], - ) - return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) - - class FluxProExpandNode(IO.ComfyNode): """ Outpaints image based on prompt. @@ -640,16 +523,125 @@ class FluxProFillNode(IO.ComfyNode): return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) +class Flux2ProImageNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="Flux2ProImageNode", + display_name="Flux.2 [pro] Image", + category="api node/image/BFL", + description="Generates images synchronously based on prompt and resolution.", + inputs=[ + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="Prompt for the image generation or edit", + ), + IO.Int.Input( + "width", + default=1024, + min=256, + max=2048, + step=32, + ), + IO.Int.Input( + "height", + default=768, + min=256, + max=2048, + step=32, + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="The random seed used for creating the noise.", + ), + IO.Boolean.Input( + "prompt_upsampling", + default=False, + tooltip="Whether to perform upsampling on the prompt. " + "If active, automatically modifies the prompt for more creative generation, " + "but results are nondeterministic (same seed will not produce exactly the same result).", + ), + IO.Image.Input("images", optional=True, tooltip="Up to 4 images to be used as references."), + ], + outputs=[IO.Image.Output()], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + prompt: str, + width: int, + height: int, + seed: int, + prompt_upsampling: bool, + images: torch.Tensor | None = None, + ) -> IO.NodeOutput: + reference_images = {} + if images is not None: + if get_number_of_images(images) > 9: + raise ValueError("The current maximum number of supported images is 9.") + for image_index in range(images.shape[0]): + key_name = f"input_image_{image_index + 1}" if image_index else "input_image" + reference_images[key_name] = tensor_to_base64_string(images[image_index], total_pixels=2048 * 2048) + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/bfl/flux-2-pro/generate", method="POST"), + response_model=BFLFluxProGenerateResponse, + data=Flux2ProGenerateRequest( + prompt=prompt, + width=width, + height=height, + seed=seed, + prompt_upsampling=prompt_upsampling, + **reference_images, + ), + ) + + def price_extractor(_r: BaseModel) -> float | None: + return None if initial_response.cost is None else initial_response.cost / 100 + + response = await poll_op( + cls, + ApiEndpoint(initial_response.polling_url), + response_model=BFLFluxStatusResponse, + status_extractor=lambda r: r.status, + progress_extractor=lambda r: r.progress, + price_extractor=price_extractor, + completed_statuses=[BFLStatus.ready], + failed_statuses=[ + BFLStatus.request_moderated, + BFLStatus.content_moderated, + BFLStatus.error, + BFLStatus.task_not_found, + ], + queued_statuses=[], + ) + return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) + + class BFLExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ FluxProUltraImageNode, - # FluxProImageNode, FluxKontextProImageNode, FluxKontextMaxImageNode, FluxProExpandNode, FluxProFillNode, + Flux2ProImageNode, ] diff --git a/comfy_api_nodes/util/__init__.py b/comfy_api_nodes/util/__init__.py index 21013b591..80292fb3c 100644 --- a/comfy_api_nodes/util/__init__.py +++ b/comfy_api_nodes/util/__init__.py @@ -36,6 +36,7 @@ from .upload_helpers import ( upload_video_to_comfyapi, ) from .validation_utils import ( + get_image_dimensions, get_number_of_images, validate_aspect_ratio_string, validate_audio_duration, @@ -82,6 +83,7 @@ __all__ = [ "trim_video", "video_to_base64_string", # Validation utilities + "get_image_dimensions", "get_number_of_images", "validate_aspect_ratio_string", "validate_audio_duration", From af81cb962d9dd283ddb551962cc223b5a186a1ce Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 25 Nov 2025 08:40:32 -0800 Subject: [PATCH 037/271] Add Flux 2 support to README. (#10882) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 28beec427..b9300ab07 100644 --- a/README.md +++ b/README.md @@ -67,6 +67,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith - [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/) - [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/) - [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/) + - [Flux 2](https://comfyanonymous.github.io/ComfyUI_examples/flux2/) - Image Editing Models - [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/) - [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model) From 828b1b9953175b6df79459f417d1032869d0b46a Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 25 Nov 2025 12:40:58 -0500 Subject: [PATCH 038/271] ComfyUI version v0.3.72 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index b4655d553..dac038c26 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.3.71" +__version__ = "0.3.72" diff --git a/pyproject.toml b/pyproject.toml index 280dbaf53..75df8fb7c 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.3.71" +version = "0.3.72" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From dff996ca39d86265bbabf15e666484e051f0b3d5 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 25 Nov 2025 11:30:24 -0800 Subject: [PATCH 039/271] Fix crash. (#10885) --- comfy/text_encoders/flux.py | 1 + 1 file changed, 1 insertion(+) diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py index 8dbbca16e..024504a5b 100644 --- a/comfy/text_encoders/flux.py +++ b/comfy/text_encoders/flux.py @@ -87,6 +87,7 @@ def load_mistral_tokenizer(data): vocab = {} max_vocab = mistral_vocab["config"]["default_vocab_size"] + max_vocab -= len(mistral_vocab["special_tokens"]) for w in mistral_vocab["vocab"]: r = w["rank"] From 18b79acba95d44b4ea00bbbfc1856bc71bd58841 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Wed, 26 Nov 2025 03:58:21 +0800 Subject: [PATCH 040/271] Update workflow templates to v0.7.20 (#10883) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index b7014f956..5f20816d6 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.30.6 -comfyui-workflow-templates==0.7.9 +comfyui-workflow-templates==0.7.20 comfyui-embedded-docs==0.3.1 torch torchsde From d196a905bb379a6d800d0c13f9b4fdea3965311a Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 25 Nov 2025 11:58:39 -0800 Subject: [PATCH 041/271] Lower vram usage for flux 2 text encoder. (#10887) --- comfy/sd1_clip.py | 7 ++++--- comfy/text_encoders/flux.py | 4 ++-- comfy/text_encoders/llama.py | 12 +++++++++--- 3 files changed, 15 insertions(+), 8 deletions(-) diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index 8f509bab1..0fc9ab3db 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -90,7 +90,6 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False, return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32 super().__init__() - assert layer in self.LAYERS if textmodel_json_config is None: textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") @@ -164,7 +163,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): def set_clip_options(self, options): layer_idx = options.get("layer", self.layer_idx) self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) - if self.layer == "all": + if isinstance(self.layer, list) or self.layer == "all": pass elif layer_idx is None or abs(layer_idx) > self.num_layers: self.layer = "last" @@ -266,7 +265,9 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): if self.enable_attention_masks: attention_mask_model = attention_mask - if self.layer == "all": + if isinstance(self.layer, list): + intermediate_output = self.layer + elif self.layer == "all": intermediate_output = "all" else: intermediate_output = self.layer_idx diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py index 024504a5b..99f4812bb 100644 --- a/comfy/text_encoders/flux.py +++ b/comfy/text_encoders/flux.py @@ -138,7 +138,7 @@ class Flux2Tokenizer(sd1_clip.SD1Tokenizer): return tokens class Mistral3_24BModel(sd1_clip.SDClipModel): - def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}): + def __init__(self, device="cpu", layer=[10, 20, 30], layer_idx=None, dtype=None, attention_mask=True, model_options={}): textmodel_json_config = {} num_layers = model_options.get("num_layers", None) if num_layers is not None: @@ -154,7 +154,7 @@ class Flux2TEModel(sd1_clip.SD1ClipModel): def encode_token_weights(self, token_weight_pairs): out, pooled, extra = super().encode_token_weights(token_weight_pairs) - out = torch.stack((out[:, 10], out[:, 20], out[:, 30]), dim=1) + out = torch.stack((out[:, 0], out[:, 1], out[:, 2]), dim=1) out = out.movedim(1, 2) out = out.reshape(out.shape[0], out.shape[1], -1) return out, pooled, extra diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index 749ff581b..d47ed27bc 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -434,8 +434,12 @@ class Llama2_(nn.Module): intermediate = None all_intermediate = None + only_layers = None if intermediate_output is not None: - if intermediate_output == "all": + if isinstance(intermediate_output, list): + all_intermediate = [] + only_layers = set(intermediate_output) + elif intermediate_output == "all": all_intermediate = [] intermediate_output = None elif intermediate_output < 0: @@ -443,7 +447,8 @@ class Llama2_(nn.Module): for i, layer in enumerate(self.layers): if all_intermediate is not None: - all_intermediate.append(x.unsqueeze(1).clone()) + if only_layers is None or (i in only_layers): + all_intermediate.append(x.unsqueeze(1).clone()) x = layer( x=x, attention_mask=mask, @@ -457,7 +462,8 @@ class Llama2_(nn.Module): x = self.norm(x) if all_intermediate is not None: - all_intermediate.append(x.unsqueeze(1).clone()) + if only_layers is None or ((i + 1) in only_layers): + all_intermediate.append(x.unsqueeze(1).clone()) if all_intermediate is not None: intermediate = torch.cat(all_intermediate, dim=1) From 0c18842acbdf546883b08808dd9feea7605d7649 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 25 Nov 2025 14:59:37 -0500 Subject: [PATCH 042/271] ComfyUI v0.3.73 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index dac038c26..f8818838e 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.3.72" +__version__ = "0.3.73" diff --git a/pyproject.toml b/pyproject.toml index 75df8fb7c..7e4bac12d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.3.72" +version = "0.3.73" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From e9aae31fa241a6a63a368800146ea91629d4e8c2 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 25 Nov 2025 15:41:45 -0800 Subject: [PATCH 043/271] Z Image model. (#10892) --- comfy/ldm/lumina/model.py | 219 +++++++------------- comfy/ldm/modules/diffusionmodules/mmdit.py | 6 +- comfy/model_base.py | 4 + comfy/model_detection.py | 29 ++- comfy/sd.py | 8 + comfy/text_encoders/llama.py | 31 +++ comfy/text_encoders/z_image.py | 48 +++++ 7 files changed, 196 insertions(+), 149 deletions(-) create mode 100644 comfy/text_encoders/z_image.py diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index b4494a51d..c8643eb82 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -11,6 +11,7 @@ import comfy.ldm.common_dit from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder from comfy.ldm.modules.attention import optimized_attention_masked from comfy.ldm.flux.layers import EmbedND +from comfy.ldm.flux.math import apply_rope import comfy.patcher_extension @@ -31,6 +32,7 @@ class JointAttention(nn.Module): n_heads: int, n_kv_heads: Optional[int], qk_norm: bool, + out_bias: bool = False, operation_settings={}, ): """ @@ -59,7 +61,7 @@ class JointAttention(nn.Module): self.out = operation_settings.get("operations").Linear( n_heads * self.head_dim, dim, - bias=False, + bias=out_bias, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"), ) @@ -70,35 +72,6 @@ class JointAttention(nn.Module): else: self.q_norm = self.k_norm = nn.Identity() - @staticmethod - def apply_rotary_emb( - x_in: torch.Tensor, - freqs_cis: torch.Tensor, - ) -> torch.Tensor: - """ - Apply rotary embeddings to input tensors using the given frequency - tensor. - - This function applies rotary embeddings to the given query 'xq' and - key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The - input tensors are reshaped as complex numbers, and the frequency tensor - is reshaped for broadcasting compatibility. The resulting tensors - contain rotary embeddings and are returned as real tensors. - - Args: - x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings. - freqs_cis (torch.Tensor): Precomputed frequency tensor for complex - exponentials. - - Returns: - Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor - and key tensor with rotary embeddings. - """ - - t_ = x_in.reshape(*x_in.shape[:-1], -1, 1, 2) - t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1] - return t_out.reshape(*x_in.shape) - def forward( self, x: torch.Tensor, @@ -134,8 +107,7 @@ class JointAttention(nn.Module): xq = self.q_norm(xq) xk = self.k_norm(xk) - xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis) - xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis) + xq, xk = apply_rope(xq, xk, freqs_cis) n_rep = self.n_local_heads // self.n_local_kv_heads if n_rep >= 1: @@ -215,6 +187,8 @@ class JointTransformerBlock(nn.Module): norm_eps: float, qk_norm: bool, modulation=True, + z_image_modulation=False, + attn_out_bias=False, operation_settings={}, ) -> None: """ @@ -235,10 +209,10 @@ class JointTransformerBlock(nn.Module): super().__init__() self.dim = dim self.head_dim = dim // n_heads - self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, operation_settings=operation_settings) + self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, out_bias=attn_out_bias, operation_settings=operation_settings) self.feed_forward = FeedForward( dim=dim, - hidden_dim=4 * dim, + hidden_dim=dim, multiple_of=multiple_of, ffn_dim_multiplier=ffn_dim_multiplier, operation_settings=operation_settings, @@ -252,16 +226,27 @@ class JointTransformerBlock(nn.Module): self.modulation = modulation if modulation: - self.adaLN_modulation = nn.Sequential( - nn.SiLU(), - operation_settings.get("operations").Linear( - min(dim, 1024), - 4 * dim, - bias=True, - device=operation_settings.get("device"), - dtype=operation_settings.get("dtype"), - ), - ) + if z_image_modulation: + self.adaLN_modulation = nn.Sequential( + operation_settings.get("operations").Linear( + min(dim, 256), + 4 * dim, + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) + else: + self.adaLN_modulation = nn.Sequential( + nn.SiLU(), + operation_settings.get("operations").Linear( + min(dim, 1024), + 4 * dim, + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) def forward( self, @@ -323,7 +308,7 @@ class FinalLayer(nn.Module): The final layer of NextDiT. """ - def __init__(self, hidden_size, patch_size, out_channels, operation_settings={}): + def __init__(self, hidden_size, patch_size, out_channels, z_image_modulation=False, operation_settings={}): super().__init__() self.norm_final = operation_settings.get("operations").LayerNorm( hidden_size, @@ -340,10 +325,15 @@ class FinalLayer(nn.Module): dtype=operation_settings.get("dtype"), ) + if z_image_modulation: + min_mod = 256 + else: + min_mod = 1024 + self.adaLN_modulation = nn.Sequential( nn.SiLU(), operation_settings.get("operations").Linear( - min(hidden_size, 1024), + min(hidden_size, min_mod), hidden_size, bias=True, device=operation_settings.get("device"), @@ -373,12 +363,16 @@ class NextDiT(nn.Module): n_heads: int = 32, n_kv_heads: Optional[int] = None, multiple_of: int = 256, - ffn_dim_multiplier: Optional[float] = None, + ffn_dim_multiplier: float = 4.0, norm_eps: float = 1e-5, qk_norm: bool = False, cap_feat_dim: int = 5120, axes_dims: List[int] = (16, 56, 56), axes_lens: List[int] = (1, 512, 512), + rope_theta=10000.0, + z_image_modulation=False, + time_scale=1.0, + pad_tokens_multiple=None, image_model=None, device=None, dtype=None, @@ -390,6 +384,8 @@ class NextDiT(nn.Module): self.in_channels = in_channels self.out_channels = in_channels self.patch_size = patch_size + self.time_scale = time_scale + self.pad_tokens_multiple = pad_tokens_multiple self.x_embedder = operation_settings.get("operations").Linear( in_features=patch_size * patch_size * in_channels, @@ -411,6 +407,7 @@ class NextDiT(nn.Module): norm_eps, qk_norm, modulation=True, + z_image_modulation=z_image_modulation, operation_settings=operation_settings, ) for layer_id in range(n_refiner_layers) @@ -434,7 +431,7 @@ class NextDiT(nn.Module): ] ) - self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings) + self.t_embedder = TimestepEmbedder(min(dim, 1024), output_size=256 if z_image_modulation else None, **operation_settings) self.cap_embedder = nn.Sequential( operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear( @@ -457,18 +454,24 @@ class NextDiT(nn.Module): ffn_dim_multiplier, norm_eps, qk_norm, + z_image_modulation=z_image_modulation, + attn_out_bias=False, operation_settings=operation_settings, ) for layer_id in range(n_layers) ] ) self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) - self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings) + self.final_layer = FinalLayer(dim, patch_size, self.out_channels, z_image_modulation=z_image_modulation, operation_settings=operation_settings) + + if self.pad_tokens_multiple is not None: + self.x_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype)) + self.cap_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype)) assert (dim // n_heads) == sum(axes_dims) self.axes_dims = axes_dims self.axes_lens = axes_lens - self.rope_embedder = EmbedND(dim=dim // n_heads, theta=10000.0, axes_dim=axes_dims) + self.rope_embedder = EmbedND(dim=dim // n_heads, theta=rope_theta, axes_dim=axes_dims) self.dim = dim self.n_heads = n_heads @@ -503,108 +506,42 @@ class NextDiT(nn.Module): bsz = len(x) pH = pW = self.patch_size device = x[0].device - dtype = x[0].dtype - if cap_mask is not None: - l_effective_cap_len = cap_mask.sum(dim=1).tolist() - else: - l_effective_cap_len = [num_tokens] * bsz + if self.pad_tokens_multiple is not None: + pad_extra = (-cap_feats.shape[1]) % self.pad_tokens_multiple + cap_feats = torch.cat((cap_feats, self.cap_pad_token.to(device=cap_feats.device, dtype=cap_feats.dtype).unsqueeze(0).repeat(cap_feats.shape[0], pad_extra, 1)), dim=1) - if cap_mask is not None and not torch.is_floating_point(cap_mask): - cap_mask = (cap_mask - 1).to(dtype) * torch.finfo(dtype).max + cap_pos_ids = torch.zeros(bsz, cap_feats.shape[1], 3, dtype=torch.float32, device=device) + cap_pos_ids[:, :, 0] = torch.arange(cap_feats.shape[1], dtype=torch.float32, device=device) + 1.0 - img_sizes = [(img.size(1), img.size(2)) for img in x] - l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes] + B, C, H, W = x.shape + x = self.x_embedder(x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2)) - max_seq_len = max( - (cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len)) - ) - max_cap_len = max(l_effective_cap_len) - max_img_len = max(l_effective_img_len) + H_tokens, W_tokens = H // pH, W // pW + x_pos_ids = torch.zeros((bsz, x.shape[1], 3), dtype=torch.float32, device=device) + x_pos_ids[:, :, 0] = cap_feats.shape[1] + 1 + x_pos_ids[:, :, 1] = torch.arange(H_tokens, dtype=torch.float32, device=device).view(-1, 1).repeat(1, W_tokens).flatten() + x_pos_ids[:, :, 2] = torch.arange(W_tokens, dtype=torch.float32, device=device).view(1, -1).repeat(H_tokens, 1).flatten() - position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.float32, device=device) + if self.pad_tokens_multiple is not None: + pad_extra = (-x.shape[1]) % self.pad_tokens_multiple + x = torch.cat((x, self.x_pad_token.to(device=x.device, dtype=x.dtype).unsqueeze(0).repeat(x.shape[0], pad_extra, 1)), dim=1) + x_pos_ids = torch.nn.functional.pad(x_pos_ids, (0, 0, 0, pad_extra)) - for i in range(bsz): - cap_len = l_effective_cap_len[i] - img_len = l_effective_img_len[i] - H, W = img_sizes[i] - H_tokens, W_tokens = H // pH, W // pW - assert H_tokens * W_tokens == img_len - - rope_options = transformer_options.get("rope_options", None) - h_scale = 1.0 - w_scale = 1.0 - h_start = 0 - w_start = 0 - if rope_options is not None: - h_scale = rope_options.get("scale_y", 1.0) - w_scale = rope_options.get("scale_x", 1.0) - - h_start = rope_options.get("shift_y", 0.0) - w_start = rope_options.get("shift_x", 0.0) - - position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.float32, device=device) - position_ids[i, cap_len:cap_len+img_len, 0] = cap_len - row_ids = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten() - col_ids = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten() - position_ids[i, cap_len:cap_len+img_len, 1] = row_ids - position_ids[i, cap_len:cap_len+img_len, 2] = col_ids - - freqs_cis = self.rope_embedder(position_ids).movedim(1, 2).to(dtype) - - # build freqs_cis for cap and image individually - cap_freqs_cis_shape = list(freqs_cis.shape) - # cap_freqs_cis_shape[1] = max_cap_len - cap_freqs_cis_shape[1] = cap_feats.shape[1] - cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype) - - img_freqs_cis_shape = list(freqs_cis.shape) - img_freqs_cis_shape[1] = max_img_len - img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype) - - for i in range(bsz): - cap_len = l_effective_cap_len[i] - img_len = l_effective_img_len[i] - cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len] - img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len] + freqs_cis = self.rope_embedder(torch.cat((cap_pos_ids, x_pos_ids), dim=1)).movedim(1, 2) # refine context for layer in self.context_refiner: - cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options) + cap_feats = layer(cap_feats, cap_mask, freqs_cis[:, :cap_pos_ids.shape[1]], transformer_options=transformer_options) - # refine image - flat_x = [] - for i in range(bsz): - img = x[i] - C, H, W = img.size() - img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1) - flat_x.append(img) - x = flat_x - padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype) - padded_img_mask = torch.zeros(bsz, max_img_len, dtype=dtype, device=device) - for i in range(bsz): - padded_img_embed[i, :l_effective_img_len[i]] = x[i] - padded_img_mask[i, l_effective_img_len[i]:] = -torch.finfo(dtype).max - - padded_img_embed = self.x_embedder(padded_img_embed) - padded_img_mask = padded_img_mask.unsqueeze(1) + padded_img_mask = None for layer in self.noise_refiner: - padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t, transformer_options=transformer_options) - - if cap_mask is not None: - mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device) - mask[:, :max_cap_len] = cap_mask[:, :max_cap_len] - else: - mask = None - - padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype) - for i in range(bsz): - cap_len = l_effective_cap_len[i] - img_len = l_effective_img_len[i] - - padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len] - padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len] + x = layer(x, padded_img_mask, freqs_cis[:, cap_pos_ids.shape[1]:], t, transformer_options=transformer_options) + padded_full_embed = torch.cat((cap_feats, x), dim=1) + mask = None + img_sizes = [(H, W)] * bsz + l_effective_cap_len = [cap_feats.shape[1]] * bsz return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs): @@ -627,7 +564,7 @@ class NextDiT(nn.Module): y: (N,) tensor of text tokens/features """ - t = self.t_embedder(t, dtype=x.dtype) # (N, D) + t = self.t_embedder(t * self.time_scale, dtype=x.dtype) # (N, D) adaln_input = t cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute diff --git a/comfy/ldm/modules/diffusionmodules/mmdit.py b/comfy/ldm/modules/diffusionmodules/mmdit.py index 42f406f1a..0dc8fe789 100644 --- a/comfy/ldm/modules/diffusionmodules/mmdit.py +++ b/comfy/ldm/modules/diffusionmodules/mmdit.py @@ -211,12 +211,14 @@ class TimestepEmbedder(nn.Module): Embeds scalar timesteps into vector representations. """ - def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): + def __init__(self, hidden_size, frequency_embedding_size=256, output_size=None, dtype=None, device=None, operations=None): super().__init__() + if output_size is None: + output_size = hidden_size self.mlp = nn.Sequential( operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), nn.SiLU(), - operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), + operations.Linear(hidden_size, output_size, bias=True, dtype=dtype, device=device), ) self.frequency_embedding_size = frequency_embedding_size diff --git a/comfy/model_base.py b/comfy/model_base.py index cad79ecbd..cc21b1de9 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -1114,9 +1114,13 @@ class Lumina2(BaseModel): if torch.numel(attention_mask) != attention_mask.sum(): out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item())) + cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + if 'num_tokens' not in out: + out['num_tokens'] = comfy.conds.CONDConstant(cross_attn.shape[1]) + return out class WAN21(BaseModel): diff --git a/comfy/model_detection.py b/comfy/model_detection.py index b2ba1459d..7afe4a798 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -416,14 +416,31 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["image_model"] = "lumina2" dit_config["patch_size"] = 2 dit_config["in_channels"] = 16 - dit_config["dim"] = 2304 - dit_config["cap_feat_dim"] = state_dict['{}cap_embedder.1.weight'.format(key_prefix)].shape[1] + w = state_dict['{}cap_embedder.1.weight'.format(key_prefix)] + dit_config["dim"] = w.shape[0] + dit_config["cap_feat_dim"] = w.shape[1] dit_config["n_layers"] = count_blocks(state_dict_keys, '{}layers.'.format(key_prefix) + '{}.') - dit_config["n_heads"] = 24 - dit_config["n_kv_heads"] = 8 dit_config["qk_norm"] = True - dit_config["axes_dims"] = [32, 32, 32] - dit_config["axes_lens"] = [300, 512, 512] + + if dit_config["dim"] == 2304: # Original Lumina 2 + dit_config["n_heads"] = 24 + dit_config["n_kv_heads"] = 8 + dit_config["axes_dims"] = [32, 32, 32] + dit_config["axes_lens"] = [300, 512, 512] + dit_config["rope_theta"] = 10000.0 + dit_config["ffn_dim_multiplier"] = 4.0 + elif dit_config["dim"] == 3840: # Z image + dit_config["n_heads"] = 30 + dit_config["n_kv_heads"] = 30 + dit_config["axes_dims"] = [32, 48, 48] + dit_config["axes_lens"] = [1536, 512, 512] + dit_config["rope_theta"] = 256.0 + dit_config["ffn_dim_multiplier"] = (8.0 / 3.0) + dit_config["z_image_modulation"] = True + dit_config["time_scale"] = 1000.0 + if '{}cap_pad_token'.format(key_prefix) in state_dict_keys: + dit_config["pad_tokens_multiple"] = 32 + return dit_config if '{}head.modulation'.format(key_prefix) in state_dict_keys: # Wan 2.1 diff --git a/comfy/sd.py b/comfy/sd.py index 14dd8944c..350fae92b 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -52,6 +52,7 @@ import comfy.text_encoders.ace import comfy.text_encoders.omnigen2 import comfy.text_encoders.qwen_image import comfy.text_encoders.hunyuan_image +import comfy.text_encoders.z_image import comfy.model_patcher import comfy.lora @@ -953,6 +954,8 @@ class TEModel(Enum): GEMMA_3_4B = 13 MISTRAL3_24B = 14 MISTRAL3_24B_PRUNED_FLUX2 = 15 + QWEN3_4B = 16 + def detect_te_model(sd): if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: @@ -985,6 +988,8 @@ def detect_te_model(sd): if weight.shape[0] == 512: return TEModel.QWEN25_7B if "model.layers.0.post_attention_layernorm.weight" in sd: + if 'model.layers.0.self_attn.q_norm.weight' in sd: + return TEModel.QWEN3_4B weight = sd['model.layers.0.post_attention_layernorm.weight'] if weight.shape[0] == 5120: if "model.layers.39.post_attention_layernorm.weight" in sd: @@ -1110,6 +1115,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip clip_target.clip = comfy.text_encoders.flux.flux2_te(**llama_detect(clip_data), pruned=te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2) clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None) + elif te_model == TEModel.QWEN3_4B: + clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer else: # clip_l if clip_type == CLIPType.SD3: diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index d47ed27bc..cd4b5f76c 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -78,6 +78,28 @@ class Qwen25_3BConfig: rope_scale = None final_norm: bool = True +@dataclass +class Qwen3_4BConfig: + vocab_size: int = 151936 + hidden_size: int = 2560 + intermediate_size: int = 9728 + num_hidden_layers: int = 36 + num_attention_heads: int = 32 + num_key_value_heads: int = 8 + max_position_embeddings: int = 40960 + rms_norm_eps: float = 1e-6 + rope_theta: float = 1000000.0 + transformer_type: str = "llama" + head_dim = 128 + rms_norm_add = False + mlp_activation = "silu" + qkv_bias = False + rope_dims = None + q_norm = "gemma3" + k_norm = "gemma3" + rope_scale = None + final_norm: bool = True + @dataclass class Qwen25_7BVLI_Config: vocab_size: int = 152064 @@ -511,6 +533,15 @@ class Qwen25_3B(BaseLlama, torch.nn.Module): self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype +class Qwen3_4B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Qwen3_4BConfig(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.dtype = dtype + class Qwen25_7BVLI(BaseLlama, torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() diff --git a/comfy/text_encoders/z_image.py b/comfy/text_encoders/z_image.py new file mode 100644 index 000000000..bb9273b20 --- /dev/null +++ b/comfy/text_encoders/z_image.py @@ -0,0 +1,48 @@ +from transformers import Qwen2Tokenizer +import comfy.text_encoders.llama +from comfy import sd1_clip +import os + +class Qwen3Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data) + + +class ZImageTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_4b", tokenizer=Qwen3Tokenizer) + self.llama_template = "<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n" + + def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs): + if llama_template is None: + llama_text = self.llama_template.format(text) + else: + llama_text = llama_template.format(text) + + tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs) + return tokens + + +class Qwen3_4BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}): + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + + +class ZImageTEModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, name="qwen3_4b", clip_model=Qwen3_4BModel, model_options=model_options) + + +def te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None): + class ZImageTEModel_(ZImageTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + model_options = model_options.copy() + model_options["scaled_fp8"] = llama_scaled_fp8 + if dtype_llama is not None: + dtype = dtype_llama + if llama_quantization_metadata is not None: + model_options["quantization_metadata"] = llama_quantization_metadata + super().__init__(device=device, dtype=dtype, model_options=model_options) + return ZImageTEModel_ From 0e24dbb19f34f242edb77c550396cf6806f7b22f Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 25 Nov 2025 16:02:51 -0800 Subject: [PATCH 044/271] Adjustments to Z Image. (#10893) --- comfy/supported_models.py | 23 +++++++++++++++++++++-- 1 file changed, 21 insertions(+), 2 deletions(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 8fe8e63f6..af8120400 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -21,6 +21,7 @@ import comfy.text_encoders.ace import comfy.text_encoders.omnigen2 import comfy.text_encoders.qwen_image import comfy.text_encoders.hunyuan_image +import comfy.text_encoders.z_image from . import supported_models_base from . import latent_formats @@ -994,7 +995,7 @@ class Lumina2(supported_models_base.BASE): "shift": 6.0, } - memory_usage_factor = 1.2 + memory_usage_factor = 1.4 unet_extra_config = {} latent_format = latent_formats.Flux @@ -1013,6 +1014,24 @@ class Lumina2(supported_models_base.BASE): hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref)) return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect)) +class ZImage(Lumina2): + unet_config = { + "image_model": "lumina2", + "dim": 3840, + } + + sampling_settings = { + "multiplier": 1.0, + "shift": 3.0, + } + + memory_usage_factor = 1.7 + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.z_image.ZImageTokenizer, comfy.text_encoders.z_image.te(**hunyuan_detect)) + class WAN21_T2V(supported_models_base.BASE): unet_config = { "image_model": "wan2.1", @@ -1453,7 +1472,7 @@ class HunyuanVideo15_SR_Distilled(HunyuanVideo): hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect)) -models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2] +models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2] models += [SVD_img2vid] From bdb10a583f1b1e495ee00dbd1674f11016a6a93e Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 25 Nov 2025 21:07:58 -0800 Subject: [PATCH 045/271] Fix loras not working on mixed fp8. (#10899) --- comfy/model_patcher.py | 2 +- comfy/ops.py | 22 +++++++++++++++++++++- comfy/quant_ops.py | 21 ++++++++++++++------- comfy/weight_adapter/lora.py | 1 + 4 files changed, 37 insertions(+), 9 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 6551ced5a..73adc7f70 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -132,7 +132,7 @@ class LowVramPatch: def __call__(self, weight): intermediate_dtype = weight.dtype if self.convert_func is not None: - weight = self.convert_func(weight.to(dtype=torch.float32, copy=True), inplace=True) + weight = self.convert_func(weight, inplace=False) if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops intermediate_dtype = torch.float32 diff --git a/comfy/ops.py b/comfy/ops.py index 785aa1c9f..a0ff4e8f1 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -117,6 +117,8 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of if weight_has_function or weight.dtype != dtype: with wf_context: weight = weight.to(dtype=dtype) + if isinstance(weight, QuantizedTensor): + weight = weight.dequantize() for f in s.weight_function: weight = f(weight) @@ -502,7 +504,7 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype) return weight else: - return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype) + return weight.to(dtype=torch.float32) * self.scale_weight.to(device=weight.device, dtype=torch.float32) def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed) @@ -643,6 +645,24 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful not isinstance(input, QuantizedTensor)): input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype) return self._forward(input, self.weight, self.bias) + + def convert_weight(self, weight, inplace=False, **kwargs): + if isinstance(weight, QuantizedTensor): + return weight.dequantize() + else: + return weight + + def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): + if getattr(self, 'layout_type', None) is not None: + weight = QuantizedTensor.from_float(weight, self.layout_type, scale=None, dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True) + else: + weight = weight.to(self.weight.dtype) + if return_weight: + return weight + + assert inplace_update is False # TODO: eventually remove the inplace_update stuff + self.weight = torch.nn.Parameter(weight, requires_grad=False) + return MixedPrecisionOps def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None): diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index 0c16bcf8d..d2f3e7397 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -1,6 +1,7 @@ import torch import logging from typing import Tuple, Dict +import comfy.float _LAYOUT_REGISTRY = {} _GENERIC_UTILS = {} @@ -393,7 +394,7 @@ class TensorCoreFP8Layout(QuantizedLayout): - orig_dtype: Original dtype before quantization (for casting back) """ @classmethod - def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn): + def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn, stochastic_rounding=0, inplace_ops=False): orig_dtype = tensor.dtype if scale is None: @@ -403,17 +404,23 @@ class TensorCoreFP8Layout(QuantizedLayout): scale = torch.tensor(scale) scale = scale.to(device=tensor.device, dtype=torch.float32) - tensor_scaled = tensor * (1.0 / scale).to(tensor.dtype) - # TODO: uncomment this if it's actually needed because the clamp has a small performance penality' - lp_amax = torch.finfo(dtype).max - torch.clamp(tensor_scaled, min=-lp_amax, max=lp_amax, out=tensor_scaled) - qdata = tensor_scaled.to(dtype, memory_format=torch.contiguous_format) + if inplace_ops: + tensor *= (1.0 / scale).to(tensor.dtype) + else: + tensor = tensor * (1.0 / scale).to(tensor.dtype) + + if stochastic_rounding > 0: + tensor = comfy.float.stochastic_rounding(tensor, dtype=dtype, seed=stochastic_rounding) + else: + lp_amax = torch.finfo(dtype).max + torch.clamp(tensor, min=-lp_amax, max=lp_amax, out=tensor) + tensor = tensor.to(dtype, memory_format=torch.contiguous_format) layout_params = { 'scale': scale, 'orig_dtype': orig_dtype } - return qdata, layout_params + return tensor, layout_params @staticmethod def dequantize(qdata, scale, orig_dtype, **kwargs): diff --git a/comfy/weight_adapter/lora.py b/comfy/weight_adapter/lora.py index 4db004e50..3cc60bb1b 100644 --- a/comfy/weight_adapter/lora.py +++ b/comfy/weight_adapter/lora.py @@ -194,6 +194,7 @@ class LoRAAdapter(WeightAdapterBase): lora_diff = torch.mm( mat1.flatten(start_dim=1), mat2.flatten(start_dim=1) ).reshape(weight.shape) + del mat1, mat2 if dora_scale is not None: weight = weight_decompose( dora_scale, From 90b3995ec842335e44d70e0521ff6ff6c3ff9aaa Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 26 Nov 2025 00:34:15 -0500 Subject: [PATCH 046/271] ComfyUI v0.3.74 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index f8818838e..b565c7367 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.3.73" +__version__ = "0.3.74" diff --git a/pyproject.toml b/pyproject.toml index 7e4bac12d..ccf0fcdb9 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.3.73" +version = "0.3.74" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 58b85746618e2bc2dd32024c89403926aad59f48 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 25 Nov 2025 23:36:19 -0800 Subject: [PATCH 047/271] Fix Flux2 reference image mem estimation. (#10905) --- comfy/model_base.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/model_base.py b/comfy/model_base.py index cc21b1de9..9b76c285e 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -926,7 +926,7 @@ class Flux(BaseModel): out = {} ref_latents = kwargs.get("reference_latents", None) if ref_latents is not None: - out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16]) + out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()[2:]), ref_latents))]) return out class Flux2(Flux): From 8402c8700a29a97bc5d706d6a0b14c41bc2c2d8a Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 26 Nov 2025 02:41:13 -0500 Subject: [PATCH 048/271] ComfyUI version v0.3.75 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index b565c7367..fa4b4f4b0 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.3.74" +__version__ = "0.3.75" diff --git a/pyproject.toml b/pyproject.toml index ccf0fcdb9..9009e65fe 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.3.74" +version = "0.3.75" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From f16219e3aadcb7a301a1a313ab8989c3ebe53764 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 26 Nov 2025 01:00:43 -0800 Subject: [PATCH 049/271] Add cheap latent preview for flux 2. (#10907) Thank you to the person who calculated them. You saved me a percent of my time. --- comfy/latent_formats.py | 40 ++++++++++++++++++++++++++++++++++++++++ latent_preview.py | 7 +++++-- 2 files changed, 45 insertions(+), 2 deletions(-) diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index e98c7d6d8..8e110f45d 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -6,6 +6,7 @@ class LatentFormat: latent_dimensions = 2 latent_rgb_factors = None latent_rgb_factors_bias = None + latent_rgb_factors_reshape = None taesd_decoder_name = None def process_in(self, latent): @@ -181,6 +182,45 @@ class Flux(SD3): class Flux2(LatentFormat): latent_channels = 128 + def __init__(self): + self.latent_rgb_factors =[ + [0.0058, 0.0113, 0.0073], + [0.0495, 0.0443, 0.0836], + [-0.0099, 0.0096, 0.0644], + [0.2144, 0.3009, 0.3652], + [0.0166, -0.0039, -0.0054], + [0.0157, 0.0103, -0.0160], + [-0.0398, 0.0902, -0.0235], + [-0.0052, 0.0095, 0.0109], + [-0.3527, -0.2712, -0.1666], + [-0.0301, -0.0356, -0.0180], + [-0.0107, 0.0078, 0.0013], + [0.0746, 0.0090, -0.0941], + [0.0156, 0.0169, 0.0070], + [-0.0034, -0.0040, -0.0114], + [0.0032, 0.0181, 0.0080], + [-0.0939, -0.0008, 0.0186], + [0.0018, 0.0043, 0.0104], + [0.0284, 0.0056, -0.0127], + [-0.0024, -0.0022, -0.0030], + [0.1207, -0.0026, 0.0065], + [0.0128, 0.0101, 0.0142], + [0.0137, -0.0072, -0.0007], + [0.0095, 0.0092, -0.0059], + [0.0000, -0.0077, -0.0049], + [-0.0465, -0.0204, -0.0312], + [0.0095, 0.0012, -0.0066], + [0.0290, -0.0034, 0.0025], + [0.0220, 0.0169, -0.0048], + [-0.0332, -0.0457, -0.0468], + [-0.0085, 0.0389, 0.0609], + [-0.0076, 0.0003, -0.0043], + [-0.0111, -0.0460, -0.0614], + ] + + self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851] + self.latent_rgb_factors_reshape = lambda t: t.reshape(t.shape[0], 32, 2, 2, t.shape[-2], t.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(t.shape[0], 32, t.shape[-2] * 2, t.shape[-1] * 2) + def process_in(self, latent): return latent diff --git a/latent_preview.py b/latent_preview.py index 95d3cb733..ddf6dcf49 100644 --- a/latent_preview.py +++ b/latent_preview.py @@ -37,13 +37,16 @@ class TAESDPreviewerImpl(LatentPreviewer): class Latent2RGBPreviewer(LatentPreviewer): - def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None): + def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None, latent_rgb_factors_reshape=None): self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu").transpose(0, 1) self.latent_rgb_factors_bias = None if latent_rgb_factors_bias is not None: self.latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device="cpu") + self.latent_rgb_factors_reshape = latent_rgb_factors_reshape def decode_latent_to_preview(self, x0): + if self.latent_rgb_factors_reshape is not None: + x0 = self.latent_rgb_factors_reshape(x0) self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device) if self.latent_rgb_factors_bias is not None: self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device) @@ -85,7 +88,7 @@ def get_previewer(device, latent_format): if previewer is None: if latent_format.latent_rgb_factors is not None: - previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias) + previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias, latent_format.latent_rgb_factors_reshape) return previewer def prepare_callback(model, steps, x0_output_dict=None): From 8938aa3f3064415758fa8f3a628476535a676183 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 26 Nov 2025 19:14:02 +0200 Subject: [PATCH 050/271] add Veo3 First-Last-Frame node (#10878) --- comfy_api_nodes/apis/veo_api.py | 38 +++----- comfy_api_nodes/nodes_veo2.py | 155 ++++++++++++++++++++++++++++++++ 2 files changed, 168 insertions(+), 25 deletions(-) diff --git a/comfy_api_nodes/apis/veo_api.py b/comfy_api_nodes/apis/veo_api.py index a55137afb..8328d1aa4 100644 --- a/comfy_api_nodes/apis/veo_api.py +++ b/comfy_api_nodes/apis/veo_api.py @@ -1,34 +1,21 @@ -from typing import Optional, Union -from enum import Enum +from typing import Optional from pydantic import BaseModel, Field -class Image2(BaseModel): - bytesBase64Encoded: str - gcsUri: Optional[str] = None - mimeType: Optional[str] = None +class VeoRequestInstanceImage(BaseModel): + bytesBase64Encoded: str | None = Field(None) + gcsUri: str | None = Field(None) + mimeType: str | None = Field(None) -class Image3(BaseModel): - bytesBase64Encoded: Optional[str] = None - gcsUri: str - mimeType: Optional[str] = None - - -class Instance1(BaseModel): - image: Optional[Union[Image2, Image3]] = Field( - None, description='Optional image to guide video generation' - ) +class VeoRequestInstance(BaseModel): + image: VeoRequestInstanceImage | None = Field(None) + lastFrame: VeoRequestInstanceImage | None = Field(None) prompt: str = Field(..., description='Text description of the video') -class PersonGeneration1(str, Enum): - ALLOW = 'ALLOW' - BLOCK = 'BLOCK' - - -class Parameters1(BaseModel): +class VeoRequestParameters(BaseModel): aspectRatio: Optional[str] = Field(None, examples=['16:9']) durationSeconds: Optional[int] = None enhancePrompt: Optional[bool] = None @@ -37,17 +24,18 @@ class Parameters1(BaseModel): description='Generate audio for the video. Only supported by veo 3 models.', ) negativePrompt: Optional[str] = None - personGeneration: Optional[PersonGeneration1] = None + personGeneration: str | None = Field(None, description="ALLOW or BLOCK") sampleCount: Optional[int] = None seed: Optional[int] = None storageUri: Optional[str] = Field( None, description='Optional Cloud Storage URI to upload the video' ) + resolution: str | None = Field(None) class VeoGenVidRequest(BaseModel): - instances: Optional[list[Instance1]] = None - parameters: Optional[Parameters1] = None + instances: list[VeoRequestInstance] | None = Field(None) + parameters: VeoRequestParameters | None = Field(None) class VeoGenVidResponse(BaseModel): diff --git a/comfy_api_nodes/nodes_veo2.py b/comfy_api_nodes/nodes_veo2.py index d37e9e9b4..a54dc13ab 100644 --- a/comfy_api_nodes/nodes_veo2.py +++ b/comfy_api_nodes/nodes_veo2.py @@ -1,6 +1,7 @@ import base64 from io import BytesIO +import torch from typing_extensions import override from comfy_api.input_impl.video_types import VideoFromFile @@ -10,6 +11,9 @@ from comfy_api_nodes.apis.veo_api import ( VeoGenVidPollResponse, VeoGenVidRequest, VeoGenVidResponse, + VeoRequestInstance, + VeoRequestInstanceImage, + VeoRequestParameters, ) from comfy_api_nodes.util import ( ApiEndpoint, @@ -346,12 +350,163 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode): ) +class Veo3FirstLastFrameNode(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="Veo3FirstLastFrameNode", + display_name="Google Veo 3 First-Last-Frame to Video", + category="api node/video/Veo", + description="Generate video using prompt and first and last frames.", + inputs=[ + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="Text description of the video", + ), + IO.String.Input( + "negative_prompt", + multiline=True, + default="", + tooltip="Negative text prompt to guide what to avoid in the video", + ), + IO.Combo.Input("resolution", options=["720p", "1080p"]), + IO.Combo.Input( + "aspect_ratio", + options=["16:9", "9:16"], + default="16:9", + tooltip="Aspect ratio of the output video", + ), + IO.Int.Input( + "duration", + default=8, + min=4, + max=8, + step=2, + display_mode=IO.NumberDisplay.slider, + tooltip="Duration of the output video in seconds", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFF, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed for video generation", + ), + IO.Image.Input("first_frame", tooltip="Start frame"), + IO.Image.Input("last_frame", tooltip="End frame"), + IO.Combo.Input( + "model", + options=["veo-3.1-generate", "veo-3.1-fast-generate"], + default="veo-3.1-fast-generate", + ), + IO.Boolean.Input( + "generate_audio", + default=True, + tooltip="Generate audio for the video.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + prompt: str, + negative_prompt: str, + resolution: str, + aspect_ratio: str, + duration: int, + seed: int, + first_frame: torch.Tensor, + last_frame: torch.Tensor, + model: str, + generate_audio: bool, + ): + model = MODELS_MAP[model] + initial_response = await sync_op( + cls, + ApiEndpoint(path=f"/proxy/veo/{model}/generate", method="POST"), + response_model=VeoGenVidResponse, + data=VeoGenVidRequest( + instances=[ + VeoRequestInstance( + prompt=prompt, + image=VeoRequestInstanceImage( + bytesBase64Encoded=tensor_to_base64_string(first_frame), mimeType="image/png" + ), + lastFrame=VeoRequestInstanceImage( + bytesBase64Encoded=tensor_to_base64_string(last_frame), mimeType="image/png" + ), + ), + ], + parameters=VeoRequestParameters( + aspectRatio=aspect_ratio, + personGeneration="ALLOW", + durationSeconds=duration, + enhancePrompt=True, # cannot be False for Veo3 + seed=seed, + generateAudio=generate_audio, + negativePrompt=negative_prompt, + resolution=resolution, + ), + ), + ) + poll_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/veo/{model}/poll", method="POST"), + response_model=VeoGenVidPollResponse, + status_extractor=lambda r: "completed" if r.done else "pending", + data=VeoGenVidPollRequest( + operationName=initial_response.name, + ), + poll_interval=5.0, + estimated_duration=AVERAGE_DURATION_VIDEO_GEN, + ) + + if poll_response.error: + raise Exception(f"Veo API error: {poll_response.error.message} (code: {poll_response.error.code})") + + response = poll_response.response + filtered_count = response.raiMediaFilteredCount + if filtered_count: + reasons = response.raiMediaFilteredReasons or [] + reason_part = f": {reasons[0]}" if reasons else "" + raise Exception( + f"Content blocked by Google's Responsible AI filters{reason_part} " + f"({filtered_count} video{'s' if filtered_count != 1 else ''} filtered)." + ) + + if response.videos: + video = response.videos[0] + if video.bytesBase64Encoded: + return IO.NodeOutput(VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded)))) + if video.gcsUri: + return IO.NodeOutput(await download_url_to_video_output(video.gcsUri)) + raise Exception("Video returned but no data or URL was provided") + raise Exception("Video generation completed but no video was returned") + + class VeoExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ VeoVideoGenerationNode, Veo3VideoGenerationNode, + Veo3FirstLastFrameNode, ] From 1105e0d139001ad602d0f883406bfce41e54ae67 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 26 Nov 2025 19:23:14 +0200 Subject: [PATCH 051/271] improve UX for batch uploads in upload_images_to_comfyapi (#10913) --- comfy_api_nodes/util/upload_helpers.py | 43 +++++++++++++------------- 1 file changed, 22 insertions(+), 21 deletions(-) diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index 632450d9b..b9019841f 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -4,7 +4,7 @@ import logging import time import uuid from io import BytesIO -from typing import Optional, Union +from typing import Optional from urllib.parse import urlparse import aiohttp @@ -48,8 +48,9 @@ async def upload_images_to_comfyapi( image: torch.Tensor, *, max_images: int = 8, - mime_type: Optional[str] = None, - wait_label: Optional[str] = "Uploading", + mime_type: str | None = None, + wait_label: str | None = "Uploading", + show_batch_index: bool = True, ) -> list[str]: """ Uploads images to ComfyUI API and returns download URLs. @@ -59,11 +60,18 @@ async def upload_images_to_comfyapi( download_urls: list[str] = [] is_batch = len(image.shape) > 3 batch_len = image.shape[0] if is_batch else 1 + num_to_upload = min(batch_len, max_images) + batch_start_ts = time.monotonic() - for idx in range(min(batch_len, max_images)): + for idx in range(num_to_upload): tensor = image[idx] if is_batch else image img_io = tensor_to_bytesio(tensor, mime_type=mime_type) - url = await upload_file_to_comfyapi(cls, img_io, img_io.name, mime_type, wait_label) + + effective_label = wait_label + if wait_label and show_batch_index and num_to_upload > 1: + effective_label = f"{wait_label} ({idx + 1}/{num_to_upload})" + + url = await upload_file_to_comfyapi(cls, img_io, img_io.name, mime_type, effective_label, batch_start_ts) download_urls.append(url) return download_urls @@ -126,8 +134,9 @@ async def upload_file_to_comfyapi( cls: type[IO.ComfyNode], file_bytes_io: BytesIO, filename: str, - upload_mime_type: Optional[str], - wait_label: Optional[str] = "Uploading", + upload_mime_type: str | None, + wait_label: str | None = "Uploading", + progress_origin_ts: float | None = None, ) -> str: """Uploads a single file to ComfyUI API and returns its download URL.""" if upload_mime_type is None: @@ -148,6 +157,7 @@ async def upload_file_to_comfyapi( file_bytes_io, content_type=upload_mime_type, wait_label=wait_label, + progress_origin_ts=progress_origin_ts, ) return create_resp.download_url @@ -155,27 +165,18 @@ async def upload_file_to_comfyapi( async def upload_file( cls: type[IO.ComfyNode], upload_url: str, - file: Union[BytesIO, str], + file: BytesIO | str, *, - content_type: Optional[str] = None, + content_type: str | None = None, max_retries: int = 3, retry_delay: float = 1.0, retry_backoff: float = 2.0, - wait_label: Optional[str] = None, + wait_label: str | None = None, + progress_origin_ts: float | None = None, ) -> None: """ Upload a file to a signed URL (e.g., S3 pre-signed PUT) with retries, Comfy progress display, and interruption. - Args: - cls: Node class (provides auth context + UI progress hooks). - upload_url: Pre-signed PUT URL. - file: BytesIO or path string. - content_type: Explicit MIME type. If None, we *suppress* Content-Type. - max_retries: Maximum retry attempts. - retry_delay: Initial delay in seconds. - retry_backoff: Exponential backoff factor. - wait_label: Progress label shown in Comfy UI. - Raises: ProcessingInterrupted, LocalNetworkError, ApiServerError, Exception """ @@ -198,7 +199,7 @@ async def upload_file( attempt = 0 delay = retry_delay - start_ts = time.monotonic() + start_ts = progress_origin_ts if progress_origin_ts is not None else time.monotonic() op_uuid = uuid.uuid4().hex[:8] while True: attempt += 1 From 8908ee262862f1252d1363d55c59872fb3361066 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 26 Nov 2025 20:38:30 +0200 Subject: [PATCH 052/271] fix(gemini): use first 10 images as fileData (URLs) and remaining images as inline base64 (#10918) --- comfy_api_nodes/apis/gemini_api.py | 6 ++++ comfy_api_nodes/nodes_gemini.py | 55 ++++++++++++++++++++---------- 2 files changed, 43 insertions(+), 18 deletions(-) diff --git a/comfy_api_nodes/apis/gemini_api.py b/comfy_api_nodes/apis/gemini_api.py index d34590d28..a380ecc86 100644 --- a/comfy_api_nodes/apis/gemini_api.py +++ b/comfy_api_nodes/apis/gemini_api.py @@ -58,8 +58,14 @@ class GeminiInlineData(BaseModel): mimeType: GeminiMimeType | None = Field(None) +class GeminiFileData(BaseModel): + fileUri: str | None = Field(None) + mimeType: GeminiMimeType | None = Field(None) + + class GeminiPart(BaseModel): inlineData: GeminiInlineData | None = Field(None) + fileData: GeminiFileData | None = Field(None) text: str | None = Field(None) diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index 938a20f84..976d9c225 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -20,6 +20,7 @@ from comfy_api.latest import IO, ComfyExtension, Input from comfy_api.util import VideoCodec, VideoContainer from comfy_api_nodes.apis.gemini_api import ( GeminiContent, + GeminiFileData, GeminiGenerateContentRequest, GeminiGenerateContentResponse, GeminiImageConfig, @@ -38,6 +39,7 @@ from comfy_api_nodes.util import ( get_number_of_images, sync_op, tensor_to_base64_string, + upload_images_to_comfyapi, validate_string, video_to_base64_string, ) @@ -68,24 +70,43 @@ class GeminiImageModel(str, Enum): gemini_2_5_flash_image = "gemini-2.5-flash-image" -def create_image_parts(image_input: torch.Tensor) -> list[GeminiPart]: - """ - Convert image tensor input to Gemini API compatible parts. - - Args: - image_input: Batch of image tensors from ComfyUI. - - Returns: - List of GeminiPart objects containing the encoded images. - """ +async def create_image_parts( + cls: type[IO.ComfyNode], + images: torch.Tensor, + image_limit: int = 0, +) -> list[GeminiPart]: image_parts: list[GeminiPart] = [] - for image_index in range(image_input.shape[0]): - image_as_b64 = tensor_to_base64_string(image_input[image_index].unsqueeze(0)) + if image_limit < 0: + raise ValueError("image_limit must be greater than or equal to 0 when creating Gemini image parts.") + total_images = get_number_of_images(images) + if total_images <= 0: + raise ValueError("No images provided to create_image_parts; at least one image is required.") + + # If image_limit == 0 --> use all images; otherwise clamp to image_limit. + effective_max = total_images if image_limit == 0 else min(total_images, image_limit) + + # Number of images we'll send as URLs (fileData) + num_url_images = min(effective_max, 10) # Vertex API max number of image links + reference_images_urls = await upload_images_to_comfyapi( + cls, + images, + max_images=num_url_images, + ) + for reference_image_url in reference_images_urls: + image_parts.append( + GeminiPart( + fileData=GeminiFileData( + mimeType=GeminiMimeType.image_png, + fileUri=reference_image_url, + ) + ) + ) + for idx in range(num_url_images, effective_max): image_parts.append( GeminiPart( inlineData=GeminiInlineData( mimeType=GeminiMimeType.image_png, - data=image_as_b64, + data=tensor_to_base64_string(images[idx]), ) ) ) @@ -338,8 +359,7 @@ class GeminiNode(IO.ComfyNode): # Add other modal parts if images is not None: - image_parts = create_image_parts(images) - parts.extend(image_parts) + parts.extend(await create_image_parts(cls, images)) if audio is not None: parts.extend(cls.create_audio_parts(audio)) if video is not None: @@ -562,8 +582,7 @@ class GeminiImage(IO.ComfyNode): image_config = GeminiImageConfig(aspectRatio=aspect_ratio) if images is not None: - image_parts = create_image_parts(images) - parts.extend(image_parts) + parts.extend(await create_image_parts(cls, images)) if files is not None: parts.extend(files) @@ -702,7 +721,7 @@ class GeminiImage2(IO.ComfyNode): if images is not None: if get_number_of_images(images) > 14: raise ValueError("The current maximum number of supported images is 14.") - parts.extend(create_image_parts(images)) + parts.extend(await create_image_parts(cls, images)) if files is not None: parts.extend(files) From 234c3dc85f7e61a537bbf6d8999c5880c5e0b746 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Wed, 26 Nov 2025 11:58:08 -0800 Subject: [PATCH 053/271] Bump frontend to 1.32.9 (#10867) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 5f20816d6..9291552d3 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.30.6 +comfyui-frontend-package==1.32.9 comfyui-workflow-templates==0.7.20 comfyui-embedded-docs==0.3.1 torch From 58c6ed541d5aaf6d9b12f63bc23c33164e1cf7a3 Mon Sep 17 00:00:00 2001 From: Terry Jia Date: Wed, 26 Nov 2025 14:58:27 -0500 Subject: [PATCH 054/271] Merge 3d animation node (#10025) --- comfy_extras/nodes_load_3d.py | 110 +++++++--------------------------- 1 file changed, 23 insertions(+), 87 deletions(-) diff --git a/comfy_extras/nodes_load_3d.py b/comfy_extras/nodes_load_3d.py index 899608149..54c66ef68 100644 --- a/comfy_extras/nodes_load_3d.py +++ b/comfy_extras/nodes_load_3d.py @@ -7,6 +7,10 @@ from comfy_api.input_impl import VideoFromFile from pathlib import Path +from PIL import Image +import numpy as np + +import uuid def normalize_path(path): return path.replace('\\', '/') @@ -34,58 +38,6 @@ class Load3D(): "height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), }} - RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "IMAGE", "LOAD3D_CAMERA", IO.VIDEO) - RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "lineart", "camera_info", "recording_video") - - FUNCTION = "process" - EXPERIMENTAL = True - - CATEGORY = "3d" - - def process(self, model_file, image, **kwargs): - image_path = folder_paths.get_annotated_filepath(image['image']) - mask_path = folder_paths.get_annotated_filepath(image['mask']) - normal_path = folder_paths.get_annotated_filepath(image['normal']) - lineart_path = folder_paths.get_annotated_filepath(image['lineart']) - - load_image_node = nodes.LoadImage() - output_image, ignore_mask = load_image_node.load_image(image=image_path) - ignore_image, output_mask = load_image_node.load_image(image=mask_path) - normal_image, ignore_mask2 = load_image_node.load_image(image=normal_path) - lineart_image, ignore_mask3 = load_image_node.load_image(image=lineart_path) - - video = None - - if image['recording'] != "": - recording_video_path = folder_paths.get_annotated_filepath(image['recording']) - - video = VideoFromFile(recording_video_path) - - return output_image, output_mask, model_file, normal_image, lineart_image, image['camera_info'], video - -class Load3DAnimation(): - @classmethod - def INPUT_TYPES(s): - input_dir = os.path.join(folder_paths.get_input_directory(), "3d") - - os.makedirs(input_dir, exist_ok=True) - - input_path = Path(input_dir) - base_path = Path(folder_paths.get_input_directory()) - - files = [ - normalize_path(str(file_path.relative_to(base_path))) - for file_path in input_path.rglob("*") - if file_path.suffix.lower() in {'.gltf', '.glb', '.fbx'} - ] - - return {"required": { - "model_file": (sorted(files), {"file_upload": True}), - "image": ("LOAD_3D_ANIMATION", {}), - "width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), - "height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), - }} - RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "LOAD3D_CAMERA", IO.VIDEO) RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "camera_info", "recording_video") @@ -120,7 +72,8 @@ class Preview3D(): "model_file": ("STRING", {"default": "", "multiline": False}), }, "optional": { - "camera_info": ("LOAD3D_CAMERA", {}) + "camera_info": ("LOAD3D_CAMERA", {}), + "bg_image": ("IMAGE", {}) }} OUTPUT_NODE = True @@ -133,50 +86,33 @@ class Preview3D(): def process(self, model_file, **kwargs): camera_info = kwargs.get("camera_info", None) + bg_image = kwargs.get("bg_image", None) + + bg_image_path = None + if bg_image is not None: + + img_array = (bg_image[0].cpu().numpy() * 255).astype(np.uint8) + img = Image.fromarray(img_array) + + temp_dir = folder_paths.get_temp_directory() + filename = f"bg_{uuid.uuid4().hex}.png" + bg_image_path = os.path.join(temp_dir, filename) + img.save(bg_image_path, compress_level=1) + + bg_image_path = f"temp/{filename}" return { "ui": { - "result": [model_file, camera_info] - } - } - -class Preview3DAnimation(): - @classmethod - def INPUT_TYPES(s): - return {"required": { - "model_file": ("STRING", {"default": "", "multiline": False}), - }, - "optional": { - "camera_info": ("LOAD3D_CAMERA", {}) - }} - - OUTPUT_NODE = True - RETURN_TYPES = () - - CATEGORY = "3d" - - FUNCTION = "process" - EXPERIMENTAL = True - - def process(self, model_file, **kwargs): - camera_info = kwargs.get("camera_info", None) - - return { - "ui": { - "result": [model_file, camera_info] + "result": [model_file, camera_info, bg_image_path] } } NODE_CLASS_MAPPINGS = { "Load3D": Load3D, - "Load3DAnimation": Load3DAnimation, "Preview3D": Preview3D, - "Preview3DAnimation": Preview3DAnimation } NODE_DISPLAY_NAME_MAPPINGS = { - "Load3D": "Load 3D", - "Load3DAnimation": "Load 3D - Animation", - "Preview3D": "Preview 3D", - "Preview3DAnimation": "Preview 3D - Animation" + "Load3D": "Load 3D & Animation", + "Preview3D": "Preview 3D & Animation", } From 55f654db3ddaf5a10ac6dbe79774c23c350d279d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 26 Nov 2025 12:16:40 -0800 Subject: [PATCH 055/271] Fix the CSP offline feature. (#10923) --- server.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/server.py b/server.py index 0fd2e49e3..fca5050bd 100644 --- a/server.py +++ b/server.py @@ -174,7 +174,7 @@ def create_block_external_middleware(): else: response = await handler(request) - response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self'; frame-src 'self'; object-src 'self';" + response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self'; frame-src 'self'; object-src 'self';" return response return block_external_middleware From dd41b745497cdbbafb0bd745f590726b0e41f9f3 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 26 Nov 2025 12:36:38 -0800 Subject: [PATCH 056/271] Add Z Image to readme. (#10924) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index b9300ab07..91fb510e1 100644 --- a/README.md +++ b/README.md @@ -68,6 +68,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith - [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/) - [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/) - [Flux 2](https://comfyanonymous.github.io/ComfyUI_examples/flux2/) + - [Z Image](https://comfyanonymous.github.io/ComfyUI_examples/z_image/) - Image Editing Models - [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/) - [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model) From d8433c63fdacef24f40da401b02ebba272bf1fbb Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Thu, 27 Nov 2025 00:42:01 +0200 Subject: [PATCH 057/271] chore(api-nodes): remove chat widgets from OpenAI/Gemini nodes (#10861) --- comfy_api_nodes/nodes_gemini.py | 77 +-------------------------------- comfy_api_nodes/nodes_openai.py | 46 ++++---------------- 2 files changed, 11 insertions(+), 112 deletions(-) diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index 976d9c225..08f7b0f64 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -4,10 +4,7 @@ See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/infer """ import base64 -import json import os -import time -import uuid from enum import Enum from io import BytesIO from typing import Literal @@ -43,7 +40,6 @@ from comfy_api_nodes.util import ( validate_string, video_to_base64_string, ) -from server import PromptServer GEMINI_BASE_ENDPOINT = "/proxy/vertexai/gemini" GEMINI_MAX_INPUT_FILE_SIZE = 20 * 1024 * 1024 # 20 MB @@ -384,29 +380,6 @@ class GeminiNode(IO.ComfyNode): ) output_text = get_text_from_response(response) - if output_text: - # Not a true chat history like the OpenAI Chat node. It is emulated so the frontend can show a copy button. - render_spec = { - "node_id": cls.hidden.unique_id, - "component": "ChatHistoryWidget", - "props": { - "history": json.dumps( - [ - { - "prompt": prompt, - "response": output_text, - "response_id": str(uuid.uuid4()), - "timestamp": time.time(), - } - ] - ), - }, - } - PromptServer.instance.send_sync( - "display_component", - render_spec, - ) - return IO.NodeOutput(output_text or "Empty response from Gemini model...") @@ -601,30 +574,7 @@ class GeminiImage(IO.ComfyNode): response_model=GeminiGenerateContentResponse, price_extractor=calculate_tokens_price, ) - - output_text = get_text_from_response(response) - if output_text: - render_spec = { - "node_id": cls.hidden.unique_id, - "component": "ChatHistoryWidget", - "props": { - "history": json.dumps( - [ - { - "prompt": prompt, - "response": output_text, - "response_id": str(uuid.uuid4()), - "timestamp": time.time(), - } - ] - ), - }, - } - PromptServer.instance.send_sync( - "display_component", - render_spec, - ) - return IO.NodeOutput(get_image_from_response(response), output_text) + return IO.NodeOutput(get_image_from_response(response), get_text_from_response(response)) class GeminiImage2(IO.ComfyNode): @@ -744,30 +694,7 @@ class GeminiImage2(IO.ComfyNode): response_model=GeminiGenerateContentResponse, price_extractor=calculate_tokens_price, ) - - output_text = get_text_from_response(response) - if output_text: - render_spec = { - "node_id": cls.hidden.unique_id, - "component": "ChatHistoryWidget", - "props": { - "history": json.dumps( - [ - { - "prompt": prompt, - "response": output_text, - "response_id": str(uuid.uuid4()), - "timestamp": time.time(), - } - ] - ), - }, - } - PromptServer.instance.send_sync( - "display_component", - render_spec, - ) - return IO.NodeOutput(get_image_from_response(response), output_text) + return IO.NodeOutput(get_image_from_response(response), get_text_from_response(response)) class GeminiExtension(ComfyExtension): diff --git a/comfy_api_nodes/nodes_openai.py b/comfy_api_nodes/nodes_openai.py index acf35d276..c8da5464b 100644 --- a/comfy_api_nodes/nodes_openai.py +++ b/comfy_api_nodes/nodes_openai.py @@ -1,15 +1,10 @@ from io import BytesIO -from typing import Optional, Union -import json import os -import time -import uuid from enum import Enum from inspect import cleandoc import numpy as np import torch from PIL import Image -from server import PromptServer import folder_paths import base64 from comfy_api.latest import IO, ComfyExtension @@ -587,11 +582,11 @@ class OpenAIChatNode(IO.ComfyNode): def create_input_message_contents( cls, prompt: str, - image: Optional[torch.Tensor] = None, - files: Optional[list[InputFileContent]] = None, + image: torch.Tensor | None = None, + files: list[InputFileContent] | None = None, ) -> InputMessageContentList: """Create a list of input message contents from prompt and optional image.""" - content_list: list[Union[InputContent, InputTextContent, InputImageContent, InputFileContent]] = [ + content_list: list[InputContent | InputTextContent | InputImageContent | InputFileContent] = [ InputTextContent(text=prompt, type="input_text"), ] if image is not None: @@ -617,9 +612,9 @@ class OpenAIChatNode(IO.ComfyNode): prompt: str, persist_context: bool = False, model: SupportedOpenAIModel = SupportedOpenAIModel.gpt_5.value, - images: Optional[torch.Tensor] = None, - files: Optional[list[InputFileContent]] = None, - advanced_options: Optional[CreateModelResponseProperties] = None, + images: torch.Tensor | None = None, + files: list[InputFileContent] | None = None, + advanced_options: CreateModelResponseProperties | None = None, ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) @@ -660,30 +655,7 @@ class OpenAIChatNode(IO.ComfyNode): status_extractor=lambda response: response.status, completed_statuses=["incomplete", "completed"] ) - output_text = cls.get_text_from_message_content(cls.get_message_content_from_response(result_response)) - - # Update history - render_spec = { - "node_id": cls.hidden.unique_id, - "component": "ChatHistoryWidget", - "props": { - "history": json.dumps( - [ - { - "prompt": prompt, - "response": output_text, - "response_id": str(uuid.uuid4()), - "timestamp": time.time(), - } - ] - ), - }, - } - PromptServer.instance.send_sync( - "display_component", - render_spec, - ) - return IO.NodeOutput(output_text) + return IO.NodeOutput(cls.get_text_from_message_content(cls.get_message_content_from_response(result_response))) class OpenAIInputFiles(IO.ComfyNode): @@ -790,8 +762,8 @@ class OpenAIChatConfig(IO.ComfyNode): def execute( cls, truncation: bool, - instructions: Optional[str] = None, - max_output_tokens: Optional[int] = None, + instructions: str | None = None, + max_output_tokens: int | None = None, ) -> IO.NodeOutput: """ Configure advanced options for the OpenAI Chat Node. From a2d60aad0f8e03657d501842460123f6eaaf6791 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Thu, 27 Nov 2025 00:55:31 +0200 Subject: [PATCH 058/271] convert nodes_customer_sampler.py to V3 schema (#10206) --- comfy_extras/nodes_custom_sampler.py | 1182 ++++++++++++++------------ 1 file changed, 633 insertions(+), 549 deletions(-) diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index d011f433b..fbb080886 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -3,272 +3,312 @@ import comfy.samplers import comfy.sample from comfy.k_diffusion import sampling as k_diffusion_sampling from comfy.k_diffusion import sa_solver -from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict import latent_preview import torch import comfy.utils import node_helpers +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io -class BasicScheduler: +class BasicScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "scheduler": (comfy.samplers.SCHEDULER_NAMES, ), - "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="BasicScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Model.Input("model"), + io.Combo.Input("scheduler", options=comfy.samplers.SCHEDULER_NAMES), + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, model, scheduler, steps, denoise): + @classmethod + def execute(cls, model, scheduler, steps, denoise) -> io.NodeOutput: total_steps = steps if denoise < 1.0: if denoise <= 0.0: - return (torch.FloatTensor([]),) + return io.NodeOutput(torch.FloatTensor([])) total_steps = int(steps/denoise) sigmas = comfy.samplers.calculate_sigmas(model.get_model_object("model_sampling"), scheduler, total_steps).cpu() sigmas = sigmas[-(steps + 1):] - return (sigmas, ) + return io.NodeOutput(sigmas) + + get_sigmas = execute -class KarrasScheduler: +class KarrasScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="KarrasScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("rho", default=7.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, steps, sigma_max, sigma_min, rho): + @classmethod + def execute(cls, steps, sigma_max, sigma_min, rho) -> io.NodeOutput: sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho) - return (sigmas, ) + return io.NodeOutput(sigmas) -class ExponentialScheduler: + get_sigmas = execute + +class ExponentialScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="ExponentialScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, steps, sigma_max, sigma_min): + @classmethod + def execute(cls, steps, sigma_max, sigma_min) -> io.NodeOutput: sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max) - return (sigmas, ) + return io.NodeOutput(sigmas) -class PolyexponentialScheduler: + get_sigmas = execute + +class PolyexponentialScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="PolyexponentialScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("rho", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, steps, sigma_max, sigma_min, rho): + @classmethod + def execute(cls, steps, sigma_max, sigma_min, rho) -> io.NodeOutput: sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho) - return (sigmas, ) + return io.NodeOutput(sigmas) -class LaplaceScheduler: + get_sigmas = execute + +class LaplaceScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "mu": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step":0.1, "round": False}), - "beta": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step":0.1, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="LaplaceScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("mu", default=0.0, min=-10.0, max=10.0, step=0.1, round=False), + io.Float.Input("beta", default=0.5, min=0.0, max=10.0, step=0.1, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, steps, sigma_max, sigma_min, mu, beta): + @classmethod + def execute(cls, steps, sigma_max, sigma_min, mu, beta) -> io.NodeOutput: sigmas = k_diffusion_sampling.get_sigmas_laplace(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, mu=mu, beta=beta) - return (sigmas, ) + return io.NodeOutput(sigmas) + + get_sigmas = execute -class SDTurboScheduler: +class SDTurboScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "steps": ("INT", {"default": 1, "min": 1, "max": 10}), - "denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="SDTurboScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Model.Input("model"), + io.Int.Input("steps", default=1, min=1, max=10), + io.Float.Input("denoise", default=1.0, min=0, max=1.0, step=0.01), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, model, steps, denoise): + @classmethod + def execute(cls, model, steps, denoise) -> io.NodeOutput: start_step = 10 - int(10 * denoise) timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps] sigmas = model.get_model_object("model_sampling").sigma(timesteps) sigmas = torch.cat([sigmas, sigmas.new_zeros([1])]) - return (sigmas, ) + return io.NodeOutput(sigmas) -class BetaSamplingScheduler: + get_sigmas = execute + +class BetaSamplingScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "alpha": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 50.0, "step":0.01, "round": False}), - "beta": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 50.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="BetaSamplingScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Model.Input("model"), + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("alpha", default=0.6, min=0.0, max=50.0, step=0.01, round=False), + io.Float.Input("beta", default=0.6, min=0.0, max=50.0, step=0.01, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, model, steps, alpha, beta): + @classmethod + def execute(cls, model, steps, alpha, beta) -> io.NodeOutput: sigmas = comfy.samplers.beta_scheduler(model.get_model_object("model_sampling"), steps, alpha=alpha, beta=beta) - return (sigmas, ) + return io.NodeOutput(sigmas) -class VPScheduler: + get_sigmas = execute + +class VPScheduler(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), - "beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), #TODO: fix default values - "beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), - "eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/schedulers" + def define_schema(cls): + return io.Schema( + node_id="VPScheduler", + category="sampling/custom_sampling/schedulers", + inputs=[ + io.Int.Input("steps", default=20, min=1, max=10000), + io.Float.Input("beta_d", default=19.9, min=0.0, max=5000.0, step=0.01, round=False), #TODO: fix default values + io.Float.Input("beta_min", default=0.1, min=0.0, max=5000.0, step=0.01, round=False), + io.Float.Input("eps_s", default=0.001, min=0.0, max=1.0, step=0.0001, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, steps, beta_d, beta_min, eps_s): + @classmethod + def execute(cls, steps, beta_d, beta_min, eps_s) -> io.NodeOutput: sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s) - return (sigmas, ) + return io.NodeOutput(sigmas) -class SplitSigmas: + get_sigmas = execute + +class SplitSigmas(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sigmas": ("SIGMAS", ), - "step": ("INT", {"default": 0, "min": 0, "max": 10000}), - } - } - RETURN_TYPES = ("SIGMAS","SIGMAS") - RETURN_NAMES = ("high_sigmas", "low_sigmas") - CATEGORY = "sampling/custom_sampling/sigmas" + def define_schema(cls): + return io.Schema( + node_id="SplitSigmas", + category="sampling/custom_sampling/sigmas", + inputs=[ + io.Sigmas.Input("sigmas"), + io.Int.Input("step", default=0, min=0, max=10000), + ], + outputs=[ + io.Sigmas.Output(display_name="high_sigmas"), + io.Sigmas.Output(display_name="low_sigmas"), + ] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, sigmas, step): + @classmethod + def execute(cls, sigmas, step) -> io.NodeOutput: sigmas1 = sigmas[:step + 1] sigmas2 = sigmas[step:] - return (sigmas1, sigmas2) + return io.NodeOutput(sigmas1, sigmas2) -class SplitSigmasDenoise: + get_sigmas = execute + +class SplitSigmasDenoise(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sigmas": ("SIGMAS", ), - "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), - } - } - RETURN_TYPES = ("SIGMAS","SIGMAS") - RETURN_NAMES = ("high_sigmas", "low_sigmas") - CATEGORY = "sampling/custom_sampling/sigmas" + def define_schema(cls): + return io.Schema( + node_id="SplitSigmasDenoise", + category="sampling/custom_sampling/sigmas", + inputs=[ + io.Sigmas.Input("sigmas"), + io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01), + ], + outputs=[ + io.Sigmas.Output(display_name="high_sigmas"), + io.Sigmas.Output(display_name="low_sigmas"), + ] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, sigmas, denoise): + @classmethod + def execute(cls, sigmas, denoise) -> io.NodeOutput: steps = max(sigmas.shape[-1] - 1, 0) total_steps = round(steps * denoise) sigmas1 = sigmas[:-(total_steps)] sigmas2 = sigmas[-(total_steps + 1):] - return (sigmas1, sigmas2) + return io.NodeOutput(sigmas1, sigmas2) -class FlipSigmas: + get_sigmas = execute + +class FlipSigmas(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sigmas": ("SIGMAS", ), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/sigmas" + def define_schema(cls): + return io.Schema( + node_id="FlipSigmas", + category="sampling/custom_sampling/sigmas", + inputs=[io.Sigmas.Input("sigmas")], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "get_sigmas" - - def get_sigmas(self, sigmas): + @classmethod + def execute(cls, sigmas) -> io.NodeOutput: if len(sigmas) == 0: - return (sigmas,) + return io.NodeOutput(sigmas) sigmas = sigmas.flip(0) if sigmas[0] == 0: sigmas[0] = 0.0001 - return (sigmas,) + return io.NodeOutput(sigmas) -class SetFirstSigma: + get_sigmas = execute + +class SetFirstSigma(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sigmas": ("SIGMAS", ), - "sigma": ("FLOAT", {"default": 136.0, "min": 0.0, "max": 20000.0, "step": 0.001, "round": False}), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/sigmas" + def define_schema(cls): + return io.Schema( + node_id="SetFirstSigma", + category="sampling/custom_sampling/sigmas", + inputs=[ + io.Sigmas.Input("sigmas"), + io.Float.Input("sigma", default=136.0, min=0.0, max=20000.0, step=0.001, round=False), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "set_first_sigma" - - def set_first_sigma(self, sigmas, sigma): + @classmethod + def execute(cls, sigmas, sigma) -> io.NodeOutput: sigmas = sigmas.clone() sigmas[0] = sigma - return (sigmas, ) + return io.NodeOutput(sigmas) -class ExtendIntermediateSigmas: + set_first_sigma = execute + +class ExtendIntermediateSigmas(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sigmas": ("SIGMAS", ), - "steps": ("INT", {"default": 2, "min": 1, "max": 100}), - "start_at_sigma": ("FLOAT", {"default": -1.0, "min": -1.0, "max": 20000.0, "step": 0.01, "round": False}), - "end_at_sigma": ("FLOAT", {"default": 12.0, "min": 0.0, "max": 20000.0, "step": 0.01, "round": False}), - "spacing": (['linear', 'cosine', 'sine'],), - } - } - RETURN_TYPES = ("SIGMAS",) - CATEGORY = "sampling/custom_sampling/sigmas" + def define_schema(cls): + return io.Schema( + node_id="ExtendIntermediateSigmas", + category="sampling/custom_sampling/sigmas", + inputs=[ + io.Sigmas.Input("sigmas"), + io.Int.Input("steps", default=2, min=1, max=100), + io.Float.Input("start_at_sigma", default=-1.0, min=-1.0, max=20000.0, step=0.01, round=False), + io.Float.Input("end_at_sigma", default=12.0, min=0.0, max=20000.0, step=0.01, round=False), + io.Combo.Input("spacing", options=['linear', 'cosine', 'sine']), + ], + outputs=[io.Sigmas.Output()] + ) - FUNCTION = "extend" - - def extend(self, sigmas: torch.Tensor, steps: int, start_at_sigma: float, end_at_sigma: float, spacing: str): + @classmethod + def execute(cls, sigmas: torch.Tensor, steps: int, start_at_sigma: float, end_at_sigma: float, spacing: str) -> io.NodeOutput: if start_at_sigma < 0: start_at_sigma = float("inf") @@ -299,27 +339,27 @@ class ExtendIntermediateSigmas: extended_sigmas = torch.FloatTensor(extended_sigmas) - return (extended_sigmas,) + return io.NodeOutput(extended_sigmas) + + extend = execute -class SamplingPercentToSigma: +class SamplingPercentToSigma(io.ComfyNode): @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "model": (IO.MODEL, {}), - "sampling_percent": (IO.FLOAT, {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.0001}), - "return_actual_sigma": (IO.BOOLEAN, {"default": False, "tooltip": "Return the actual sigma value instead of the value used for interval checks.\nThis only affects results at 0.0 and 1.0."}), - } - } + def define_schema(cls): + return io.Schema( + node_id="SamplingPercentToSigma", + category="sampling/custom_sampling/sigmas", + inputs=[ + io.Model.Input("model"), + io.Float.Input("sampling_percent", default=0.0, min=0.0, max=1.0, step=0.0001), + io.Boolean.Input("return_actual_sigma", default=False, tooltip="Return the actual sigma value instead of the value used for interval checks.\nThis only affects results at 0.0 and 1.0."), + ], + outputs=[io.Float.Output(display_name="sigma_value")] + ) - RETURN_TYPES = (IO.FLOAT,) - RETURN_NAMES = ("sigma_value",) - CATEGORY = "sampling/custom_sampling/sigmas" - - FUNCTION = "get_sigma" - - def get_sigma(self, model, sampling_percent, return_actual_sigma): + @classmethod + def execute(cls, model, sampling_percent, return_actual_sigma) -> io.NodeOutput: model_sampling = model.get_model_object("model_sampling") sigma_val = model_sampling.percent_to_sigma(sampling_percent) if return_actual_sigma: @@ -327,212 +367,234 @@ class SamplingPercentToSigma: sigma_val = model_sampling.sigma_max.item() elif sampling_percent == 1.0: sigma_val = model_sampling.sigma_min.item() - return (sigma_val,) + return io.NodeOutput(sigma_val) + + get_sigma = execute -class KSamplerSelect: +class KSamplerSelect(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"sampler_name": (comfy.samplers.SAMPLER_NAMES, ), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="KSamplerSelect", + category="sampling/custom_sampling/samplers", + inputs=[io.Combo.Input("sampler_name", options=comfy.samplers.SAMPLER_NAMES)], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, sampler_name): + @classmethod + def execute(cls, sampler_name) -> io.NodeOutput: sampler = comfy.samplers.sampler_object(sampler_name) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerDPMPP_3M_SDE: + get_sampler = execute + +class SamplerDPMPP_3M_SDE(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "noise_device": (['gpu', 'cpu'], ), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerDPMPP_3M_SDE", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Combo.Input("noise_device", options=['gpu', 'cpu']), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, eta, s_noise, noise_device): + @classmethod + def execute(cls, eta, s_noise, noise_device) -> io.NodeOutput: if noise_device == 'cpu': sampler_name = "dpmpp_3m_sde" else: sampler_name = "dpmpp_3m_sde_gpu" sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerDPMPP_2M_SDE: + get_sampler = execute + +class SamplerDPMPP_2M_SDE(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"solver_type": (['midpoint', 'heun'], ), - "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "noise_device": (['gpu', 'cpu'], ), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerDPMPP_2M_SDE", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Combo.Input("solver_type", options=['midpoint', 'heun']), + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Combo.Input("noise_device", options=['gpu', 'cpu']), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, solver_type, eta, s_noise, noise_device): + @classmethod + def execute(cls, solver_type, eta, s_noise, noise_device) -> io.NodeOutput: if noise_device == 'cpu': sampler_name = "dpmpp_2m_sde" else: sampler_name = "dpmpp_2m_sde_gpu" sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type}) - return (sampler, ) + return io.NodeOutput(sampler) + + get_sampler = execute -class SamplerDPMPP_SDE: +class SamplerDPMPP_SDE(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "noise_device": (['gpu', 'cpu'], ), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerDPMPP_SDE", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("r", default=0.5, min=0.0, max=100.0, step=0.01, round=False), + io.Combo.Input("noise_device", options=['gpu', 'cpu']), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, eta, s_noise, r, noise_device): + @classmethod + def execute(cls, eta, s_noise, r, noise_device) -> io.NodeOutput: if noise_device == 'cpu': sampler_name = "dpmpp_sde" else: sampler_name = "dpmpp_sde_gpu" sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerDPMPP_2S_Ancestral: + get_sampler = execute + +class SamplerDPMPP_2S_Ancestral(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerDPMPP_2S_Ancestral", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, eta, s_noise): + @classmethod + def execute(cls, eta, s_noise) -> io.NodeOutput: sampler = comfy.samplers.ksampler("dpmpp_2s_ancestral", {"eta": eta, "s_noise": s_noise}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerEulerAncestral: + get_sampler = execute + +class SamplerEulerAncestral(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerEulerAncestral", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, eta, s_noise): + @classmethod + def execute(cls, eta, s_noise) -> io.NodeOutput: sampler = comfy.samplers.ksampler("euler_ancestral", {"eta": eta, "s_noise": s_noise}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerEulerAncestralCFGPP: + get_sampler = execute + +class SamplerEulerAncestralCFGPP(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step":0.01, "round": False}), - }} - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerEulerAncestralCFGPP", + display_name="SamplerEulerAncestralCFG++", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Float.Input("eta", default=1.0, min=0.0, max=1.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=10.0, step=0.01, round=False), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, eta, s_noise): + @classmethod + def execute(cls, eta, s_noise) -> io.NodeOutput: sampler = comfy.samplers.ksampler( "euler_ancestral_cfg_pp", {"eta": eta, "s_noise": s_noise}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerLMS: + get_sampler = execute + +class SamplerLMS(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"order": ("INT", {"default": 4, "min": 1, "max": 100}), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerLMS", + category="sampling/custom_sampling/samplers", + inputs=[io.Int.Input("order", default=4, min=1, max=100)], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, order): + @classmethod + def execute(cls, order) -> io.NodeOutput: sampler = comfy.samplers.ksampler("lms", {"order": order}) - return (sampler, ) + return io.NodeOutput(sampler) -class SamplerDPMAdaptative: + get_sampler = execute + +class SamplerDPMAdaptative(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"order": ("INT", {"default": 3, "min": 2, "max": 3}), - "rtol": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "atol": ("FLOAT", {"default": 0.0078, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "h_init": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "pcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "icoeff": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "dcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "accept_safety": ("FLOAT", {"default": 0.81, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "eta": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - "s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), - } - } - RETURN_TYPES = ("SAMPLER",) - CATEGORY = "sampling/custom_sampling/samplers" + def define_schema(cls): + return io.Schema( + node_id="SamplerDPMAdaptative", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Int.Input("order", default=3, min=2, max=3), + io.Float.Input("rtol", default=0.05, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("atol", default=0.0078, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("h_init", default=0.05, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("pcoeff", default=0.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("icoeff", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("dcoeff", default=0.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("accept_safety", default=0.81, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("eta", default=0.0, min=0.0, max=100.0, step=0.01, round=False), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sampler.Output()] + ) - FUNCTION = "get_sampler" - - def get_sampler(self, order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise): + @classmethod + def execute(cls, order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise) -> io.NodeOutput: sampler = comfy.samplers.ksampler("dpm_adaptive", {"order": order, "rtol": rtol, "atol": atol, "h_init": h_init, "pcoeff": pcoeff, "icoeff": icoeff, "dcoeff": dcoeff, "accept_safety": accept_safety, "eta": eta, "s_noise":s_noise }) - return (sampler, ) + return io.NodeOutput(sampler) + + get_sampler = execute -class SamplerER_SDE(ComfyNodeABC): +class SamplerER_SDE(io.ComfyNode): @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "solver_type": (IO.COMBO, {"options": ["ER-SDE", "Reverse-time SDE", "ODE"]}), - "max_stage": (IO.INT, {"default": 3, "min": 1, "max": 3}), - "eta": ( - IO.FLOAT, - {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": False, "tooltip": "Stochastic strength of reverse-time SDE.\nWhen eta=0, it reduces to deterministic ODE. This setting doesn't apply to ER-SDE solver type."}, - ), - "s_noise": (IO.FLOAT, {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": False}), - } - } + def define_schema(cls): + return io.Schema( + node_id="SamplerER_SDE", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Combo.Input("solver_type", options=["ER-SDE", "Reverse-time SDE", "ODE"]), + io.Int.Input("max_stage", default=3, min=1, max=3), + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="Stochastic strength of reverse-time SDE.\nWhen eta=0, it reduces to deterministic ODE. This setting doesn't apply to ER-SDE solver type."), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + ], + outputs=[io.Sampler.Output()] + ) - RETURN_TYPES = (IO.SAMPLER,) - CATEGORY = "sampling/custom_sampling/samplers" - - FUNCTION = "get_sampler" - - def get_sampler(self, solver_type, max_stage, eta, s_noise): + @classmethod + def execute(cls, solver_type, max_stage, eta, s_noise) -> io.NodeOutput: if solver_type == "ODE" or (solver_type == "Reverse-time SDE" and eta == 0): eta = 0 s_noise = 0 @@ -548,32 +610,33 @@ class SamplerER_SDE(ComfyNodeABC): sampler_name = "er_sde" sampler = comfy.samplers.ksampler(sampler_name, {"s_noise": s_noise, "noise_scaler": noise_scaler, "max_stage": max_stage}) - return (sampler,) + return io.NodeOutput(sampler) + + get_sampler = execute -class SamplerSASolver(ComfyNodeABC): +class SamplerSASolver(io.ComfyNode): @classmethod - def INPUT_TYPES(cls) -> InputTypeDict: - return { - "required": { - "model": (IO.MODEL, {}), - "eta": (IO.FLOAT, {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, "round": False},), - "sde_start_percent": (IO.FLOAT, {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001},), - "sde_end_percent": (IO.FLOAT, {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.001},), - "s_noise": (IO.FLOAT, {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": False},), - "predictor_order": (IO.INT, {"default": 3, "min": 1, "max": 6}), - "corrector_order": (IO.INT, {"default": 4, "min": 0, "max": 6}), - "use_pece": (IO.BOOLEAN, {}), - "simple_order_2": (IO.BOOLEAN, {}), - } - } + def define_schema(cls): + return io.Schema( + node_id="SamplerSASolver", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Model.Input("model"), + io.Float.Input("eta", default=1.0, min=0.0, max=10.0, step=0.01, round=False), + io.Float.Input("sde_start_percent", default=0.2, min=0.0, max=1.0, step=0.001), + io.Float.Input("sde_end_percent", default=0.8, min=0.0, max=1.0, step=0.001), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False), + io.Int.Input("predictor_order", default=3, min=1, max=6), + io.Int.Input("corrector_order", default=4, min=0, max=6), + io.Boolean.Input("use_pece"), + io.Boolean.Input("simple_order_2"), + ], + outputs=[io.Sampler.Output()] + ) - RETURN_TYPES = (IO.SAMPLER,) - CATEGORY = "sampling/custom_sampling/samplers" - - FUNCTION = "get_sampler" - - def get_sampler(self, model, eta, sde_start_percent, sde_end_percent, s_noise, predictor_order, corrector_order, use_pece, simple_order_2): + @classmethod + def execute(cls, model, eta, sde_start_percent, sde_end_percent, s_noise, predictor_order, corrector_order, use_pece, simple_order_2) -> io.NodeOutput: model_sampling = model.get_model_object("model_sampling") start_sigma = model_sampling.percent_to_sigma(sde_start_percent) end_sigma = model_sampling.percent_to_sigma(sde_end_percent) @@ -591,7 +654,9 @@ class SamplerSASolver(ComfyNodeABC): "simple_order_2": simple_order_2, }, ) - return (sampler,) + return io.NodeOutput(sampler) + + get_sampler = execute class Noise_EmptyNoise: @@ -612,30 +677,31 @@ class Noise_RandomNoise: batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None return comfy.sample.prepare_noise(latent_image, self.seed, batch_inds) -class SamplerCustom: +class SamplerCustom(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "add_noise": ("BOOLEAN", {"default": True}), - "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True}), - "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), - "positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "sampler": ("SAMPLER", ), - "sigmas": ("SIGMAS", ), - "latent_image": ("LATENT", ), - } - } + def define_schema(cls): + return io.Schema( + node_id="SamplerCustom", + category="sampling/custom_sampling", + inputs=[ + io.Model.Input("model"), + io.Boolean.Input("add_noise", default=True), + io.Int.Input("noise_seed", default=0, min=0, max=0xffffffffffffffff, control_after_generate=True), + io.Float.Input("cfg", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01), + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Sampler.Input("sampler"), + io.Sigmas.Input("sigmas"), + io.Latent.Input("latent_image"), + ], + outputs=[ + io.Latent.Output(display_name="output"), + io.Latent.Output(display_name="denoised_output"), + ] + ) - RETURN_TYPES = ("LATENT","LATENT") - RETURN_NAMES = ("output", "denoised_output") - - FUNCTION = "sample" - - CATEGORY = "sampling/custom_sampling" - - def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image): + @classmethod + def execute(cls, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image) -> io.NodeOutput: latent = latent_image latent_image = latent["samples"] latent = latent.copy() @@ -664,52 +730,58 @@ class SamplerCustom: out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu()) else: out_denoised = out - return (out, out_denoised) + return io.NodeOutput(out, out_denoised) + + sample = execute class Guider_Basic(comfy.samplers.CFGGuider): def set_conds(self, positive): self.inner_set_conds({"positive": positive}) -class BasicGuider: +class BasicGuider(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "conditioning": ("CONDITIONING", ), - } - } + def define_schema(cls): + return io.Schema( + node_id="BasicGuider", + category="sampling/custom_sampling/guiders", + inputs=[ + io.Model.Input("model"), + io.Conditioning.Input("conditioning"), + ], + outputs=[io.Guider.Output()] + ) - RETURN_TYPES = ("GUIDER",) - - FUNCTION = "get_guider" - CATEGORY = "sampling/custom_sampling/guiders" - - def get_guider(self, model, conditioning): + @classmethod + def execute(cls, model, conditioning) -> io.NodeOutput: guider = Guider_Basic(model) guider.set_conds(conditioning) - return (guider,) + return io.NodeOutput(guider) -class CFGGuider: + get_guider = execute + +class CFGGuider(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), - } - } + def define_schema(cls): + return io.Schema( + node_id="CFGGuider", + category="sampling/custom_sampling/guiders", + inputs=[ + io.Model.Input("model"), + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Float.Input("cfg", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01), + ], + outputs=[io.Guider.Output()] + ) - RETURN_TYPES = ("GUIDER",) - - FUNCTION = "get_guider" - CATEGORY = "sampling/custom_sampling/guiders" - - def get_guider(self, model, positive, negative, cfg): + @classmethod + def execute(cls, model, positive, negative, cfg) -> io.NodeOutput: guider = comfy.samplers.CFGGuider(model) guider.set_conds(positive, negative) guider.set_cfg(cfg) - return (guider,) + return io.NodeOutput(guider) + + get_guider = execute class Guider_DualCFG(comfy.samplers.CFGGuider): def set_cfg(self, cfg1, cfg2, nested=False): @@ -740,84 +812,88 @@ class Guider_DualCFG(comfy.samplers.CFGGuider): out = comfy.samplers.calc_cond_batch(self.inner_model, [negative_cond, middle_cond, positive_cond], x, timestep, model_options) return comfy.samplers.cfg_function(self.inner_model, out[1], out[0], self.cfg2, x, timestep, model_options=model_options, cond=middle_cond, uncond=negative_cond) + (out[2] - out[1]) * self.cfg1 -class DualCFGGuider: +class DualCFGGuider(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "cond1": ("CONDITIONING", ), - "cond2": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "cfg_conds": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), - "cfg_cond2_negative": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), - "style": (["regular", "nested"],), - } - } + def define_schema(cls): + return io.Schema( + node_id="DualCFGGuider", + category="sampling/custom_sampling/guiders", + inputs=[ + io.Model.Input("model"), + io.Conditioning.Input("cond1"), + io.Conditioning.Input("cond2"), + io.Conditioning.Input("negative"), + io.Float.Input("cfg_conds", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01), + io.Float.Input("cfg_cond2_negative", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01), + io.Combo.Input("style", options=["regular", "nested"]), + ], + outputs=[io.Guider.Output()] + ) - RETURN_TYPES = ("GUIDER",) - - FUNCTION = "get_guider" - CATEGORY = "sampling/custom_sampling/guiders" - - def get_guider(self, model, cond1, cond2, negative, cfg_conds, cfg_cond2_negative, style): + @classmethod + def execute(cls, model, cond1, cond2, negative, cfg_conds, cfg_cond2_negative, style) -> io.NodeOutput: guider = Guider_DualCFG(model) guider.set_conds(cond1, cond2, negative) guider.set_cfg(cfg_conds, cfg_cond2_negative, nested=(style == "nested")) - return (guider,) + return io.NodeOutput(guider) -class DisableNoise: + get_guider = execute + +class DisableNoise(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required":{ - } - } + def define_schema(cls): + return io.Schema( + node_id="DisableNoise", + category="sampling/custom_sampling/noise", + inputs=[], + outputs=[io.Noise.Output()] + ) - RETURN_TYPES = ("NOISE",) - FUNCTION = "get_noise" - CATEGORY = "sampling/custom_sampling/noise" - - def get_noise(self): - return (Noise_EmptyNoise(),) - - -class RandomNoise(DisableNoise): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "noise_seed": ("INT", { - "default": 0, - "min": 0, - "max": 0xffffffffffffffff, - "control_after_generate": True, - }), - } - } + def execute(cls) -> io.NodeOutput: + return io.NodeOutput(Noise_EmptyNoise()) - def get_noise(self, noise_seed): - return (Noise_RandomNoise(noise_seed),) + get_noise = execute -class SamplerCustomAdvanced: +class RandomNoise(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"noise": ("NOISE", ), - "guider": ("GUIDER", ), - "sampler": ("SAMPLER", ), - "sigmas": ("SIGMAS", ), - "latent_image": ("LATENT", ), - } - } + def define_schema(cls): + return io.Schema( + node_id="RandomNoise", + category="sampling/custom_sampling/noise", + inputs=[io.Int.Input("noise_seed", default=0, min=0, max=0xffffffffffffffff, control_after_generate=True)], + outputs=[io.Noise.Output()] + ) - RETURN_TYPES = ("LATENT","LATENT") - RETURN_NAMES = ("output", "denoised_output") + @classmethod + def execute(cls, noise_seed) -> io.NodeOutput: + return io.NodeOutput(Noise_RandomNoise(noise_seed)) - FUNCTION = "sample" + get_noise = execute - CATEGORY = "sampling/custom_sampling" - def sample(self, noise, guider, sampler, sigmas, latent_image): +class SamplerCustomAdvanced(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SamplerCustomAdvanced", + category="sampling/custom_sampling", + inputs=[ + io.Noise.Input("noise"), + io.Guider.Input("guider"), + io.Sampler.Input("sampler"), + io.Sigmas.Input("sigmas"), + io.Latent.Input("latent_image"), + ], + outputs=[ + io.Latent.Output(display_name="output"), + io.Latent.Output(display_name="denoised_output"), + ] + ) + + @classmethod + def execute(cls, noise, guider, sampler, sigmas, latent_image) -> io.NodeOutput: latent = latent_image latent_image = latent["samples"] latent = latent.copy() @@ -842,28 +918,32 @@ class SamplerCustomAdvanced: out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu()) else: out_denoised = out - return (out, out_denoised) + return io.NodeOutput(out, out_denoised) -class AddNoise: + sample = execute + +class AddNoise(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": - {"model": ("MODEL",), - "noise": ("NOISE", ), - "sigmas": ("SIGMAS", ), - "latent_image": ("LATENT", ), - } - } + def define_schema(cls): + return io.Schema( + node_id="AddNoise", + category="_for_testing/custom_sampling/noise", + is_experimental=True, + inputs=[ + io.Model.Input("model"), + io.Noise.Input("noise"), + io.Sigmas.Input("sigmas"), + io.Latent.Input("latent_image"), + ], + outputs=[ + io.Latent.Output(), + ] + ) - RETURN_TYPES = ("LATENT",) - - FUNCTION = "add_noise" - - CATEGORY = "_for_testing/custom_sampling/noise" - - def add_noise(self, model, noise, sigmas, latent_image): + @classmethod + def execute(cls, model, noise, sigmas, latent_image) -> io.NodeOutput: if len(sigmas) == 0: - return latent_image + return io.NodeOutput(latent_image) latent = latent_image latent_image = latent["samples"] @@ -887,46 +967,50 @@ class AddNoise: out = latent.copy() out["samples"] = noisy - return (out,) + return io.NodeOutput(out) + + add_noise = execute -NODE_CLASS_MAPPINGS = { - "SamplerCustom": SamplerCustom, - "BasicScheduler": BasicScheduler, - "KarrasScheduler": KarrasScheduler, - "ExponentialScheduler": ExponentialScheduler, - "PolyexponentialScheduler": PolyexponentialScheduler, - "LaplaceScheduler": LaplaceScheduler, - "VPScheduler": VPScheduler, - "BetaSamplingScheduler": BetaSamplingScheduler, - "SDTurboScheduler": SDTurboScheduler, - "KSamplerSelect": KSamplerSelect, - "SamplerEulerAncestral": SamplerEulerAncestral, - "SamplerEulerAncestralCFGPP": SamplerEulerAncestralCFGPP, - "SamplerLMS": SamplerLMS, - "SamplerDPMPP_3M_SDE": SamplerDPMPP_3M_SDE, - "SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE, - "SamplerDPMPP_SDE": SamplerDPMPP_SDE, - "SamplerDPMPP_2S_Ancestral": SamplerDPMPP_2S_Ancestral, - "SamplerDPMAdaptative": SamplerDPMAdaptative, - "SamplerER_SDE": SamplerER_SDE, - "SamplerSASolver": SamplerSASolver, - "SplitSigmas": SplitSigmas, - "SplitSigmasDenoise": SplitSigmasDenoise, - "FlipSigmas": FlipSigmas, - "SetFirstSigma": SetFirstSigma, - "ExtendIntermediateSigmas": ExtendIntermediateSigmas, - "SamplingPercentToSigma": SamplingPercentToSigma, +class CustomSamplersExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + SamplerCustom, + BasicScheduler, + KarrasScheduler, + ExponentialScheduler, + PolyexponentialScheduler, + LaplaceScheduler, + VPScheduler, + BetaSamplingScheduler, + SDTurboScheduler, + KSamplerSelect, + SamplerEulerAncestral, + SamplerEulerAncestralCFGPP, + SamplerLMS, + SamplerDPMPP_3M_SDE, + SamplerDPMPP_2M_SDE, + SamplerDPMPP_SDE, + SamplerDPMPP_2S_Ancestral, + SamplerDPMAdaptative, + SamplerER_SDE, + SamplerSASolver, + SplitSigmas, + SplitSigmasDenoise, + FlipSigmas, + SetFirstSigma, + ExtendIntermediateSigmas, + SamplingPercentToSigma, + CFGGuider, + DualCFGGuider, + BasicGuider, + RandomNoise, + DisableNoise, + AddNoise, + SamplerCustomAdvanced, + ] - "CFGGuider": CFGGuider, - "DualCFGGuider": DualCFGGuider, - "BasicGuider": BasicGuider, - "RandomNoise": RandomNoise, - "DisableNoise": DisableNoise, - "AddNoise": AddNoise, - "SamplerCustomAdvanced": SamplerCustomAdvanced, -} -NODE_DISPLAY_NAME_MAPPINGS = { - "SamplerEulerAncestralCFGPP": "SamplerEulerAncestralCFG++", -} +async def comfy_entrypoint() -> CustomSamplersExtension: + return CustomSamplersExtension() From cc6a8dcd1ad9cc9ef7602ee141174a0cea0ed4ce Mon Sep 17 00:00:00 2001 From: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> Date: Thu, 27 Nov 2025 08:18:08 +0800 Subject: [PATCH 059/271] Dataset Processing Nodes and Improved LoRA Trainer Nodes with multi resolution supports. (#10708) * Create nodes_dataset.py * Add encoded dataset caching mechanism * make training node to work with our dataset system * allow trainer node to get different resolution dataset * move all dataset related implementation to nodes_dataset * Rewrite dataset system with new io schema * Rewrite training system with new io schema * add ui pbar * Add outputs' id/name * Fix bad id/naming * use single process instead of input list when no need * fix wrong output_list flag * use torch.load/save and fix bad behaviors --- comfy_extras/nodes_dataset.py | 1532 +++++++++++++++++++++++++++++++++ comfy_extras/nodes_train.py | 967 ++++++++++----------- nodes.py | 1 + 3 files changed, 1980 insertions(+), 520 deletions(-) create mode 100644 comfy_extras/nodes_dataset.py diff --git a/comfy_extras/nodes_dataset.py b/comfy_extras/nodes_dataset.py new file mode 100644 index 000000000..b23867505 --- /dev/null +++ b/comfy_extras/nodes_dataset.py @@ -0,0 +1,1532 @@ +import logging +import os +import math +import json + +import numpy as np +import torch +from PIL import Image +from typing_extensions import override + +import folder_paths +import node_helpers +from comfy_api.latest import ComfyExtension, io + + +def load_and_process_images(image_files, input_dir): + """Utility function to load and process a list of images. + + Args: + image_files: List of image filenames + input_dir: Base directory containing the images + resize_method: How to handle images of different sizes ("None", "Stretch", "Crop", "Pad") + + Returns: + torch.Tensor: Batch of processed images + """ + if not image_files: + raise ValueError("No valid images found in input") + + output_images = [] + + for file in image_files: + image_path = os.path.join(input_dir, file) + img = node_helpers.pillow(Image.open, image_path) + + if img.mode == "I": + img = img.point(lambda i: i * (1 / 255)) + img = img.convert("RGB") + img_array = np.array(img).astype(np.float32) / 255.0 + img_tensor = torch.from_numpy(img_array)[None,] + output_images.append(img_tensor) + + return output_images + + +class LoadImageDataSetFromFolderNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LoadImageDataSetFromFolder", + display_name="Load Image Dataset from Folder", + category="dataset", + is_experimental=True, + inputs=[ + io.Combo.Input( + "folder", + options=folder_paths.get_input_subfolders(), + tooltip="The folder to load images from.", + ) + ], + outputs=[ + io.Image.Output( + display_name="images", + is_output_list=True, + tooltip="List of loaded images", + ) + ], + ) + + @classmethod + def execute(cls, folder): + sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder) + valid_extensions = [".png", ".jpg", ".jpeg", ".webp"] + image_files = [ + f + for f in os.listdir(sub_input_dir) + if any(f.lower().endswith(ext) for ext in valid_extensions) + ] + output_tensor = load_and_process_images(image_files, sub_input_dir) + return io.NodeOutput(output_tensor) + + +class LoadImageTextDataSetFromFolderNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LoadImageTextDataSetFromFolder", + display_name="Load Image and Text Dataset from Folder", + category="dataset", + is_experimental=True, + inputs=[ + io.Combo.Input( + "folder", + options=folder_paths.get_input_subfolders(), + tooltip="The folder to load images from.", + ) + ], + outputs=[ + io.Image.Output( + display_name="images", + is_output_list=True, + tooltip="List of loaded images", + ), + io.String.Output( + display_name="texts", + is_output_list=True, + tooltip="List of text captions", + ), + ], + ) + + @classmethod + def execute(cls, folder): + logging.info(f"Loading images from folder: {folder}") + + sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder) + valid_extensions = [".png", ".jpg", ".jpeg", ".webp"] + + image_files = [] + for item in os.listdir(sub_input_dir): + path = os.path.join(sub_input_dir, item) + if any(item.lower().endswith(ext) for ext in valid_extensions): + image_files.append(path) + elif os.path.isdir(path): + # Support kohya-ss/sd-scripts folder structure + repeat = 1 + if item.split("_")[0].isdigit(): + repeat = int(item.split("_")[0]) + image_files.extend( + [ + os.path.join(path, f) + for f in os.listdir(path) + if any(f.lower().endswith(ext) for ext in valid_extensions) + ] + * repeat + ) + + caption_file_path = [ + f.replace(os.path.splitext(f)[1], ".txt") for f in image_files + ] + captions = [] + for caption_file in caption_file_path: + caption_path = os.path.join(sub_input_dir, caption_file) + if os.path.exists(caption_path): + with open(caption_path, "r", encoding="utf-8") as f: + caption = f.read().strip() + captions.append(caption) + else: + captions.append("") + + output_tensor = load_and_process_images(image_files, sub_input_dir) + + logging.info(f"Loaded {len(output_tensor)} images from {sub_input_dir}.") + return io.NodeOutput(output_tensor, captions) + + +def save_images_to_folder(image_list, output_dir, prefix="image"): + """Utility function to save a list of image tensors to disk. + + Args: + image_list: List of image tensors (each [1, H, W, C] or [H, W, C] or [C, H, W]) + output_dir: Directory to save images to + prefix: Filename prefix + + Returns: + List of saved filenames + """ + os.makedirs(output_dir, exist_ok=True) + saved_files = [] + + for idx, img_tensor in enumerate(image_list): + # Handle different tensor shapes + if isinstance(img_tensor, torch.Tensor): + # Remove batch dimension if present [1, H, W, C] -> [H, W, C] + if img_tensor.dim() == 4 and img_tensor.shape[0] == 1: + img_tensor = img_tensor.squeeze(0) + + # If tensor is [C, H, W], permute to [H, W, C] + if img_tensor.dim() == 3 and img_tensor.shape[0] in [1, 3, 4]: + if ( + img_tensor.shape[0] <= 4 + and img_tensor.shape[1] > 4 + and img_tensor.shape[2] > 4 + ): + img_tensor = img_tensor.permute(1, 2, 0) + + # Convert to numpy and scale to 0-255 + img_array = img_tensor.cpu().numpy() + img_array = np.clip(img_array * 255.0, 0, 255).astype(np.uint8) + + # Convert to PIL Image + img = Image.fromarray(img_array) + else: + raise ValueError(f"Expected torch.Tensor, got {type(img_tensor)}") + + # Save image + filename = f"{prefix}_{idx:05d}.png" + filepath = os.path.join(output_dir, filename) + img.save(filepath) + saved_files.append(filename) + + return saved_files + + +class SaveImageDataSetToFolderNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SaveImageDataSetToFolder", + display_name="Save Image Dataset to Folder", + category="dataset", + is_experimental=True, + is_output_node=True, + is_input_list=True, # Receive images as list + inputs=[ + io.Image.Input("images", tooltip="List of images to save."), + io.String.Input( + "folder_name", + default="dataset", + tooltip="Name of the folder to save images to (inside output directory).", + ), + io.String.Input( + "filename_prefix", + default="image", + tooltip="Prefix for saved image filenames.", + ), + ], + outputs=[], + ) + + @classmethod + def execute(cls, images, folder_name, filename_prefix): + # Extract scalar values + folder_name = folder_name[0] + filename_prefix = filename_prefix[0] + + output_dir = os.path.join(folder_paths.get_output_directory(), folder_name) + saved_files = save_images_to_folder(images, output_dir, filename_prefix) + + logging.info(f"Saved {len(saved_files)} images to {output_dir}.") + return io.NodeOutput() + + +class SaveImageTextDataSetToFolderNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SaveImageTextDataSetToFolder", + display_name="Save Image and Text Dataset to Folder", + category="dataset", + is_experimental=True, + is_output_node=True, + is_input_list=True, # Receive both images and texts as lists + inputs=[ + io.Image.Input("images", tooltip="List of images to save."), + io.String.Input("texts", tooltip="List of text captions to save."), + io.String.Input( + "folder_name", + default="dataset", + tooltip="Name of the folder to save images to (inside output directory).", + ), + io.String.Input( + "filename_prefix", + default="image", + tooltip="Prefix for saved image filenames.", + ), + ], + outputs=[], + ) + + @classmethod + def execute(cls, images, texts, folder_name, filename_prefix): + # Extract scalar values + folder_name = folder_name[0] + filename_prefix = filename_prefix[0] + + output_dir = os.path.join(folder_paths.get_output_directory(), folder_name) + saved_files = save_images_to_folder(images, output_dir, filename_prefix) + + # Save captions + for idx, (filename, caption) in enumerate(zip(saved_files, texts)): + caption_filename = filename.replace(".png", ".txt") + caption_path = os.path.join(output_dir, caption_filename) + with open(caption_path, "w", encoding="utf-8") as f: + f.write(caption) + + logging.info(f"Saved {len(saved_files)} images and captions to {output_dir}.") + return io.NodeOutput() + + +# ========== Helper Functions for Transform Nodes ========== + + +def tensor_to_pil(img_tensor): + """Convert tensor to PIL Image.""" + if img_tensor.dim() == 4 and img_tensor.shape[0] == 1: + img_tensor = img_tensor.squeeze(0) + img_array = (img_tensor.cpu().numpy() * 255).clip(0, 255).astype(np.uint8) + return Image.fromarray(img_array) + + +def pil_to_tensor(img): + """Convert PIL Image to tensor.""" + img_array = np.array(img).astype(np.float32) / 255.0 + return torch.from_numpy(img_array)[None,] + + +# ========== Base Classes for Transform Nodes ========== + + +class ImageProcessingNode(io.ComfyNode): + """Base class for image processing nodes that operate on images. + + Child classes should set: + node_id: Unique node identifier (required) + display_name: Display name (optional, defaults to node_id) + description: Node description (optional) + extra_inputs: List of additional io.Input objects beyond "images" (optional) + is_group_process: None (auto-detect), True (group), or False (individual) (optional) + is_output_list: True (list output) or False (single output) (optional, default True) + + Child classes must implement ONE of: + _process(cls, image, **kwargs) -> tensor (for single-item processing) + _group_process(cls, images, **kwargs) -> list[tensor] (for group processing) + """ + + node_id = None + display_name = None + description = None + extra_inputs = [] + is_group_process = None # None = auto-detect, True/False = explicit + is_output_list = None # None = auto-detect based on processing mode + + @classmethod + def _detect_processing_mode(cls): + """Detect whether this node uses group or individual processing. + + Returns: + bool: True if group processing, False if individual processing + """ + # Explicit setting takes precedence + if cls.is_group_process is not None: + return cls.is_group_process + + # Check which method is overridden by looking at the defining class in MRO + base_class = ImageProcessingNode + + # Find which class in MRO defines _process + process_definer = None + for klass in cls.__mro__: + if "_process" in klass.__dict__: + process_definer = klass + break + + # Find which class in MRO defines _group_process + group_definer = None + for klass in cls.__mro__: + if "_group_process" in klass.__dict__: + group_definer = klass + break + + # Check what was overridden (not defined in base class) + has_process = process_definer is not None and process_definer is not base_class + has_group = group_definer is not None and group_definer is not base_class + + if has_process and has_group: + raise ValueError( + f"{cls.__name__}: Cannot override both _process and _group_process. " + "Override only one, or set is_group_process explicitly." + ) + if not has_process and not has_group: + raise ValueError( + f"{cls.__name__}: Must override either _process or _group_process" + ) + + return has_group + + @classmethod + def define_schema(cls): + if cls.node_id is None: + raise NotImplementedError(f"{cls.__name__} must set node_id class variable") + + is_group = cls._detect_processing_mode() + + # Auto-detect is_output_list if not explicitly set + # Single processing: False (backend collects results into list) + # Group processing: True by default (can be False for single-output nodes) + output_is_list = ( + cls.is_output_list if cls.is_output_list is not None else is_group + ) + + inputs = [ + io.Image.Input( + "images", + tooltip=( + "List of images to process." if is_group else "Image to process." + ), + ) + ] + inputs.extend(cls.extra_inputs) + + return io.Schema( + node_id=cls.node_id, + display_name=cls.display_name or cls.node_id, + category="dataset/image", + is_experimental=True, + is_input_list=is_group, # True for group, False for individual + inputs=inputs, + outputs=[ + io.Image.Output( + display_name="images", + is_output_list=output_is_list, + tooltip="Processed images", + ) + ], + ) + + @classmethod + def execute(cls, images, **kwargs): + """Execute the node. Routes to _process or _group_process based on mode.""" + is_group = cls._detect_processing_mode() + + # Extract scalar values from lists for parameters + params = {} + for k, v in kwargs.items(): + if isinstance(v, list) and len(v) == 1: + params[k] = v[0] + else: + params[k] = v + + if is_group: + # Group processing: images is list, call _group_process + result = cls._group_process(images, **params) + else: + # Individual processing: images is single item, call _process + result = cls._process(images, **params) + + return io.NodeOutput(result) + + @classmethod + def _process(cls, image, **kwargs): + """Override this method for single-item processing. + + Args: + image: tensor - Single image tensor + **kwargs: Additional parameters (already extracted from lists) + + Returns: + tensor - Processed image + """ + raise NotImplementedError(f"{cls.__name__} must implement _process method") + + @classmethod + def _group_process(cls, images, **kwargs): + """Override this method for group processing. + + Args: + images: list[tensor] - List of image tensors + **kwargs: Additional parameters (already extracted from lists) + + Returns: + list[tensor] - Processed images + """ + raise NotImplementedError( + f"{cls.__name__} must implement _group_process method" + ) + + +class TextProcessingNode(io.ComfyNode): + """Base class for text processing nodes that operate on texts. + + Child classes should set: + node_id: Unique node identifier (required) + display_name: Display name (optional, defaults to node_id) + description: Node description (optional) + extra_inputs: List of additional io.Input objects beyond "texts" (optional) + is_group_process: None (auto-detect), True (group), or False (individual) (optional) + is_output_list: True (list output) or False (single output) (optional, default True) + + Child classes must implement ONE of: + _process(cls, text, **kwargs) -> str (for single-item processing) + _group_process(cls, texts, **kwargs) -> list[str] (for group processing) + """ + + node_id = None + display_name = None + description = None + extra_inputs = [] + is_group_process = None # None = auto-detect, True/False = explicit + is_output_list = None # None = auto-detect based on processing mode + + @classmethod + def _detect_processing_mode(cls): + """Detect whether this node uses group or individual processing. + + Returns: + bool: True if group processing, False if individual processing + """ + # Explicit setting takes precedence + if cls.is_group_process is not None: + return cls.is_group_process + + # Check which method is overridden by looking at the defining class in MRO + base_class = TextProcessingNode + + # Find which class in MRO defines _process + process_definer = None + for klass in cls.__mro__: + if "_process" in klass.__dict__: + process_definer = klass + break + + # Find which class in MRO defines _group_process + group_definer = None + for klass in cls.__mro__: + if "_group_process" in klass.__dict__: + group_definer = klass + break + + # Check what was overridden (not defined in base class) + has_process = process_definer is not None and process_definer is not base_class + has_group = group_definer is not None and group_definer is not base_class + + if has_process and has_group: + raise ValueError( + f"{cls.__name__}: Cannot override both _process and _group_process. " + "Override only one, or set is_group_process explicitly." + ) + if not has_process and not has_group: + raise ValueError( + f"{cls.__name__}: Must override either _process or _group_process" + ) + + return has_group + + @classmethod + def define_schema(cls): + if cls.node_id is None: + raise NotImplementedError(f"{cls.__name__} must set node_id class variable") + + is_group = cls._detect_processing_mode() + + inputs = [ + io.String.Input( + "texts", + tooltip="List of texts to process." if is_group else "Text to process.", + ) + ] + inputs.extend(cls.extra_inputs) + + return io.Schema( + node_id=cls.node_id, + display_name=cls.display_name or cls.node_id, + category="dataset/text", + is_experimental=True, + is_input_list=is_group, # True for group, False for individual + inputs=inputs, + outputs=[ + io.String.Output( + display_name="texts", + is_output_list=cls.is_output_list, + tooltip="Processed texts", + ) + ], + ) + + @classmethod + def execute(cls, texts, **kwargs): + """Execute the node. Routes to _process or _group_process based on mode.""" + is_group = cls._detect_processing_mode() + + # Extract scalar values from lists for parameters + params = {} + for k, v in kwargs.items(): + if isinstance(v, list) and len(v) == 1: + params[k] = v[0] + else: + params[k] = v + + if is_group: + # Group processing: texts is list, call _group_process + result = cls._group_process(texts, **params) + else: + # Individual processing: texts is single item, call _process + result = cls._process(texts, **params) + + # Wrap result based on is_output_list + if cls.is_output_list: + # Result should already be a list (or will be for individual) + return io.NodeOutput(result if is_group else [result]) + else: + # Single output - wrap in list for NodeOutput + return io.NodeOutput([result]) + + @classmethod + def _process(cls, text, **kwargs): + """Override this method for single-item processing. + + Args: + text: str - Single text string + **kwargs: Additional parameters (already extracted from lists) + + Returns: + str - Processed text + """ + raise NotImplementedError(f"{cls.__name__} must implement _process method") + + @classmethod + def _group_process(cls, texts, **kwargs): + """Override this method for group processing. + + Args: + texts: list[str] - List of text strings + **kwargs: Additional parameters (already extracted from lists) + + Returns: + list[str] - Processed texts + """ + raise NotImplementedError( + f"{cls.__name__} must implement _group_process method" + ) + + +# ========== Image Transform Nodes ========== + + +class ResizeImagesToSameSizeNode(ImageProcessingNode): + node_id = "ResizeImagesToSameSize" + display_name = "Resize Images to Same Size" + description = "Resize all images to the same width and height." + extra_inputs = [ + io.Int.Input("width", default=512, min=1, max=8192, tooltip="Target width."), + io.Int.Input("height", default=512, min=1, max=8192, tooltip="Target height."), + io.Combo.Input( + "mode", + options=["stretch", "crop_center", "pad"], + default="stretch", + tooltip="Resize mode.", + ), + ] + + @classmethod + def _process(cls, image, width, height, mode): + img = tensor_to_pil(image) + + if mode == "stretch": + img = img.resize((width, height), Image.Resampling.LANCZOS) + elif mode == "crop_center": + left = max(0, (img.width - width) // 2) + top = max(0, (img.height - height) // 2) + right = min(img.width, left + width) + bottom = min(img.height, top + height) + img = img.crop((left, top, right, bottom)) + if img.width != width or img.height != height: + img = img.resize((width, height), Image.Resampling.LANCZOS) + elif mode == "pad": + img.thumbnail((width, height), Image.Resampling.LANCZOS) + new_img = Image.new("RGB", (width, height), (0, 0, 0)) + paste_x = (width - img.width) // 2 + paste_y = (height - img.height) // 2 + new_img.paste(img, (paste_x, paste_y)) + img = new_img + + return pil_to_tensor(img) + + +class ResizeImagesToPixelCountNode(ImageProcessingNode): + node_id = "ResizeImagesToPixelCount" + display_name = "Resize Images to Pixel Count" + description = "Resize images so that the total pixel count matches the specified number while preserving aspect ratio." + extra_inputs = [ + io.Int.Input( + "pixel_count", + default=512 * 512, + min=1, + max=8192 * 8192, + tooltip="Target pixel count.", + ), + io.Int.Input( + "steps", + default=64, + min=1, + max=128, + tooltip="The stepping for resize width/height.", + ), + ] + + @classmethod + def _process(cls, image, pixel_count, steps): + img = tensor_to_pil(image) + w, h = img.size + pixel_count_ratio = math.sqrt(pixel_count / (w * h)) + new_w = int(w * pixel_count_ratio / steps) * steps + new_h = int(h * pixel_count_ratio / steps) * steps + logging.info(f"Resizing from {w}x{h} to {new_w}x{new_h}") + img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) + return pil_to_tensor(img) + + +class ResizeImagesByShorterEdgeNode(ImageProcessingNode): + node_id = "ResizeImagesByShorterEdge" + display_name = "Resize Images by Shorter Edge" + description = "Resize images so that the shorter edge matches the specified length while preserving aspect ratio." + extra_inputs = [ + io.Int.Input( + "shorter_edge", + default=512, + min=1, + max=8192, + tooltip="Target length for the shorter edge.", + ), + ] + + @classmethod + def _process(cls, image, shorter_edge): + img = tensor_to_pil(image) + w, h = img.size + if w < h: + new_w = shorter_edge + new_h = int(h * (shorter_edge / w)) + else: + new_h = shorter_edge + new_w = int(w * (shorter_edge / h)) + img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) + return pil_to_tensor(img) + + +class ResizeImagesByLongerEdgeNode(ImageProcessingNode): + node_id = "ResizeImagesByLongerEdge" + display_name = "Resize Images by Longer Edge" + description = "Resize images so that the longer edge matches the specified length while preserving aspect ratio." + extra_inputs = [ + io.Int.Input( + "longer_edge", + default=1024, + min=1, + max=8192, + tooltip="Target length for the longer edge.", + ), + ] + + @classmethod + def _process(cls, image, longer_edge): + img = tensor_to_pil(image) + w, h = img.size + if w > h: + new_w = longer_edge + new_h = int(h * (longer_edge / w)) + else: + new_h = longer_edge + new_w = int(w * (longer_edge / h)) + img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) + return pil_to_tensor(img) + + +class CenterCropImagesNode(ImageProcessingNode): + node_id = "CenterCropImages" + display_name = "Center Crop Images" + description = "Center crop all images to the specified dimensions." + extra_inputs = [ + io.Int.Input("width", default=512, min=1, max=8192, tooltip="Crop width."), + io.Int.Input("height", default=512, min=1, max=8192, tooltip="Crop height."), + ] + + @classmethod + def _process(cls, image, width, height): + img = tensor_to_pil(image) + left = max(0, (img.width - width) // 2) + top = max(0, (img.height - height) // 2) + right = min(img.width, left + width) + bottom = min(img.height, top + height) + img = img.crop((left, top, right, bottom)) + return pil_to_tensor(img) + + +class RandomCropImagesNode(ImageProcessingNode): + node_id = "RandomCropImages" + display_name = "Random Crop Images" + description = ( + "Randomly crop all images to the specified dimensions (for data augmentation)." + ) + extra_inputs = [ + io.Int.Input("width", default=512, min=1, max=8192, tooltip="Crop width."), + io.Int.Input("height", default=512, min=1, max=8192, tooltip="Crop height."), + io.Int.Input( + "seed", default=0, min=0, max=0xFFFFFFFFFFFFFFFF, tooltip="Random seed." + ), + ] + + @classmethod + def _process(cls, image, width, height, seed): + np.random.seed(seed % (2**32 - 1)) + img = tensor_to_pil(image) + max_left = max(0, img.width - width) + max_top = max(0, img.height - height) + left = np.random.randint(0, max_left + 1) if max_left > 0 else 0 + top = np.random.randint(0, max_top + 1) if max_top > 0 else 0 + right = min(img.width, left + width) + bottom = min(img.height, top + height) + img = img.crop((left, top, right, bottom)) + return pil_to_tensor(img) + + +class FlipImagesNode(ImageProcessingNode): + node_id = "FlipImages" + display_name = "Flip Images" + description = "Flip all images horizontally or vertically." + extra_inputs = [ + io.Combo.Input( + "direction", + options=["horizontal", "vertical"], + default="horizontal", + tooltip="Flip direction.", + ), + ] + + @classmethod + def _process(cls, image, direction): + img = tensor_to_pil(image) + if direction == "horizontal": + img = img.transpose(Image.FLIP_LEFT_RIGHT) + else: + img = img.transpose(Image.FLIP_TOP_BOTTOM) + return pil_to_tensor(img) + + +class NormalizeImagesNode(ImageProcessingNode): + node_id = "NormalizeImages" + display_name = "Normalize Images" + description = "Normalize images using mean and standard deviation." + extra_inputs = [ + io.Float.Input( + "mean", + default=0.5, + min=0.0, + max=1.0, + tooltip="Mean value for normalization.", + ), + io.Float.Input( + "std", + default=0.5, + min=0.001, + max=1.0, + tooltip="Standard deviation for normalization.", + ), + ] + + @classmethod + def _process(cls, image, mean, std): + return (image - mean) / std + + +class AdjustBrightnessNode(ImageProcessingNode): + node_id = "AdjustBrightness" + display_name = "Adjust Brightness" + description = "Adjust brightness of all images." + extra_inputs = [ + io.Float.Input( + "factor", + default=1.0, + min=0.0, + max=2.0, + tooltip="Brightness factor. 1.0 = no change, <1.0 = darker, >1.0 = brighter.", + ), + ] + + @classmethod + def _process(cls, image, factor): + return (image * factor).clamp(0.0, 1.0) + + +class AdjustContrastNode(ImageProcessingNode): + node_id = "AdjustContrast" + display_name = "Adjust Contrast" + description = "Adjust contrast of all images." + extra_inputs = [ + io.Float.Input( + "factor", + default=1.0, + min=0.0, + max=2.0, + tooltip="Contrast factor. 1.0 = no change, <1.0 = less contrast, >1.0 = more contrast.", + ), + ] + + @classmethod + def _process(cls, image, factor): + return ((image - 0.5) * factor + 0.5).clamp(0.0, 1.0) + + +class ShuffleDatasetNode(ImageProcessingNode): + node_id = "ShuffleDataset" + display_name = "Shuffle Image Dataset" + description = "Randomly shuffle the order of images in the dataset." + is_group_process = True # Requires full list to shuffle + extra_inputs = [ + io.Int.Input( + "seed", default=0, min=0, max=0xFFFFFFFFFFFFFFFF, tooltip="Random seed." + ), + ] + + @classmethod + def _group_process(cls, images, seed): + np.random.seed(seed % (2**32 - 1)) + indices = np.random.permutation(len(images)) + return [images[i] for i in indices] + + +class ShuffleImageTextDatasetNode(io.ComfyNode): + """Special node that shuffles both images and texts together.""" + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ShuffleImageTextDataset", + display_name="Shuffle Image-Text Dataset", + category="dataset/image", + is_experimental=True, + is_input_list=True, + inputs=[ + io.Image.Input("images", tooltip="List of images to shuffle."), + io.String.Input("texts", tooltip="List of texts to shuffle."), + io.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + tooltip="Random seed.", + ), + ], + outputs=[ + io.Image.Output( + display_name="images", + is_output_list=True, + tooltip="Shuffled images", + ), + io.String.Output( + display_name="texts", is_output_list=True, tooltip="Shuffled texts" + ), + ], + ) + + @classmethod + def execute(cls, images, texts, seed): + seed = seed[0] # Extract scalar + np.random.seed(seed % (2**32 - 1)) + indices = np.random.permutation(len(images)) + shuffled_images = [images[i] for i in indices] + shuffled_texts = [texts[i] for i in indices] + return io.NodeOutput(shuffled_images, shuffled_texts) + + +# ========== Text Transform Nodes ========== + + +class TextToLowercaseNode(TextProcessingNode): + node_id = "TextToLowercase" + display_name = "Text to Lowercase" + description = "Convert all texts to lowercase." + + @classmethod + def _process(cls, text): + return text.lower() + + +class TextToUppercaseNode(TextProcessingNode): + node_id = "TextToUppercase" + display_name = "Text to Uppercase" + description = "Convert all texts to uppercase." + + @classmethod + def _process(cls, text): + return text.upper() + + +class TruncateTextNode(TextProcessingNode): + node_id = "TruncateText" + display_name = "Truncate Text" + description = "Truncate all texts to a maximum length." + extra_inputs = [ + io.Int.Input( + "max_length", default=77, min=1, max=10000, tooltip="Maximum text length." + ), + ] + + @classmethod + def _process(cls, text, max_length): + return text[:max_length] + + +class AddTextPrefixNode(TextProcessingNode): + node_id = "AddTextPrefix" + display_name = "Add Text Prefix" + description = "Add a prefix to all texts." + extra_inputs = [ + io.String.Input("prefix", default="", tooltip="Prefix to add."), + ] + + @classmethod + def _process(cls, text, prefix): + return prefix + text + + +class AddTextSuffixNode(TextProcessingNode): + node_id = "AddTextSuffix" + display_name = "Add Text Suffix" + description = "Add a suffix to all texts." + extra_inputs = [ + io.String.Input("suffix", default="", tooltip="Suffix to add."), + ] + + @classmethod + def _process(cls, text, suffix): + return text + suffix + + +class ReplaceTextNode(TextProcessingNode): + node_id = "ReplaceText" + display_name = "Replace Text" + description = "Replace text in all texts." + extra_inputs = [ + io.String.Input("find", default="", tooltip="Text to find."), + io.String.Input("replace", default="", tooltip="Text to replace with."), + ] + + @classmethod + def _process(cls, text, find, replace): + return text.replace(find, replace) + + +class StripWhitespaceNode(TextProcessingNode): + node_id = "StripWhitespace" + display_name = "Strip Whitespace" + description = "Strip leading and trailing whitespace from all texts." + + @classmethod + def _process(cls, text): + return text.strip() + + +# ========== Group Processing Example Nodes ========== + + +class ImageDeduplicationNode(ImageProcessingNode): + """Remove duplicate or very similar images from the dataset using perceptual hashing.""" + + node_id = "ImageDeduplication" + display_name = "Image Deduplication" + description = "Remove duplicate or very similar images from the dataset." + is_group_process = True # Requires full list to compare images + extra_inputs = [ + io.Float.Input( + "similarity_threshold", + default=0.95, + min=0.0, + max=1.0, + tooltip="Similarity threshold (0-1). Higher means more similar. Images above this threshold are considered duplicates.", + ), + ] + + @classmethod + def _group_process(cls, images, similarity_threshold): + """Remove duplicate images using perceptual hashing.""" + if len(images) == 0: + return [] + + # Compute simple perceptual hash for each image + def compute_hash(img_tensor): + """Compute a simple perceptual hash by resizing to 8x8 and comparing to average.""" + img = tensor_to_pil(img_tensor) + # Resize to 8x8 + img_small = img.resize((8, 8), Image.Resampling.LANCZOS).convert("L") + # Get pixels + pixels = list(img_small.getdata()) + # Compute average + avg = sum(pixels) / len(pixels) + # Create hash (1 if above average, 0 otherwise) + hash_bits = "".join("1" if p > avg else "0" for p in pixels) + return hash_bits + + def hamming_distance(hash1, hash2): + """Compute Hamming distance between two hash strings.""" + return sum(c1 != c2 for c1, c2 in zip(hash1, hash2)) + + # Compute hashes for all images + hashes = [compute_hash(img) for img in images] + + # Find duplicates + keep_indices = [] + for i in range(len(images)): + is_duplicate = False + for j in keep_indices: + # Compare hashes + distance = hamming_distance(hashes[i], hashes[j]) + similarity = 1.0 - (distance / 64.0) # 64 bits total + if similarity >= similarity_threshold: + is_duplicate = True + logging.info( + f"Image {i} is similar to image {j} (similarity: {similarity:.3f}), skipping" + ) + break + + if not is_duplicate: + keep_indices.append(i) + + # Return only unique images + unique_images = [images[i] for i in keep_indices] + logging.info( + f"Deduplication: kept {len(unique_images)} out of {len(images)} images" + ) + return unique_images + + +class ImageGridNode(ImageProcessingNode): + """Combine multiple images into a single grid/collage.""" + + node_id = "ImageGrid" + display_name = "Image Grid" + description = "Arrange multiple images into a grid layout." + is_group_process = True # Requires full list to create grid + is_output_list = False # Outputs single grid image + extra_inputs = [ + io.Int.Input( + "columns", + default=4, + min=1, + max=20, + tooltip="Number of columns in the grid.", + ), + io.Int.Input( + "cell_width", + default=256, + min=32, + max=2048, + tooltip="Width of each cell in the grid.", + ), + io.Int.Input( + "cell_height", + default=256, + min=32, + max=2048, + tooltip="Height of each cell in the grid.", + ), + io.Int.Input( + "padding", default=4, min=0, max=50, tooltip="Padding between images." + ), + ] + + @classmethod + def _group_process(cls, images, columns, cell_width, cell_height, padding): + """Arrange images into a grid.""" + if len(images) == 0: + raise ValueError("Cannot create grid from empty image list") + + # Calculate grid dimensions + num_images = len(images) + rows = (num_images + columns - 1) // columns # Ceiling division + + # Calculate total grid size + grid_width = columns * cell_width + (columns - 1) * padding + grid_height = rows * cell_height + (rows - 1) * padding + + # Create blank grid + grid = Image.new("RGB", (grid_width, grid_height), (0, 0, 0)) + + # Place images + for idx, img_tensor in enumerate(images): + row = idx // columns + col = idx % columns + + # Convert to PIL and resize to cell size + img = tensor_to_pil(img_tensor) + img = img.resize((cell_width, cell_height), Image.Resampling.LANCZOS) + + # Calculate position + x = col * (cell_width + padding) + y = row * (cell_height + padding) + + # Paste into grid + grid.paste(img, (x, y)) + + logging.info( + f"Created {columns}x{rows} grid with {num_images} images ({grid_width}x{grid_height})" + ) + return pil_to_tensor(grid) + + +class MergeImageListsNode(ImageProcessingNode): + """Merge multiple image lists into a single list.""" + + node_id = "MergeImageLists" + display_name = "Merge Image Lists" + description = "Concatenate multiple image lists into one." + is_group_process = True # Receives images as list + + @classmethod + def _group_process(cls, images): + """Simply return the images list (already merged by input handling).""" + # When multiple list inputs are connected, they're concatenated + # For now, this is a simple pass-through + logging.info(f"Merged image list contains {len(images)} images") + return images + + +class MergeTextListsNode(TextProcessingNode): + """Merge multiple text lists into a single list.""" + + node_id = "MergeTextLists" + display_name = "Merge Text Lists" + description = "Concatenate multiple text lists into one." + is_group_process = True # Receives texts as list + + @classmethod + def _group_process(cls, texts): + """Simply return the texts list (already merged by input handling).""" + # When multiple list inputs are connected, they're concatenated + # For now, this is a simple pass-through + logging.info(f"Merged text list contains {len(texts)} texts") + return texts + + +# ========== Training Dataset Nodes ========== + + +class MakeTrainingDataset(io.ComfyNode): + """Encode images with VAE and texts with CLIP to create a training dataset.""" + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="MakeTrainingDataset", + display_name="Make Training Dataset", + category="dataset", + is_experimental=True, + is_input_list=True, # images and texts as lists + inputs=[ + io.Image.Input("images", tooltip="List of images to encode."), + io.Vae.Input( + "vae", tooltip="VAE model for encoding images to latents." + ), + io.Clip.Input( + "clip", tooltip="CLIP model for encoding text to conditioning." + ), + io.String.Input( + "texts", + optional=True, + tooltip="List of text captions. Can be length n (matching images), 1 (repeated for all), or omitted (uses empty string).", + ), + ], + outputs=[ + io.Latent.Output( + display_name="latents", + is_output_list=True, + tooltip="List of latent dicts", + ), + io.Conditioning.Output( + display_name="conditioning", + is_output_list=True, + tooltip="List of conditioning lists", + ), + ], + ) + + @classmethod + def execute(cls, images, vae, clip, texts=None): + # Extract scalars (vae and clip are single values wrapped in lists) + vae = vae[0] + clip = clip[0] + + # Handle text list + num_images = len(images) + + if texts is None or len(texts) == 0: + # Treat as [""] for unconditional training + texts = [""] + + if len(texts) == 1 and num_images > 1: + # Repeat single text for all images + texts = texts * num_images + elif len(texts) != num_images: + raise ValueError( + f"Number of texts ({len(texts)}) does not match number of images ({num_images}). " + f"Text list should have length {num_images}, 1, or 0." + ) + + # Encode images with VAE + logging.info(f"Encoding {num_images} images with VAE...") + latents_list = [] # list[{"samples": tensor}] + for img_tensor in images: + # img_tensor is [1, H, W, 3] + latent_tensor = vae.encode(img_tensor[:, :, :, :3]) + latents_list.append({"samples": latent_tensor}) + + # Encode texts with CLIP + logging.info(f"Encoding {len(texts)} texts with CLIP...") + conditioning_list = [] # list[list[cond]] + for text in texts: + if text == "": + cond = clip.encode_from_tokens_scheduled(clip.tokenize("")) + else: + tokens = clip.tokenize(text) + cond = clip.encode_from_tokens_scheduled(tokens) + conditioning_list.append(cond) + + logging.info( + f"Created dataset with {len(latents_list)} latents and {len(conditioning_list)} conditioning." + ) + return io.NodeOutput(latents_list, conditioning_list) + + +class SaveTrainingDataset(io.ComfyNode): + """Save encoded training dataset (latents + conditioning) to disk.""" + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SaveTrainingDataset", + display_name="Save Training Dataset", + category="dataset", + is_experimental=True, + is_output_node=True, + is_input_list=True, # Receive lists + inputs=[ + io.Latent.Input( + "latents", + tooltip="List of latent dicts from MakeTrainingDataset.", + ), + io.Conditioning.Input( + "conditioning", + tooltip="List of conditioning lists from MakeTrainingDataset.", + ), + io.String.Input( + "folder_name", + default="training_dataset", + tooltip="Name of folder to save dataset (inside output directory).", + ), + io.Int.Input( + "shard_size", + default=1000, + min=1, + max=100000, + tooltip="Number of samples per shard file.", + ), + ], + outputs=[], + ) + + @classmethod + def execute(cls, latents, conditioning, folder_name, shard_size): + # Extract scalars + folder_name = folder_name[0] + shard_size = shard_size[0] + + # latents: list[{"samples": tensor}] + # conditioning: list[list[cond]] + + # Validate lengths match + if len(latents) != len(conditioning): + raise ValueError( + f"Number of latents ({len(latents)}) does not match number of conditions ({len(conditioning)}). " + f"Something went wrong in dataset preparation." + ) + + # Create output directory + output_dir = os.path.join(folder_paths.get_output_directory(), folder_name) + os.makedirs(output_dir, exist_ok=True) + + # Prepare data pairs + num_samples = len(latents) + num_shards = (num_samples + shard_size - 1) // shard_size # Ceiling division + + logging.info( + f"Saving {num_samples} samples to {num_shards} shards in {output_dir}..." + ) + + # Save data in shards + for shard_idx in range(num_shards): + start_idx = shard_idx * shard_size + end_idx = min(start_idx + shard_size, num_samples) + + # Get shard data (list of latent dicts and conditioning lists) + shard_data = { + "latents": latents[start_idx:end_idx], + "conditioning": conditioning[start_idx:end_idx], + } + + # Save shard + shard_filename = f"shard_{shard_idx:04d}.pkl" + shard_path = os.path.join(output_dir, shard_filename) + + with open(shard_path, "wb") as f: + torch.save(shard_data, f) + + logging.info( + f"Saved shard {shard_idx + 1}/{num_shards}: {shard_filename} ({end_idx - start_idx} samples)" + ) + + # Save metadata + metadata = { + "num_samples": num_samples, + "num_shards": num_shards, + "shard_size": shard_size, + } + metadata_path = os.path.join(output_dir, "metadata.json") + with open(metadata_path, "w") as f: + json.dump(metadata, f, indent=2) + + logging.info(f"Successfully saved {num_samples} samples to {output_dir}.") + return io.NodeOutput() + + +class LoadTrainingDataset(io.ComfyNode): + """Load encoded training dataset from disk.""" + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LoadTrainingDataset", + display_name="Load Training Dataset", + category="dataset", + is_experimental=True, + inputs=[ + io.String.Input( + "folder_name", + default="training_dataset", + tooltip="Name of folder containing the saved dataset (inside output directory).", + ), + ], + outputs=[ + io.Latent.Output( + display_name="latents", + is_output_list=True, + tooltip="List of latent dicts", + ), + io.Conditioning.Output( + display_name="conditioning", + is_output_list=True, + tooltip="List of conditioning lists", + ), + ], + ) + + @classmethod + def execute(cls, folder_name): + # Get dataset directory + dataset_dir = os.path.join(folder_paths.get_output_directory(), folder_name) + + if not os.path.exists(dataset_dir): + raise ValueError(f"Dataset directory not found: {dataset_dir}") + + # Find all shard files + shard_files = sorted( + [ + f + for f in os.listdir(dataset_dir) + if f.startswith("shard_") and f.endswith(".pkl") + ] + ) + + if not shard_files: + raise ValueError(f"No shard files found in {dataset_dir}") + + logging.info(f"Loading {len(shard_files)} shards from {dataset_dir}...") + + # Load all shards + all_latents = [] # list[{"samples": tensor}] + all_conditioning = [] # list[list[cond]] + + for shard_file in shard_files: + shard_path = os.path.join(dataset_dir, shard_file) + + with open(shard_path, "rb") as f: + shard_data = torch.load(f) + + all_latents.extend(shard_data["latents"]) + all_conditioning.extend(shard_data["conditioning"]) + + logging.info(f"Loaded {shard_file}: {len(shard_data['latents'])} samples") + + logging.info( + f"Successfully loaded {len(all_latents)} samples from {dataset_dir}." + ) + return io.NodeOutput(all_latents, all_conditioning) + + +# ========== Extension Setup ========== + + +class DatasetExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + # Data loading/saving nodes + LoadImageDataSetFromFolderNode, + LoadImageTextDataSetFromFolderNode, + SaveImageDataSetToFolderNode, + SaveImageTextDataSetToFolderNode, + # Image transform nodes + ResizeImagesToSameSizeNode, + ResizeImagesToPixelCountNode, + ResizeImagesByShorterEdgeNode, + ResizeImagesByLongerEdgeNode, + CenterCropImagesNode, + RandomCropImagesNode, + FlipImagesNode, + NormalizeImagesNode, + AdjustBrightnessNode, + AdjustContrastNode, + ShuffleDatasetNode, + ShuffleImageTextDatasetNode, + # Text transform nodes + TextToLowercaseNode, + TextToUppercaseNode, + TruncateTextNode, + AddTextPrefixNode, + AddTextSuffixNode, + ReplaceTextNode, + StripWhitespaceNode, + # Group processing examples + ImageDeduplicationNode, + ImageGridNode, + MergeImageListsNode, + MergeTextListsNode, + # Training dataset nodes + MakeTrainingDataset, + SaveTrainingDataset, + LoadTrainingDataset, + ] + + +async def comfy_entrypoint() -> DatasetExtension: + return DatasetExtension() diff --git a/comfy_extras/nodes_train.py b/comfy_extras/nodes_train.py index 9e6ec6780..cb24ab709 100644 --- a/comfy_extras/nodes_train.py +++ b/comfy_extras/nodes_train.py @@ -1,15 +1,13 @@ -import datetime -import json import logging import os import numpy as np import safetensors import torch -from PIL import Image, ImageDraw, ImageFont -from PIL.PngImagePlugin import PngInfo import torch.utils.checkpoint -import tqdm +from tqdm.auto import trange +from PIL import Image, ImageDraw, ImageFont +from typing_extensions import override import comfy.samplers import comfy.sd @@ -18,9 +16,9 @@ import comfy.model_management import comfy_extras.nodes_custom_sampler import folder_paths import node_helpers -from comfy.cli_args import args -from comfy.comfy_types.node_typing import IO from comfy.weight_adapter import adapters, adapter_maps +from comfy_api.latest import ComfyExtension, io, ui +from comfy.utils import ProgressBar def make_batch_extra_option_dict(d, indicies, full_size=None): @@ -56,7 +54,18 @@ def process_cond_list(d, prefix=""): class TrainSampler(comfy.samplers.Sampler): - def __init__(self, loss_fn, optimizer, loss_callback=None, batch_size=1, grad_acc=1, total_steps=1, seed=0, training_dtype=torch.bfloat16): + def __init__( + self, + loss_fn, + optimizer, + loss_callback=None, + batch_size=1, + grad_acc=1, + total_steps=1, + seed=0, + training_dtype=torch.bfloat16, + real_dataset=None, + ): self.loss_fn = loss_fn self.optimizer = optimizer self.loss_callback = loss_callback @@ -65,54 +74,138 @@ class TrainSampler(comfy.samplers.Sampler): self.grad_acc = grad_acc self.seed = seed self.training_dtype = training_dtype + self.real_dataset: list[torch.Tensor] | None = real_dataset - def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False): + def fwd_bwd( + self, + model_wrap, + batch_sigmas, + batch_noise, + batch_latent, + cond, + indicies, + extra_args, + dataset_size, + bwd=True, + ): + xt = model_wrap.inner_model.model_sampling.noise_scaling( + batch_sigmas, batch_noise, batch_latent, False + ) + x0 = model_wrap.inner_model.model_sampling.noise_scaling( + torch.zeros_like(batch_sigmas), + torch.zeros_like(batch_noise), + batch_latent, + False, + ) + + model_wrap.conds["positive"] = [cond[i] for i in indicies] + batch_extra_args = make_batch_extra_option_dict( + extra_args, indicies, full_size=dataset_size + ) + + with torch.autocast(xt.device.type, dtype=self.training_dtype): + x0_pred = model_wrap( + xt.requires_grad_(True), + batch_sigmas.requires_grad_(True), + **batch_extra_args, + ) + loss = self.loss_fn(x0_pred, x0) + if bwd: + bwd_loss = loss / self.grad_acc + bwd_loss.backward() + return loss + + def sample( + self, + model_wrap, + sigmas, + extra_args, + callback, + noise, + latent_image=None, + denoise_mask=None, + disable_pbar=False, + ): model_wrap.conds = process_cond_list(model_wrap.conds) cond = model_wrap.conds["positive"] dataset_size = sigmas.size(0) torch.cuda.empty_cache() - for i in (pbar:=tqdm.trange(self.total_steps, desc="Training LoRA", smoothing=0.01, disable=not comfy.utils.PROGRESS_BAR_ENABLED)): - noisegen = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(self.seed + i * 1000) - indicies = torch.randperm(dataset_size)[:self.batch_size].tolist() - - batch_latent = torch.stack([latent_image[i] for i in indicies]) - batch_noise = noisegen.generate_noise({"samples": batch_latent}).to(batch_latent.device) - batch_sigmas = [ - model_wrap.inner_model.model_sampling.percent_to_sigma( - torch.rand((1,)).item() - ) for _ in range(min(self.batch_size, dataset_size)) - ] - batch_sigmas = torch.tensor(batch_sigmas).to(batch_latent.device) - - xt = model_wrap.inner_model.model_sampling.noise_scaling( - batch_sigmas, - batch_noise, - batch_latent, - False + ui_pbar = ProgressBar(self.total_steps) + for i in ( + pbar := trange( + self.total_steps, + desc="Training LoRA", + smoothing=0.01, + disable=not comfy.utils.PROGRESS_BAR_ENABLED, ) - x0 = model_wrap.inner_model.model_sampling.noise_scaling( - torch.zeros_like(batch_sigmas), - torch.zeros_like(batch_noise), - batch_latent, - False + ): + noisegen = comfy_extras.nodes_custom_sampler.Noise_RandomNoise( + self.seed + i * 1000 ) + indicies = torch.randperm(dataset_size)[: self.batch_size].tolist() - model_wrap.conds["positive"] = [ - cond[i] for i in indicies - ] - batch_extra_args = make_batch_extra_option_dict(extra_args, indicies, full_size=dataset_size) + if self.real_dataset is None: + batch_latent = torch.stack([latent_image[i] for i in indicies]) + batch_noise = noisegen.generate_noise({"samples": batch_latent}).to( + batch_latent.device + ) + batch_sigmas = [ + model_wrap.inner_model.model_sampling.percent_to_sigma( + torch.rand((1,)).item() + ) + for _ in range(min(self.batch_size, dataset_size)) + ] + batch_sigmas = torch.tensor(batch_sigmas).to(batch_latent.device) - with torch.autocast(xt.device.type, dtype=self.training_dtype): - x0_pred = model_wrap(xt, batch_sigmas, **batch_extra_args) - loss = self.loss_fn(x0_pred, x0) - loss.backward() - if self.loss_callback: - self.loss_callback(loss.item()) - pbar.set_postfix({"loss": f"{loss.item():.4f}"}) + loss = self.fwd_bwd( + model_wrap, + batch_sigmas, + batch_noise, + batch_latent, + cond, + indicies, + extra_args, + dataset_size, + bwd=True, + ) + if self.loss_callback: + self.loss_callback(loss.item()) + pbar.set_postfix({"loss": f"{loss.item():.4f}"}) + else: + total_loss = 0 + for index in indicies: + single_latent = self.real_dataset[index].to(latent_image) + batch_noise = noisegen.generate_noise( + {"samples": single_latent} + ).to(single_latent.device) + batch_sigmas = ( + model_wrap.inner_model.model_sampling.percent_to_sigma( + torch.rand((1,)).item() + ) + ) + batch_sigmas = torch.tensor([batch_sigmas]).to(single_latent.device) + loss = self.fwd_bwd( + model_wrap, + batch_sigmas, + batch_noise, + single_latent, + cond, + [index], + extra_args, + dataset_size, + bwd=False, + ) + total_loss += loss + total_loss = total_loss / self.grad_acc / len(indicies) + total_loss.backward() + if self.loss_callback: + self.loss_callback(total_loss.item()) + pbar.set_postfix({"loss": f"{total_loss.item():.4f}"}) - if (i+1) % self.grad_acc == 0: + if (i + 1) % self.grad_acc == 0: self.optimizer.step() self.optimizer.zero_grad() + ui_pbar.update(1) torch.cuda.empty_cache() return torch.zeros_like(latent_image) @@ -134,233 +227,6 @@ class BiasDiff(torch.nn.Module): return self.passive_memory_usage() -def load_and_process_images(image_files, input_dir, resize_method="None", w=None, h=None): - """Utility function to load and process a list of images. - - Args: - image_files: List of image filenames - input_dir: Base directory containing the images - resize_method: How to handle images of different sizes ("None", "Stretch", "Crop", "Pad") - - Returns: - torch.Tensor: Batch of processed images - """ - if not image_files: - raise ValueError("No valid images found in input") - - output_images = [] - - for file in image_files: - image_path = os.path.join(input_dir, file) - img = node_helpers.pillow(Image.open, image_path) - - if img.mode == "I": - img = img.point(lambda i: i * (1 / 255)) - img = img.convert("RGB") - - if w is None and h is None: - w, h = img.size[0], img.size[1] - - # Resize image to first image - if img.size[0] != w or img.size[1] != h: - if resize_method == "Stretch": - img = img.resize((w, h), Image.Resampling.LANCZOS) - elif resize_method == "Crop": - img = img.crop((0, 0, w, h)) - elif resize_method == "Pad": - img = img.resize((w, h), Image.Resampling.LANCZOS) - elif resize_method == "None": - raise ValueError( - "Your input image size does not match the first image in the dataset. Either select a valid resize method or use the same size for all images." - ) - - img_array = np.array(img).astype(np.float32) / 255.0 - img_tensor = torch.from_numpy(img_array)[None,] - output_images.append(img_tensor) - - return torch.cat(output_images, dim=0) - - -class LoadImageSetNode: - @classmethod - def INPUT_TYPES(s): - return { - "required": { - "images": ( - [ - f - for f in os.listdir(folder_paths.get_input_directory()) - if f.endswith((".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif", ".jpe", ".apng", ".tif", ".tiff")) - ], - {"image_upload": True, "allow_batch": True}, - ) - }, - "optional": { - "resize_method": ( - ["None", "Stretch", "Crop", "Pad"], - {"default": "None"}, - ), - }, - } - - INPUT_IS_LIST = True - RETURN_TYPES = ("IMAGE",) - FUNCTION = "load_images" - CATEGORY = "loaders" - EXPERIMENTAL = True - DESCRIPTION = "Loads a batch of images from a directory for training." - - @classmethod - def VALIDATE_INPUTS(s, images, resize_method): - filenames = images[0] if isinstance(images[0], list) else images - - for image in filenames: - if not folder_paths.exists_annotated_filepath(image): - return "Invalid image file: {}".format(image) - return True - - def load_images(self, input_files, resize_method): - input_dir = folder_paths.get_input_directory() - valid_extensions = [".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif", ".jpe", ".apng", ".tif", ".tiff"] - image_files = [ - f - for f in input_files - if any(f.lower().endswith(ext) for ext in valid_extensions) - ] - output_tensor = load_and_process_images(image_files, input_dir, resize_method) - return (output_tensor,) - - -class LoadImageSetFromFolderNode: - @classmethod - def INPUT_TYPES(s): - return { - "required": { - "folder": (folder_paths.get_input_subfolders(), {"tooltip": "The folder to load images from."}) - }, - "optional": { - "resize_method": ( - ["None", "Stretch", "Crop", "Pad"], - {"default": "None"}, - ), - }, - } - - RETURN_TYPES = ("IMAGE",) - FUNCTION = "load_images" - CATEGORY = "loaders" - EXPERIMENTAL = True - DESCRIPTION = "Loads a batch of images from a directory for training." - - def load_images(self, folder, resize_method): - sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder) - valid_extensions = [".png", ".jpg", ".jpeg", ".webp"] - image_files = [ - f - for f in os.listdir(sub_input_dir) - if any(f.lower().endswith(ext) for ext in valid_extensions) - ] - output_tensor = load_and_process_images(image_files, sub_input_dir, resize_method) - return (output_tensor,) - - -class LoadImageTextSetFromFolderNode: - @classmethod - def INPUT_TYPES(s): - return { - "required": { - "folder": (folder_paths.get_input_subfolders(), {"tooltip": "The folder to load images from."}), - "clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."}), - }, - "optional": { - "resize_method": ( - ["None", "Stretch", "Crop", "Pad"], - {"default": "None"}, - ), - "width": ( - IO.INT, - { - "default": -1, - "min": -1, - "max": 10000, - "step": 1, - "tooltip": "The width to resize the images to. -1 means use the original width.", - }, - ), - "height": ( - IO.INT, - { - "default": -1, - "min": -1, - "max": 10000, - "step": 1, - "tooltip": "The height to resize the images to. -1 means use the original height.", - }, - ) - }, - } - - RETURN_TYPES = ("IMAGE", IO.CONDITIONING,) - FUNCTION = "load_images" - CATEGORY = "loaders" - EXPERIMENTAL = True - DESCRIPTION = "Loads a batch of images and caption from a directory for training." - - def load_images(self, folder, clip, resize_method, width=None, height=None): - if clip is None: - raise RuntimeError("ERROR: clip input is invalid: None\n\nIf the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model.") - - logging.info(f"Loading images from folder: {folder}") - - sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder) - valid_extensions = [".png", ".jpg", ".jpeg", ".webp"] - - image_files = [] - for item in os.listdir(sub_input_dir): - path = os.path.join(sub_input_dir, item) - if any(item.lower().endswith(ext) for ext in valid_extensions): - image_files.append(path) - elif os.path.isdir(path): - # Support kohya-ss/sd-scripts folder structure - repeat = 1 - if item.split("_")[0].isdigit(): - repeat = int(item.split("_")[0]) - image_files.extend([ - os.path.join(path, f) for f in os.listdir(path) if any(f.lower().endswith(ext) for ext in valid_extensions) - ] * repeat) - - caption_file_path = [ - f.replace(os.path.splitext(f)[1], ".txt") - for f in image_files - ] - captions = [] - for caption_file in caption_file_path: - caption_path = os.path.join(sub_input_dir, caption_file) - if os.path.exists(caption_path): - with open(caption_path, "r", encoding="utf-8") as f: - caption = f.read().strip() - captions.append(caption) - else: - captions.append("") - - width = width if width != -1 else None - height = height if height != -1 else None - output_tensor = load_and_process_images(image_files, sub_input_dir, resize_method, width, height) - - logging.info(f"Loaded {len(output_tensor)} images from {sub_input_dir}.") - - logging.info(f"Encoding captions from {sub_input_dir}.") - conditions = [] - empty_cond = clip.encode_from_tokens_scheduled(clip.tokenize("")) - for text in captions: - if text == "": - conditions.append(empty_cond) - tokens = clip.tokenize(text) - conditions.extend(clip.encode_from_tokens_scheduled(tokens)) - logging.info(f"Encoded {len(conditions)} captions from {sub_input_dir}.") - return (output_tensor, conditions) - - def draw_loss_graph(loss_map, steps): width, height = 500, 300 img = Image.new("RGB", (width, height), "white") @@ -379,10 +245,14 @@ def draw_loss_graph(loss_map, steps): return img -def find_all_highest_child_module_with_forward(model: torch.nn.Module, result = None, name = None): +def find_all_highest_child_module_with_forward( + model: torch.nn.Module, result=None, name=None +): if result is None: result = [] - elif hasattr(model, "forward") and not isinstance(model, (torch.nn.ModuleList, torch.nn.Sequential, torch.nn.ModuleDict)): + elif hasattr(model, "forward") and not isinstance( + model, (torch.nn.ModuleList, torch.nn.Sequential, torch.nn.ModuleDict) + ): result.append(model) logging.debug(f"Found module with forward: {name} ({model.__class__.__name__})") return result @@ -396,12 +266,13 @@ def patch(m): if not hasattr(m, "forward"): return org_forward = m.forward + def fwd(args, kwargs): return org_forward(*args, **kwargs) + def checkpointing_fwd(*args, **kwargs): - return torch.utils.checkpoint.checkpoint( - fwd, args, kwargs, use_reentrant=False - ) + return torch.utils.checkpoint.checkpoint(fwd, args, kwargs, use_reentrant=False) + m.org_forward = org_forward m.forward = checkpointing_fwd @@ -412,130 +283,126 @@ def unpatch(m): del m.org_forward -class TrainLoraNode: +class TrainLoraNode(io.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "model": (IO.MODEL, {"tooltip": "The model to train the LoRA on."}), - "latents": ( - "LATENT", - { - "tooltip": "The Latents to use for training, serve as dataset/input of the model." - }, + def define_schema(cls): + return io.Schema( + node_id="TrainLoraNode", + display_name="Train LoRA", + category="training", + is_experimental=True, + is_input_list=True, # All inputs become lists + inputs=[ + io.Model.Input("model", tooltip="The model to train the LoRA on."), + io.Latent.Input( + "latents", + tooltip="The Latents to use for training, serve as dataset/input of the model.", ), - "positive": ( - IO.CONDITIONING, - {"tooltip": "The positive conditioning to use for training."}, + io.Conditioning.Input( + "positive", tooltip="The positive conditioning to use for training." ), - "batch_size": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 10000, - "step": 1, - "tooltip": "The batch size to use for training.", - }, + io.Int.Input( + "batch_size", + default=1, + min=1, + max=10000, + tooltip="The batch size to use for training.", ), - "grad_accumulation_steps": ( - IO.INT, - { - "default": 1, - "min": 1, - "max": 1024, - "step": 1, - "tooltip": "The number of gradient accumulation steps to use for training.", - } + io.Int.Input( + "grad_accumulation_steps", + default=1, + min=1, + max=1024, + tooltip="The number of gradient accumulation steps to use for training.", ), - "steps": ( - IO.INT, - { - "default": 16, - "min": 1, - "max": 100000, - "tooltip": "The number of steps to train the LoRA for.", - }, + io.Int.Input( + "steps", + default=16, + min=1, + max=100000, + tooltip="The number of steps to train the LoRA for.", ), - "learning_rate": ( - IO.FLOAT, - { - "default": 0.0005, - "min": 0.0000001, - "max": 1.0, - "step": 0.000001, - "tooltip": "The learning rate to use for training.", - }, + io.Float.Input( + "learning_rate", + default=0.0005, + min=0.0000001, + max=1.0, + step=0.0000001, + tooltip="The learning rate to use for training.", ), - "rank": ( - IO.INT, - { - "default": 8, - "min": 1, - "max": 128, - "tooltip": "The rank of the LoRA layers.", - }, + io.Int.Input( + "rank", + default=8, + min=1, + max=128, + tooltip="The rank of the LoRA layers.", ), - "optimizer": ( - ["AdamW", "Adam", "SGD", "RMSprop"], - { - "default": "AdamW", - "tooltip": "The optimizer to use for training.", - }, + io.Combo.Input( + "optimizer", + options=["AdamW", "Adam", "SGD", "RMSprop"], + default="AdamW", + tooltip="The optimizer to use for training.", ), - "loss_function": ( - ["MSE", "L1", "Huber", "SmoothL1"], - { - "default": "MSE", - "tooltip": "The loss function to use for training.", - }, + io.Combo.Input( + "loss_function", + options=["MSE", "L1", "Huber", "SmoothL1"], + default="MSE", + tooltip="The loss function to use for training.", ), - "seed": ( - IO.INT, - { - "default": 0, - "min": 0, - "max": 0xFFFFFFFFFFFFFFFF, - "tooltip": "The seed to use for training (used in generator for LoRA weight initialization and noise sampling)", - }, + io.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + tooltip="The seed to use for training (used in generator for LoRA weight initialization and noise sampling)", ), - "training_dtype": ( - ["bf16", "fp32"], - {"default": "bf16", "tooltip": "The dtype to use for training."}, + io.Combo.Input( + "training_dtype", + options=["bf16", "fp32"], + default="bf16", + tooltip="The dtype to use for training.", ), - "lora_dtype": ( - ["bf16", "fp32"], - {"default": "bf16", "tooltip": "The dtype to use for lora."}, + io.Combo.Input( + "lora_dtype", + options=["bf16", "fp32"], + default="bf16", + tooltip="The dtype to use for lora.", ), - "algorithm": ( - list(adapter_maps.keys()), - {"default": list(adapter_maps.keys())[0], "tooltip": "The algorithm to use for training."}, + io.Combo.Input( + "algorithm", + options=list(adapter_maps.keys()), + default=list(adapter_maps.keys())[0], + tooltip="The algorithm to use for training.", ), - "gradient_checkpointing": ( - IO.BOOLEAN, - { - "default": True, - "tooltip": "Use gradient checkpointing for training.", - } + io.Boolean.Input( + "gradient_checkpointing", + default=True, + tooltip="Use gradient checkpointing for training.", ), - "existing_lora": ( - folder_paths.get_filename_list("loras") + ["[None]"], - { - "default": "[None]", - "tooltip": "The existing LoRA to append to. Set to None for new LoRA.", - }, + io.Combo.Input( + "existing_lora", + options=folder_paths.get_filename_list("loras") + ["[None]"], + default="[None]", + tooltip="The existing LoRA to append to. Set to None for new LoRA.", ), - }, - } + ], + outputs=[ + io.Model.Output( + display_name="model", tooltip="Model with LoRA applied" + ), + io.Custom("LORA_MODEL").Output( + display_name="lora", tooltip="LoRA weights" + ), + io.Custom("LOSS_MAP").Output( + display_name="loss_map", tooltip="Loss history" + ), + io.Int.Output(display_name="steps", tooltip="Total training steps"), + ], + ) - RETURN_TYPES = (IO.MODEL, IO.LORA_MODEL, IO.LOSS_MAP, IO.INT) - RETURN_NAMES = ("model_with_lora", "lora", "loss", "steps") - FUNCTION = "train" - CATEGORY = "training" - EXPERIMENTAL = True - - def train( - self, + @classmethod + def execute( + cls, model, latents, positive, @@ -553,13 +420,74 @@ class TrainLoraNode: gradient_checkpointing, existing_lora, ): + # Extract scalars from lists (due to is_input_list=True) + model = model[0] + batch_size = batch_size[0] + steps = steps[0] + grad_accumulation_steps = grad_accumulation_steps[0] + learning_rate = learning_rate[0] + rank = rank[0] + optimizer = optimizer[0] + loss_function = loss_function[0] + seed = seed[0] + training_dtype = training_dtype[0] + lora_dtype = lora_dtype[0] + algorithm = algorithm[0] + gradient_checkpointing = gradient_checkpointing[0] + existing_lora = existing_lora[0] + + # Handle latents - either single dict or list of dicts + if len(latents) == 1: + latents = latents[0]["samples"] # Single latent dict + else: + latent_list = [] + for latent in latents: + latent = latent["samples"] + bs = latent.shape[0] + if bs != 1: + for sub_latent in latent: + latent_list.append(sub_latent[None]) + else: + latent_list.append(latent) + latents = latent_list + + # Handle conditioning - either single list or list of lists + if len(positive) == 1: + positive = positive[0] # Single conditioning list + else: + # Multiple conditioning lists - flatten + flat_positive = [] + for cond in positive: + if isinstance(cond, list): + flat_positive.extend(cond) + else: + flat_positive.append(cond) + positive = flat_positive + mp = model.clone() dtype = node_helpers.string_to_torch_dtype(training_dtype) lora_dtype = node_helpers.string_to_torch_dtype(lora_dtype) mp.set_model_compute_dtype(dtype) - latents = latents["samples"].to(dtype) - num_images = latents.shape[0] + # latents here can be list of different size latent or one large batch + if isinstance(latents, list): + all_shapes = set() + latents = [t.to(dtype) for t in latents] + for latent in latents: + all_shapes.add(latent.shape) + logging.info(f"Latent shapes: {all_shapes}") + if len(all_shapes) > 1: + multi_res = True + else: + multi_res = False + latents = torch.cat(latents, dim=0) + num_images = len(latents) + elif isinstance(latents, torch.Tensor): + latents = latents.to(dtype) + num_images = latents.shape[0] + else: + logging.error(f"Invalid latents type: {type(latents)}") + logging.info(f"Total Images: {num_images}, Total Captions: {len(positive)}") if len(positive) == 1 and num_images > 1: positive = positive * num_images @@ -591,9 +519,7 @@ class TrainLoraNode: shape = m.weight.shape if len(shape) >= 2: alpha = float(existing_weights.get(f"{key}.alpha", 1.0)) - dora_scale = existing_weights.get( - f"{key}.dora_scale", None - ) + dora_scale = existing_weights.get(f"{key}.dora_scale", None) for adapter_cls in adapters: existing_adapter = adapter_cls.load( n, existing_weights, alpha, dora_scale @@ -605,7 +531,9 @@ class TrainLoraNode: adapter_cls = adapter_maps[algorithm] if existing_adapter is not None: - train_adapter = existing_adapter.to_train().to(lora_dtype) + train_adapter = existing_adapter.to_train().to( + lora_dtype + ) else: # Use LoRA with alpha=1.0 by default train_adapter = adapter_cls.create_train( @@ -629,7 +557,9 @@ class TrainLoraNode: if hasattr(m, "bias") and m.bias is not None: key = "{}.bias".format(n) bias = torch.nn.Parameter( - torch.zeros(m.bias.shape, dtype=lora_dtype, requires_grad=True) + torch.zeros( + m.bias.shape, dtype=lora_dtype, requires_grad=True + ) ) bias_module = BiasDiff(bias) lora_sd["{}.diff_b".format(n)] = bias @@ -657,24 +587,31 @@ class TrainLoraNode: # setup models if gradient_checkpointing: - for m in find_all_highest_child_module_with_forward(mp.model.diffusion_model): + for m in find_all_highest_child_module_with_forward( + mp.model.diffusion_model + ): patch(m) mp.model.requires_grad_(False) - comfy.model_management.load_models_gpu([mp], memory_required=1e20, force_full_load=True) + comfy.model_management.load_models_gpu( + [mp], memory_required=1e20, force_full_load=True + ) # Setup sampler and guider like in test script loss_map = {"loss": []} + def loss_callback(loss): loss_map["loss"].append(loss) + train_sampler = TrainSampler( criterion, optimizer, loss_callback=loss_callback, batch_size=batch_size, grad_acc=grad_accumulation_steps, - total_steps=steps*grad_accumulation_steps, + total_steps=steps * grad_accumulation_steps, seed=seed, - training_dtype=dtype + training_dtype=dtype, + real_dataset=latents if multi_res else None, ) guider = comfy_extras.nodes_custom_sampler.Guider_Basic(mp) guider.set_conds(positive) # Set conditioning from input @@ -684,12 +621,15 @@ class TrainLoraNode: # Generate dummy sigmas and noise sigmas = torch.tensor(range(num_images)) noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed) + if multi_res: + # use first latent as dummy latent if multi_res + latents = latents[0].repeat(num_images, 1, 1, 1) guider.sample( noise.generate_noise({"samples": latents}), latents, train_sampler, sigmas, - seed=noise.seed + seed=noise.seed, ) finally: for m in mp.model.modules(): @@ -702,111 +642,118 @@ class TrainLoraNode: for param in lora_sd: lora_sd[param] = lora_sd[param].to(lora_dtype) - return (mp, lora_sd, loss_map, steps + existing_steps) + return io.NodeOutput(mp, lora_sd, loss_map, steps + existing_steps) -class LoraModelLoader: - def __init__(self): - self.loaded_lora = None +class LoraModelLoader(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LoraModelLoader", + display_name="Load LoRA Model", + category="loaders", + is_experimental=True, + inputs=[ + io.Model.Input( + "model", tooltip="The diffusion model the LoRA will be applied to." + ), + io.Custom("LORA_MODEL").Input( + "lora", tooltip="The LoRA model to apply to the diffusion model." + ), + io.Float.Input( + "strength_model", + default=1.0, + min=-100.0, + max=100.0, + tooltip="How strongly to modify the diffusion model. This value can be negative.", + ), + ], + outputs=[ + io.Model.Output( + display_name="model", tooltip="The modified diffusion model." + ), + ], + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}), - "lora": (IO.LORA_MODEL, {"tooltip": "The LoRA model to apply to the diffusion model."}), - "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the diffusion model. This value can be negative."}), - } - } - - RETURN_TYPES = ("MODEL",) - OUTPUT_TOOLTIPS = ("The modified diffusion model.",) - FUNCTION = "load_lora_model" - - CATEGORY = "loaders" - DESCRIPTION = "Load Trained LoRA weights from Train LoRA node." - EXPERIMENTAL = True - - def load_lora_model(self, model, lora, strength_model): + def execute(cls, model, lora, strength_model): if strength_model == 0: - return (model, ) + return io.NodeOutput(model) - model_lora, _ = comfy.sd.load_lora_for_models(model, None, lora, strength_model, 0) - return (model_lora, ) + model_lora, _ = comfy.sd.load_lora_for_models( + model, None, lora, strength_model, 0 + ) + return io.NodeOutput(model_lora) -class SaveLoRA: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() +class SaveLoRA(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SaveLoRA", + display_name="Save LoRA Weights", + category="loaders", + is_experimental=True, + is_output_node=True, + inputs=[ + io.Custom("LORA_MODEL").Input( + "lora", + tooltip="The LoRA model to save. Do not use the model with LoRA layers.", + ), + io.String.Input( + "prefix", + default="loras/ComfyUI_trained_lora", + tooltip="The prefix to use for the saved LoRA file.", + ), + io.Int.Input( + "steps", + optional=True, + tooltip="Optional: The number of steps to LoRA has been trained for, used to name the saved file.", + ), + ], + outputs=[], + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "lora": ( - IO.LORA_MODEL, - { - "tooltip": "The LoRA model to save. Do not use the model with LoRA layers." - }, - ), - "prefix": ( - "STRING", - { - "default": "loras/ComfyUI_trained_lora", - "tooltip": "The prefix to use for the saved LoRA file.", - }, - ), - }, - "optional": { - "steps": ( - IO.INT, - { - "forceInput": True, - "tooltip": "Optional: The number of steps to LoRA has been trained for, used to name the saved file.", - }, - ), - }, - } - - RETURN_TYPES = () - FUNCTION = "save" - CATEGORY = "loaders" - EXPERIMENTAL = True - OUTPUT_NODE = True - - def save(self, lora, prefix, steps=None): - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(prefix, self.output_dir) + def execute(cls, lora, prefix, steps=None): + output_dir = folder_paths.get_output_directory() + full_output_folder, filename, counter, subfolder, filename_prefix = ( + folder_paths.get_save_image_path(prefix, output_dir) + ) if steps is None: output_checkpoint = f"{filename}_{counter:05}_.safetensors" else: output_checkpoint = f"{filename}_{steps}_steps_{counter:05}_.safetensors" output_checkpoint = os.path.join(full_output_folder, output_checkpoint) safetensors.torch.save_file(lora, output_checkpoint) - return {} + return io.NodeOutput() -class LossGraphNode: - def __init__(self): - self.output_dir = folder_paths.get_temp_directory() +class LossGraphNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LossGraphNode", + display_name="Plot Loss Graph", + category="training", + is_experimental=True, + is_output_node=True, + inputs=[ + io.Custom("LOSS_MAP").Input( + "loss", tooltip="Loss map from training node." + ), + io.String.Input( + "filename_prefix", + default="loss_graph", + tooltip="Prefix for the saved loss graph image.", + ), + ], + outputs=[], + hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo], + ) @classmethod - def INPUT_TYPES(s): - return { - "required": { - "loss": (IO.LOSS_MAP, {"default": {}}), - "filename_prefix": (IO.STRING, {"default": "loss_graph"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } - - RETURN_TYPES = () - FUNCTION = "plot_loss" - OUTPUT_NODE = True - CATEGORY = "training" - EXPERIMENTAL = True - DESCRIPTION = "Plots the loss graph and saves it to the output directory." - - def plot_loss(self, loss, filename_prefix, prompt=None, extra_pnginfo=None): + def execute(cls, loss, filename_prefix, prompt=None, extra_pnginfo=None): loss_values = loss["loss"] width, height = 800, 480 margin = 40 @@ -849,47 +796,27 @@ class LossGraphNode: (margin - 30, height - 10), f"{min_loss:.2f}", font=font, fill="black" ) - metadata = None - if not args.disable_metadata: - metadata = PngInfo() - if prompt is not None: - metadata.add_text("prompt", json.dumps(prompt)) - if extra_pnginfo is not None: - for x in extra_pnginfo: - metadata.add_text(x, json.dumps(extra_pnginfo[x])) + # Convert PIL image to tensor for PreviewImage + img_array = np.array(img).astype(np.float32) / 255.0 + img_tensor = torch.from_numpy(img_array)[None,] # [1, H, W, 3] - date = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") - img.save( - os.path.join(self.output_dir, f"{filename_prefix}_{date}.png"), - pnginfo=metadata, - ) - return { - "ui": { - "images": [ - { - "filename": f"{filename_prefix}_{date}.png", - "subfolder": "", - "type": "temp", - } - ] - } - } + # Return preview UI + return io.NodeOutput(ui=ui.PreviewImage(img_tensor, cls=cls)) -NODE_CLASS_MAPPINGS = { - "TrainLoraNode": TrainLoraNode, - "SaveLoRANode": SaveLoRA, - "LoraModelLoader": LoraModelLoader, - "LoadImageSetFromFolderNode": LoadImageSetFromFolderNode, - "LoadImageTextSetFromFolderNode": LoadImageTextSetFromFolderNode, - "LossGraphNode": LossGraphNode, -} +# ========== Extension Setup ========== -NODE_DISPLAY_NAME_MAPPINGS = { - "TrainLoraNode": "Train LoRA", - "SaveLoRANode": "Save LoRA Weights", - "LoraModelLoader": "Load LoRA Model", - "LoadImageSetFromFolderNode": "Load Image Dataset from Folder", - "LoadImageTextSetFromFolderNode": "Load Image and Text Dataset from Folder", - "LossGraphNode": "Plot Loss Graph", -} + +class TrainingExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + TrainLoraNode, + LoraModelLoader, + SaveLoRA, + LossGraphNode, + ] + + +async def comfy_entrypoint() -> TrainingExtension: + return TrainingExtension() diff --git a/nodes.py b/nodes.py index f4835c02e..bf73eb90e 100644 --- a/nodes.py +++ b/nodes.py @@ -2278,6 +2278,7 @@ async def init_builtin_extra_nodes(): "nodes_images.py", "nodes_video_model.py", "nodes_train.py", + "nodes_dataset.py", "nodes_sag.py", "nodes_perpneg.py", "nodes_stable3d.py", From eaf68c9b5bbfbcdac8988741f3948678c9465c1d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 26 Nov 2025 16:25:32 -0800 Subject: [PATCH 060/271] Make lora training work on Z Image and remove some redundant nodes. (#10927) --- comfy/ldm/lumina/model.py | 4 +- comfy_extras/nodes_dataset.py | 102 +--------------------------------- 2 files changed, 3 insertions(+), 103 deletions(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index c8643eb82..565400b54 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -509,7 +509,7 @@ class NextDiT(nn.Module): if self.pad_tokens_multiple is not None: pad_extra = (-cap_feats.shape[1]) % self.pad_tokens_multiple - cap_feats = torch.cat((cap_feats, self.cap_pad_token.to(device=cap_feats.device, dtype=cap_feats.dtype).unsqueeze(0).repeat(cap_feats.shape[0], pad_extra, 1)), dim=1) + cap_feats = torch.cat((cap_feats, self.cap_pad_token.to(device=cap_feats.device, dtype=cap_feats.dtype, copy=True).unsqueeze(0).repeat(cap_feats.shape[0], pad_extra, 1)), dim=1) cap_pos_ids = torch.zeros(bsz, cap_feats.shape[1], 3, dtype=torch.float32, device=device) cap_pos_ids[:, :, 0] = torch.arange(cap_feats.shape[1], dtype=torch.float32, device=device) + 1.0 @@ -525,7 +525,7 @@ class NextDiT(nn.Module): if self.pad_tokens_multiple is not None: pad_extra = (-x.shape[1]) % self.pad_tokens_multiple - x = torch.cat((x, self.x_pad_token.to(device=x.device, dtype=x.dtype).unsqueeze(0).repeat(x.shape[0], pad_extra, 1)), dim=1) + x = torch.cat((x, self.x_pad_token.to(device=x.device, dtype=x.dtype, copy=True).unsqueeze(0).repeat(x.shape[0], pad_extra, 1)), dim=1) x_pos_ids = torch.nn.functional.pad(x_pos_ids, (0, 0, 0, pad_extra)) freqs_cis = self.rope_embedder(torch.cat((cap_pos_ids, x_pos_ids), dim=1)).movedim(1, 2) diff --git a/comfy_extras/nodes_dataset.py b/comfy_extras/nodes_dataset.py index b23867505..4789d7d53 100644 --- a/comfy_extras/nodes_dataset.py +++ b/comfy_extras/nodes_dataset.py @@ -1,6 +1,5 @@ import logging import os -import math import json import numpy as np @@ -624,79 +623,6 @@ class TextProcessingNode(io.ComfyNode): # ========== Image Transform Nodes ========== -class ResizeImagesToSameSizeNode(ImageProcessingNode): - node_id = "ResizeImagesToSameSize" - display_name = "Resize Images to Same Size" - description = "Resize all images to the same width and height." - extra_inputs = [ - io.Int.Input("width", default=512, min=1, max=8192, tooltip="Target width."), - io.Int.Input("height", default=512, min=1, max=8192, tooltip="Target height."), - io.Combo.Input( - "mode", - options=["stretch", "crop_center", "pad"], - default="stretch", - tooltip="Resize mode.", - ), - ] - - @classmethod - def _process(cls, image, width, height, mode): - img = tensor_to_pil(image) - - if mode == "stretch": - img = img.resize((width, height), Image.Resampling.LANCZOS) - elif mode == "crop_center": - left = max(0, (img.width - width) // 2) - top = max(0, (img.height - height) // 2) - right = min(img.width, left + width) - bottom = min(img.height, top + height) - img = img.crop((left, top, right, bottom)) - if img.width != width or img.height != height: - img = img.resize((width, height), Image.Resampling.LANCZOS) - elif mode == "pad": - img.thumbnail((width, height), Image.Resampling.LANCZOS) - new_img = Image.new("RGB", (width, height), (0, 0, 0)) - paste_x = (width - img.width) // 2 - paste_y = (height - img.height) // 2 - new_img.paste(img, (paste_x, paste_y)) - img = new_img - - return pil_to_tensor(img) - - -class ResizeImagesToPixelCountNode(ImageProcessingNode): - node_id = "ResizeImagesToPixelCount" - display_name = "Resize Images to Pixel Count" - description = "Resize images so that the total pixel count matches the specified number while preserving aspect ratio." - extra_inputs = [ - io.Int.Input( - "pixel_count", - default=512 * 512, - min=1, - max=8192 * 8192, - tooltip="Target pixel count.", - ), - io.Int.Input( - "steps", - default=64, - min=1, - max=128, - tooltip="The stepping for resize width/height.", - ), - ] - - @classmethod - def _process(cls, image, pixel_count, steps): - img = tensor_to_pil(image) - w, h = img.size - pixel_count_ratio = math.sqrt(pixel_count / (w * h)) - new_w = int(w * pixel_count_ratio / steps) * steps - new_h = int(h * pixel_count_ratio / steps) * steps - logging.info(f"Resizing from {w}x{h} to {new_w}x{new_h}") - img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) - return pil_to_tensor(img) - - class ResizeImagesByShorterEdgeNode(ImageProcessingNode): node_id = "ResizeImagesByShorterEdge" display_name = "Resize Images by Shorter Edge" @@ -801,29 +727,6 @@ class RandomCropImagesNode(ImageProcessingNode): return pil_to_tensor(img) -class FlipImagesNode(ImageProcessingNode): - node_id = "FlipImages" - display_name = "Flip Images" - description = "Flip all images horizontally or vertically." - extra_inputs = [ - io.Combo.Input( - "direction", - options=["horizontal", "vertical"], - default="horizontal", - tooltip="Flip direction.", - ), - ] - - @classmethod - def _process(cls, image, direction): - img = tensor_to_pil(image) - if direction == "horizontal": - img = img.transpose(Image.FLIP_LEFT_RIGHT) - else: - img = img.transpose(Image.FLIP_TOP_BOTTOM) - return pil_to_tensor(img) - - class NormalizeImagesNode(ImageProcessingNode): node_id = "NormalizeImages" display_name = "Normalize Images" @@ -1470,7 +1373,7 @@ class LoadTrainingDataset(io.ComfyNode): shard_path = os.path.join(dataset_dir, shard_file) with open(shard_path, "rb") as f: - shard_data = torch.load(f) + shard_data = torch.load(f, weights_only=True) all_latents.extend(shard_data["latents"]) all_conditioning.extend(shard_data["conditioning"]) @@ -1496,13 +1399,10 @@ class DatasetExtension(ComfyExtension): SaveImageDataSetToFolderNode, SaveImageTextDataSetToFolderNode, # Image transform nodes - ResizeImagesToSameSizeNode, - ResizeImagesToPixelCountNode, ResizeImagesByShorterEdgeNode, ResizeImagesByLongerEdgeNode, CenterCropImagesNode, RandomCropImagesNode, - FlipImagesNode, NormalizeImagesNode, AdjustBrightnessNode, AdjustContrastNode, From c38e7d6599be1bdce580ccfdbb20b928315af05e Mon Sep 17 00:00:00 2001 From: Haoming <73768377+Haoming02@users.noreply.github.com> Date: Thu, 27 Nov 2025 12:28:44 +0800 Subject: [PATCH 061/271] block info (#10841) --- comfy/ldm/flux/model.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/comfy/ldm/flux/model.py b/comfy/ldm/flux/model.py index 1a24e6d95..d5674dea6 100644 --- a/comfy/ldm/flux/model.py +++ b/comfy/ldm/flux/model.py @@ -171,7 +171,10 @@ class Flux(nn.Module): pe = None blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.double_blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.double_blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -215,7 +218,10 @@ class Flux(nn.Module): if self.params.global_modulation: vec, _ = self.single_stream_modulation(vec_orig) + transformer_options["total_blocks"] = len(self.single_blocks) + transformer_options["block_type"] = "single" for i, block in enumerate(self.single_blocks): + transformer_options["block_index"] = i if ("single_block", i) in blocks_replace: def block_wrap(args): out = {} From f17251bec65b5760cfedec29eace7d77f4b35130 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Thu, 27 Nov 2025 16:03:03 +1000 Subject: [PATCH 062/271] Account for the VRAM cost of weight offloading (#10733) * mm: default to 0 for NUM_STREAMS Dont count the compute stream as an offload stream. This makes async offload accounting easier. * mm: remove 128MB minimum This is from a previous offloading system requirement. Remove it to make behaviour of the loader and partial unloader consistent. * mp: order the module list by offload expense Calculate an approximate offloading temporary VRAM cost to offload a weight and primary order the module load list by that. In the simple case this is just the same as the module weight, but with Loras, a weight with a lora consumes considerably more VRAM to do the Lora application on-the-fly. This will slightly prioritize lora weights, but is really for proper VRAM offload accounting. * mp: Account for the VRAM cost of weight offloading when checking the VRAM headroom, assume that the weight needs to be offloaded, and only load if it has space for both the load and offload * the number of streams. As the weights are ordered from largest to smallest by offload cost this is guaranteed to fit in VRAM (tm), as all weights that follow will be smaller. Make the partial unload aware of this system as well by saving the budget for offload VRAM to the model state and accounting accordingly. Its possible that partial unload increases the size of the largest offloaded weights, and thus needs to unload a little bit more than asked to accomodate the bigger temp buffers. Honor the existing codes floor on model weight loading of 128MB by having the patcher honor this separately withough regard to offloading. Otherwise when MM specifies its 128MB minimum, MP will see the biggest weights, and budget that 128MB to only offload buffer and load nothing which isnt the intent of these minimums. The same clamp applies in case of partial offload of the currently loading model. --- comfy/model_management.py | 6 ++-- comfy/model_patcher.py | 59 +++++++++++++++++++++++++++++---------- 2 files changed, 48 insertions(+), 17 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index a9327ac80..9c403d580 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -689,7 +689,7 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu loaded_memory = loaded_model.model_loaded_memory() current_free_mem = get_free_memory(torch_dev) + loaded_memory - lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory())) + lowvram_model_memory = max(0, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory())) lowvram_model_memory = lowvram_model_memory - loaded_memory if lowvram_model_memory == 0: @@ -1012,7 +1012,7 @@ def force_channels_last(): STREAMS = {} -NUM_STREAMS = 1 +NUM_STREAMS = 0 if args.async_offload: NUM_STREAMS = 2 logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS)) @@ -1030,7 +1030,7 @@ def current_stream(device): stream_counters = {} def get_offload_stream(device): stream_counter = stream_counters.get(device, 0) - if NUM_STREAMS <= 1: + if NUM_STREAMS == 0: return None if device in STREAMS: diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 73adc7f70..3eac77275 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -148,6 +148,15 @@ class LowVramPatch: else: return out +#The above patch logic may cast up the weight to fp32, and do math. Go with fp32 x 3 +LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 3 + +def low_vram_patch_estimate_vram(model, key): + weight, set_func, convert_func = get_key_weight(model, key) + if weight is None: + return 0 + return weight.numel() * torch.float32.itemsize * LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR + def get_key_weight(model, key): set_func = None convert_func = None @@ -269,6 +278,9 @@ class ModelPatcher: if not hasattr(self.model, 'current_weight_patches_uuid'): self.model.current_weight_patches_uuid = None + if not hasattr(self.model, 'model_offload_buffer_memory'): + self.model.model_offload_buffer_memory = 0 + def model_size(self): if self.size > 0: return self.size @@ -662,7 +674,16 @@ class ModelPatcher: skip = True # skip random weights in non leaf modules break if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0): - loading.append((comfy.model_management.module_size(m), n, m, params)) + module_mem = comfy.model_management.module_size(m) + module_offload_mem = module_mem + if hasattr(m, "comfy_cast_weights"): + weight_key = "{}.weight".format(n) + bias_key = "{}.bias".format(n) + if weight_key in self.patches: + module_offload_mem += low_vram_patch_estimate_vram(self.model, weight_key) + if bias_key in self.patches: + module_offload_mem += low_vram_patch_estimate_vram(self.model, bias_key) + loading.append((module_offload_mem, module_mem, n, m, params)) return loading def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False): @@ -676,20 +697,22 @@ class ModelPatcher: load_completely = [] offloaded = [] + offload_buffer = 0 loading.sort(reverse=True) for x in loading: - n = x[1] - m = x[2] - params = x[3] - module_mem = x[0] + module_offload_mem, module_mem, n, m, params = x lowvram_weight = False + potential_offload = max(offload_buffer, module_offload_mem * (comfy.model_management.NUM_STREAMS + 1)) + lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory + weight_key = "{}.weight".format(n) bias_key = "{}.bias".format(n) if not full_load and hasattr(m, "comfy_cast_weights"): - if mem_counter + module_mem >= lowvram_model_memory: + if not lowvram_fits: + offload_buffer = potential_offload lowvram_weight = True lowvram_counter += 1 lowvram_mem_counter += module_mem @@ -723,9 +746,11 @@ class ModelPatcher: if hasattr(m, "comfy_cast_weights"): wipe_lowvram_weight(m) - if full_load or mem_counter + module_mem < lowvram_model_memory: + if full_load or lowvram_fits: mem_counter += module_mem load_completely.append((module_mem, n, m, params)) + else: + offload_buffer = potential_offload if cast_weight and hasattr(m, "comfy_cast_weights"): m.prev_comfy_cast_weights = m.comfy_cast_weights @@ -766,7 +791,7 @@ class ModelPatcher: self.pin_weight_to_device("{}.{}".format(n, param)) if lowvram_counter > 0: - logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), patch_counter)) + logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter)) self.model.model_lowvram = True else: logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load)) @@ -778,6 +803,7 @@ class ModelPatcher: self.model.lowvram_patch_counter += patch_counter self.model.device = device_to self.model.model_loaded_weight_memory = mem_counter + self.model.model_offload_buffer_memory = offload_buffer self.model.current_weight_patches_uuid = self.patches_uuid for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD): @@ -831,6 +857,7 @@ class ModelPatcher: self.model.to(device_to) self.model.device = device_to self.model.model_loaded_weight_memory = 0 + self.model.model_offload_buffer_memory = 0 for m in self.model.modules(): if hasattr(m, "comfy_patched_weights"): @@ -849,13 +876,14 @@ class ModelPatcher: patch_counter = 0 unload_list = self._load_list() unload_list.sort() + offload_buffer = self.model.model_offload_buffer_memory + for unload in unload_list: - if memory_to_free < memory_freed: + if memory_to_free + offload_buffer - self.model.model_offload_buffer_memory < memory_freed: break - module_mem = unload[0] - n = unload[1] - m = unload[2] - params = unload[3] + module_offload_mem, module_mem, n, m, params = unload + + potential_offload = (comfy.model_management.NUM_STREAMS + 1) * module_offload_mem lowvram_possible = hasattr(m, "comfy_cast_weights") if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True: @@ -906,15 +934,18 @@ class ModelPatcher: m.comfy_cast_weights = True m.comfy_patched_weights = False memory_freed += module_mem + offload_buffer = max(offload_buffer, potential_offload) logging.debug("freed {}".format(n)) for param in params: self.pin_weight_to_device("{}.{}".format(n, param)) + self.model.model_lowvram = True self.model.lowvram_patch_counter += patch_counter self.model.model_loaded_weight_memory -= memory_freed - logging.info("loaded partially: {:.2f} MB loaded, lowvram patches: {}".format(self.model.model_loaded_weight_memory / (1024 * 1024), self.model.lowvram_patch_counter)) + self.model.model_offload_buffer_memory = offload_buffer + logging.info("Unloaded partially: {:.2f} MB freed, {:.2f} MB remains loaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(memory_freed / (1024 * 1024), self.model.model_loaded_weight_memory / (1024 * 1024), offload_buffer / (1024 * 1024), self.model.lowvram_patch_counter)) return memory_freed def partially_load(self, device_to, extra_memory=0, force_patch_weights=False): From 3f382a4f9884f7b672557028adb9bb85d075820d Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Fri, 28 Nov 2025 02:06:30 +1000 Subject: [PATCH 063/271] quant ops: Dequantize weight in-place (#10935) In flux2 these weights are huge (200MB). As plain_tensor is a throw-away deep copy, do this multiplication in-place to save VRAM. --- comfy/quant_ops.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index d2f3e7397..9b924560b 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -425,7 +425,8 @@ class TensorCoreFP8Layout(QuantizedLayout): @staticmethod def dequantize(qdata, scale, orig_dtype, **kwargs): plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype) - return plain_tensor * scale + plain_tensor.mul_(scale) + return plain_tensor @classmethod def get_plain_tensors(cls, qtensor): From b59750a86a4687056528f1d59470e207063a73a3 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Fri, 28 Nov 2025 06:12:56 +0800 Subject: [PATCH 064/271] Update template to 0.7.23 (#10949) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 9291552d3..e0b2c566b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.32.9 -comfyui-workflow-templates==0.7.20 +comfyui-workflow-templates==0.7.23 comfyui-embedded-docs==0.3.1 torch torchsde From 9d8a817985bb069685e440b38762f95dc834d242 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 27 Nov 2025 14:46:12 -0800 Subject: [PATCH 065/271] Enable async offloading by default on Nvidia. (#10953) Add --disable-async-offload to disable it. If this causes OOMs that go away when you --disable-async-offload please report it. --- comfy/cli_args.py | 3 ++- comfy/model_management.py | 13 +++++++++++-- 2 files changed, 13 insertions(+), 3 deletions(-) diff --git a/comfy/cli_args.py b/comfy/cli_args.py index d2b60e347..5f0dfaa10 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -131,7 +131,8 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.") -parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.") +parser.add_argument("--async-offload", nargs='?', const=2, type=int, default=None, metavar="NUM_STREAMS", help="Use async weight offloading. An optional argument controls the amount of offload streams. Default is 2. Enabled by default on Nvidia.") +parser.add_argument("--disable-async-offload", action="store_true", help="Disable async weight offloading.") parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.") diff --git a/comfy/model_management.py b/comfy/model_management.py index 9c403d580..38c506df5 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1013,8 +1013,17 @@ def force_channels_last(): STREAMS = {} NUM_STREAMS = 0 -if args.async_offload: - NUM_STREAMS = 2 +if args.async_offload is not None: + NUM_STREAMS = args.async_offload +else: + # Enable by default on Nvidia + if is_nvidia(): + NUM_STREAMS = 2 + +if args.disable_async_offload: + NUM_STREAMS = 0 + +if NUM_STREAMS > 0: logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS)) def current_stream(device): From 52e778fff3c1d6f32c8d14cba9864faddba8475d Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 28 Nov 2025 12:52:59 +0200 Subject: [PATCH 066/271] feat(Kling-API-Nodes): add v2-5-turbo model to FirstLastFrame node (#10938) --- comfy_api_nodes/nodes_kling.py | 60 +++++++++++++++------------------- 1 file changed, 26 insertions(+), 34 deletions(-) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 36852038b..23a7f55f1 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -4,8 +4,6 @@ For source of truth on the allowed permutations of request fields, please refere - [Compatibility Table](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) """ -from __future__ import annotations -from typing import Optional, TypeVar import math import logging @@ -66,9 +64,7 @@ from comfy_api_nodes.util import ( poll_op, ) from comfy_api.input_impl import VideoFromFile -from comfy_api.input.basic_types import AudioInput -from comfy_api.input.video_types import VideoInput -from comfy_api.latest import ComfyExtension, IO +from comfy_api.latest import ComfyExtension, IO, Input KLING_API_VERSION = "v1" PATH_TEXT_TO_VIDEO = f"/proxy/kling/{KLING_API_VERSION}/videos/text2video" @@ -94,8 +90,6 @@ AVERAGE_DURATION_IMAGE_GEN = 32 AVERAGE_DURATION_VIDEO_EFFECTS = 320 AVERAGE_DURATION_VIDEO_EXTEND = 320 -R = TypeVar("R") - MODE_TEXT2VIDEO = { "standard mode / 5s duration / kling-v1": ("std", "5", "kling-v1"), @@ -130,6 +124,8 @@ MODE_START_END_FRAME = { "pro mode / 10s duration / kling-v1-6": ("pro", "10", "kling-v1-6"), "pro mode / 5s duration / kling-v2-1": ("pro", "5", "kling-v2-1"), "pro mode / 10s duration / kling-v2-1": ("pro", "10", "kling-v2-1"), + "pro mode / 5s duration / kling-v2-5-turbo": ("pro", "5", "kling-v2-5-turbo"), + "pro mode / 10s duration / kling-v2-5-turbo": ("pro", "10", "kling-v2-5-turbo"), } """ Returns a mapping of mode strings to their corresponding (mode, duration, model_name) tuples. @@ -296,7 +292,7 @@ def get_video_from_response(response) -> KlingVideoResult: return video -def get_video_url_from_response(response) -> Optional[str]: +def get_video_url_from_response(response) -> str | None: """Returns the first video url from the Kling video generation task result. Will not raise an error if the response is not valid. """ @@ -315,7 +311,7 @@ def get_images_from_response(response) -> list[KlingImageResult]: return images -def get_images_urls_from_response(response) -> Optional[str]: +def get_images_urls_from_response(response) -> str | None: """Returns the list of image urls from the Kling image generation task result. Will not raise an error if the response is not valid. If there is only one image, returns the url as a string. If there are multiple images, returns a list of urls. """ @@ -349,7 +345,7 @@ async def execute_text2video( model_mode: str, duration: str, aspect_ratio: str, - camera_control: Optional[KlingCameraControl] = None, + camera_control: KlingCameraControl | None = None, ) -> IO.NodeOutput: validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_T2V) task_creation_response = await sync_op( @@ -394,8 +390,8 @@ async def execute_image2video( model_mode: str, aspect_ratio: str, duration: str, - camera_control: Optional[KlingCameraControl] = None, - end_frame: Optional[torch.Tensor] = None, + camera_control: KlingCameraControl | None = None, + end_frame: torch.Tensor | None = None, ) -> IO.NodeOutput: validate_prompts(prompt, negative_prompt, MAX_PROMPT_LENGTH_I2V) validate_input_image(start_frame) @@ -451,8 +447,8 @@ async def execute_video_effect( model_name: str, duration: KlingVideoGenDuration, image_1: torch.Tensor, - image_2: Optional[torch.Tensor] = None, - model_mode: Optional[KlingVideoGenMode] = None, + image_2: torch.Tensor | None = None, + model_mode: KlingVideoGenMode | None = None, ) -> tuple[VideoFromFile, str, str]: if dual_character: request_input_field = KlingDualCharacterEffectInput( @@ -499,13 +495,13 @@ async def execute_video_effect( async def execute_lipsync( cls: type[IO.ComfyNode], - video: VideoInput, - audio: Optional[AudioInput] = None, - voice_language: Optional[str] = None, - model_mode: Optional[str] = None, - text: Optional[str] = None, - voice_speed: Optional[float] = None, - voice_id: Optional[str] = None, + video: Input.Video, + audio: Input.Audio | None = None, + voice_language: str | None = None, + model_mode: str | None = None, + text: str | None = None, + voice_speed: float | None = None, + voice_id: str | None = None, ) -> IO.NodeOutput: if text: validate_string(text, field_name="Text", max_length=MAX_PROMPT_LENGTH_LIP_SYNC) @@ -787,7 +783,7 @@ class KlingCameraControlT2VNode(IO.ComfyNode): negative_prompt: str, cfg_scale: float, aspect_ratio: str, - camera_control: Optional[KlingCameraControl] = None, + camera_control: KlingCameraControl | None = None, ) -> IO.NodeOutput: return await execute_text2video( cls, @@ -854,8 +850,8 @@ class KlingImage2VideoNode(IO.ComfyNode): mode: str, aspect_ratio: str, duration: str, - camera_control: Optional[KlingCameraControl] = None, - end_frame: Optional[torch.Tensor] = None, + camera_control: KlingCameraControl | None = None, + end_frame: torch.Tensor | None = None, ) -> IO.NodeOutput: return await execute_image2video( cls, @@ -965,15 +961,11 @@ class KlingStartEndFrameNode(IO.ComfyNode): IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"), IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"), IO.Float.Input("cfg_scale", default=0.5, min=0.0, max=1.0), - IO.Combo.Input( - "aspect_ratio", - options=[i.value for i in KlingVideoGenAspectRatio], - default="16:9", - ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), IO.Combo.Input( "mode", options=modes, - default=modes[2], + default=modes[8], tooltip="The configuration to use for the video generation following the format: mode / duration / model_name.", ), ], @@ -1254,8 +1246,8 @@ class KlingLipSyncAudioToVideoNode(IO.ComfyNode): @classmethod async def execute( cls, - video: VideoInput, - audio: AudioInput, + video: Input.Video, + audio: Input.Audio, voice_language: str, ) -> IO.NodeOutput: return await execute_lipsync( @@ -1314,7 +1306,7 @@ class KlingLipSyncTextToVideoNode(IO.ComfyNode): @classmethod async def execute( cls, - video: VideoInput, + video: Input.Video, text: str, voice: str, voice_speed: float, @@ -1471,7 +1463,7 @@ class KlingImageGenerationNode(IO.ComfyNode): human_fidelity: float, n: int, aspect_ratio: KlingImageGenAspectRatio, - image: Optional[torch.Tensor] = None, + image: torch.Tensor | None = None, ) -> IO.NodeOutput: validate_string(prompt, field_name="prompt", min_length=1, max_length=MAX_PROMPT_LENGTH_IMAGE_GEN) validate_string(negative_prompt, field_name="negative_prompt", max_length=MAX_PROMPT_LENGTH_IMAGE_GEN) From ca7808f240d4d53e594d3b95753240313864c992 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Sat, 29 Nov 2025 05:43:17 +0900 Subject: [PATCH 067/271] fix(user_manager): fix typo in move_userdata dest validation (#10967) Check `dest` instead of `source` when validating destination path in move_userdata endpoint. --- app/user_manager.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/app/user_manager.py b/app/user_manager.py index a2d376c0c..675f6c0c6 100644 --- a/app/user_manager.py +++ b/app/user_manager.py @@ -424,7 +424,7 @@ class UserManager(): return source dest = get_user_data_path(request, check_exists=False, param="dest") - if not isinstance(source, str): + if not isinstance(dest, str): return dest overwrite = request.query.get("overwrite", 'true') != "false" From f55c98a89f76fc06c435a728bc2e76b6b4051463 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 28 Nov 2025 13:16:46 -0800 Subject: [PATCH 068/271] Disable offload stream when torch compile. (#10961) --- comfy/model_management.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index 38c506df5..d8ce80010 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1042,6 +1042,9 @@ def get_offload_stream(device): if NUM_STREAMS == 0: return None + if torch.compiler.is_compiling(): + return None + if device in STREAMS: ss = STREAMS[device] #Sync the oldest stream in the queue with the current From 6484ac89dc683b178d9ef3f7406800f7132147ba Mon Sep 17 00:00:00 2001 From: Urle Sistiana <55231606+urlesistiana@users.noreply.github.com> Date: Sat, 29 Nov 2025 05:33:07 +0800 Subject: [PATCH 069/271] fix QuantizedTensor.is_contiguous (#10956) (#10959) --- comfy/quant_ops.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index 9b924560b..bb1fb860c 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -235,8 +235,8 @@ class QuantizedTensor(torch.Tensor): def is_pinned(self): return self._qdata.is_pinned() - def is_contiguous(self): - return self._qdata.is_contiguous() + def is_contiguous(self, *arg, **kwargs): + return self._qdata.is_contiguous(*arg, **kwargs) # ============================================================================== # Generic Utilities (Layout-Agnostic Operations) From 0ff0457892467ef8a6ea235dcd0618c10ca44ee3 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Sat, 29 Nov 2025 07:38:12 +1000 Subject: [PATCH 070/271] mm: wrap the raw stream in context manager (#10958) The documentation of torch.foo.Stream being usable with with: suggests it starts at version 2.7. Use the old API for backwards compatibility. --- comfy/model_management.py | 19 +++++++++++++++---- comfy/ops.py | 2 ++ 2 files changed, 17 insertions(+), 4 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index d8ce80010..aeddbaefe 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1055,7 +1055,9 @@ def get_offload_stream(device): elif is_device_cuda(device): ss = [] for k in range(NUM_STREAMS): - ss.append(torch.cuda.Stream(device=device, priority=0)) + s1 = torch.cuda.Stream(device=device, priority=0) + s1.as_context = torch.cuda.stream + ss.append(s1) STREAMS[device] = ss s = ss[stream_counter] stream_counters[device] = stream_counter @@ -1063,7 +1065,9 @@ def get_offload_stream(device): elif is_device_xpu(device): ss = [] for k in range(NUM_STREAMS): - ss.append(torch.xpu.Stream(device=device, priority=0)) + s1 = torch.xpu.Stream(device=device, priority=0) + s1.as_context = torch.xpu.stream + ss.append(s1) STREAMS[device] = ss s = ss[stream_counter] stream_counters[device] = stream_counter @@ -1081,12 +1085,19 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str if dtype is None or weight.dtype == dtype: return weight if stream is not None: - with stream: + wf_context = stream + if hasattr(wf_context, "as_context"): + wf_context = wf_context.as_context(stream) + with wf_context: return weight.to(dtype=dtype, copy=copy) return weight.to(dtype=dtype, copy=copy) + if stream is not None: - with stream: + wf_context = stream + if hasattr(wf_context, "as_context"): + wf_context = wf_context.as_context(stream) + with wf_context: r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight, non_blocking=non_blocking) else: diff --git a/comfy/ops.py b/comfy/ops.py index a0ff4e8f1..61a2f0754 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -95,6 +95,8 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of if offload_stream is not None: wf_context = offload_stream + if hasattr(wf_context, "as_context"): + wf_context = wf_context.as_context(offload_stream) else: wf_context = contextlib.nullcontext() From 065a2fbbec6af5c8e19a3add29703f83faf672d6 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 28 Nov 2025 16:37:39 -0800 Subject: [PATCH 071/271] Update driver link in AMD portable README (#10974) --- .ci/windows_amd_base_files/README_VERY_IMPORTANT.txt | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt b/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt index 96a500be2..2cbb00d99 100755 --- a/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt +++ b/.ci/windows_amd_base_files/README_VERY_IMPORTANT.txt @@ -1,5 +1,5 @@ -As of the time of writing this you need this preview driver for best results: -https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-PREVIEW.html +As of the time of writing this you need this driver for best results: +https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-7-1-1.html HOW TO RUN: @@ -25,3 +25,4 @@ In the ComfyUI directory you will find a file: extra_model_paths.yaml.example Rename this file to: extra_model_paths.yaml and edit it with your favorite text editor. + From b9070857092a78cc952d70025fdcc0ff540d96ec Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Sat, 29 Nov 2025 02:40:19 +0200 Subject: [PATCH 072/271] Support video tiny VAEs (#10884) * Support video tiny VAEs * lighttaew scaling fix * Also support video taes in previews Only first frame for now as live preview playback is currently only available through VHS custom nodes. * Support Wan 2.1 lightVAE * Relocate elif block and set Wan VAE dim directly without using pruning rate for lightvae --- comfy/latent_formats.py | 5 +- comfy/sd.py | 34 +++++++- comfy/taesd/taehv.py | 171 ++++++++++++++++++++++++++++++++++++++++ latent_preview.py | 28 +++++-- nodes.py | 18 ++++- 5 files changed, 244 insertions(+), 12 deletions(-) create mode 100644 comfy/taesd/taehv.py diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index 8e110f45d..f1ca0151e 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -431,6 +431,7 @@ class HunyuanVideo(LatentFormat): ] latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761] + taesd_decoder_name = "taehv" class Cosmos1CV8x8x8(LatentFormat): latent_channels = 16 @@ -494,7 +495,7 @@ class Wan21(LatentFormat): ]).view(1, self.latent_channels, 1, 1, 1) - self.taesd_decoder_name = None #TODO + self.taesd_decoder_name = "lighttaew2_1" def process_in(self, latent): latents_mean = self.latents_mean.to(latent.device, latent.dtype) @@ -565,6 +566,7 @@ class Wan22(Wan21): def __init__(self): self.scale_factor = 1.0 + self.taesd_decoder_name = "lighttaew2_2" self.latents_mean = torch.tensor([ -0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557, -0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825, @@ -719,6 +721,7 @@ class HunyuanVideo15(LatentFormat): latent_channels = 32 latent_dimensions = 3 scale_factor = 1.03682 + taesd_decoder_name = "lighttaehy1_5" class Hunyuan3Dv2(LatentFormat): latent_channels = 64 diff --git a/comfy/sd.py b/comfy/sd.py index 350fae92b..9eeb0c45a 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -60,6 +60,8 @@ import comfy.lora_convert import comfy.hooks import comfy.t2i_adapter.adapter import comfy.taesd.taesd +import comfy.taesd.taehv +import comfy.latent_formats import comfy.ldm.flux.redux @@ -508,13 +510,14 @@ class VAE: self.memory_used_encode = lambda shape, dtype: 3300 * shape[3] * shape[4] * model_management.dtype_size(dtype) self.memory_used_decode = lambda shape, dtype: 8000 * shape[3] * shape[4] * (16 * 16) * model_management.dtype_size(dtype) else: # Wan 2.1 VAE + dim = sd["decoder.head.0.gamma"].shape[0] self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8) self.upscale_index_formula = (4, 8, 8) self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8) self.downscale_index_formula = (4, 8, 8) self.latent_dim = 3 self.latent_channels = 16 - ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0} + ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0} self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig) self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype) @@ -584,6 +587,35 @@ class VAE: self.process_input = lambda audio: audio self.working_dtypes = [torch.float32] self.crop_input = False + elif "decoder.22.bias" in sd: # taehv, taew and lighttae + self.latent_channels = sd["decoder.1.weight"].shape[1] + self.latent_dim = 3 + self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16) + self.upscale_index_formula = (4, 16, 16) + self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16) + self.downscale_index_formula = (4, 16, 16) + if self.latent_channels == 48: # Wan 2.2 + self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=None) # taehv doesn't need scaling + self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently")) + self.process_output = lambda image: image + self.memory_used_decode = lambda shape, dtype: (1800 * (max(1, (shape[-3] ** 0.7 * 0.1)) * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)) + elif self.latent_channels == 32 and sd["decoder.22.bias"].shape[0] == 12: # lighttae_hv15 + self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=comfy.latent_formats.HunyuanVideo15) + self.process_input = lambda image: (_ for _ in ()).throw(NotImplementedError("This light tae doesn't support encoding currently")) + self.memory_used_decode = lambda shape, dtype: (1200 * (max(1, (shape[-3] ** 0.7 * 0.05)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype)) + else: + if sd["decoder.1.weight"].dtype == torch.float16: # taehv currently only available in float16, so assume it's not lighttaew2_1 as otherwise state dicts are identical + latent_format=comfy.latent_formats.HunyuanVideo + else: + latent_format=None # lighttaew2_1 doesn't need scaling + self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=latent_format) + self.process_input = self.process_output = lambda image: image + self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8) + self.upscale_index_formula = (4, 8, 8) + self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8) + self.downscale_index_formula = (4, 8, 8) + self.memory_used_encode = lambda shape, dtype: (700 * (max(1, (shape[-3] ** 0.66 * 0.11)) * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)) + self.memory_used_decode = lambda shape, dtype: (50 * (max(1, (shape[-3] ** 0.65 * 0.26)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype)) else: logging.warning("WARNING: No VAE weights detected, VAE not initalized.") self.first_stage_model = None diff --git a/comfy/taesd/taehv.py b/comfy/taesd/taehv.py new file mode 100644 index 000000000..3dfe1e4d4 --- /dev/null +++ b/comfy/taesd/taehv.py @@ -0,0 +1,171 @@ +# Tiny AutoEncoder for HunyuanVideo and WanVideo https://github.com/madebyollin/taehv + +import torch +import torch.nn as nn +import torch.nn.functional as F +from tqdm.auto import tqdm +from collections import namedtuple, deque + +import comfy.ops +operations=comfy.ops.disable_weight_init + +DecoderResult = namedtuple("DecoderResult", ("frame", "memory")) +TWorkItem = namedtuple("TWorkItem", ("input_tensor", "block_index")) + +def conv(n_in, n_out, **kwargs): + return operations.Conv2d(n_in, n_out, 3, padding=1, **kwargs) + +class Clamp(nn.Module): + def forward(self, x): + return torch.tanh(x / 3) * 3 + +class MemBlock(nn.Module): + def __init__(self, n_in, n_out, act_func): + super().__init__() + self.conv = nn.Sequential(conv(n_in * 2, n_out), act_func, conv(n_out, n_out), act_func, conv(n_out, n_out)) + self.skip = operations.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() + self.act = act_func + def forward(self, x, past): + return self.act(self.conv(torch.cat([x, past], 1)) + self.skip(x)) + +class TPool(nn.Module): + def __init__(self, n_f, stride): + super().__init__() + self.stride = stride + self.conv = operations.Conv2d(n_f*stride,n_f, 1, bias=False) + def forward(self, x): + _NT, C, H, W = x.shape + return self.conv(x.reshape(-1, self.stride * C, H, W)) + +class TGrow(nn.Module): + def __init__(self, n_f, stride): + super().__init__() + self.stride = stride + self.conv = operations.Conv2d(n_f, n_f*stride, 1, bias=False) + def forward(self, x): + _NT, C, H, W = x.shape + x = self.conv(x) + return x.reshape(-1, C, H, W) + +def apply_model_with_memblocks(model, x, parallel, show_progress_bar): + + B, T, C, H, W = x.shape + if parallel: + x = x.reshape(B*T, C, H, W) + # parallel over input timesteps, iterate over blocks + for b in tqdm(model, disable=not show_progress_bar): + if isinstance(b, MemBlock): + BT, C, H, W = x.shape + T = BT // B + _x = x.reshape(B, T, C, H, W) + mem = F.pad(_x, (0,0,0,0,0,0,1,0), value=0)[:,:T].reshape(x.shape) + x = b(x, mem) + else: + x = b(x) + BT, C, H, W = x.shape + T = BT // B + x = x.view(B, T, C, H, W) + else: + out = [] + work_queue = deque([TWorkItem(xt, 0) for t, xt in enumerate(x.reshape(B, T * C, H, W).chunk(T, dim=1))]) + progress_bar = tqdm(range(T), disable=not show_progress_bar) + mem = [None] * len(model) + while work_queue: + xt, i = work_queue.popleft() + if i == 0: + progress_bar.update(1) + if i == len(model): + out.append(xt) + del xt + else: + b = model[i] + if isinstance(b, MemBlock): + if mem[i] is None: + xt_new = b(xt, xt * 0) + mem[i] = xt.detach().clone() + else: + xt_new = b(xt, mem[i]) + mem[i] = xt.detach().clone() + del xt + work_queue.appendleft(TWorkItem(xt_new, i+1)) + elif isinstance(b, TPool): + if mem[i] is None: + mem[i] = [] + mem[i].append(xt.detach().clone()) + if len(mem[i]) == b.stride: + B, C, H, W = xt.shape + xt = b(torch.cat(mem[i], 1).view(B*b.stride, C, H, W)) + mem[i] = [] + work_queue.appendleft(TWorkItem(xt, i+1)) + elif isinstance(b, TGrow): + xt = b(xt) + NT, C, H, W = xt.shape + for xt_next in reversed(xt.view(B, b.stride*C, H, W).chunk(b.stride, 1)): + work_queue.appendleft(TWorkItem(xt_next, i+1)) + del xt + else: + xt = b(xt) + work_queue.appendleft(TWorkItem(xt, i+1)) + progress_bar.close() + x = torch.stack(out, 1) + return x + + +class TAEHV(nn.Module): + def __init__(self, latent_channels, parallel=False, decoder_time_upscale=(True, True), decoder_space_upscale=(True, True, True), latent_format=None, show_progress_bar=True): + super().__init__() + self.image_channels = 3 + self.patch_size = 1 + self.latent_channels = latent_channels + self.parallel = parallel + self.latent_format = latent_format + self.show_progress_bar = show_progress_bar + self.process_in = latent_format().process_in if latent_format is not None else (lambda x: x) + self.process_out = latent_format().process_out if latent_format is not None else (lambda x: x) + if self.latent_channels in [48, 32]: # Wan 2.2 and HunyuanVideo1.5 + self.patch_size = 2 + if self.latent_channels == 32: # HunyuanVideo1.5 + act_func = nn.LeakyReLU(0.2, inplace=True) + else: # HunyuanVideo, Wan 2.1 + act_func = nn.ReLU(inplace=True) + + self.encoder = nn.Sequential( + conv(self.image_channels*self.patch_size**2, 64), act_func, + TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), + TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), + TPool(64, 1), conv(64, 64, stride=2, bias=False), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), MemBlock(64, 64, act_func), + conv(64, self.latent_channels), + ) + n_f = [256, 128, 64, 64] + self.frames_to_trim = 2**sum(decoder_time_upscale) - 1 + self.decoder = nn.Sequential( + Clamp(), conv(self.latent_channels, n_f[0]), act_func, + MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), MemBlock(n_f[0], n_f[0], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[0] else 1), TGrow(n_f[0], 1), conv(n_f[0], n_f[1], bias=False), + MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), MemBlock(n_f[1], n_f[1], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[1] else 1), TGrow(n_f[1], 2 if decoder_time_upscale[0] else 1), conv(n_f[1], n_f[2], bias=False), + MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), MemBlock(n_f[2], n_f[2], act_func), nn.Upsample(scale_factor=2 if decoder_space_upscale[2] else 1), TGrow(n_f[2], 2 if decoder_time_upscale[1] else 1), conv(n_f[2], n_f[3], bias=False), + act_func, conv(n_f[3], self.image_channels*self.patch_size**2), + ) + @property + def show_progress_bar(self): + return self._show_progress_bar + + @show_progress_bar.setter + def show_progress_bar(self, value): + self._show_progress_bar = value + + def encode(self, x, **kwargs): + if self.patch_size > 1: x = F.pixel_unshuffle(x, self.patch_size) + x = x.movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] + if x.shape[1] % 4 != 0: + # pad at end to multiple of 4 + n_pad = 4 - x.shape[1] % 4 + padding = x[:, -1:].repeat_interleave(n_pad, dim=1) + x = torch.cat([x, padding], 1) + x = apply_model_with_memblocks(self.encoder, x, self.parallel, self.show_progress_bar).movedim(2, 1) + return self.process_out(x) + + def decode(self, x, **kwargs): + x = self.process_in(x).movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] + x = apply_model_with_memblocks(self.decoder, x, self.parallel, self.show_progress_bar) + if self.patch_size > 1: x = F.pixel_shuffle(x, self.patch_size) + return x[:, self.frames_to_trim:].movedim(2, 1) diff --git a/latent_preview.py b/latent_preview.py index ddf6dcf49..66bded4b9 100644 --- a/latent_preview.py +++ b/latent_preview.py @@ -2,17 +2,24 @@ import torch from PIL import Image from comfy.cli_args import args, LatentPreviewMethod from comfy.taesd.taesd import TAESD +from comfy.sd import VAE import comfy.model_management import folder_paths import comfy.utils import logging MAX_PREVIEW_RESOLUTION = args.preview_size +VIDEO_TAES = ["taehv", "lighttaew2_2", "lighttaew2_1", "lighttaehy1_5"] -def preview_to_image(latent_image): - latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1 - .mul(0xFF) # to 0..255 - ) +def preview_to_image(latent_image, do_scale=True): + if do_scale: + latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1 + .mul(0xFF) # to 0..255 + ) + else: + latents_ubyte = (latent_image.clamp(0, 1) + .mul(0xFF) # to 0..255 + ) if comfy.model_management.directml_enabled: latents_ubyte = latents_ubyte.to(dtype=torch.uint8) latents_ubyte = latents_ubyte.to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device)) @@ -35,6 +42,10 @@ class TAESDPreviewerImpl(LatentPreviewer): x_sample = self.taesd.decode(x0[:1])[0].movedim(0, 2) return preview_to_image(x_sample) +class TAEHVPreviewerImpl(TAESDPreviewerImpl): + def decode_latent_to_preview(self, x0): + x_sample = self.taesd.decode(x0[:1, :, :1])[0][0] + return preview_to_image(x_sample, do_scale=False) class Latent2RGBPreviewer(LatentPreviewer): def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None, latent_rgb_factors_reshape=None): @@ -81,8 +92,13 @@ def get_previewer(device, latent_format): if method == LatentPreviewMethod.TAESD: if taesd_decoder_path: - taesd = TAESD(None, taesd_decoder_path, latent_channels=latent_format.latent_channels).to(device) - previewer = TAESDPreviewerImpl(taesd) + if latent_format.taesd_decoder_name in VIDEO_TAES: + taesd = VAE(comfy.utils.load_torch_file(taesd_decoder_path)) + taesd.first_stage_model.show_progress_bar = False + previewer = TAEHVPreviewerImpl(taesd) + else: + taesd = TAESD(None, taesd_decoder_path, latent_channels=latent_format.latent_channels).to(device) + previewer = TAESDPreviewerImpl(taesd) else: logging.warning("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name)) diff --git a/nodes.py b/nodes.py index bf73eb90e..495dec806 100644 --- a/nodes.py +++ b/nodes.py @@ -692,8 +692,10 @@ class LoraLoaderModelOnly(LoraLoader): return (self.load_lora(model, None, lora_name, strength_model, 0)[0],) class VAELoader: + video_taes = ["taehv", "lighttaew2_2", "lighttaew2_1", "lighttaehy1_5"] + image_taes = ["taesd", "taesdxl", "taesd3", "taef1"] @staticmethod - def vae_list(): + def vae_list(s): vaes = folder_paths.get_filename_list("vae") approx_vaes = folder_paths.get_filename_list("vae_approx") sdxl_taesd_enc = False @@ -722,6 +724,11 @@ class VAELoader: f1_taesd_dec = True elif v.startswith("taef1_decoder."): f1_taesd_enc = True + else: + for tae in s.video_taes: + if v.startswith(tae): + vaes.append(v) + if sd1_taesd_dec and sd1_taesd_enc: vaes.append("taesd") if sdxl_taesd_dec and sdxl_taesd_enc: @@ -765,7 +772,7 @@ class VAELoader: @classmethod def INPUT_TYPES(s): - return {"required": { "vae_name": (s.vae_list(), )}} + return {"required": { "vae_name": (s.vae_list(s), )}} RETURN_TYPES = ("VAE",) FUNCTION = "load_vae" @@ -776,10 +783,13 @@ class VAELoader: if vae_name == "pixel_space": sd = {} sd["pixel_space_vae"] = torch.tensor(1.0) - elif vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]: + elif vae_name in self.image_taes: sd = self.load_taesd(vae_name) else: - vae_path = folder_paths.get_full_path_or_raise("vae", vae_name) + if os.path.splitext(vae_name)[0] in self.video_taes: + vae_path = folder_paths.get_full_path_or_raise("vae_approx", vae_name) + else: + vae_path = folder_paths.get_full_path_or_raise("vae", vae_name) sd = comfy.utils.load_torch_file(vae_path) vae = comfy.sd.VAE(sd=sd) vae.throw_exception_if_invalid() From 52a32e2b323b90295ab05a8c299590c890f2ecb6 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 28 Nov 2025 18:12:42 -0800 Subject: [PATCH 073/271] Support some z image lora formats. (#10978) --- comfy/lora.py | 8 ++++++++ comfy/utils.py | 45 +++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 53 insertions(+) diff --git a/comfy/lora.py b/comfy/lora.py index 36d26293a..360cd128f 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -313,6 +313,14 @@ def model_lora_keys_unet(model, key_map={}): key_map["transformer.{}".format(key_lora)] = k key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format + if isinstance(model, comfy.model_base.Lumina2): + diffusers_keys = comfy.utils.z_image_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") + for k in diffusers_keys: + to = diffusers_keys[k] + key_lora = k[:-len(".weight")] + key_map["diffusion_model.{}".format(key_lora)] = to + key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to + return key_map diff --git a/comfy/utils.py b/comfy/utils.py index 4bd281057..21bd6e8cf 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -675,6 +675,51 @@ def flux_to_diffusers(mmdit_config, output_prefix=""): return key_map +def z_image_to_diffusers(mmdit_config, output_prefix=""): + n_layers = mmdit_config.get("n_layers", 0) + hidden_size = mmdit_config.get("dim", 0) + + key_map = {} + + for index in range(n_layers): + prefix_from = "layers.{}".format(index) + prefix_to = "{}layers.{}".format(output_prefix, index) + + for end in ("weight", "bias"): + k = "{}.attention.".format(prefix_from) + qkv = "{}.attention.qkv.{}".format(prefix_to, end) + + key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size)) + key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size)) + key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size)) + + block_map = { + "attention.norm_q.weight": "attention.q_norm.weight", + "attention.norm_k.weight": "attention.k_norm.weight", + "attention.to_out.0.weight": "attention.out.weight", + "attention.to_out.0.bias": "attention.out.bias", + } + + for k in block_map: + key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k]) + + MAP_BASIC = { + # Final layer + ("final_layer.linear.weight", "all_final_layer.2-1.linear.weight"), + ("final_layer.linear.bias", "all_final_layer.2-1.linear.bias"), + ("final_layer.adaLN_modulation.1.weight", "all_final_layer.2-1.adaLN_modulation.1.weight"), + ("final_layer.adaLN_modulation.1.bias", "all_final_layer.2-1.adaLN_modulation.1.bias"), + # X embedder + ("x_embedder.weight", "all_x_embedder.2-1.weight"), + ("x_embedder.bias", "all_x_embedder.2-1.bias"), + } + + for k in MAP_BASIC: + key_map[k[1]] = "{}{}".format(output_prefix, k[0]) + + return key_map + + def repeat_to_batch_size(tensor, batch_size, dim=0): if tensor.shape[dim] > batch_size: return tensor.narrow(dim, 0, batch_size) From af96d9812de3e420abd43275d9a5960535b6333c Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Sat, 29 Nov 2025 11:28:42 +0900 Subject: [PATCH 074/271] feat(security): add System User protection with `__` prefix (#10966) * feat(security): add System User protection with `__` prefix Add protected namespace for custom nodes to store sensitive data (API keys, licenses) that cannot be accessed via HTTP endpoints. Key changes: - New API: get_system_user_directory() for internal access - New API: get_public_user_directory() with structural blocking - 3-layer defense: header validation, path blocking, creation prevention - 54 tests covering security, edge cases, and backward compatibility System Users use `__` prefix (e.g., __system, __cache) following Python's private member convention. They exist in user_directory/ but are completely blocked from /userdata HTTP endpoints. * style: remove unused imports --- app/user_manager.py | 21 +- folder_paths.py | 65 +++ .../app_test/user_manager_system_user_test.py | 193 +++++++++ .../folder_paths_test/system_user_test.py | 206 ++++++++++ .../system_user_endpoint_test.py | 375 ++++++++++++++++++ 5 files changed, 855 insertions(+), 5 deletions(-) create mode 100644 tests-unit/app_test/user_manager_system_user_test.py create mode 100644 tests-unit/folder_paths_test/system_user_test.py create mode 100644 tests-unit/prompt_server_test/system_user_endpoint_test.py diff --git a/app/user_manager.py b/app/user_manager.py index 675f6c0c6..e2c00dab2 100644 --- a/app/user_manager.py +++ b/app/user_manager.py @@ -59,6 +59,9 @@ class UserManager(): user = "default" if args.multi_user and "comfy-user" in request.headers: user = request.headers["comfy-user"] + # Block System Users (use same error message to prevent probing) + if user.startswith(folder_paths.SYSTEM_USER_PREFIX): + raise KeyError("Unknown user: " + user) if user not in self.users: raise KeyError("Unknown user: " + user) @@ -66,15 +69,16 @@ class UserManager(): return user def get_request_user_filepath(self, request, file, type="userdata", create_dir=True): - user_directory = folder_paths.get_user_directory() - if type == "userdata": - root_dir = user_directory + root_dir = folder_paths.get_user_directory() else: raise KeyError("Unknown filepath type:" + type) user = self.get_request_user_id(request) - path = user_root = os.path.abspath(os.path.join(root_dir, user)) + user_root = folder_paths.get_public_user_directory(user) + if user_root is None: + return None + path = user_root # prevent leaving /{type} if os.path.commonpath((root_dir, user_root)) != root_dir: @@ -101,7 +105,11 @@ class UserManager(): name = name.strip() if not name: raise ValueError("username not provided") + if name.startswith(folder_paths.SYSTEM_USER_PREFIX): + raise ValueError("System User prefix not allowed") user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name) + if user_id.startswith(folder_paths.SYSTEM_USER_PREFIX): + raise ValueError("System User prefix not allowed") user_id = user_id + "_" + str(uuid.uuid4()) self.users[user_id] = name @@ -132,7 +140,10 @@ class UserManager(): if username in self.users.values(): return web.json_response({"error": "Duplicate username."}, status=400) - user_id = self.add_user(username) + try: + user_id = self.add_user(username) + except ValueError as e: + return web.json_response({"error": str(e)}, status=400) return web.json_response(user_id) @routes.get("/userdata") diff --git a/folder_paths.py b/folder_paths.py index ffdc4d020..9c96540e3 100644 --- a/folder_paths.py +++ b/folder_paths.py @@ -137,6 +137,71 @@ def set_user_directory(user_dir: str) -> None: user_directory = user_dir +# System User Protection - Protects system directories from HTTP endpoint access +# System Users are internal-only users that cannot be accessed via HTTP endpoints. +# They use the '__' prefix convention (similar to Python's private member convention). +SYSTEM_USER_PREFIX = "__" + + +def get_system_user_directory(name: str = "system") -> str: + """ + Get the path to a System User directory. + + System User directories (prefixed with '__') are only accessible via internal API, + not through HTTP endpoints. Use this for storing system-internal data that + should not be exposed to users. + + Args: + name: System user name (e.g., "system", "cache"). Must be alphanumeric + with underscores allowed, but cannot start with underscore. + + Returns: + Absolute path to the system user directory. + + Raises: + ValueError: If name is empty, invalid, or starts with underscore. + + Example: + >>> get_system_user_directory("cache") + '/path/to/user/__cache' + """ + if not name or not isinstance(name, str): + raise ValueError("System user name cannot be empty") + if not name.replace("_", "").isalnum(): + raise ValueError(f"Invalid system user name: '{name}'") + if name.startswith("_"): + raise ValueError("System user name should not start with underscore") + return os.path.join(get_user_directory(), f"{SYSTEM_USER_PREFIX}{name}") + + +def get_public_user_directory(user_id: str) -> str | None: + """ + Get the path to a Public User directory for HTTP endpoint access. + + This function provides structural security by returning None for any + System User (prefixed with '__'). All HTTP endpoints should use this + function instead of directly constructing user paths. + + Args: + user_id: User identifier from HTTP request. + + Returns: + Absolute path to the user directory, or None if user_id is invalid + or refers to a System User. + + Example: + >>> get_public_user_directory("default") + '/path/to/user/default' + >>> get_public_user_directory("__system") + None + """ + if not user_id or not isinstance(user_id, str): + return None + if user_id.startswith(SYSTEM_USER_PREFIX): + return None + return os.path.join(get_user_directory(), user_id) + + #NOTE: used in http server so don't put folders that should not be accessed remotely def get_directory_by_type(type_name: str) -> str | None: if type_name == "output": diff --git a/tests-unit/app_test/user_manager_system_user_test.py b/tests-unit/app_test/user_manager_system_user_test.py new file mode 100644 index 000000000..63b1ac5e5 --- /dev/null +++ b/tests-unit/app_test/user_manager_system_user_test.py @@ -0,0 +1,193 @@ +"""Tests for System User Protection in user_manager.py + +Tests cover: +- get_request_user_id(): 1st defense layer - blocks System Users from HTTP headers +- get_request_user_filepath(): 2nd defense layer - structural blocking via get_public_user_directory() +- add_user(): 3rd defense layer - prevents creation of System User names +- Defense layers integration tests +""" + +import pytest +from unittest.mock import MagicMock, patch +import tempfile + +import folder_paths +from app.user_manager import UserManager + + +@pytest.fixture +def mock_user_directory(): + """Create a temporary user directory.""" + with tempfile.TemporaryDirectory() as temp_dir: + original_dir = folder_paths.get_user_directory() + folder_paths.set_user_directory(temp_dir) + yield temp_dir + folder_paths.set_user_directory(original_dir) + + +@pytest.fixture +def user_manager(mock_user_directory): + """Create a UserManager instance for testing.""" + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + manager = UserManager() + # Add a default user for testing + manager.users = {"default": "default", "test_user_123": "Test User"} + yield manager + + +@pytest.fixture +def mock_request(): + """Create a mock request object.""" + request = MagicMock() + request.headers = {} + return request + + +class TestGetRequestUserId: + """Tests for get_request_user_id() - 1st defense layer. + + Verifies: + - System Users (__ prefix) in HTTP header are rejected with KeyError + - Public Users pass through successfully + """ + + def test_system_user_raises_error(self, user_manager, mock_request): + """Test System User in header raises KeyError.""" + mock_request.headers = {"comfy-user": "__system"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError, match="Unknown user"): + user_manager.get_request_user_id(mock_request) + + def test_system_user_cache_raises_error(self, user_manager, mock_request): + """Test System User cache raises KeyError.""" + mock_request.headers = {"comfy-user": "__cache"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError, match="Unknown user"): + user_manager.get_request_user_id(mock_request) + + def test_normal_user_works(self, user_manager, mock_request): + """Test normal user access works.""" + mock_request.headers = {"comfy-user": "default"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + user_id = user_manager.get_request_user_id(mock_request) + assert user_id == "default" + + def test_unknown_user_raises_error(self, user_manager, mock_request): + """Test unknown user raises KeyError.""" + mock_request.headers = {"comfy-user": "unknown_user"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError, match="Unknown user"): + user_manager.get_request_user_id(mock_request) + + +class TestGetRequestUserFilepath: + """Tests for get_request_user_filepath() - 2nd defense layer. + + Verifies: + - Returns None when get_public_user_directory() returns None (System User) + - Acts as backup defense if 1st layer is bypassed + """ + + def test_system_user_returns_none(self, user_manager, mock_request, mock_user_directory): + """Test System User returns None (structural blocking).""" + # First, we need to mock get_request_user_id to return System User + # But actually, get_request_user_id will raise KeyError first + # So we test via get_public_user_directory returning None + mock_request.headers = {"comfy-user": "default"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + # Patch get_public_user_directory to return None for testing + with patch.object(folder_paths, 'get_public_user_directory', return_value=None): + result = user_manager.get_request_user_filepath(mock_request, "test.txt") + assert result is None + + def test_normal_user_gets_path(self, user_manager, mock_request, mock_user_directory): + """Test normal user gets valid filepath.""" + mock_request.headers = {"comfy-user": "default"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + path = user_manager.get_request_user_filepath(mock_request, "test.txt") + assert path is not None + assert "default" in path + assert path.endswith("test.txt") + + +class TestAddUser: + """Tests for add_user() - 3rd defense layer (creation-time blocking). + + Verifies: + - System User name (__ prefix) creation is rejected with ValueError + - Sanitized usernames that become System User are also rejected + """ + + def test_system_user_prefix_name_raises(self, user_manager): + """Test System User prefix in name raises ValueError.""" + with pytest.raises(ValueError, match="System User prefix not allowed"): + user_manager.add_user("__system") + + def test_system_user_prefix_cache_raises(self, user_manager): + """Test System User cache prefix raises ValueError.""" + with pytest.raises(ValueError, match="System User prefix not allowed"): + user_manager.add_user("__cache") + + def test_sanitized_system_user_prefix_raises(self, user_manager): + """Test sanitized name becoming System User prefix raises ValueError (bypass prevention).""" + # "__test" directly starts with System User prefix + with pytest.raises(ValueError, match="System User prefix not allowed"): + user_manager.add_user("__test") + + def test_normal_user_creation(self, user_manager, mock_user_directory): + """Test normal user creation works.""" + user_id = user_manager.add_user("Normal User") + assert user_id is not None + assert not user_id.startswith("__") + assert "Normal-User" in user_id or "Normal_User" in user_id + + def test_empty_name_raises(self, user_manager): + """Test empty name raises ValueError.""" + with pytest.raises(ValueError, match="username not provided"): + user_manager.add_user("") + + def test_whitespace_only_raises(self, user_manager): + """Test whitespace-only name raises ValueError.""" + with pytest.raises(ValueError, match="username not provided"): + user_manager.add_user(" ") + + +class TestDefenseLayers: + """Integration tests for all three defense layers. + + Verifies: + - Each defense layer blocks System Users independently + - System User bypass is impossible through any layer + """ + + def test_layer1_get_request_user_id(self, user_manager, mock_request): + """Test 1st defense layer blocks System Users.""" + mock_request.headers = {"comfy-user": "__system"} + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + with pytest.raises(KeyError): + user_manager.get_request_user_id(mock_request) + + def test_layer2_get_public_user_directory(self): + """Test 2nd defense layer blocks System Users.""" + result = folder_paths.get_public_user_directory("__system") + assert result is None + + def test_layer3_add_user(self, user_manager): + """Test 3rd defense layer blocks System User creation.""" + with pytest.raises(ValueError): + user_manager.add_user("__system") diff --git a/tests-unit/folder_paths_test/system_user_test.py b/tests-unit/folder_paths_test/system_user_test.py new file mode 100644 index 000000000..cd46459f1 --- /dev/null +++ b/tests-unit/folder_paths_test/system_user_test.py @@ -0,0 +1,206 @@ +"""Tests for System User Protection in folder_paths.py + +Tests cover: +- get_system_user_directory(): Internal API for custom nodes to access System User directories +- get_public_user_directory(): HTTP endpoint access with System User blocking +- Backward compatibility: Existing APIs unchanged +- Security: Path traversal and injection prevention +""" + +import pytest +import os +import tempfile + +from folder_paths import ( + get_system_user_directory, + get_public_user_directory, + get_user_directory, + set_user_directory, +) + + +@pytest.fixture(scope="module") +def mock_user_directory(): + """Create a temporary user directory for testing.""" + with tempfile.TemporaryDirectory() as temp_dir: + original_dir = get_user_directory() + set_user_directory(temp_dir) + yield temp_dir + set_user_directory(original_dir) + + +class TestGetSystemUserDirectory: + """Tests for get_system_user_directory() - internal API for System User directories. + + Verifies: + - Custom nodes can access System User directories via internal API + - Input validation prevents path traversal attacks + """ + + def test_default_name(self, mock_user_directory): + """Test default 'system' name.""" + path = get_system_user_directory() + assert path.endswith("__system") + assert mock_user_directory in path + + def test_custom_name(self, mock_user_directory): + """Test custom system user name.""" + path = get_system_user_directory("cache") + assert path.endswith("__cache") + assert "__cache" in path + + def test_name_with_underscore(self, mock_user_directory): + """Test name with underscore in middle.""" + path = get_system_user_directory("my_cache") + assert "__my_cache" in path + + def test_empty_name_raises(self): + """Test empty name raises ValueError.""" + with pytest.raises(ValueError, match="cannot be empty"): + get_system_user_directory("") + + def test_none_name_raises(self): + """Test None name raises ValueError.""" + with pytest.raises(ValueError, match="cannot be empty"): + get_system_user_directory(None) + + def test_name_starting_with_underscore_raises(self): + """Test name starting with underscore raises ValueError.""" + with pytest.raises(ValueError, match="should not start with underscore"): + get_system_user_directory("_system") + + def test_path_traversal_raises(self): + """Test path traversal attempt raises ValueError (security).""" + with pytest.raises(ValueError, match="Invalid system user name"): + get_system_user_directory("../escape") + + def test_path_traversal_middle_raises(self): + """Test path traversal in middle raises ValueError (security).""" + with pytest.raises(ValueError, match="Invalid system user name"): + get_system_user_directory("system/../other") + + def test_special_chars_raise(self): + """Test special characters raise ValueError (security).""" + with pytest.raises(ValueError, match="Invalid system user name"): + get_system_user_directory("system!") + + def test_returns_absolute_path(self, mock_user_directory): + """Test returned path is absolute.""" + path = get_system_user_directory("test") + assert os.path.isabs(path) + + +class TestGetPublicUserDirectory: + """Tests for get_public_user_directory() - HTTP endpoint access with System User blocking. + + Verifies: + - System Users (__ prefix) return None, blocking HTTP access + - Public Users get valid paths + - New endpoints using this function are automatically protected + """ + + def test_normal_user(self, mock_user_directory): + """Test normal user returns valid path.""" + path = get_public_user_directory("default") + assert path is not None + assert "default" in path + assert mock_user_directory in path + + def test_system_user_returns_none(self): + """Test System User (__ prefix) returns None - blocks HTTP access.""" + assert get_public_user_directory("__system") is None + + def test_system_user_cache_returns_none(self): + """Test System User cache returns None.""" + assert get_public_user_directory("__cache") is None + + def test_empty_user_returns_none(self): + """Test empty user returns None.""" + assert get_public_user_directory("") is None + + def test_none_user_returns_none(self): + """Test None user returns None.""" + assert get_public_user_directory(None) is None + + def test_header_injection_returns_none(self): + """Test header injection attempt returns None (security).""" + assert get_public_user_directory("__system\r\nX-Injected: true") is None + + def test_null_byte_injection_returns_none(self): + """Test null byte injection handling (security).""" + # Note: startswith check happens before any path operations + result = get_public_user_directory("user\x00__system") + # This should return a path since it doesn't start with __ + # The actual security comes from the path not being __* + assert result is not None or result is None # Depends on validation + + def test_path_traversal_attempt(self, mock_user_directory): + """Test path traversal attempt handling.""" + # This function doesn't validate paths, only reserved prefix + # Path traversal should be handled by the caller + path = get_public_user_directory("../../../etc/passwd") + # Returns path but doesn't start with __, so not None + # Actual path validation happens in user_manager + assert path is not None or "__" not in "../../../etc/passwd" + + def test_returns_absolute_path(self, mock_user_directory): + """Test returned path is absolute.""" + path = get_public_user_directory("testuser") + assert path is not None + assert os.path.isabs(path) + + +class TestBackwardCompatibility: + """Tests for backward compatibility with existing APIs. + + Verifies: + - get_user_directory() API unchanged + - Existing user data remains accessible + """ + + def test_get_user_directory_unchanged(self, mock_user_directory): + """Test get_user_directory() still works as before.""" + user_dir = get_user_directory() + assert user_dir is not None + assert os.path.isabs(user_dir) + assert user_dir == mock_user_directory + + def test_existing_user_accessible(self, mock_user_directory): + """Test existing users can access their directories.""" + path = get_public_user_directory("default") + assert path is not None + assert "default" in path + + +class TestEdgeCases: + """Tests for edge cases in System User detection. + + Verifies: + - Only __ prefix is blocked (not _, not middle __) + - Bypass attempts are prevented + """ + + def test_prefix_only(self): + """Test prefix-only string is blocked.""" + assert get_public_user_directory("__") is None + + def test_single_underscore_allowed(self): + """Test single underscore prefix is allowed (not System User).""" + path = get_public_user_directory("_system") + assert path is not None + assert "_system" in path + + def test_triple_underscore_blocked(self): + """Test triple underscore is blocked (starts with __).""" + assert get_public_user_directory("___system") is None + + def test_underscore_in_middle_allowed(self): + """Test underscore in middle is allowed.""" + path = get_public_user_directory("my__system") + assert path is not None + assert "my__system" in path + + def test_leading_space_allowed(self): + """Test leading space + prefix is allowed (doesn't start with __).""" + path = get_public_user_directory(" __system") + assert path is not None diff --git a/tests-unit/prompt_server_test/system_user_endpoint_test.py b/tests-unit/prompt_server_test/system_user_endpoint_test.py new file mode 100644 index 000000000..22ac00af9 --- /dev/null +++ b/tests-unit/prompt_server_test/system_user_endpoint_test.py @@ -0,0 +1,375 @@ +"""E2E Tests for System User Protection HTTP Endpoints + +Tests cover: +- HTTP endpoint blocking: System Users cannot access /userdata (GET, POST, DELETE, move) +- User creation blocking: System User names cannot be created via POST /users +- Backward compatibility: Public Users work as before +- Custom node scenario: Internal API works while HTTP is blocked +- Structural security: get_public_user_directory() provides automatic protection +""" + +import pytest +import os +from aiohttp import web +from app.user_manager import UserManager +from unittest.mock import patch +import folder_paths + + +@pytest.fixture +def mock_user_directory(tmp_path): + """Create a temporary user directory.""" + original_dir = folder_paths.get_user_directory() + folder_paths.set_user_directory(str(tmp_path)) + yield tmp_path + folder_paths.set_user_directory(original_dir) + + +@pytest.fixture +def user_manager_multi_user(mock_user_directory): + """Create UserManager in multi-user mode.""" + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + um = UserManager() + # Add test users + um.users = {"default": "default", "test_user_123": "Test User"} + yield um + + +@pytest.fixture +def app_multi_user(user_manager_multi_user): + """Create app with multi-user mode enabled.""" + app = web.Application() + routes = web.RouteTableDef() + user_manager_multi_user.add_routes(routes) + app.add_routes(routes) + return app + + +class TestSystemUserEndpointBlocking: + """E2E tests for System User blocking on all HTTP endpoints. + + Verifies: + - GET /userdata blocked for System Users + - POST /userdata blocked for System Users + - DELETE /userdata blocked for System Users + - POST /userdata/.../move/... blocked for System Users + """ + + @pytest.mark.asyncio + async def test_userdata_get_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + GET /userdata with System User header should be blocked. + """ + # Create test directory for System User (simulating internal creation) + system_user_dir = mock_user_directory / "__system" + system_user_dir.mkdir() + (system_user_dir / "secret.txt").write_text("sensitive data") + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + # Attempt to access System User's data via HTTP + resp = await client.get( + "/userdata?dir=.", + headers={"comfy-user": "__system"} + ) + + # Should be blocked (403 Forbidden or similar error) + assert resp.status in [400, 403, 500], \ + f"System User access should be blocked, got {resp.status}" + + @pytest.mark.asyncio + async def test_userdata_post_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + POST /userdata with System User header should be blocked. + """ + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.post( + "/userdata/test.txt", + headers={"comfy-user": "__system"}, + data=b"malicious content" + ) + + assert resp.status in [400, 403, 500], \ + f"System User write should be blocked, got {resp.status}" + + # Verify no file was created + assert not (mock_user_directory / "__system" / "test.txt").exists() + + @pytest.mark.asyncio + async def test_userdata_delete_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + DELETE /userdata with System User header should be blocked. + """ + # Create a file in System User directory + system_user_dir = mock_user_directory / "__system" + system_user_dir.mkdir() + secret_file = system_user_dir / "secret.txt" + secret_file.write_text("do not delete") + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.delete( + "/userdata/secret.txt", + headers={"comfy-user": "__system"} + ) + + assert resp.status in [400, 403, 500], \ + f"System User delete should be blocked, got {resp.status}" + + # Verify file still exists + assert secret_file.exists() + + @pytest.mark.asyncio + async def test_v2_userdata_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + GET /v2/userdata with System User header should be blocked. + """ + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.get( + "/v2/userdata", + headers={"comfy-user": "__system"} + ) + + assert resp.status in [400, 403, 500], \ + f"System User v2 access should be blocked, got {resp.status}" + + @pytest.mark.asyncio + async def test_move_userdata_blocks_system_user( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + POST /userdata/{file}/move/{dest} with System User header should be blocked. + """ + system_user_dir = mock_user_directory / "__system" + system_user_dir.mkdir() + (system_user_dir / "source.txt").write_text("sensitive data") + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.post( + "/userdata/source.txt/move/dest.txt", + headers={"comfy-user": "__system"} + ) + + assert resp.status in [400, 403, 500], \ + f"System User move should be blocked, got {resp.status}" + + # Verify source file still exists (move was blocked) + assert (system_user_dir / "source.txt").exists() + + +class TestSystemUserCreationBlocking: + """E2E tests for blocking System User name creation via POST /users. + + Verifies: + - POST /users returns 400 for System User name (not 500) + """ + + @pytest.mark.asyncio + async def test_post_users_blocks_system_user_name( + self, aiohttp_client, app_multi_user + ): + """POST /users with System User name should return 400 Bad Request.""" + client = await aiohttp_client(app_multi_user) + + resp = await client.post( + "/users", + json={"username": "__system"} + ) + + assert resp.status == 400, \ + f"System User creation should return 400, got {resp.status}" + + @pytest.mark.asyncio + async def test_post_users_blocks_system_user_prefix_variations( + self, aiohttp_client, app_multi_user + ): + """POST /users with any System User prefix variation should return 400 Bad Request.""" + client = await aiohttp_client(app_multi_user) + + system_user_names = ["__system", "__cache", "__config", "__anything"] + + for name in system_user_names: + resp = await client.post("/users", json={"username": name}) + assert resp.status == 400, \ + f"System User name '{name}' should return 400, got {resp.status}" + + +class TestPublicUserStillWorks: + """E2E tests for backward compatibility - Public Users should work as before. + + Verifies: + - Public Users can access their data via HTTP + - Public Users can create files via HTTP + """ + + @pytest.mark.asyncio + async def test_public_user_can_access_userdata( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + Public Users should still be able to access their data. + """ + # Create test directory for Public User + user_dir = mock_user_directory / "default" + user_dir.mkdir() + test_dir = user_dir / "workflows" + test_dir.mkdir() + (test_dir / "test.json").write_text('{"test": true}') + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.get( + "/userdata?dir=workflows", + headers={"comfy-user": "default"} + ) + + assert resp.status == 200 + data = await resp.json() + assert "test.json" in data + + @pytest.mark.asyncio + async def test_public_user_can_create_files( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + Public Users should still be able to create files. + """ + # Create user directory + user_dir = mock_user_directory / "default" + user_dir.mkdir() + + client = await aiohttp_client(app_multi_user) + + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.post( + "/userdata/newfile.txt", + headers={"comfy-user": "default"}, + data=b"user content" + ) + + assert resp.status == 200 + assert (user_dir / "newfile.txt").exists() + + +class TestCustomNodeScenario: + """Tests for custom node use case: internal API access vs HTTP blocking. + + Verifies: + - Internal API (get_system_user_directory) works for custom nodes + - HTTP endpoint cannot access data created via internal API + """ + + def test_internal_api_can_access_system_user(self, mock_user_directory): + """ + Internal API (get_system_user_directory) should work for custom nodes. + """ + # Custom node uses internal API + system_path = folder_paths.get_system_user_directory("mynode_config") + + assert system_path is not None + assert "__mynode_config" in system_path + + # Can create and write to System User directory + os.makedirs(system_path, exist_ok=True) + config_file = os.path.join(system_path, "settings.json") + with open(config_file, "w") as f: + f.write('{"api_key": "secret"}') + + assert os.path.exists(config_file) + + @pytest.mark.asyncio + async def test_http_cannot_access_internal_data( + self, aiohttp_client, app_multi_user, mock_user_directory + ): + """ + HTTP endpoint cannot access data created via internal API. + """ + # Custom node creates data via internal API + system_path = folder_paths.get_system_user_directory("mynode_config") + os.makedirs(system_path, exist_ok=True) + with open(os.path.join(system_path, "secret.json"), "w") as f: + f.write('{"api_key": "secret"}') + + client = await aiohttp_client(app_multi_user) + + # Attacker tries to access via HTTP + with patch('app.user_manager.args') as mock_args: + mock_args.multi_user = True + resp = await client.get( + "/userdata/secret.json", + headers={"comfy-user": "__mynode_config"} + ) + + # Should be blocked + assert resp.status in [400, 403, 500] + + +class TestStructuralSecurity: + """Tests for structural security pattern. + + Verifies: + - get_public_user_directory() automatically blocks System Users + - New endpoints using this function are automatically protected + """ + + def test_get_public_user_directory_blocks_system_user(self): + """ + Any code using get_public_user_directory() is automatically protected. + """ + # This is the structural security - any new endpoint using this function + # will automatically block System Users + assert folder_paths.get_public_user_directory("__system") is None + assert folder_paths.get_public_user_directory("__cache") is None + assert folder_paths.get_public_user_directory("__anything") is None + + # Public Users work + assert folder_paths.get_public_user_directory("default") is not None + assert folder_paths.get_public_user_directory("user123") is not None + + def test_structural_security_pattern(self, mock_user_directory): + """ + Demonstrate the structural security pattern for new endpoints. + + Any new endpoint should follow this pattern: + 1. Get user from request + 2. Use get_public_user_directory() - automatically blocks System Users + 3. If None, return error + """ + def new_endpoint_handler(user_id: str) -> str | None: + """Example of how new endpoints should be implemented.""" + user_path = folder_paths.get_public_user_directory(user_id) + if user_path is None: + return None # Blocked + return user_path + + # System Users are automatically blocked + assert new_endpoint_handler("__system") is None + assert new_endpoint_handler("__secret") is None + + # Public Users work + assert new_endpoint_handler("default") is not None From 5151cff293607c2191981fd16c62c1b1a6939695 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 28 Nov 2025 20:55:00 -0800 Subject: [PATCH 075/271] Add some missing z image lora layers. (#10980) --- comfy/lora.py | 9 +++++---- comfy/utils.py | 51 +++++++++++++++++++++++++++++++++++--------------- 2 files changed, 41 insertions(+), 19 deletions(-) diff --git a/comfy/lora.py b/comfy/lora.py index 360cd128f..3a9077869 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -316,10 +316,11 @@ def model_lora_keys_unet(model, key_map={}): if isinstance(model, comfy.model_base.Lumina2): diffusers_keys = comfy.utils.z_image_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") for k in diffusers_keys: - to = diffusers_keys[k] - key_lora = k[:-len(".weight")] - key_map["diffusion_model.{}".format(key_lora)] = to - key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to + if k.endswith(".weight"): + to = diffusers_keys[k] + key_lora = k[:-len(".weight")] + key_map["diffusion_model.{}".format(key_lora)] = to + key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to return key_map diff --git a/comfy/utils.py b/comfy/utils.py index 21bd6e8cf..37485e497 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -678,17 +678,14 @@ def flux_to_diffusers(mmdit_config, output_prefix=""): def z_image_to_diffusers(mmdit_config, output_prefix=""): n_layers = mmdit_config.get("n_layers", 0) hidden_size = mmdit_config.get("dim", 0) - + n_context_refiner = mmdit_config.get("n_refiner_layers", 2) + n_noise_refiner = mmdit_config.get("n_refiner_layers", 2) key_map = {} - for index in range(n_layers): - prefix_from = "layers.{}".format(index) - prefix_to = "{}layers.{}".format(output_prefix, index) - + def add_block_keys(prefix_from, prefix_to, has_adaln=True): for end in ("weight", "bias"): k = "{}.attention.".format(prefix_from) qkv = "{}.attention.qkv.{}".format(prefix_to, end) - key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size)) key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size)) key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size)) @@ -698,28 +695,52 @@ def z_image_to_diffusers(mmdit_config, output_prefix=""): "attention.norm_k.weight": "attention.k_norm.weight", "attention.to_out.0.weight": "attention.out.weight", "attention.to_out.0.bias": "attention.out.bias", + "attention_norm1.weight": "attention_norm1.weight", + "attention_norm2.weight": "attention_norm2.weight", + "feed_forward.w1.weight": "feed_forward.w1.weight", + "feed_forward.w2.weight": "feed_forward.w2.weight", + "feed_forward.w3.weight": "feed_forward.w3.weight", + "ffn_norm1.weight": "ffn_norm1.weight", + "ffn_norm2.weight": "ffn_norm2.weight", } + if has_adaln: + block_map["adaLN_modulation.0.weight"] = "adaLN_modulation.0.weight" + block_map["adaLN_modulation.0.bias"] = "adaLN_modulation.0.bias" + for k, v in block_map.items(): + key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, v) - for k in block_map: - key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k]) + for i in range(n_layers): + add_block_keys("layers.{}".format(i), "{}layers.{}".format(output_prefix, i)) - MAP_BASIC = { - # Final layer + for i in range(n_context_refiner): + add_block_keys("context_refiner.{}".format(i), "{}context_refiner.{}".format(output_prefix, i)) + + for i in range(n_noise_refiner): + add_block_keys("noise_refiner.{}".format(i), "{}noise_refiner.{}".format(output_prefix, i)) + + MAP_BASIC = [ ("final_layer.linear.weight", "all_final_layer.2-1.linear.weight"), ("final_layer.linear.bias", "all_final_layer.2-1.linear.bias"), ("final_layer.adaLN_modulation.1.weight", "all_final_layer.2-1.adaLN_modulation.1.weight"), ("final_layer.adaLN_modulation.1.bias", "all_final_layer.2-1.adaLN_modulation.1.bias"), - # X embedder ("x_embedder.weight", "all_x_embedder.2-1.weight"), ("x_embedder.bias", "all_x_embedder.2-1.bias"), - } + ("x_pad_token", "x_pad_token"), + ("cap_embedder.0.weight", "cap_embedder.0.weight"), + ("cap_embedder.1.weight", "cap_embedder.1.weight"), + ("cap_embedder.1.bias", "cap_embedder.1.bias"), + ("cap_pad_token", "cap_pad_token"), + ("t_embedder.mlp.0.weight", "t_embedder.mlp.0.weight"), + ("t_embedder.mlp.0.bias", "t_embedder.mlp.0.bias"), + ("t_embedder.mlp.2.weight", "t_embedder.mlp.2.weight"), + ("t_embedder.mlp.2.bias", "t_embedder.mlp.2.bias"), + ] - for k in MAP_BASIC: - key_map[k[1]] = "{}{}".format(output_prefix, k[0]) + for c, diffusers in MAP_BASIC: + key_map[diffusers] = "{}{}".format(output_prefix, c) return key_map - def repeat_to_batch_size(tensor, batch_size, dim=0): if tensor.shape[dim] > batch_size: return tensor.narrow(dim, 0, batch_size) From 0a6746898d6864d65e2fc7504e5e875f8c19c0ba Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 29 Nov 2025 15:00:55 -0800 Subject: [PATCH 076/271] Make the ScaleRope node work on Z Image and Lumina. (#10994) --- comfy/ldm/lumina/model.py | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 565400b54..7d7e9112c 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -517,11 +517,23 @@ class NextDiT(nn.Module): B, C, H, W = x.shape x = self.x_embedder(x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2)) + rope_options = transformer_options.get("rope_options", None) + h_scale = 1.0 + w_scale = 1.0 + h_start = 0 + w_start = 0 + if rope_options is not None: + h_scale = rope_options.get("scale_y", 1.0) + w_scale = rope_options.get("scale_x", 1.0) + + h_start = rope_options.get("shift_y", 0.0) + w_start = rope_options.get("shift_x", 0.0) + H_tokens, W_tokens = H // pH, W // pW x_pos_ids = torch.zeros((bsz, x.shape[1], 3), dtype=torch.float32, device=device) x_pos_ids[:, :, 0] = cap_feats.shape[1] + 1 - x_pos_ids[:, :, 1] = torch.arange(H_tokens, dtype=torch.float32, device=device).view(-1, 1).repeat(1, W_tokens).flatten() - x_pos_ids[:, :, 2] = torch.arange(W_tokens, dtype=torch.float32, device=device).view(1, -1).repeat(H_tokens, 1).flatten() + x_pos_ids[:, :, 1] = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten() + x_pos_ids[:, :, 2] = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten() if self.pad_tokens_multiple is not None: pad_extra = (-x.shape[1]) % self.pad_tokens_multiple From 4967f81778f84b41acc40ed03536dd71dd88e5f2 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Sun, 30 Nov 2025 10:07:26 +0800 Subject: [PATCH 077/271] update template to 0.7.25 (#10996) * update template to 0.7.24 * Update template to 0.7.25 --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index e0b2c566b..386477808 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.32.9 -comfyui-workflow-templates==0.7.23 +comfyui-workflow-templates==0.7.25 comfyui-embedded-docs==0.3.1 torch torchsde From f8b981ae9a5676311624bbafa636a1874db79459 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 30 Nov 2025 01:21:31 -0800 Subject: [PATCH 078/271] Next AMD portable will have pytorch with ROCm 7.1.1 (#11002) --- .github/workflows/release-stable-all.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/release-stable-all.yml b/.github/workflows/release-stable-all.yml index 9274b4170..d72ece2ce 100644 --- a/.github/workflows/release-stable-all.yml +++ b/.github/workflows/release-stable-all.yml @@ -65,11 +65,11 @@ jobs: contents: "write" packages: "write" pull-requests: "read" - name: "Release AMD ROCm 6.4.4" + name: "Release AMD ROCm 7.1.1" uses: ./.github/workflows/stable-release.yml with: git_tag: ${{ inputs.git_tag }} - cache_tag: "rocm644" + cache_tag: "rocm711" python_minor: "12" python_patch: "10" rel_name: "amd" From 7dbd5dfe91f057b83dcba0c127f712f6d71f7def Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Mon, 1 Dec 2025 10:27:17 -0800 Subject: [PATCH 079/271] bump comfyui-frontend-package to 1.32.10 (#11018) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 386477808..045b2ac54 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.32.9 +comfyui-frontend-package==1.32.10 comfyui-workflow-templates==0.7.25 comfyui-embedded-docs==0.3.1 torch From 2640acb31ccfddee57ba22d5245bf456e8dffe53 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 1 Dec 2025 14:13:48 -0800 Subject: [PATCH 080/271] Update qwen tokenizer to add qwen 3 tokens. (#11029) Doesn't actually change anything for current workflows because none of the current models have a template with the think tokens. --- .../qwen25_tokenizer/tokenizer_config.json | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json b/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json index 67688e82c..df5b5d7fe 100644 --- a/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json +++ b/comfy/text_encoders/qwen25_tokenizer/tokenizer_config.json @@ -179,36 +179,36 @@ "special": false }, "151665": { - "content": "<|img|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false }, "151666": { - "content": "<|endofimg|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false }, "151667": { - "content": "<|meta|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false }, "151668": { - "content": "<|endofmeta|>", + "content": "", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, - "special": true + "special": false } }, "additional_special_tokens": [ From 1cb7e22a95701f2619d1ddf5683ea221b58a0c13 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 2 Dec 2025 02:11:52 +0200 Subject: [PATCH 081/271] [API Nodes] add Kling O1 model support (#11025) * feat(api-nodes): add Kling O1 model support * fix: increase max allowed duration to 10.05 seconds * fix(VideoInput): respect "format" argument --- comfy_api/latest/_input_impl/video_types.py | 5 +- comfy_api_nodes/apis/kling_api.py | 66 +++ comfy_api_nodes/nodes_kling.py | 444 +++++++++++++++++++- comfy_api_nodes/util/upload_helpers.py | 3 +- 4 files changed, 499 insertions(+), 19 deletions(-) create mode 100644 comfy_api_nodes/apis/kling_api.py diff --git a/comfy_api/latest/_input_impl/video_types.py b/comfy_api/latest/_input_impl/video_types.py index bde37f90a..7231bf13c 100644 --- a/comfy_api/latest/_input_impl/video_types.py +++ b/comfy_api/latest/_input_impl/video_types.py @@ -336,7 +336,10 @@ class VideoFromComponents(VideoInput): raise ValueError("Only MP4 format is supported for now") if codec != VideoCodec.AUTO and codec != VideoCodec.H264: raise ValueError("Only H264 codec is supported for now") - with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}) as output: + extra_kwargs = {} + if format != VideoContainer.AUTO: + extra_kwargs["format"] = format.value + with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}, **extra_kwargs) as output: # Add metadata before writing any streams if metadata is not None: for key, value in metadata.items(): diff --git a/comfy_api_nodes/apis/kling_api.py b/comfy_api_nodes/apis/kling_api.py new file mode 100644 index 000000000..0a3b447c5 --- /dev/null +++ b/comfy_api_nodes/apis/kling_api.py @@ -0,0 +1,66 @@ +from pydantic import BaseModel, Field + + +class OmniProText2VideoRequest(BaseModel): + model_name: str = Field(..., description="kling-video-o1") + aspect_ratio: str = Field(..., description="'16:9', '9:16' or '1:1'") + duration: str = Field(..., description="'5' or '10'") + prompt: str = Field(...) + mode: str = Field("pro") + + +class OmniParamImage(BaseModel): + image_url: str = Field(...) + type: str | None = Field(None, description="Can be 'first_frame' or 'end_frame'") + + +class OmniParamVideo(BaseModel): + video_url: str = Field(...) + refer_type: str | None = Field(..., description="Can be 'base' or 'feature'") + keep_original_sound: str = Field(..., description="'yes' or 'no'") + + +class OmniProFirstLastFrameRequest(BaseModel): + model_name: str = Field(..., description="kling-video-o1") + image_list: list[OmniParamImage] = Field(..., min_length=1, max_length=7) + duration: str = Field(..., description="'5' or '10'") + prompt: str = Field(...) + mode: str = Field("pro") + + +class OmniProReferences2VideoRequest(BaseModel): + model_name: str = Field(..., description="kling-video-o1") + aspect_ratio: str | None = Field(..., description="'16:9', '9:16' or '1:1'") + image_list: list[OmniParamImage] | None = Field( + None, max_length=7, description="Max length 4 when video is present." + ) + video_list: list[OmniParamVideo] | None = Field(None, max_length=1) + duration: str | None = Field(..., description="From 3 to 10.") + prompt: str = Field(...) + mode: str = Field("pro") + + +class TaskStatusVideoResult(BaseModel): + duration: str | None = Field(None, description="Total video duration") + id: str | None = Field(None, description="Generated video ID") + url: str | None = Field(None, description="URL for generated video") + + +class TaskStatusVideoResults(BaseModel): + videos: list[TaskStatusVideoResult] | None = Field(None) + + +class TaskStatusVideoResponseData(BaseModel): + created_at: int | None = Field(None, description="Task creation time") + updated_at: int | None = Field(None, description="Task update time") + task_status: str | None = None + task_status_msg: str | None = Field(None, description="Additional failure reason. Only for polling endpoint.") + task_id: str | None = Field(None, description="Task ID") + task_result: TaskStatusVideoResults | None = Field(None) + + +class TaskStatusVideoResponse(BaseModel): + code: int | None = Field(None, description="Error code") + message: str | None = Field(None, description="Error message") + request_id: str | None = Field(None, description="Request ID") + data: TaskStatusVideoResponseData | None = Field(None) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 23a7f55f1..850c44db6 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -4,13 +4,13 @@ For source of truth on the allowed permutations of request fields, please refere - [Compatibility Table](https://app.klingai.com/global/dev/document-api/apiReference/model/skillsMap) """ -import math import logging - -from typing_extensions import override +import math import torch +from typing_extensions import override +from comfy_api.latest import IO, ComfyExtension, Input, InputImpl from comfy_api_nodes.apis import ( KlingCameraControl, KlingCameraConfig, @@ -48,23 +48,31 @@ from comfy_api_nodes.apis import ( KlingCharacterEffectModelName, KlingSingleImageEffectModelName, ) +from comfy_api_nodes.apis.kling_api import ( + OmniParamImage, + OmniParamVideo, + OmniProFirstLastFrameRequest, + OmniProReferences2VideoRequest, + OmniProText2VideoRequest, + TaskStatusVideoResponse, +) from comfy_api_nodes.util import ( - validate_image_dimensions, + ApiEndpoint, + download_url_to_image_tensor, + download_url_to_video_output, + get_number_of_images, + poll_op, + sync_op, + tensor_to_base64_string, + upload_audio_to_comfyapi, + upload_images_to_comfyapi, + upload_video_to_comfyapi, validate_image_aspect_ratio, + validate_image_dimensions, + validate_string, validate_video_dimensions, validate_video_duration, - tensor_to_base64_string, - validate_string, - upload_audio_to_comfyapi, - download_url_to_image_tensor, - upload_video_to_comfyapi, - download_url_to_video_output, - sync_op, - ApiEndpoint, - poll_op, ) -from comfy_api.input_impl import VideoFromFile -from comfy_api.latest import ComfyExtension, IO, Input KLING_API_VERSION = "v1" PATH_TEXT_TO_VIDEO = f"/proxy/kling/{KLING_API_VERSION}/videos/text2video" @@ -202,6 +210,20 @@ VOICES_CONFIG = { } +async def finish_omni_video_task(cls: type[IO.ComfyNode], response: TaskStatusVideoResponse) -> IO.NodeOutput: + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/omni-video/{response.data.task_id}"), + response_model=TaskStatusVideoResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + def is_valid_camera_control_configs(configs: list[float]) -> bool: """Verifies that at least one camera control configuration is non-zero.""" return any(not math.isclose(value, 0.0) for value in configs) @@ -449,7 +471,7 @@ async def execute_video_effect( image_1: torch.Tensor, image_2: torch.Tensor | None = None, model_mode: KlingVideoGenMode | None = None, -) -> tuple[VideoFromFile, str, str]: +) -> tuple[InputImpl.VideoFromFile, str, str]: if dual_character: request_input_field = KlingDualCharacterEffectInput( model_name=model_name, @@ -736,6 +758,386 @@ class KlingTextToVideoNode(IO.ComfyNode): ) +class OmniProTextToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProTextToVideoNode", + display_name="Kling Omni Text to Video (Pro)", + category="api node/video/Kling", + description="Use text prompts to generate videos with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Combo.Input("duration", options=[5, 10]), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + aspect_ratio: str, + duration: int, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusVideoResponse, + data=OmniProText2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=aspect_ratio, + duration=str(duration), + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProFirstLastFrameNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProFirstLastFrameNode", + display_name="Kling Omni First-Last-Frame to Video (Pro)", + category="api node/video/Kling", + description="Use a start frame, an optional end frame, or reference images with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("duration", options=["5", "10"]), + IO.Image.Input("first_frame"), + IO.Image.Input( + "end_frame", + optional=True, + tooltip="An optional end frame for the video. " + "This cannot be used simultaneously with 'reference_images'.", + ), + IO.Image.Input( + "reference_images", + optional=True, + tooltip="Up to 6 additional reference images.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + duration: int, + first_frame: Input.Image, + end_frame: Input.Image | None = None, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + if end_frame is not None and reference_images is not None: + raise ValueError("The 'end_frame' input cannot be used simultaneously with 'reference_images'.") + validate_image_dimensions(first_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(first_frame, (1, 2.5), (2.5, 1)) + image_list: list[OmniParamImage] = [ + OmniParamImage( + image_url=(await upload_images_to_comfyapi(cls, first_frame, wait_label="Uploading first frame"))[0], + type="first_frame", + ) + ] + if end_frame is not None: + validate_image_dimensions(end_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(end_frame, (1, 2.5), (2.5, 1)) + image_list.append( + OmniParamImage( + image_url=(await upload_images_to_comfyapi(cls, end_frame, wait_label="Uploading end frame"))[0], + type="end_frame", + ) + ) + if reference_images is not None: + if get_number_of_images(reference_images) > 6: + raise ValueError("The maximum number of reference images allowed is 6.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference frame(s)"): + image_list.append(OmniParamImage(image_url=i)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusVideoResponse, + data=OmniProFirstLastFrameRequest( + model_name=model_name, + prompt=prompt, + duration=str(duration), + image_list=image_list, + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProImageToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProImageToVideoNode", + display_name="Kling Omni Image to Video (Pro)", + category="api node/video/Kling", + description="Use up to 7 reference images to generate a video with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Int.Input("duration", default=3, min=3, max=10, display_mode=IO.NumberDisplay.slider), + IO.Image.Input( + "reference_images", + tooltip="Up to 7 reference images.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + aspect_ratio: str, + duration: int, + reference_images: Input.Image, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + if get_number_of_images(reference_images) > 7: + raise ValueError("The maximum number of reference images is 7.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + image_list: list[OmniParamImage] = [] + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniParamImage(image_url=i)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusVideoResponse, + data=OmniProReferences2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=aspect_ratio, + duration=str(duration), + image_list=image_list, + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProVideoToVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProVideoToVideoNode", + display_name="Kling Omni Video to Video (Pro)", + category="api node/video/Kling", + description="Use a video and up to 4 reference images to generate a video with the latest Kling model.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Int.Input("duration", default=3, min=3, max=10, display_mode=IO.NumberDisplay.slider), + IO.Video.Input("reference_video", tooltip="Video to use as a reference."), + IO.Boolean.Input("keep_original_sound", default=True), + IO.Image.Input( + "reference_images", + tooltip="Up to 4 additional reference images.", + optional=True, + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + aspect_ratio: str, + duration: int, + reference_video: Input.Video, + keep_original_sound: bool, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + validate_video_duration(reference_video, min_duration=3.0, max_duration=10.05) + validate_video_dimensions(reference_video, min_width=720, min_height=720, max_width=2160, max_height=2160) + image_list: list[OmniParamImage] = [] + if reference_images is not None: + if get_number_of_images(reference_images) > 4: + raise ValueError("The maximum number of reference images allowed with a video input is 4.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniParamImage(image_url=i)) + video_list = [ + OmniParamVideo( + video_url=await upload_video_to_comfyapi(cls, reference_video, wait_label="Uploading reference video"), + refer_type="feature", + keep_original_sound="yes" if keep_original_sound else "no", + ) + ] + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusVideoResponse, + data=OmniProReferences2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=aspect_ratio, + duration=str(duration), + image_list=image_list if image_list else None, + video_list=video_list, + ), + ) + return await finish_omni_video_task(cls, response) + + +class OmniProEditVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProEditVideoNode", + display_name="Kling Omni Edit Video (Pro)", + category="api node/video/Kling", + description="Edit an existing video with the latest model from Kling.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the video content. " + "This can include both positive and negative descriptions.", + ), + IO.Video.Input("video", tooltip="Video for editing. The output video length will be the same."), + IO.Boolean.Input("keep_original_sound", default=True), + IO.Image.Input( + "reference_images", + tooltip="Up to 4 additional reference images.", + optional=True, + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + video: Input.Video, + keep_original_sound: bool, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + validate_video_duration(video, min_duration=3.0, max_duration=10.05) + validate_video_dimensions(video, min_width=720, min_height=720, max_width=2160, max_height=2160) + image_list: list[OmniParamImage] = [] + if reference_images is not None: + if get_number_of_images(reference_images) > 4: + raise ValueError("The maximum number of reference images allowed with a video input is 4.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniParamImage(image_url=i)) + video_list = [ + OmniParamVideo( + video_url=await upload_video_to_comfyapi(cls, video, wait_label="Uploading base video"), + refer_type="base", + keep_original_sound="yes" if keep_original_sound else "no", + ) + ] + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), + response_model=TaskStatusVideoResponse, + data=OmniProReferences2VideoRequest( + model_name=model_name, + prompt=prompt, + aspect_ratio=None, + duration=None, + image_list=image_list if image_list else None, + video_list=video_list, + ), + ) + return await finish_omni_video_task(cls, response) + + class KlingCameraControlT2VNode(IO.ComfyNode): """ Kling Text to Video Camera Control Node. This node is a text to video node, but it supports controlling the camera. @@ -1162,7 +1564,10 @@ class KlingSingleImageVideoEffectNode(IO.ComfyNode): category="api node/video/Kling", description="Achieve different special effects when generating a video based on the effect_scene.", inputs=[ - IO.Image.Input("image", tooltip=" Reference Image. URL or Base64 encoded string (without data:image prefix). File size cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1"), + IO.Image.Input( + "image", + tooltip=" Reference Image. URL or Base64 encoded string (without data:image prefix). File size cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1", + ), IO.Combo.Input( "effect_scene", options=[i.value for i in KlingSingleImageEffectsScene], @@ -1525,6 +1930,11 @@ class KlingExtension(ComfyExtension): KlingImageGenerationNode, KlingSingleImageVideoEffectNode, KlingDualCharacterVideoEffectNode, + OmniProTextToVideoNode, + OmniProFirstLastFrameNode, + OmniProImageToVideoNode, + OmniProVideoToVideoNode, + OmniProEditVideoNode, ] diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index b9019841f..0532bea9a 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -103,6 +103,7 @@ async def upload_video_to_comfyapi( container: VideoContainer = VideoContainer.MP4, codec: VideoCodec = VideoCodec.H264, max_duration: Optional[int] = None, + wait_label: str | None = "Uploading", ) -> str: """ Uploads a single video to ComfyUI API and returns its download URL. @@ -127,7 +128,7 @@ async def upload_video_to_comfyapi( video.save_to(video_bytes_io, format=container, codec=codec) video_bytes_io.seek(0) - return await upload_file_to_comfyapi(cls, video_bytes_io, filename, upload_mime_type) + return await upload_file_to_comfyapi(cls, video_bytes_io, filename, upload_mime_type, wait_label) async def upload_file_to_comfyapi( From 30c259cac8c08ff8d015f9aff3151cb525c9b702 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Mon, 1 Dec 2025 20:25:35 -0500 Subject: [PATCH 082/271] ComfyUI version v0.3.76 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index fa4b4f4b0..4b039356e 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.3.75" +__version__ = "0.3.76" diff --git a/pyproject.toml b/pyproject.toml index 9009e65fe..02b94a0ce 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.3.75" +version = "0.3.76" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 878db3a727c1c6049bc1c4959cdfabc35eaf3d56 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 1 Dec 2025 17:56:17 -0800 Subject: [PATCH 083/271] Implement the Ovis image model. (#11030) --- comfy/ldm/chroma/model.py | 3 +- comfy/ldm/flux/layers.py | 68 +++++++++++++++++++++-------------- comfy/ldm/flux/model.py | 21 ++++++++--- comfy/model_detection.py | 10 +++++- comfy/sd.py | 13 +++++-- comfy/text_encoders/llama.py | 31 ++++++++++++++++ comfy/text_encoders/ovis.py | 69 ++++++++++++++++++++++++++++++++++++ nodes.py | 2 +- 8 files changed, 182 insertions(+), 35 deletions(-) create mode 100644 comfy/text_encoders/ovis.py diff --git a/comfy/ldm/chroma/model.py b/comfy/ldm/chroma/model.py index a72f8cc47..2e8ef0687 100644 --- a/comfy/ldm/chroma/model.py +++ b/comfy/ldm/chroma/model.py @@ -40,7 +40,8 @@ class ChromaParams: out_dim: int hidden_dim: int n_layers: int - + txt_ids_dims: list + vec_in_dim: int diff --git a/comfy/ldm/flux/layers.py b/comfy/ldm/flux/layers.py index 2472ab79c..60f2bdae2 100644 --- a/comfy/ldm/flux/layers.py +++ b/comfy/ldm/flux/layers.py @@ -57,6 +57,35 @@ class MLPEmbedder(nn.Module): def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) +class YakMLP(nn.Module): + def __init__(self, hidden_size: int, intermediate_size: int, dtype=None, device=None, operations=None): + super().__init__() + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.gate_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device) + self.up_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device) + self.down_proj = operations.Linear(self.intermediate_size, self.hidden_size, bias=True, dtype=dtype, device=device) + self.act_fn = nn.SiLU() + + def forward(self, x: Tensor) -> Tensor: + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + +def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dtype=None, device=None, operations=None): + if yak_mlp: + return YakMLP(hidden_size, mlp_hidden_dim, dtype=dtype, device=device, operations=operations) + if mlp_silu_act: + return nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device), + SiLUActivation(), + operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device), + ) + else: + return nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), + nn.GELU(approximate="tanh"), + operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), + ) class RMSNorm(torch.nn.Module): def __init__(self, dim: int, dtype=None, device=None, operations=None): @@ -140,7 +169,7 @@ class SiLUActivation(nn.Module): class DoubleStreamBlock(nn.Module): - def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, dtype=None, device=None, operations=None): + def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None): super().__init__() mlp_hidden_dim = int(hidden_size * mlp_ratio) @@ -156,18 +185,7 @@ class DoubleStreamBlock(nn.Module): self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - if mlp_silu_act: - self.img_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device), - SiLUActivation(), - operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device), - ) - else: - self.img_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), - nn.GELU(approximate="tanh"), - operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), - ) + self.img_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations) if self.modulation: self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) @@ -177,18 +195,7 @@ class DoubleStreamBlock(nn.Module): self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - if mlp_silu_act: - self.txt_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device), - SiLUActivation(), - operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device), - ) - else: - self.txt_mlp = nn.Sequential( - operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), - nn.GELU(approximate="tanh"), - operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), - ) + self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations) self.flipped_img_txt = flipped_img_txt @@ -275,6 +282,7 @@ class SingleStreamBlock(nn.Module): modulation=True, mlp_silu_act=False, bias=True, + yak_mlp=False, dtype=None, device=None, operations=None @@ -288,12 +296,17 @@ class SingleStreamBlock(nn.Module): self.mlp_hidden_dim = int(hidden_size * mlp_ratio) self.mlp_hidden_dim_first = self.mlp_hidden_dim + self.yak_mlp = yak_mlp if mlp_silu_act: self.mlp_hidden_dim_first = int(hidden_size * mlp_ratio * 2) self.mlp_act = SiLUActivation() else: self.mlp_act = nn.GELU(approximate="tanh") + if self.yak_mlp: + self.mlp_hidden_dim_first *= 2 + self.mlp_act = nn.SiLU() + # qkv and mlp_in self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim_first, bias=bias, dtype=dtype, device=device) # proj and mlp_out @@ -325,7 +338,10 @@ class SingleStreamBlock(nn.Module): attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options) del q, k, v # compute activation in mlp stream, cat again and run second linear layer - mlp = self.mlp_act(mlp) + if self.yak_mlp: + mlp = self.mlp_act(mlp[..., self.mlp_hidden_dim_first // 2:]) * mlp[..., :self.mlp_hidden_dim_first // 2] + else: + mlp = self.mlp_act(mlp) output = self.linear2(torch.cat((attn, mlp), 2)) x += apply_mod(output, mod.gate, None, modulation_dims) if x.dtype == torch.float16: diff --git a/comfy/ldm/flux/model.py b/comfy/ldm/flux/model.py index d5674dea6..f40c2a7a9 100644 --- a/comfy/ldm/flux/model.py +++ b/comfy/ldm/flux/model.py @@ -15,7 +15,8 @@ from .layers import ( MLPEmbedder, SingleStreamBlock, timestep_embedding, - Modulation + Modulation, + RMSNorm ) @dataclass @@ -34,11 +35,14 @@ class FluxParams: patch_size: int qkv_bias: bool guidance_embed: bool + txt_ids_dims: list global_modulation: bool = False mlp_silu_act: bool = False ops_bias: bool = True default_ref_method: str = "offset" ref_index_scale: float = 1.0 + yak_mlp: bool = False + txt_norm: bool = False class Flux(nn.Module): @@ -76,6 +80,11 @@ class Flux(nn.Module): ) self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device) + if params.txt_norm: + self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations) + else: + self.txt_norm = None + self.double_blocks = nn.ModuleList( [ DoubleStreamBlock( @@ -86,6 +95,7 @@ class Flux(nn.Module): modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, proj_bias=params.ops_bias, + yak_mlp=params.yak_mlp, dtype=dtype, device=device, operations=operations ) for _ in range(params.depth) @@ -94,7 +104,7 @@ class Flux(nn.Module): self.single_blocks = nn.ModuleList( [ - SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) + SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, yak_mlp=params.yak_mlp, dtype=dtype, device=device, operations=operations) for _ in range(params.depth_single_blocks) ] ) @@ -150,6 +160,8 @@ class Flux(nn.Module): y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype) vec = vec + self.vector_in(y[:, :self.params.vec_in_dim]) + if self.txt_norm is not None: + txt = self.txt_norm(txt) txt = self.txt_in(txt) vec_orig = vec @@ -332,8 +344,9 @@ class Flux(nn.Module): txt_ids = torch.zeros((bs, context.shape[1], len(self.params.axes_dim)), device=x.device, dtype=torch.float32) - if len(self.params.axes_dim) == 4: # Flux 2 - txt_ids[:, :, 3] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32) + if len(self.params.txt_ids_dims) > 0: + for i in self.params.txt_ids_dims: + txt_ids[:, :, i] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32) out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None)) out = out[:, :img_tokens] diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 7afe4a798..7d0517e61 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -208,12 +208,12 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["theta"] = 2000 dit_config["out_channels"] = 128 dit_config["global_modulation"] = True - dit_config["vec_in_dim"] = None dit_config["mlp_silu_act"] = True dit_config["qkv_bias"] = False dit_config["ops_bias"] = False dit_config["default_ref_method"] = "index" dit_config["ref_index_scale"] = 10.0 + dit_config["txt_ids_dims"] = [3] patch_size = 1 else: dit_config["image_model"] = "flux" @@ -223,6 +223,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["theta"] = 10000 dit_config["out_channels"] = 16 dit_config["qkv_bias"] = True + dit_config["txt_ids_dims"] = [] patch_size = 2 dit_config["in_channels"] = 16 @@ -245,6 +246,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix) if vec_in_key in state_dict_keys: dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1] + else: + dit_config["vec_in_dim"] = None dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.') dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.') @@ -270,6 +273,11 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["nerf_embedder_dtype"] = torch.float32 else: dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys + dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys + dit_config["txt_norm"] = "{}txt_norm.scale".format(key_prefix) in state_dict_keys + if dit_config["yak_mlp"] and dit_config["txt_norm"]: # Ovis model + dit_config["txt_ids_dims"] = [1, 2] + return dit_config if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview diff --git a/comfy/sd.py b/comfy/sd.py index 9eeb0c45a..f9e5efab5 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -53,6 +53,7 @@ import comfy.text_encoders.omnigen2 import comfy.text_encoders.qwen_image import comfy.text_encoders.hunyuan_image import comfy.text_encoders.z_image +import comfy.text_encoders.ovis import comfy.model_patcher import comfy.lora @@ -956,6 +957,7 @@ class CLIPType(Enum): QWEN_IMAGE = 18 HUNYUAN_IMAGE = 19 HUNYUAN_VIDEO_15 = 20 + OVIS = 21 def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): @@ -987,6 +989,7 @@ class TEModel(Enum): MISTRAL3_24B = 14 MISTRAL3_24B_PRUNED_FLUX2 = 15 QWEN3_4B = 16 + QWEN3_2B = 17 def detect_te_model(sd): @@ -1020,9 +1023,12 @@ def detect_te_model(sd): if weight.shape[0] == 512: return TEModel.QWEN25_7B if "model.layers.0.post_attention_layernorm.weight" in sd: - if 'model.layers.0.self_attn.q_norm.weight' in sd: - return TEModel.QWEN3_4B weight = sd['model.layers.0.post_attention_layernorm.weight'] + if 'model.layers.0.self_attn.q_norm.weight' in sd: + if weight.shape[0] == 2560: + return TEModel.QWEN3_4B + elif weight.shape[0] == 2048: + return TEModel.QWEN3_2B if weight.shape[0] == 5120: if "model.layers.39.post_attention_layernorm.weight" in sd: return TEModel.MISTRAL3_24B @@ -1150,6 +1156,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif te_model == TEModel.QWEN3_4B: clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer + elif te_model == TEModel.QWEN3_2B: + clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer else: # clip_l if clip_type == CLIPType.SD3: diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index cd4b5f76c..0d07ac8c6 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -100,6 +100,28 @@ class Qwen3_4BConfig: rope_scale = None final_norm: bool = True +@dataclass +class Ovis25_2BConfig: + vocab_size: int = 151936 + hidden_size: int = 2048 + intermediate_size: int = 6144 + num_hidden_layers: int = 28 + num_attention_heads: int = 16 + num_key_value_heads: int = 8 + max_position_embeddings: int = 40960 + rms_norm_eps: float = 1e-6 + rope_theta: float = 1000000.0 + transformer_type: str = "llama" + head_dim = 128 + rms_norm_add = False + mlp_activation = "silu" + qkv_bias = False + rope_dims = None + q_norm = "gemma3" + k_norm = "gemma3" + rope_scale = None + final_norm: bool = True + @dataclass class Qwen25_7BVLI_Config: vocab_size: int = 152064 @@ -542,6 +564,15 @@ class Qwen3_4B(BaseLlama, torch.nn.Module): self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype +class Ovis25_2B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Ovis25_2BConfig(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.dtype = dtype + class Qwen25_7BVLI(BaseLlama, torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() diff --git a/comfy/text_encoders/ovis.py b/comfy/text_encoders/ovis.py new file mode 100644 index 000000000..81c9bd51c --- /dev/null +++ b/comfy/text_encoders/ovis.py @@ -0,0 +1,69 @@ +from transformers import Qwen2Tokenizer +import comfy.text_encoders.llama +from comfy import sd1_clip +import os +import torch +import numbers + +class Qwen3Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='qwen3_2b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=284, pad_token=151643, tokenizer_data=tokenizer_data) + + +class OvisTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_2b", tokenizer=Qwen3Tokenizer) + self.llama_template = "<|im_start|>user\nDescribe the image by detailing the color, quantity, text, shape, size, texture, spatial relationships of the objects and background: {}<|im_end|>\n<|im_start|>assistant\n\n\n\n\n" + + def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs): + if llama_template is None: + llama_text = self.llama_template.format(text) + else: + llama_text = llama_template.format(text) + + tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs) + return tokens + +class Ovis25_2BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}): + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Ovis25_2B, enable_attention_masks=attention_mask, return_attention_masks=False, zero_out_masked=True, model_options=model_options) + + +class OvisTEModel(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, name="qwen3_2b", clip_model=Ovis25_2BModel, model_options=model_options) + + def encode_token_weights(self, token_weight_pairs, template_end=-1): + out, pooled = super().encode_token_weights(token_weight_pairs) + tok_pairs = token_weight_pairs["qwen3_2b"][0] + count_im_start = 0 + if template_end == -1: + for i, v in enumerate(tok_pairs): + elem = v[0] + if not torch.is_tensor(elem): + if isinstance(elem, numbers.Integral): + if elem == 4004 and count_im_start < 1: + template_end = i + count_im_start += 1 + + if out.shape[1] > (template_end + 1): + if tok_pairs[template_end + 1][0] == 25: + template_end += 1 + + out = out[:, template_end:] + return out, pooled, {} + + +def te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None): + class OvisTEModel_(OvisTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + model_options = model_options.copy() + model_options["scaled_fp8"] = llama_scaled_fp8 + if dtype_llama is not None: + dtype = dtype_llama + if llama_quantization_metadata is not None: + model_options["quantization_metadata"] = llama_quantization_metadata + super().__init__(device=device, dtype=dtype, model_options=model_options) + return OvisTEModel_ diff --git a/nodes.py b/nodes.py index 495dec806..d5e5dc228 100644 --- a/nodes.py +++ b/nodes.py @@ -939,7 +939,7 @@ class CLIPLoader: @classmethod def INPUT_TYPES(s): return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image", "hunyuan_image", "flux2"], ), + "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image", "hunyuan_image", "flux2", "ovis"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), From c55dc857d5da5af203caf720ed7056047d382544 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Mon, 1 Dec 2025 17:56:38 -0800 Subject: [PATCH 084/271] bump comfyui-frontend-package to 1.33.10 (#11028) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 045b2ac54..f98848e20 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.32.10 +comfyui-frontend-package==1.33.10 comfyui-workflow-templates==0.7.25 comfyui-embedded-docs==0.3.1 torch From b4a20acc54b0b94dc05a1bd09dc0b54dd12203f1 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Tue, 2 Dec 2025 12:32:52 +0900 Subject: [PATCH 085/271] feat: Support ComfyUI-Manager for pip version (#7555) --- comfy/cli_args.py | 7 +++++++ comfy_api/feature_flags.py | 1 + main.py | 30 ++++++++++++++++++++++++++++++ manager_requirements.txt | 1 + nodes.py | 9 +++++++++ server.py | 8 +++++++- 6 files changed, 55 insertions(+), 1 deletion(-) create mode 100644 manager_requirements.txt diff --git a/comfy/cli_args.py b/comfy/cli_args.py index 5f0dfaa10..209fc185b 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -121,6 +121,12 @@ upcast.add_argument("--force-upcast-attention", action="store_true", help="Force upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.") +parser.add_argument("--enable-manager", action="store_true", help="Enable the ComfyUI-Manager feature.") +manager_group = parser.add_mutually_exclusive_group() +manager_group.add_argument("--disable-manager-ui", action="store_true", help="Disables only the ComfyUI-Manager UI and endpoints. Scheduled installations and similar background tasks will still operate.") +manager_group.add_argument("--enable-manager-legacy-ui", action="store_true", help="Enables the legacy UI of ComfyUI-Manager") + + vram_group = parser.add_mutually_exclusive_group() vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).") vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.") @@ -168,6 +174,7 @@ parser.add_argument("--multi-user", action="store_true", help="Enables per-user parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level') parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).") + # The default built-in provider hosted under web/ DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest" diff --git a/comfy_api/feature_flags.py b/comfy_api/feature_flags.py index 0d4389a6e..bfb77eb5f 100644 --- a/comfy_api/feature_flags.py +++ b/comfy_api/feature_flags.py @@ -13,6 +13,7 @@ from comfy.cli_args import args SERVER_FEATURE_FLAGS: Dict[str, Any] = { "supports_preview_metadata": True, "max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes + "extension": {"manager": {"supports_v4": True}}, } diff --git a/main.py b/main.py index e1b0f1620..0cd815d9e 100644 --- a/main.py +++ b/main.py @@ -15,6 +15,7 @@ from comfy_execution.progress import get_progress_state from comfy_execution.utils import get_executing_context from comfy_api import feature_flags + if __name__ == "__main__": #NOTE: These do not do anything on core ComfyUI, they are for custom nodes. os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' @@ -22,6 +23,23 @@ if __name__ == "__main__": setup_logger(log_level=args.verbose, use_stdout=args.log_stdout) + +def handle_comfyui_manager_unavailable(): + if not args.windows_standalone_build: + logging.warning(f"\n\nYou appear to be running comfyui-manager from source, this is not recommended. Please install comfyui-manager using the following command:\ncommand:\n\t{sys.executable} -m pip install --pre comfyui_manager\n") + args.enable_manager = False + + +if args.enable_manager: + if importlib.util.find_spec("comfyui_manager"): + import comfyui_manager + + if not comfyui_manager.__file__ or not comfyui_manager.__file__.endswith('__init__.py'): + handle_comfyui_manager_unavailable() + else: + handle_comfyui_manager_unavailable() + + def apply_custom_paths(): # extra model paths extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml") @@ -79,6 +97,11 @@ def execute_prestartup_script(): for possible_module in possible_modules: module_path = os.path.join(custom_node_path, possible_module) + + if args.enable_manager: + if comfyui_manager.should_be_disabled(module_path): + continue + if os.path.isfile(module_path) or module_path.endswith(".disabled") or module_path == "__pycache__": continue @@ -101,6 +124,10 @@ def execute_prestartup_script(): logging.info("") apply_custom_paths() + +if args.enable_manager: + comfyui_manager.prestartup() + execute_prestartup_script() @@ -323,6 +350,9 @@ def start_comfyui(asyncio_loop=None): asyncio.set_event_loop(asyncio_loop) prompt_server = server.PromptServer(asyncio_loop) + if args.enable_manager and not args.disable_manager_ui: + comfyui_manager.start() + hook_breaker_ac10a0.save_functions() asyncio_loop.run_until_complete(nodes.init_extra_nodes( init_custom_nodes=(not args.disable_all_custom_nodes) or len(args.whitelist_custom_nodes) > 0, diff --git a/manager_requirements.txt b/manager_requirements.txt new file mode 100644 index 000000000..52cc5389c --- /dev/null +++ b/manager_requirements.txt @@ -0,0 +1 @@ +comfyui_manager==4.0.3b3 diff --git a/nodes.py b/nodes.py index d5e5dc228..4c910a34b 100644 --- a/nodes.py +++ b/nodes.py @@ -43,6 +43,9 @@ import folder_paths import latent_preview import node_helpers +if args.enable_manager: + import comfyui_manager + def before_node_execution(): comfy.model_management.throw_exception_if_processing_interrupted() @@ -2243,6 +2246,12 @@ async def init_external_custom_nodes(): if args.disable_all_custom_nodes and possible_module not in args.whitelist_custom_nodes: logging.info(f"Skipping {possible_module} due to disable_all_custom_nodes and whitelist_custom_nodes") continue + + if args.enable_manager: + if comfyui_manager.should_be_disabled(module_path): + logging.info(f"Blocked by policy: {module_path}") + continue + time_before = time.perf_counter() success = await load_custom_node(module_path, base_node_names, module_parent="custom_nodes") node_import_times.append((time.perf_counter() - time_before, module_path, success)) diff --git a/server.py b/server.py index fca5050bd..e3bd056d9 100644 --- a/server.py +++ b/server.py @@ -44,6 +44,9 @@ from protocol import BinaryEventTypes # Import cache control middleware from middleware.cache_middleware import cache_control +if args.enable_manager: + import comfyui_manager + async def send_socket_catch_exception(function, message): try: await function(message) @@ -212,6 +215,9 @@ class PromptServer(): if args.disable_api_nodes: middlewares.append(create_block_external_middleware()) + if args.enable_manager: + middlewares.append(comfyui_manager.create_middleware()) + max_upload_size = round(args.max_upload_size * 1024 * 1024) self.app = web.Application(client_max_size=max_upload_size, middlewares=middlewares) self.sockets = dict() @@ -599,7 +605,7 @@ class PromptServer(): system_stats = { "system": { - "os": os.name, + "os": sys.platform, "ram_total": ram_total, "ram_free": ram_free, "comfyui_version": __version__, From a17cf1c3871ad582c85c2bb6fddb63ec9c6df0ce Mon Sep 17 00:00:00 2001 From: Yoland Yan <4950057+yoland68@users.noreply.github.com> Date: Mon, 1 Dec 2025 19:40:44 -0800 Subject: [PATCH 086/271] Add @guill as a code owner (#11031) --- CODEOWNERS | 1 + 1 file changed, 1 insertion(+) diff --git a/CODEOWNERS b/CODEOWNERS index b7aca9b26..51acc4986 100644 --- a/CODEOWNERS +++ b/CODEOWNERS @@ -1,3 +1,4 @@ # Admins * @comfyanonymous * @kosinkadink +* @guill From 44baa0b7f32dd0c2ff0a9898aeb6c7929d855cd3 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Tue, 2 Dec 2025 11:46:29 -0800 Subject: [PATCH 087/271] Fix CODEOWNERS formatting to have all on the same line, otherwise only last line applies (#11053) --- CODEOWNERS | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/CODEOWNERS b/CODEOWNERS index 51acc4986..4d5448636 100644 --- a/CODEOWNERS +++ b/CODEOWNERS @@ -1,4 +1,2 @@ # Admins -* @comfyanonymous -* @kosinkadink -* @guill +* @comfyanonymous @kosinkadink @guill From 33d6aec3b70bc6f3e5bba26c85bd8f3bb1380d08 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 2 Dec 2025 21:50:13 +0200 Subject: [PATCH 088/271] add check for the format arg type in VideoFromComponents.save_to function (#11046) * add check for the format var type in VideoFromComponents.save_to function * convert "format" to VideoContainer enum --- comfy_api/latest/_input_impl/video_types.py | 2 +- comfy_extras/nodes_video.py | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/comfy_api/latest/_input_impl/video_types.py b/comfy_api/latest/_input_impl/video_types.py index 7231bf13c..a4cd3737d 100644 --- a/comfy_api/latest/_input_impl/video_types.py +++ b/comfy_api/latest/_input_impl/video_types.py @@ -337,7 +337,7 @@ class VideoFromComponents(VideoInput): if codec != VideoCodec.AUTO and codec != VideoCodec.H264: raise ValueError("Only H264 codec is supported for now") extra_kwargs = {} - if format != VideoContainer.AUTO: + if isinstance(format, VideoContainer) and format != VideoContainer.AUTO: extra_kwargs["format"] = format.value with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}, **extra_kwargs) as output: # Add metadata before writing any streams diff --git a/comfy_extras/nodes_video.py b/comfy_extras/nodes_video.py index 69fabb12e..6cf6e39bf 100644 --- a/comfy_extras/nodes_video.py +++ b/comfy_extras/nodes_video.py @@ -88,7 +88,7 @@ class SaveVideo(io.ComfyNode): ) @classmethod - def execute(cls, video: VideoInput, filename_prefix, format, codec) -> io.NodeOutput: + def execute(cls, video: VideoInput, filename_prefix, format: str, codec) -> io.NodeOutput: width, height = video.get_dimensions() full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path( filename_prefix, @@ -108,7 +108,7 @@ class SaveVideo(io.ComfyNode): file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}" video.save_to( os.path.join(full_output_folder, file), - format=format, + format=VideoContainer(format), codec=codec, metadata=saved_metadata ) From daaceac769a1355ab975758ede064317ea7514b4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 2 Dec 2025 14:11:58 -0800 Subject: [PATCH 089/271] Hack to make zimage work in fp16. (#11057) --- comfy/ldm/lumina/model.py | 18 +++++++++++------- comfy/supported_models.py | 2 ++ 2 files changed, 13 insertions(+), 7 deletions(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 7d7e9112c..070b5da09 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -22,6 +22,10 @@ def modulate(x, scale): # Core NextDiT Model # ############################################################################# +def clamp_fp16(x): + if x.dtype == torch.float16: + return torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) + return x class JointAttention(nn.Module): """Multi-head attention module.""" @@ -169,7 +173,7 @@ class FeedForward(nn.Module): # @torch.compile def _forward_silu_gating(self, x1, x3): - return F.silu(x1) * x3 + return clamp_fp16(F.silu(x1) * x3) def forward(self, x): return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x))) @@ -273,27 +277,27 @@ class JointTransformerBlock(nn.Module): scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2( - self.attention( + clamp_fp16(self.attention( modulate(self.attention_norm1(x), scale_msa), x_mask, freqs_cis, transformer_options=transformer_options, - ) + )) ) x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2( - self.feed_forward( + clamp_fp16(self.feed_forward( modulate(self.ffn_norm1(x), scale_mlp), - ) + )) ) else: assert adaln_input is None x = x + self.attention_norm2( - self.attention( + clamp_fp16(self.attention( self.attention_norm1(x), x_mask, freqs_cis, transformer_options=transformer_options, - ) + )) ) x = x + self.ffn_norm2( self.feed_forward( diff --git a/comfy/supported_models.py b/comfy/supported_models.py index af8120400..afd97160b 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -1027,6 +1027,8 @@ class ZImage(Lumina2): memory_usage_factor = 1.7 + supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] + def clip_target(self, state_dict={}): pref = self.text_encoder_key_prefix[0] hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref)) From 277237ccc1499bac7fcd221a666dfe7a32ac4206 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 3 Dec 2025 08:24:19 +1000 Subject: [PATCH 090/271] attention: use flag based OOM fallback (#11038) Exception ref all local variables for the lifetime of exception context. Just set a flag and then if to dump the exception before falling back. --- comfy/ldm/modules/attention.py | 3 +++ comfy/ldm/modules/diffusionmodules/model.py | 3 +++ 2 files changed, 6 insertions(+) diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index 7437e0567..a8800ded0 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -517,6 +517,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha @wrap_attn def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs): + exception_fallback = False if skip_reshape: b, _, _, dim_head = q.shape tensor_layout = "HND" @@ -541,6 +542,8 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape= out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout) except Exception as e: logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e)) + exception_fallback = True + if exception_fallback: if tensor_layout == "NHD": q, k, v = map( lambda t: t.transpose(1, 2), diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index 4245eedca..de1e01cc8 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -279,6 +279,7 @@ def pytorch_attention(q, k, v): orig_shape = q.shape B = orig_shape[0] C = orig_shape[1] + oom_fallback = False q, k, v = map( lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), (q, k, v), @@ -289,6 +290,8 @@ def pytorch_attention(q, k, v): out = out.transpose(2, 3).reshape(orig_shape) except model_management.OOM_EXCEPTION: logging.warning("scaled_dot_product_attention OOMed: switched to slice attention") + oom_fallback = True + if oom_fallback: out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape) return out From b94d394a64dd0af06bca44b96c66549bb463331d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 2 Dec 2025 18:38:31 -0800 Subject: [PATCH 091/271] Support Z Image alibaba pai fun controlnets. (#11062) These are not actual controlnets so put it in the models/model_patches folder and use the ModelPatchLoader + QwenImageDiffsynthControlnet node to use it. --- comfy/ldm/lumina/controlnet.py | 113 ++++++++++++++++++++++++++++++ comfy/ldm/lumina/model.py | 24 ++++--- comfy_extras/nodes_model_patch.py | 101 +++++++++++++++++++++++++- 3 files changed, 229 insertions(+), 9 deletions(-) create mode 100644 comfy/ldm/lumina/controlnet.py diff --git a/comfy/ldm/lumina/controlnet.py b/comfy/ldm/lumina/controlnet.py new file mode 100644 index 000000000..fd7ce3b5c --- /dev/null +++ b/comfy/ldm/lumina/controlnet.py @@ -0,0 +1,113 @@ +import torch +from torch import nn + +from .model import JointTransformerBlock + +class ZImageControlTransformerBlock(JointTransformerBlock): + def __init__( + self, + layer_id: int, + dim: int, + n_heads: int, + n_kv_heads: int, + multiple_of: int, + ffn_dim_multiplier: float, + norm_eps: float, + qk_norm: bool, + modulation=True, + block_id=0, + operation_settings=None, + ): + super().__init__(layer_id, dim, n_heads, n_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, modulation, z_image_modulation=True, operation_settings=operation_settings) + self.block_id = block_id + if block_id == 0: + self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, c, x, **kwargs): + if self.block_id == 0: + c = self.before_proj(c) + x + c = super().forward(c, **kwargs) + c_skip = self.after_proj(c) + return c_skip, c + +class ZImage_Control(torch.nn.Module): + def __init__( + self, + dim: int = 3840, + n_heads: int = 30, + n_kv_heads: int = 30, + multiple_of: int = 256, + ffn_dim_multiplier: float = (8.0 / 3.0), + norm_eps: float = 1e-5, + qk_norm: bool = True, + dtype=None, + device=None, + operations=None, + **kwargs + ): + super().__init__() + operation_settings = {"operations": operations, "device": device, "dtype": dtype} + + self.additional_in_dim = 0 + self.control_in_dim = 16 + n_refiner_layers = 2 + self.n_control_layers = 6 + self.control_layers = nn.ModuleList( + [ + ZImageControlTransformerBlock( + i, + dim, + n_heads, + n_kv_heads, + multiple_of, + ffn_dim_multiplier, + norm_eps, + qk_norm, + block_id=i, + operation_settings=operation_settings, + ) + for i in range(self.n_control_layers) + ] + ) + + all_x_embedder = {} + patch_size = 2 + f_patch_size = 1 + x_embedder = operations.Linear(f_patch_size * patch_size * patch_size * self.control_in_dim, dim, bias=True, device=device, dtype=dtype) + all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder + + self.control_all_x_embedder = nn.ModuleDict(all_x_embedder) + self.control_noise_refiner = nn.ModuleList( + [ + JointTransformerBlock( + layer_id, + dim, + n_heads, + n_kv_heads, + multiple_of, + ffn_dim_multiplier, + norm_eps, + qk_norm, + modulation=True, + z_image_modulation=True, + operation_settings=operation_settings, + ) + for layer_id in range(n_refiner_layers) + ] + ) + + def forward(self, cap_feats, control_context, x_freqs_cis, adaln_input): + patch_size = 2 + f_patch_size = 1 + pH = pW = patch_size + B, C, H, W = control_context.shape + control_context = self.control_all_x_embedder[f"{patch_size}-{f_patch_size}"](control_context.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2)) + + x_attn_mask = None + for layer in self.control_noise_refiner: + control_context = layer(control_context, x_attn_mask, x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input) + return control_context + + def forward_control_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input): + return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 070b5da09..f1c1a0ec3 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -568,7 +568,7 @@ class NextDiT(nn.Module): ).execute(x, timesteps, context, num_tokens, attention_mask, **kwargs) # def forward(self, x, t, cap_feats, cap_mask): - def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs): + def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, transformer_options={}, **kwargs): t = 1.0 - timesteps cap_feats = context cap_mask = attention_mask @@ -585,16 +585,24 @@ class NextDiT(nn.Module): cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute + patches = transformer_options.get("patches", {}) transformer_options = kwargs.get("transformer_options", {}) x_is_tensor = isinstance(x, torch.Tensor) - x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options) - freqs_cis = freqs_cis.to(x.device) + img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options) + freqs_cis = freqs_cis.to(img.device) - for layer in self.layers: - x = layer(x, mask, freqs_cis, adaln_input, transformer_options=transformer_options) + for i, layer in enumerate(self.layers): + img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options) + if "double_block" in patches: + for p in patches["double_block"]: + out = p({"img": img[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options}) + if "img" in out: + img[:, cap_size[0]:] = out["img"] + if "txt" in out: + img[:, :cap_size[0]] = out["txt"] - x = self.final_layer(x, adaln_input) - x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w] + img = self.final_layer(img, adaln_input) + img = self.unpatchify(img, img_size, cap_size, return_tensor=x_is_tensor)[:, :, :h, :w] - return -x + return -img diff --git a/comfy_extras/nodes_model_patch.py b/comfy_extras/nodes_model_patch.py index 783c59b6b..c61810dbf 100644 --- a/comfy_extras/nodes_model_patch.py +++ b/comfy_extras/nodes_model_patch.py @@ -6,6 +6,7 @@ import comfy.ops import comfy.model_management import comfy.ldm.common_dit import comfy.latent_formats +import comfy.ldm.lumina.controlnet class BlockWiseControlBlock(torch.nn.Module): @@ -189,6 +190,35 @@ class SigLIPMultiFeatProjModel(torch.nn.Module): return embedding +def z_image_convert(sd): + replace_keys = {".attention.to_out.0.bias": ".attention.out.bias", + ".attention.norm_k.weight": ".attention.k_norm.weight", + ".attention.norm_q.weight": ".attention.q_norm.weight", + ".attention.to_out.0.weight": ".attention.out.weight" + } + + out_sd = {} + for k in sorted(sd.keys()): + w = sd[k] + + k_out = k + if k_out.endswith(".attention.to_k.weight"): + cc = [w] + continue + if k_out.endswith(".attention.to_q.weight"): + cc = [w] + cc + continue + if k_out.endswith(".attention.to_v.weight"): + cc = cc + [w] + w = torch.cat(cc, dim=0) + k_out = k_out.replace(".attention.to_v.weight", ".attention.qkv.weight") + + for r, rr in replace_keys.items(): + k_out = k_out.replace(r, rr) + out_sd[k_out] = w + + return out_sd + class ModelPatchLoader: @classmethod def INPUT_TYPES(s): @@ -211,6 +241,9 @@ class ModelPatchLoader: elif 'feature_embedder.mid_layer_norm.bias' in sd: sd = comfy.utils.state_dict_prefix_replace(sd, {"feature_embedder.": ""}, filter_keys=True) model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) + elif 'control_all_x_embedder.2-1.weight' in sd: # alipai z image fun controlnet + sd = z_image_convert(sd) + model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) model.load_state_dict(sd) model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) @@ -263,6 +296,69 @@ class DiffSynthCnetPatch: def models(self): return [self.model_patch] +class ZImageControlPatch: + def __init__(self, model_patch, vae, image, strength): + self.model_patch = model_patch + self.vae = vae + self.image = image + self.strength = strength + self.encoded_image = self.encode_latent_cond(image) + self.encoded_image_size = (image.shape[1], image.shape[2]) + self.temp_data = None + + def encode_latent_cond(self, image): + latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(image)) + return latent_image + + def __call__(self, kwargs): + x = kwargs.get("x") + img = kwargs.get("img") + txt = kwargs.get("txt") + pe = kwargs.get("pe") + vec = kwargs.get("vec") + block_index = kwargs.get("block_index") + spacial_compression = self.vae.spacial_compression_encode() + if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression): + image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center") + loaded_models = comfy.model_management.loaded_models(only_currently_used=True) + self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1)) + self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1]) + comfy.model_management.load_models_gpu(loaded_models) + + cnet_index = (block_index // 5) + cnet_index_float = (block_index / 5) + + kwargs.pop("img") # we do ops in place + kwargs.pop("txt") + + cnet_blocks = self.model_patch.model.n_control_layers + if cnet_index_float > (cnet_blocks - 1): + self.temp_data = None + return kwargs + + if self.temp_data is None or self.temp_data[0] > cnet_index: + self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec))) + + while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks: + next_layer = self.temp_data[0] + 1 + self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img[:, :self.temp_data[1][1].shape[1]], None, pe, vec)) + + if cnet_index_float == self.temp_data[0]: + img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength) + if cnet_blocks == self.temp_data[0] + 1: + self.temp_data = None + + return kwargs + + def to(self, device_or_dtype): + if isinstance(device_or_dtype, torch.device): + self.encoded_image = self.encoded_image.to(device_or_dtype) + self.temp_data = None + return self + + def models(self): + return [self.model_patch] + class QwenImageDiffsynthControlnet: @classmethod def INPUT_TYPES(s): @@ -289,7 +385,10 @@ class QwenImageDiffsynthControlnet: mask = mask.unsqueeze(2) mask = 1.0 - mask - model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) + if isinstance(model_patch.model, comfy.ldm.lumina.controlnet.ZImage_Control): + model_patched.set_model_double_block_patch(ZImageControlPatch(model_patch, vae, image, strength)) + else: + model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) return (model_patched,) From 3f512f5659cfbb3c53999cde6ff557591740252b Mon Sep 17 00:00:00 2001 From: Jim Heising Date: Tue, 2 Dec 2025 19:29:27 -0800 Subject: [PATCH 092/271] Added PATCH method to CORS headers (#11066) Added PATCH http method to access-control-allow-header-methods header because there are now PATCH endpoints exposed in the API. See https://github.com/comfyanonymous/ComfyUI/blob/277237ccc1499bac7fcd221a666dfe7a32ac4206/api_server/routes/internal/internal_routes.py#L34 for an example of an API endpoint that uses the PATCH method. --- server.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/server.py b/server.py index e3bd056d9..ac4f42222 100644 --- a/server.py +++ b/server.py @@ -98,7 +98,7 @@ def create_cors_middleware(allowed_origin: str): response = await handler(request) response.headers['Access-Control-Allow-Origin'] = allowed_origin - response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, PUT, OPTIONS' + response.headers['Access-Control-Allow-Methods'] = 'POST, GET, DELETE, PUT, OPTIONS, PATCH' response.headers['Access-Control-Allow-Headers'] = 'Content-Type, Authorization' response.headers['Access-Control-Allow-Credentials'] = 'true' return response From 73f5649196f472d3719e2e7513e0a9d029cc3e38 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 3 Dec 2025 13:49:29 +1000 Subject: [PATCH 093/271] Implement temporal rolling VAE (Major VRAM reductions in Hunyuan and Kandinsky) (#10995) * hunyuan upsampler: rework imports Remove the transitive import of VideoConv3d and Resnet and takes these from actual implementation source. * model: remove unused give_pre_end According to git grep, this is not used now, and was not used in the initial commit that introduced it (see below). This semantic is difficult to implement temporal roll VAE for (and would defeat the purpose). Rather than implement the complex if, just delete the unused feature. (venv) rattus@rattus-box2:~/ComfyUI$ git log --oneline 220afe33 (HEAD) Initial commit. (venv) rattus@rattus-box2:~/ComfyUI$ git grep give_pre comfy/ldm/modules/diffusionmodules/model.py: resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, comfy/ldm/modules/diffusionmodules/model.py: self.give_pre_end = give_pre_end comfy/ldm/modules/diffusionmodules/model.py: if self.give_pre_end: (venv) rattus@rattus-box2:~/ComfyUI$ git co origin/master Previous HEAD position was 220afe33 Initial commit. HEAD is now at 9d8a8179 Enable async offloading by default on Nvidia. (#10953) (venv) rattus@rattus-box2:~/ComfyUI$ git grep give_pre comfy/ldm/modules/diffusionmodules/model.py: resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, comfy/ldm/modules/diffusionmodules/model.py: self.give_pre_end = give_pre_end comfy/ldm/modules/diffusionmodules/model.py: if self.give_pre_end: * move refiner VAE temporal roller to core Move the carrying conv op to the common VAE code and give it a better name. Roll the carry implementation logic for Resnet into the base class and scrap the Hunyuan specific subclass. * model: Add temporal roll to main VAE decoder If there are no attention layers, its a standard resnet and VideoConv3d is asked for, substitute in the temporal rolloing VAE algorithm. This reduces VAE usage by the temporal dimension (can be huge VRAM savings). * model: Add temporal roll to main VAE encoder If there are no attention layers, its a standard resnet and VideoConv3d is asked for, substitute in the temporal rolling VAE algorithm. This reduces VAE usage by the temporal dimension (can be huge VRAM savings). --- comfy/ldm/hunyuan_video/upsampler.py | 3 +- comfy/ldm/hunyuan_video/vae_refiner.py | 94 +++------ comfy/ldm/modules/diffusionmodules/model.py | 207 ++++++++++++++------ 3 files changed, 174 insertions(+), 130 deletions(-) diff --git a/comfy/ldm/hunyuan_video/upsampler.py b/comfy/ldm/hunyuan_video/upsampler.py index 9f5e91a59..85f515f67 100644 --- a/comfy/ldm/hunyuan_video/upsampler.py +++ b/comfy/ldm/hunyuan_video/upsampler.py @@ -1,7 +1,8 @@ import torch import torch.nn as nn import torch.nn.functional as F -from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm, ResnetBlock, VideoConv3d +from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d +from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm import model_management, model_patcher class SRResidualCausalBlock3D(nn.Module): diff --git a/comfy/ldm/hunyuan_video/vae_refiner.py b/comfy/ldm/hunyuan_video/vae_refiner.py index 9f750dcc4..ddf77cd0e 100644 --- a/comfy/ldm/hunyuan_video/vae_refiner.py +++ b/comfy/ldm/hunyuan_video/vae_refiner.py @@ -1,42 +1,12 @@ import torch import torch.nn as nn import torch.nn.functional as F -from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d, Normalize +from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, CarriedConv3d, Normalize, conv_carry_causal_3d, torch_cat_if_needed import comfy.ops import comfy.ldm.models.autoencoder import comfy.model_management ops = comfy.ops.disable_weight_init -class NoPadConv3d(nn.Module): - def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs): - super().__init__() - self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs) - - def forward(self, x): - return self.conv(x) - - -def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None): - - x = xl[0] - xl.clear() - - if conv_carry_out is not None: - to_push = x[:, :, -2:, :, :].clone() - conv_carry_out.append(to_push) - - if isinstance(op, NoPadConv3d): - if conv_carry_in is None: - x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate') - else: - carry_len = conv_carry_in[0].shape[2] - x = torch.cat([conv_carry_in.pop(0), x], dim=2) - x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate') - - out = op(x) - - return out - class RMS_norm(nn.Module): def __init__(self, dim): @@ -49,7 +19,7 @@ class RMS_norm(nn.Module): return F.normalize(x, dim=1) * self.scale * comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device) class DnSmpl(nn.Module): - def __init__(self, ic, oc, tds=True, refiner_vae=True, op=VideoConv3d): + def __init__(self, ic, oc, tds, refiner_vae, op): super().__init__() fct = 2 * 2 * 2 if tds else 1 * 2 * 2 assert oc % fct == 0 @@ -109,7 +79,7 @@ class DnSmpl(nn.Module): class UpSmpl(nn.Module): - def __init__(self, ic, oc, tus=True, refiner_vae=True, op=VideoConv3d): + def __init__(self, ic, oc, tus, refiner_vae, op): super().__init__() fct = 2 * 2 * 2 if tus else 1 * 2 * 2 self.conv = op(ic, oc * fct, kernel_size=3, stride=1, padding=1) @@ -163,23 +133,6 @@ class UpSmpl(nn.Module): return h + x -class HunyuanRefinerResnetBlock(ResnetBlock): - def __init__(self, in_channels, out_channels, conv_op=NoPadConv3d, norm_op=RMS_norm): - super().__init__(in_channels=in_channels, out_channels=out_channels, temb_channels=0, conv_op=conv_op, norm_op=norm_op) - - def forward(self, x, conv_carry_in=None, conv_carry_out=None): - h = x - h = [ self.swish(self.norm1(x)) ] - h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) - - h = [ self.dropout(self.swish(self.norm2(h))) ] - h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) - - if self.in_channels != self.out_channels: - x = self.nin_shortcut(x) - - return x+h - class Encoder(nn.Module): def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks, ffactor_spatial, ffactor_temporal, downsample_match_channel=True, refiner_vae=True, **_): @@ -191,7 +144,7 @@ class Encoder(nn.Module): self.refiner_vae = refiner_vae if self.refiner_vae: - conv_op = NoPadConv3d + conv_op = CarriedConv3d norm_op = RMS_norm else: conv_op = ops.Conv3d @@ -206,9 +159,10 @@ class Encoder(nn.Module): for i, tgt in enumerate(block_out_channels): stage = nn.Module() - stage.block = nn.ModuleList([HunyuanRefinerResnetBlock(in_channels=ch if j == 0 else tgt, - out_channels=tgt, - conv_op=conv_op, norm_op=norm_op) + stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt, + out_channels=tgt, + temb_channels=0, + conv_op=conv_op, norm_op=norm_op) for j in range(num_res_blocks)]) ch = tgt if i < depth: @@ -218,9 +172,9 @@ class Encoder(nn.Module): self.down.append(stage) self.mid = nn.Module() - self.mid.block_1 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) + self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op) - self.mid.block_2 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) + self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.norm_out = norm_op(ch) self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1) @@ -246,22 +200,20 @@ class Encoder(nn.Module): conv_carry_out = [] if i == len(x) - 1: conv_carry_out = None + x1 = [ x1 ] x1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out) for stage in self.down: for blk in stage.block: - x1 = blk(x1, conv_carry_in, conv_carry_out) + x1 = blk(x1, None, conv_carry_in, conv_carry_out) if hasattr(stage, 'downsample'): x1 = stage.downsample(x1, conv_carry_in, conv_carry_out) out.append(x1) conv_carry_in = conv_carry_out - if len(out) > 1: - out = torch.cat(out, dim=2) - else: - out = out[0] + out = torch_cat_if_needed(out, dim=2) x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(out))) del out @@ -288,7 +240,7 @@ class Decoder(nn.Module): self.refiner_vae = refiner_vae if self.refiner_vae: - conv_op = NoPadConv3d + conv_op = CarriedConv3d norm_op = RMS_norm else: conv_op = ops.Conv3d @@ -298,9 +250,9 @@ class Decoder(nn.Module): self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1) self.mid = nn.Module() - self.mid.block_1 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) + self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op) - self.mid.block_2 = HunyuanRefinerResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) + self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op) self.up = nn.ModuleList() depth = (ffactor_spatial >> 1).bit_length() @@ -308,9 +260,10 @@ class Decoder(nn.Module): for i, tgt in enumerate(block_out_channels): stage = nn.Module() - stage.block = nn.ModuleList([HunyuanRefinerResnetBlock(in_channels=ch if j == 0 else tgt, - out_channels=tgt, - conv_op=conv_op, norm_op=norm_op) + stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt, + out_channels=tgt, + temb_channels=0, + conv_op=conv_op, norm_op=norm_op) for j in range(num_res_blocks + 1)]) ch = tgt if i < depth: @@ -340,7 +293,7 @@ class Decoder(nn.Module): conv_carry_out = None for stage in self.up: for blk in stage.block: - x1 = blk(x1, conv_carry_in, conv_carry_out) + x1 = blk(x1, None, conv_carry_in, conv_carry_out) if hasattr(stage, 'upsample'): x1 = stage.upsample(x1, conv_carry_in, conv_carry_out) @@ -350,10 +303,7 @@ class Decoder(nn.Module): conv_carry_in = conv_carry_out del x - if len(out) > 1: - out = torch.cat(out, dim=2) - else: - out = out[0] + out = torch_cat_if_needed(out, dim=2) if not self.refiner_vae: if z.shape[-3] == 1: diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index de1e01cc8..681a55db5 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -13,6 +13,12 @@ if model_management.xformers_enabled_vae(): import xformers import xformers.ops +def torch_cat_if_needed(xl, dim): + if len(xl) > 1: + return torch.cat(xl, dim) + else: + return xl[0] + def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: @@ -43,6 +49,37 @@ def Normalize(in_channels, num_groups=32): return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) +class CarriedConv3d(nn.Module): + def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs): + super().__init__() + self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs) + + def forward(self, x): + return self.conv(x) + + +def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None): + + x = xl[0] + xl.clear() + + if isinstance(op, CarriedConv3d): + if conv_carry_in is None: + x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate') + else: + carry_len = conv_carry_in[0].shape[2] + x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate') + x = torch.cat([conv_carry_in.pop(0), x], dim=2) + + if conv_carry_out is not None: + to_push = x[:, :, -2:, :, :].clone() + conv_carry_out.append(to_push) + + out = op(x) + + return out + + class VideoConv3d(nn.Module): def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding_mode='replicate', padding=1, **kwargs): super().__init__() @@ -89,29 +126,24 @@ class Upsample(nn.Module): stride=1, padding=1) - def forward(self, x): + def forward(self, x, conv_carry_in=None, conv_carry_out=None): scale_factor = self.scale_factor if isinstance(scale_factor, (int, float)): scale_factor = (scale_factor,) * (x.ndim - 2) if x.ndim == 5 and scale_factor[0] > 1.0: - t = x.shape[2] - if t > 1: - a, b = x.split((1, t - 1), dim=2) - del x - b = interpolate_up(b, scale_factor) - else: - a = x - - a = interpolate_up(a.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2) - if t > 1: - x = torch.cat((a, b), dim=2) - else: - x = a + results = [] + if conv_carry_in is None: + first = x[:, :, :1, :, :] + results.append(interpolate_up(first.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2)) + x = x[:, :, 1:, :, :] + if x.shape[2] > 0: + results.append(interpolate_up(x, scale_factor)) + x = torch_cat_if_needed(results, dim=2) else: x = interpolate_up(x, scale_factor) if self.with_conv: - x = self.conv(x) + x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out) return x @@ -127,17 +159,20 @@ class Downsample(nn.Module): stride=stride, padding=0) - def forward(self, x): + def forward(self, x, conv_carry_in=None, conv_carry_out=None): if self.with_conv: - if x.ndim == 4: + if isinstance(self.conv, CarriedConv3d): + x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out) + elif x.ndim == 4: pad = (0, 1, 0, 1) mode = "constant" x = torch.nn.functional.pad(x, pad, mode=mode, value=0) + x = self.conv(x) elif x.ndim == 5: pad = (1, 1, 1, 1, 2, 0) mode = "replicate" x = torch.nn.functional.pad(x, pad, mode=mode) - x = self.conv(x) + x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x @@ -183,23 +218,23 @@ class ResnetBlock(nn.Module): stride=1, padding=0) - def forward(self, x, temb=None): + def forward(self, x, temb=None, conv_carry_in=None, conv_carry_out=None): h = x h = self.norm1(h) - h = self.swish(h) - h = self.conv1(h) + h = [ self.swish(h) ] + h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) if temb is not None: h = h + self.temb_proj(self.swish(temb))[:,:,None,None] h = self.norm2(h) h = self.swish(h) - h = self.dropout(h) - h = self.conv2(h) + h = [ self.dropout(h) ] + h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) if self.in_channels != self.out_channels: if self.use_conv_shortcut: - x = self.conv_shortcut(x) + x = conv_carry_causal_3d([x], self.conv_shortcut, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out) else: x = self.nin_shortcut(x) @@ -520,9 +555,14 @@ class Encoder(nn.Module): self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels + self.carried = False if conv3d: - conv_op = VideoConv3d + if not attn_resolutions: + conv_op = CarriedConv3d + self.carried = True + else: + conv_op = VideoConv3d mid_attn_conv_op = ops.Conv3d else: conv_op = ops.Conv2d @@ -535,6 +575,7 @@ class Encoder(nn.Module): stride=1, padding=1) + self.time_compress = 1 curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.in_ch_mult = in_ch_mult @@ -561,10 +602,15 @@ class Encoder(nn.Module): if time_compress is not None: if (self.num_resolutions - 1 - i_level) > math.log2(time_compress): stride = (1, 2, 2) + else: + self.time_compress *= 2 down.downsample = Downsample(block_in, resamp_with_conv, stride=stride, conv_op=conv_op) curr_res = curr_res // 2 self.down.append(down) + if time_compress is not None: + self.time_compress = time_compress + # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, @@ -590,15 +636,42 @@ class Encoder(nn.Module): def forward(self, x): # timestep embedding temb = None - # downsampling - h = self.conv_in(x) - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](h, temb) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - if i_level != self.num_resolutions-1: - h = self.down[i_level].downsample(h) + + if self.carried: + xl = [x[:, :, :1, :, :]] + if x.shape[2] > self.time_compress: + tc = self.time_compress + xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // tc) * tc, :, :], tc * 2, dim = 2) + x = xl + else: + x = [x] + out = [] + + conv_carry_in = None + + for i, x1 in enumerate(x): + conv_carry_out = [] + if i == len(x) - 1: + conv_carry_out = None + + # downsampling + x1 = [ x1 ] + h1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out) + + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h1 = self.down[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out) + if len(self.down[i_level].attn) > 0: + assert i == 0 #carried should not happen if attn exists + h1 = self.down[i_level].attn[i_block](h1) + if i_level != self.num_resolutions-1: + h1 = self.down[i_level].downsample(h1, conv_carry_in, conv_carry_out) + + out.append(h1) + conv_carry_in = conv_carry_out + + h = torch_cat_if_needed(out, dim=2) + del out # middle h = self.mid.block_1(h, temb) @@ -607,15 +680,15 @@ class Encoder(nn.Module): # end h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h) + h = [ nonlinearity(h) ] + h = conv_carry_causal_3d(h, self.conv_out) return h class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, - resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, + resolution, z_channels, tanh_out=False, use_linear_attn=False, conv_out_op=ops.Conv2d, resnet_op=ResnetBlock, attn_op=AttnBlock, @@ -629,12 +702,18 @@ class Decoder(nn.Module): self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels - self.give_pre_end = give_pre_end self.tanh_out = tanh_out + self.carried = False if conv3d: - conv_op = VideoConv3d - conv_out_op = VideoConv3d + if not attn_resolutions and resnet_op == ResnetBlock: + conv_op = CarriedConv3d + conv_out_op = CarriedConv3d + self.carried = True + else: + conv_op = VideoConv3d + conv_out_op = VideoConv3d + mid_attn_conv_op = ops.Conv3d else: conv_op = ops.Conv2d @@ -709,29 +788,43 @@ class Decoder(nn.Module): temb = None # z to block_in - h = self.conv_in(z) + h = conv_carry_causal_3d([z], self.conv_in) # middle h = self.mid.block_1(h, temb, **kwargs) h = self.mid.attn_1(h, **kwargs) h = self.mid.block_2(h, temb, **kwargs) + if self.carried: + h = torch.split(h, 2, dim=2) + else: + h = [ h ] + out = [] + + conv_carry_in = None + # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks+1): - h = self.up[i_level].block[i_block](h, temb, **kwargs) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h, **kwargs) - if i_level != 0: - h = self.up[i_level].upsample(h) + for i, h1 in enumerate(h): + conv_carry_out = [] + if i == len(h) - 1: + conv_carry_out = None + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h1 = self.up[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out, **kwargs) + if len(self.up[i_level].attn) > 0: + assert i == 0 #carried should not happen if attn exists + h1 = self.up[i_level].attn[i_block](h1, **kwargs) + if i_level != 0: + h1 = self.up[i_level].upsample(h1, conv_carry_in, conv_carry_out) - # end - if self.give_pre_end: - return h + h1 = self.norm_out(h1) + h1 = [ nonlinearity(h1) ] + h1 = conv_carry_causal_3d(h1, self.conv_out, conv_carry_in, conv_carry_out) + if self.tanh_out: + h1 = torch.tanh(h1) + out.append(h1) + conv_carry_in = conv_carry_out - h = self.norm_out(h) - h = nonlinearity(h) - h = self.conv_out(h, **kwargs) - if self.tanh_out: - h = torch.tanh(h) - return h + out = torch_cat_if_needed(out, dim=2) + + return out From c120eee5bacca643062657d2a7efad83c7d4d828 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Tue, 2 Dec 2025 21:17:13 -0800 Subject: [PATCH 094/271] Add MatchType, DynamicCombo, and Autogrow support to V3 Schema (#10832) * Added output_matchtypes to generated json for v3, initial backend support for MatchType, created nodes_logic.py and added SwitchNode * Fixed providing list of allowed_types * Add workaround in validation.py for V3 Combo outputs not working as Combo inputs * Make match type receive_type pass validation * Also add MatchType check to input_type in validation - will likely trigger when connecting to non-lazy stuff * Make sure this PR only has MatchType stuff * Initial work on DynamicCombo * Add get_dynamic function, not yet filled out correctly * Mark Switch node as Beta * Make sure other unfinished dynamic types are not accidentally used * Send DynamicCombo.Option inputs in the same format as normal v1 inputs * add dynamic combo test node * Support validation of inputs and outputs * Add missing input params to DynamicCombo.Input * Add get_all function to inputs for id validation purposes * Fix imports for v3 returning everything when doing io/ui/IO/UI instead of what is in __all__ of _io.py and _ui.py * Modifying behavior of get_dynamic in V3 + serialization so can be used in execution code * Fix v3 schema validation code after changes * Refactor hidden_values for v3 in execution.py to be more general v3_data, add helper functions for dynamic behavior, preparing for restructuring dynamic type into object (not finished yet) * Add nesting of inputs on DynamicCombo during execution * Work with latest frontend commits * Fix cringe arrows * frontend will no longer namespace dynamic inputs widgets so reflect that in code, refactor build_nested_inputs * Prepare Autogrow support for the love of the game * satisfy ruff * Create test nodes for Autogrow to collab with frontend development * Add nested combo to DCTestNode * Remove array support from build_nested_inputs, properly handle missing expected values * Make execution.validate_inputs properly validate required dynamic inputs, renamed dynamic_data to dynamic_paths for clarity * MatchType does not need any DynamicInput/Output features on backend; will increase compatibility with dynamic types * Probably need this for ruff check * Change MatchType to have template be the first and only required param; output id's do nothing right now, so no need * Fix merge regression with LatentUpscaleModel type not being put in __all__ for _io.py, fix invalid type hint for validate_inputs * Make Switch node inputs optional, disallow both inputs from being missing, and still work properly with lazy; when one input is missing, use the other no matter what the switch is set to * Satisfy ruff * Move MatchType code above the types that inherit from DynamicInput * Add DynamicSlot type, awaiting frontend support * Make curr_prefix creation happen in Autogrow, move curr_prefix in DynamicCombo to only be created if input exists in live_inputs * I was confused, fixing accidentally redundant curr_prefix addition in Autogrow * Make sure Autogrow inputs are force_input = True when WidgetInput, fix runtime validation by removing original input from expected inputs, fix min/max bounds, change test nodes slightly * Remove unnecessary id usage in Autogrow test node outputs * Commented out Switch node + test nodes * Remove commented out code from Autogrow * Make TemplatePrefix max more clear, allow max == 1 * Replace all dict[str] with dict[str, Any] * Renamed add_to_dict_live_inputs to expand_schema_for_dynamic * Fixed typo in DynamicSlot input code * note about live_inputs not being present soon in get_v1_info (internal function anyway) * For now, hide DynamicCombo and Autogrow from public interface * Removed comment --- comfy_api/latest/__init__.py | 4 +- comfy_api/latest/_io.py | 416 ++++++++++++++++++++++++++------- comfy_api/latest/_io_public.py | 1 + comfy_api/latest/_ui_public.py | 1 + comfy_api/v0_0_2/__init__.py | 6 +- comfy_execution/validation.py | 6 + comfy_extras/nodes_logic.py | 155 ++++++++++++ execution.py | 40 ++-- nodes.py | 1 + 9 files changed, 525 insertions(+), 105 deletions(-) create mode 100644 comfy_api/latest/_io_public.py create mode 100644 comfy_api/latest/_ui_public.py create mode 100644 comfy_extras/nodes_logic.py diff --git a/comfy_api/latest/__init__.py b/comfy_api/latest/__init__.py index 176ae36e0..0fa01d1e7 100644 --- a/comfy_api/latest/__init__.py +++ b/comfy_api/latest/__init__.py @@ -8,8 +8,8 @@ from comfy_api.internal.async_to_sync import create_sync_class from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL -from . import _io as io -from . import _ui as ui +from . import _io_public as io +from . import _ui_public as ui # from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401 from comfy_execution.utils import get_executing_context from comfy_execution.progress import get_progress_state, PreviewImageTuple diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 79c0722a9..257f07c42 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -4,6 +4,7 @@ import copy import inspect from abc import ABC, abstractmethod from collections import Counter +from collections.abc import Iterable from dataclasses import asdict, dataclass from enum import Enum from typing import Any, Callable, Literal, TypedDict, TypeVar, TYPE_CHECKING @@ -150,6 +151,9 @@ class _IO_V3: def __init__(self): pass + def validate(self): + pass + @property def io_type(self): return self.Parent.io_type @@ -182,6 +186,9 @@ class Input(_IO_V3): def get_io_type(self): return _StringIOType(self.io_type) + def get_all(self) -> list[Input]: + return [self] + class WidgetInput(Input): ''' Base class for a V3 Input with widget. @@ -814,13 +821,61 @@ class MultiType: else: return super().as_dict() +@comfytype(io_type="COMFY_MATCHTYPE_V3") +class MatchType(ComfyTypeIO): + class Template: + def __init__(self, template_id: str, allowed_types: _ComfyType | list[_ComfyType] = AnyType): + self.template_id = template_id + # account for syntactic sugar + if not isinstance(allowed_types, Iterable): + allowed_types = [allowed_types] + for t in allowed_types: + if not isinstance(t, type): + if not isinstance(t, _ComfyType): + raise ValueError(f"Allowed types must be a ComfyType or a list of ComfyTypes, got {t.__class__.__name__}") + else: + if not issubclass(t, _ComfyType): + raise ValueError(f"Allowed types must be a ComfyType or a list of ComfyTypes, got {t.__name__}") + self.allowed_types = allowed_types + + def as_dict(self): + return { + "template_id": self.template_id, + "allowed_types": ",".join([t.io_type for t in self.allowed_types]), + } + + class Input(Input): + def __init__(self, id: str, template: MatchType.Template, + display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + self.template = template + + def as_dict(self): + return super().as_dict() | prune_dict({ + "template": self.template.as_dict(), + }) + + class Output(Output): + def __init__(self, template: MatchType.Template, id: str=None, display_name: str=None, tooltip: str=None, + is_output_list=False): + super().__init__(id, display_name, tooltip, is_output_list) + self.template = template + + def as_dict(self): + return super().as_dict() | prune_dict({ + "template": self.template.as_dict(), + }) + class DynamicInput(Input, ABC): ''' Abstract class for dynamic input registration. ''' - @abstractmethod def get_dynamic(self) -> list[Input]: - ... + return [] + + def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): + pass + class DynamicOutput(Output, ABC): ''' @@ -830,99 +885,223 @@ class DynamicOutput(Output, ABC): is_output_list=False): super().__init__(id, display_name, tooltip, is_output_list) - @abstractmethod def get_dynamic(self) -> list[Output]: - ... + return [] @comfytype(io_type="COMFY_AUTOGROW_V3") -class AutogrowDynamic(ComfyTypeI): - Type = list[Any] - class Input(DynamicInput): - def __init__(self, id: str, template_input: Input, min: int=1, max: int=None, - display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) - self.template_input = template_input - if min is not None: - assert(min >= 1) - if max is not None: - assert(max >= 1) +class Autogrow(ComfyTypeI): + Type = dict[str, Any] + _MaxNames = 100 # NOTE: max 100 names for sanity + + class _AutogrowTemplate: + def __init__(self, input: Input): + # dynamic inputs are not allowed as the template input + assert(not isinstance(input, DynamicInput)) + self.input = copy.copy(input) + if isinstance(self.input, WidgetInput): + self.input.force_input = True + self.names: list[str] = [] + self.cached_inputs = {} + + def _create_input(self, input: Input, name: str): + new_input = copy.copy(self.input) + new_input.id = name + return new_input + + def _create_cached_inputs(self): + for name in self.names: + self.cached_inputs[name] = self._create_input(self.input, name) + + def get_all(self) -> list[Input]: + return list(self.cached_inputs.values()) + + def as_dict(self): + return prune_dict({ + "input": create_input_dict_v1([self.input]), + }) + + def validate(self): + self.input.validate() + + def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): + real_inputs = [] + for name, input in self.cached_inputs.items(): + if name in live_inputs: + real_inputs.append(input) + add_to_input_dict_v1(d, real_inputs, live_inputs, curr_prefix) + add_dynamic_id_mapping(d, real_inputs, curr_prefix) + + class TemplatePrefix(_AutogrowTemplate): + def __init__(self, input: Input, prefix: str, min: int=1, max: int=10): + super().__init__(input) + self.prefix = prefix + assert(min >= 0) + assert(max >= 1) + assert(max <= Autogrow._MaxNames) self.min = min self.max = max + self.names = [f"{self.prefix}{i}" for i in range(self.max)] + self._create_cached_inputs() + + def as_dict(self): + return super().as_dict() | prune_dict({ + "prefix": self.prefix, + "min": self.min, + "max": self.max, + }) + + class TemplateNames(_AutogrowTemplate): + def __init__(self, input: Input, names: list[str], min: int=1): + super().__init__(input) + self.names = names[:Autogrow._MaxNames] + assert(min >= 0) + self.min = min + self._create_cached_inputs() + + def as_dict(self): + return super().as_dict() | prune_dict({ + "names": self.names, + "min": self.min, + }) + + class Input(DynamicInput): + def __init__(self, id: str, template: Autogrow.TemplatePrefix | Autogrow.TemplateNames, + display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + self.template = template + + def as_dict(self): + return super().as_dict() | prune_dict({ + "template": self.template.as_dict(), + }) def get_dynamic(self) -> list[Input]: - curr_count = 1 - new_inputs = [] - for i in range(self.min): - new_input = copy.copy(self.template_input) - new_input.id = f"{new_input.id}{curr_count}_${self.id}_ag$" - if new_input.display_name is not None: - new_input.display_name = f"{new_input.display_name}{curr_count}" - new_input.optional = self.optional or new_input.optional - if isinstance(self.template_input, WidgetInput): - new_input.force_input = True - new_inputs.append(new_input) - curr_count += 1 - # pretend to expand up to max - for i in range(curr_count-1, self.max): - new_input = copy.copy(self.template_input) - new_input.id = f"{new_input.id}{curr_count}_${self.id}_ag$" - if new_input.display_name is not None: - new_input.display_name = f"{new_input.display_name}{curr_count}" - new_input.optional = True - if isinstance(self.template_input, WidgetInput): - new_input.force_input = True - new_inputs.append(new_input) - curr_count += 1 - return new_inputs + return self.template.get_all() -@comfytype(io_type="COMFY_COMBODYNAMIC_V3") -class ComboDynamic(ComfyTypeI): - class Input(DynamicInput): - def __init__(self, id: str): - pass + def get_all(self) -> list[Input]: + return [self] + self.template.get_all() -@comfytype(io_type="COMFY_MATCHTYPE_V3") -class MatchType(ComfyTypeIO): - class Template: - def __init__(self, template_id: str, allowed_types: _ComfyType | list[_ComfyType]): - self.template_id = template_id - self.allowed_types = [allowed_types] if isinstance(allowed_types, _ComfyType) else allowed_types + def validate(self): + self.template.validate() + + def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): + curr_prefix = f"{curr_prefix}{self.id}." + # need to remove self from expected inputs dictionary; replaced by template inputs in frontend + for inner_dict in d.values(): + if self.id in inner_dict: + del inner_dict[self.id] + self.template.expand_schema_for_dynamic(d, live_inputs, curr_prefix) + +@comfytype(io_type="COMFY_DYNAMICCOMBO_V3") +class DynamicCombo(ComfyTypeI): + Type = dict[str, Any] + + class Option: + def __init__(self, key: str, inputs: list[Input]): + self.key = key + self.inputs = inputs def as_dict(self): return { - "template_id": self.template_id, - "allowed_types": "".join(t.io_type for t in self.allowed_types), + "key": self.key, + "inputs": create_input_dict_v1(self.inputs), } class Input(DynamicInput): - def __init__(self, id: str, template: MatchType.Template, + def __init__(self, id: str, options: list[DynamicCombo.Option], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) - self.template = template + self.options = options + + def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): + # check if dynamic input's id is in live_inputs + if self.id in live_inputs: + curr_prefix = f"{curr_prefix}{self.id}." + key = live_inputs[self.id] + selected_option = None + for option in self.options: + if option.key == key: + selected_option = option + break + if selected_option is not None: + add_to_input_dict_v1(d, selected_option.inputs, live_inputs, curr_prefix) + add_dynamic_id_mapping(d, selected_option.inputs, curr_prefix, self) def get_dynamic(self) -> list[Input]: - return [self] + return [input for option in self.options for input in option.inputs] + + def get_all(self) -> list[Input]: + return [self] + [input for option in self.options for input in option.inputs] def as_dict(self): return super().as_dict() | prune_dict({ - "template": self.template.as_dict(), + "options": [o.as_dict() for o in self.options], }) - class Output(DynamicOutput): - def __init__(self, id: str, template: MatchType.Template, display_name: str=None, tooltip: str=None, - is_output_list=False): - super().__init__(id, display_name, tooltip, is_output_list) - self.template = template + def validate(self): + # make sure all nested inputs are validated + for option in self.options: + for input in option.inputs: + input.validate() - def get_dynamic(self) -> list[Output]: - return [self] +@comfytype(io_type="COMFY_DYNAMICSLOT_V3") +class DynamicSlot(ComfyTypeI): + Type = dict[str, Any] + + class Input(DynamicInput): + def __init__(self, slot: Input, inputs: list[Input], + display_name: str=None, tooltip: str=None, lazy: bool=None, extra_dict=None): + assert(not isinstance(slot, DynamicInput)) + self.slot = copy.copy(slot) + self.slot.display_name = slot.display_name if slot.display_name is not None else display_name + optional = True + self.slot.tooltip = slot.tooltip if slot.tooltip is not None else tooltip + self.slot.lazy = slot.lazy if slot.lazy is not None else lazy + self.slot.extra_dict = slot.extra_dict if slot.extra_dict is not None else extra_dict + super().__init__(slot.id, self.slot.display_name, optional, self.slot.tooltip, self.slot.lazy, self.slot.extra_dict) + self.inputs = inputs + self.force_input = None + # force widget inputs to have no widgets, otherwise this would be awkward + if isinstance(self.slot, WidgetInput): + self.force_input = True + self.slot.force_input = True + + def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): + if self.id in live_inputs: + curr_prefix = f"{curr_prefix}{self.id}." + add_to_input_dict_v1(d, self.inputs, live_inputs, curr_prefix) + add_dynamic_id_mapping(d, [self.slot] + self.inputs, curr_prefix) + + def get_dynamic(self) -> list[Input]: + return [self.slot] + self.inputs + + def get_all(self) -> list[Input]: + return [self] + [self.slot] + self.inputs def as_dict(self): return super().as_dict() | prune_dict({ - "template": self.template.as_dict(), + "slotType": str(self.slot.get_io_type()), + "inputs": create_input_dict_v1(self.inputs), + "forceInput": self.force_input, }) + def validate(self): + self.slot.validate() + for input in self.inputs: + input.validate() + +def add_dynamic_id_mapping(d: dict[str, Any], inputs: list[Input], curr_prefix: str, self: DynamicInput=None): + dynamic = d.setdefault("dynamic_paths", {}) + if self is not None: + dynamic[self.id] = f"{curr_prefix}{self.id}" + for i in inputs: + if not isinstance(i, DynamicInput): + dynamic[f"{i.id}"] = f"{curr_prefix}{i.id}" + +class V3Data(TypedDict): + hidden_inputs: dict[str, Any] + dynamic_paths: dict[str, Any] class HiddenHolder: def __init__(self, unique_id: str, prompt: Any, @@ -984,6 +1163,7 @@ class NodeInfoV1: output_is_list: list[bool]=None output_name: list[str]=None output_tooltips: list[str]=None + output_matchtypes: list[str]=None name: str=None display_name: str=None description: str=None @@ -1061,7 +1241,11 @@ class Schema: '''Validate the schema: - verify ids on inputs and outputs are unique - both internally and in relation to each other ''' - input_ids = [i.id for i in self.inputs] if self.inputs is not None else [] + nested_inputs: list[Input] = [] + if self.inputs is not None: + for input in self.inputs: + nested_inputs.extend(input.get_all()) + input_ids = [i.id for i in nested_inputs] if nested_inputs is not None else [] output_ids = [o.id for o in self.outputs] if self.outputs is not None else [] input_set = set(input_ids) output_set = set(output_ids) @@ -1077,6 +1261,13 @@ class Schema: issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.") if len(issues) > 0: raise ValueError("\n".join(issues)) + # validate inputs and outputs + if self.inputs is not None: + for input in self.inputs: + input.validate() + if self.outputs is not None: + for output in self.outputs: + output.validate() def finalize(self): """Add hidden based on selected schema options, and give outputs without ids default ids.""" @@ -1102,19 +1293,10 @@ class Schema: if output.id is None: output.id = f"_{i}_{output.io_type}_" - def get_v1_info(self, cls) -> NodeInfoV1: + def get_v1_info(self, cls, live_inputs: dict[str, Any]=None) -> NodeInfoV1: + # NOTE: live_inputs will not be used anymore very soon and this will be done another way # get V1 inputs - input = { - "required": {} - } - if self.inputs: - for i in self.inputs: - if isinstance(i, DynamicInput): - dynamic_inputs = i.get_dynamic() - for d in dynamic_inputs: - add_to_dict_v1(d, input) - else: - add_to_dict_v1(i, input) + input = create_input_dict_v1(self.inputs, live_inputs) if self.hidden: for hidden in self.hidden: input.setdefault("hidden", {})[hidden.name] = (hidden.value,) @@ -1123,12 +1305,24 @@ class Schema: output_is_list = [] output_name = [] output_tooltips = [] + output_matchtypes = [] + any_matchtypes = False if self.outputs: for o in self.outputs: output.append(o.io_type) output_is_list.append(o.is_output_list) output_name.append(o.display_name if o.display_name else o.io_type) output_tooltips.append(o.tooltip if o.tooltip else None) + # special handling for MatchType + if isinstance(o, MatchType.Output): + output_matchtypes.append(o.template.template_id) + any_matchtypes = True + else: + output_matchtypes.append(None) + + # clear out lists that are all None + if not any_matchtypes: + output_matchtypes = None info = NodeInfoV1( input=input, @@ -1137,6 +1331,7 @@ class Schema: output_is_list=output_is_list, output_name=output_name, output_tooltips=output_tooltips, + output_matchtypes=output_matchtypes, name=self.node_id, display_name=self.display_name, category=self.category, @@ -1182,16 +1377,57 @@ class Schema: return info -def add_to_dict_v1(i: Input, input: dict): +def create_input_dict_v1(inputs: list[Input], live_inputs: dict[str, Any]=None) -> dict: + input = { + "required": {} + } + add_to_input_dict_v1(input, inputs, live_inputs) + return input + +def add_to_input_dict_v1(d: dict[str, Any], inputs: list[Input], live_inputs: dict[str, Any]=None, curr_prefix=''): + for i in inputs: + if isinstance(i, DynamicInput): + add_to_dict_v1(i, d) + if live_inputs is not None: + i.expand_schema_for_dynamic(d, live_inputs, curr_prefix) + else: + add_to_dict_v1(i, d) + +def add_to_dict_v1(i: Input, d: dict, dynamic_dict: dict=None): key = "optional" if i.optional else "required" as_dict = i.as_dict() # for v1, we don't want to include the optional key as_dict.pop("optional", None) - input.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict) + if dynamic_dict is None: + value = (i.get_io_type(), as_dict) + else: + value = (i.get_io_type(), as_dict, dynamic_dict) + d.setdefault(key, {})[i.id] = value def add_to_dict_v3(io: Input | Output, d: dict): d[io.id] = (io.get_io_type(), io.as_dict()) +def build_nested_inputs(values: dict[str, Any], v3_data: V3Data): + paths = v3_data.get("dynamic_paths", None) + if paths is None: + return values + values = values.copy() + result = {} + + for key, path in paths.items(): + parts = path.split(".") + current = result + + for i, p in enumerate(parts): + is_last = (i == len(parts) - 1) + + if is_last: + current[p] = values.pop(key, None) + else: + current = current.setdefault(p, {}) + + values.update(result) + return values class _ComfyNodeBaseInternal(_ComfyNodeInternal): @@ -1311,12 +1547,12 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): @final @classmethod - def PREPARE_CLASS_CLONE(cls, hidden_inputs: dict) -> type[ComfyNode]: + def PREPARE_CLASS_CLONE(cls, v3_data: V3Data) -> type[ComfyNode]: """Creates clone of real node class to prevent monkey-patching.""" c_type: type[ComfyNode] = cls if is_class(cls) else type(cls) type_clone: type[ComfyNode] = shallow_clone_class(c_type) # set hidden - type_clone.hidden = HiddenHolder.from_dict(hidden_inputs) + type_clone.hidden = HiddenHolder.from_dict(v3_data["hidden_inputs"]) return type_clone @final @@ -1433,14 +1669,18 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): @final @classmethod - def INPUT_TYPES(cls, include_hidden=True, return_schema=False) -> dict[str, dict] | tuple[dict[str, dict], Schema]: + def INPUT_TYPES(cls, include_hidden=True, return_schema=False, live_inputs=None) -> dict[str, dict] | tuple[dict[str, dict], Schema, V3Data]: schema = cls.FINALIZE_SCHEMA() - info = schema.get_v1_info(cls) + info = schema.get_v1_info(cls, live_inputs) input = info.input if not include_hidden: input.pop("hidden", None) if return_schema: - return input, schema + v3_data: V3Data = {} + dynamic = input.pop("dynamic_paths", None) + if dynamic is not None: + v3_data["dynamic_paths"] = dynamic + return input, schema, v3_data return input @final @@ -1513,7 +1753,7 @@ class ComfyNode(_ComfyNodeBaseInternal): raise NotImplementedError @classmethod - def validate_inputs(cls, **kwargs) -> bool: + def validate_inputs(cls, **kwargs) -> bool | str: """Optionally, define this function to validate inputs; equivalent to V1's VALIDATE_INPUTS.""" raise NotImplementedError @@ -1628,6 +1868,7 @@ __all__ = [ "StyleModel", "Gligen", "UpscaleModel", + "LatentUpscaleModel", "Audio", "Video", "SVG", @@ -1651,6 +1892,10 @@ __all__ = [ "SEGS", "AnyType", "MultiType", + # Dynamic Types + "MatchType", + # "DynamicCombo", + # "Autogrow", # Other classes "HiddenHolder", "Hidden", @@ -1661,4 +1906,5 @@ __all__ = [ "NodeOutput", "add_to_dict_v1", "add_to_dict_v3", + "V3Data", ] diff --git a/comfy_api/latest/_io_public.py b/comfy_api/latest/_io_public.py new file mode 100644 index 000000000..43c7680f3 --- /dev/null +++ b/comfy_api/latest/_io_public.py @@ -0,0 +1 @@ +from ._io import * # noqa: F403 diff --git a/comfy_api/latest/_ui_public.py b/comfy_api/latest/_ui_public.py new file mode 100644 index 000000000..85b11d78b --- /dev/null +++ b/comfy_api/latest/_ui_public.py @@ -0,0 +1 @@ +from ._ui import * # noqa: F403 diff --git a/comfy_api/v0_0_2/__init__.py b/comfy_api/v0_0_2/__init__.py index de0f95001..c4fa1d971 100644 --- a/comfy_api/v0_0_2/__init__.py +++ b/comfy_api/v0_0_2/__init__.py @@ -6,7 +6,7 @@ from comfy_api.latest import ( ) from typing import Type, TYPE_CHECKING from comfy_api.internal.async_to_sync import create_sync_class -from comfy_api.latest import io, ui, ComfyExtension #noqa: F401 +from comfy_api.latest import io, ui, IO, UI, ComfyExtension #noqa: F401 class ComfyAPIAdapter_v0_0_2(ComfyAPI_latest): @@ -42,4 +42,8 @@ __all__ = [ "InputImpl", "Types", "ComfyExtension", + "io", + "IO", + "ui", + "UI", ] diff --git a/comfy_execution/validation.py b/comfy_execution/validation.py index cec105fc9..24c0b4ed7 100644 --- a/comfy_execution/validation.py +++ b/comfy_execution/validation.py @@ -1,4 +1,5 @@ from __future__ import annotations +from comfy_api.latest import IO def validate_node_input( @@ -23,6 +24,11 @@ def validate_node_input( if not received_type != input_type: return True + # If the received type or input_type is a MatchType, we can return True immediately; + # validation for this is handled by the frontend + if received_type == IO.MatchType.io_type or input_type == IO.MatchType.io_type: + return True + # Not equal, and not strings if not isinstance(received_type, str) or not isinstance(input_type, str): return False diff --git a/comfy_extras/nodes_logic.py b/comfy_extras/nodes_logic.py new file mode 100644 index 000000000..95a6ba788 --- /dev/null +++ b/comfy_extras/nodes_logic.py @@ -0,0 +1,155 @@ +from typing import TypedDict +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +from comfy_api.latest import _io + + + +class SwitchNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = io.MatchType.Template("switch") + return io.Schema( + node_id="ComfySwitchNode", + display_name="Switch", + category="logic", + is_experimental=True, + inputs=[ + io.Boolean.Input("switch"), + io.MatchType.Input("on_false", template=template, lazy=True, optional=True), + io.MatchType.Input("on_true", template=template, lazy=True, optional=True), + ], + outputs=[ + io.MatchType.Output(template=template, display_name="output"), + ], + ) + + @classmethod + def check_lazy_status(cls, switch, on_false=..., on_true=...): + # We use ... instead of None, as None is passed for connected-but-unevaluated inputs. + # This trick allows us to ignore the value of the switch and still be able to run execute(). + + # One of the inputs may be missing, in which case we need to evaluate the other input + if on_false is ...: + return ["on_true"] + if on_true is ...: + return ["on_false"] + # Normal lazy switch operation + if switch and on_true is None: + return ["on_true"] + if not switch and on_false is None: + return ["on_false"] + + @classmethod + def validate_inputs(cls, switch, on_false=..., on_true=...): + # This check happens before check_lazy_status(), so we can eliminate the case where + # both inputs are missing. + if on_false is ... and on_true is ...: + return "At least one of on_false or on_true must be connected to Switch node" + return True + + @classmethod + def execute(cls, switch, on_true=..., on_false=...) -> io.NodeOutput: + if on_true is ...: + return io.NodeOutput(on_false) + if on_false is ...: + return io.NodeOutput(on_true) + return io.NodeOutput(on_true if switch else on_false) + + +class DCTestNode(io.ComfyNode): + class DCValues(TypedDict): + combo: str + string: str + integer: int + image: io.Image.Type + subcombo: dict[str] + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="DCTestNode", + display_name="DCTest", + category="logic", + is_output_node=True, + inputs=[_io.DynamicCombo.Input("combo", options=[ + _io.DynamicCombo.Option("option1", [io.String.Input("string")]), + _io.DynamicCombo.Option("option2", [io.Int.Input("integer")]), + _io.DynamicCombo.Option("option3", [io.Image.Input("image")]), + _io.DynamicCombo.Option("option4", [ + _io.DynamicCombo.Input("subcombo", options=[ + _io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]), + _io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]), + ]) + ])] + )], + outputs=[io.AnyType.Output()], + ) + + @classmethod + def execute(cls, combo: DCValues) -> io.NodeOutput: + combo_val = combo["combo"] + if combo_val == "option1": + return io.NodeOutput(combo["string"]) + elif combo_val == "option2": + return io.NodeOutput(combo["integer"]) + elif combo_val == "option3": + return io.NodeOutput(combo["image"]) + elif combo_val == "option4": + return io.NodeOutput(f"{combo['subcombo']}") + else: + raise ValueError(f"Invalid combo: {combo_val}") + + +class AutogrowNamesTestNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = _io.Autogrow.TemplateNames(input=io.Float.Input("float"), names=["a", "b", "c"]) + return io.Schema( + node_id="AutogrowNamesTestNode", + display_name="AutogrowNamesTest", + category="logic", + inputs=[ + _io.Autogrow.Input("autogrow", template=template) + ], + outputs=[io.String.Output()], + ) + + @classmethod + def execute(cls, autogrow: _io.Autogrow.Type) -> io.NodeOutput: + vals = list(autogrow.values()) + combined = ",".join([str(x) for x in vals]) + return io.NodeOutput(combined) + +class AutogrowPrefixTestNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = _io.Autogrow.TemplatePrefix(input=io.Float.Input("float"), prefix="float", min=1, max=10) + return io.Schema( + node_id="AutogrowPrefixTestNode", + display_name="AutogrowPrefixTest", + category="logic", + inputs=[ + _io.Autogrow.Input("autogrow", template=template) + ], + outputs=[io.String.Output()], + ) + + @classmethod + def execute(cls, autogrow: _io.Autogrow.Type) -> io.NodeOutput: + vals = list(autogrow.values()) + combined = ",".join([str(x) for x in vals]) + return io.NodeOutput(combined) + +class LogicExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + # SwitchNode, + # DCTestNode, + # AutogrowNamesTestNode, + # AutogrowPrefixTestNode, + ] + +async def comfy_entrypoint() -> LogicExtension: + return LogicExtension() diff --git a/execution.py b/execution.py index 17c77beab..c2186ac98 100644 --- a/execution.py +++ b/execution.py @@ -34,7 +34,7 @@ from comfy_execution.validation import validate_node_input from comfy_execution.progress import get_progress_state, reset_progress_state, add_progress_handler, WebUIProgressHandler from comfy_execution.utils import CurrentNodeContext from comfy_api.internal import _ComfyNodeInternal, _NodeOutputInternal, first_real_override, is_class, make_locked_method_func -from comfy_api.latest import io +from comfy_api.latest import io, _io class ExecutionResult(Enum): @@ -76,7 +76,7 @@ class IsChangedCache: return self.is_changed[node_id] # Intentionally do not use cached outputs here. We only want constants in IS_CHANGED - input_data_all, _, hidden_inputs = get_input_data(node["inputs"], class_def, node_id, None) + input_data_all, _, v3_data = get_input_data(node["inputs"], class_def, node_id, None) try: is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name) is_changed = await resolve_map_node_over_list_results(is_changed) @@ -146,8 +146,9 @@ SENSITIVE_EXTRA_DATA_KEYS = ("auth_token_comfy_org", "api_key_comfy_org") def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=None, extra_data={}): is_v3 = issubclass(class_def, _ComfyNodeInternal) + v3_data: io.V3Data = {} if is_v3: - valid_inputs, schema = class_def.INPUT_TYPES(include_hidden=False, return_schema=True) + valid_inputs, schema, v3_data = class_def.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) else: valid_inputs = class_def.INPUT_TYPES() input_data_all = {} @@ -207,7 +208,8 @@ def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt= input_data_all[x] = [extra_data.get("auth_token_comfy_org", None)] if h[x] == "API_KEY_COMFY_ORG": input_data_all[x] = [extra_data.get("api_key_comfy_org", None)] - return input_data_all, missing_keys, hidden_inputs_v3 + v3_data["hidden_inputs"] = hidden_inputs_v3 + return input_data_all, missing_keys, v3_data map_node_over_list = None #Don't hook this please @@ -223,7 +225,7 @@ async def resolve_map_node_over_list_results(results): raise exc return [x.result() if isinstance(x, asyncio.Task) else x for x in results] -async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None, hidden_inputs=None): +async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, func, allow_interrupt=False, execution_block_cb=None, pre_execute_cb=None, v3_data=None): # check if node wants the lists input_is_list = getattr(obj, "INPUT_IS_LIST", False) @@ -259,13 +261,16 @@ async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, f if is_class(obj): type_obj = obj obj.VALIDATE_CLASS() - class_clone = obj.PREPARE_CLASS_CLONE(hidden_inputs) + class_clone = obj.PREPARE_CLASS_CLONE(v3_data) # otherwise, use class instance to populate/reuse some fields else: type_obj = type(obj) type_obj.VALIDATE_CLASS() - class_clone = type_obj.PREPARE_CLASS_CLONE(hidden_inputs) + class_clone = type_obj.PREPARE_CLASS_CLONE(v3_data) f = make_locked_method_func(type_obj, func, class_clone) + # in case of dynamic inputs, restructure inputs to expected nested dict + if v3_data is not None: + inputs = _io.build_nested_inputs(inputs, v3_data) # V1 else: f = getattr(obj, func) @@ -320,8 +325,8 @@ def merge_result_data(results, obj): output.append([o[i] for o in results]) return output -async def get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=None, pre_execute_cb=None, hidden_inputs=None): - return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) +async def get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=None, pre_execute_cb=None, v3_data=None): + return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data) has_pending_task = any(isinstance(r, asyncio.Task) and not r.done() for r in return_values) if has_pending_task: return return_values, {}, False, has_pending_task @@ -460,7 +465,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, has_subgraph = False else: get_progress_state().start_progress(unique_id) - input_data_all, missing_keys, hidden_inputs = get_input_data(inputs, class_def, unique_id, execution_list, dynprompt, extra_data) + input_data_all, missing_keys, v3_data = get_input_data(inputs, class_def, unique_id, execution_list, dynprompt, extra_data) if server.client_id is not None: server.last_node_id = display_node_id server.send_sync("executing", { "node": unique_id, "display_node": display_node_id, "prompt_id": prompt_id }, server.client_id) @@ -475,7 +480,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, else: lazy_status_present = getattr(obj, "check_lazy_status", None) is not None if lazy_status_present: - required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, hidden_inputs=hidden_inputs) + required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data) required_inputs = await resolve_map_node_over_list_results(required_inputs) required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], [])) required_inputs = [x for x in required_inputs if isinstance(x,str) and ( @@ -507,7 +512,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, def pre_execute_cb(call_index): # TODO - How to handle this with async functions without contextvars (which requires Python 3.12)? GraphBuilder.set_default_prefix(unique_id, call_index, 0) - output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, hidden_inputs=hidden_inputs) + output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data) if has_pending_tasks: pending_async_nodes[unique_id] = output_data unblock = execution_list.add_external_block(unique_id) @@ -745,18 +750,17 @@ async def validate_inputs(prompt_id, prompt, item, validated): class_type = prompt[unique_id]['class_type'] obj_class = nodes.NODE_CLASS_MAPPINGS[class_type] - class_inputs = obj_class.INPUT_TYPES() - valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{}))) - errors = [] valid = True validate_function_inputs = [] validate_has_kwargs = False if issubclass(obj_class, _ComfyNodeInternal): + class_inputs, _, _ = obj_class.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) validate_function_name = "validate_inputs" validate_function = first_real_override(obj_class, validate_function_name) else: + class_inputs = obj_class.INPUT_TYPES() validate_function_name = "VALIDATE_INPUTS" validate_function = getattr(obj_class, validate_function_name, None) if validate_function is not None: @@ -765,6 +769,8 @@ async def validate_inputs(prompt_id, prompt, item, validated): validate_has_kwargs = argspec.varkw is not None received_types = {} + valid_inputs = set(class_inputs.get('required',{})).union(set(class_inputs.get('optional',{}))) + for x in valid_inputs: input_type, input_category, extra_info = get_input_info(obj_class, x, class_inputs) assert extra_info is not None @@ -935,7 +941,7 @@ async def validate_inputs(prompt_id, prompt, item, validated): continue if len(validate_function_inputs) > 0 or validate_has_kwargs: - input_data_all, _, hidden_inputs = get_input_data(inputs, obj_class, unique_id) + input_data_all, _, v3_data = get_input_data(inputs, obj_class, unique_id) input_filtered = {} for x in input_data_all: if x in validate_function_inputs or validate_has_kwargs: @@ -943,7 +949,7 @@ async def validate_inputs(prompt_id, prompt, item, validated): if 'input_types' in validate_function_inputs: input_filtered['input_types'] = [received_types] - ret = await _async_map_node_over_list(prompt_id, unique_id, obj_class, input_filtered, validate_function_name, hidden_inputs=hidden_inputs) + ret = await _async_map_node_over_list(prompt_id, unique_id, obj_class, input_filtered, validate_function_name, v3_data=v3_data) ret = await resolve_map_node_over_list_results(ret) for x in input_filtered: for i, r in enumerate(ret): diff --git a/nodes.py b/nodes.py index 4c910a34b..356aa63df 100644 --- a/nodes.py +++ b/nodes.py @@ -2355,6 +2355,7 @@ async def init_builtin_extra_nodes(): "nodes_easycache.py", "nodes_audio_encoder.py", "nodes_rope.py", + "nodes_logic.py", "nodes_nop.py", ] From 861817d22d2659099811b56005c9eaea18d64c73 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 2 Dec 2025 21:47:51 -0800 Subject: [PATCH 095/271] Fix issue with portable updater. (#11070) This should fix the problem with the portable updater not working with portables created from a separate branch on the repo. This does not affect any current portables who were all created on the master branch. --- .ci/update_windows/update.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/.ci/update_windows/update.py b/.ci/update_windows/update.py index 51a263203..59ece5130 100755 --- a/.ci/update_windows/update.py +++ b/.ci/update_windows/update.py @@ -66,8 +66,10 @@ if branch is None: try: ref = repo.lookup_reference('refs/remotes/origin/master') except: - print("pulling.") # noqa: T201 - pull(repo) + print("fetching.") # noqa: T201 + for remote in repo.remotes: + if remote.name == "origin": + remote.fetch() ref = repo.lookup_reference('refs/remotes/origin/master') repo.checkout(ref) branch = repo.lookup_branch('master') @@ -149,3 +151,4 @@ try: shutil.copy(stable_update_script, stable_update_script_to) except: pass + From 519c9411653df99761053c30e101816e0ca3c24b Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Wed, 3 Dec 2025 17:28:45 +1000 Subject: [PATCH 096/271] Prs/lora reservations (reduce massive Lora reservations especially on Flux2) (#11069) * mp: only count the offload cost of math once This was previously bundling the combined weight storage and computation cost * ops: put all post async transfer compute on the main stream Some models have massive weights that need either complex dequantization or lora patching. Don't do these patchings on the offload stream, instead do them on the main stream to syncrhonize the potentially large vram spikes for these compute processes. This avoids having to assume a worst case scenario of multiple offload streams all spiking VRAM is parallel with whatever the main stream is doing. --- comfy/model_patcher.py | 4 ++-- comfy/ops.py | 39 ++++++++++++++++++++++----------------- 2 files changed, 24 insertions(+), 19 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 3eac77275..df2d8e827 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -704,7 +704,7 @@ class ModelPatcher: lowvram_weight = False - potential_offload = max(offload_buffer, module_offload_mem * (comfy.model_management.NUM_STREAMS + 1)) + potential_offload = max(offload_buffer, module_offload_mem + (comfy.model_management.NUM_STREAMS * module_mem)) lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory weight_key = "{}.weight".format(n) @@ -883,7 +883,7 @@ class ModelPatcher: break module_offload_mem, module_mem, n, m, params = unload - potential_offload = (comfy.model_management.NUM_STREAMS + 1) * module_offload_mem + potential_offload = module_offload_mem + (comfy.model_management.NUM_STREAMS * module_mem) lowvram_possible = hasattr(m, "comfy_cast_weights") if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True: diff --git a/comfy/ops.py b/comfy/ops.py index 61a2f0754..eae434e68 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -111,22 +111,24 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of if s.bias is not None: bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream) - if bias_has_function: - with wf_context: - for f in s.bias_function: - bias = f(bias) + comfy.model_management.sync_stream(device, offload_stream) + + bias_a = bias + weight_a = weight + + if s.bias is not None: + for f in s.bias_function: + bias = f(bias) if weight_has_function or weight.dtype != dtype: - with wf_context: - weight = weight.to(dtype=dtype) - if isinstance(weight, QuantizedTensor): - weight = weight.dequantize() - for f in s.weight_function: - weight = f(weight) + weight = weight.to(dtype=dtype) + if isinstance(weight, QuantizedTensor): + weight = weight.dequantize() + for f in s.weight_function: + weight = f(weight) - comfy.model_management.sync_stream(device, offload_stream) if offloadable: - return weight, bias, offload_stream + return weight, bias, (offload_stream, weight_a, bias_a) else: #Legacy function signature return weight, bias @@ -135,13 +137,16 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of def uncast_bias_weight(s, weight, bias, offload_stream): if offload_stream is None: return - if weight is not None: - device = weight.device + os, weight_a, bias_a = offload_stream + if os is None: + return + if weight_a is not None: + device = weight_a.device else: - if bias is None: + if bias_a is None: return - device = bias.device - offload_stream.wait_stream(comfy.model_management.current_stream(device)) + device = bias_a.device + os.wait_stream(comfy.model_management.current_stream(device)) class CastWeightBiasOp: From 19f2192d69d13445131b72ad1d87167f59b66fc4 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 3 Dec 2025 18:37:35 +0200 Subject: [PATCH 097/271] fix(V3-Schema): use empty list defaults for Schema.inputs/outputs/hidden to avoid None issues (#11083) --- comfy_api/latest/_io.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 257f07c42..866c3e0eb 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -5,7 +5,7 @@ import inspect from abc import ABC, abstractmethod from collections import Counter from collections.abc import Iterable -from dataclasses import asdict, dataclass +from dataclasses import asdict, dataclass, field from enum import Enum from typing import Any, Callable, Literal, TypedDict, TypeVar, TYPE_CHECKING from typing_extensions import NotRequired, final @@ -1199,9 +1199,9 @@ class Schema: """Display name of node.""" category: str = "sd" """The category of the node, as per the "Add Node" menu.""" - inputs: list[Input]=None - outputs: list[Output]=None - hidden: list[Hidden]=None + inputs: list[Input] = field(default_factory=list) + outputs: list[Output] = field(default_factory=list) + hidden: list[Hidden] = field(default_factory=list) description: str="" """Node description, shown as a tooltip when hovering over the node.""" is_input_list: bool = False From 87c104bfc1928f0b018a50f5867f425e10482929 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 3 Dec 2025 18:55:44 +0200 Subject: [PATCH 098/271] add support for "@image" reference format in Kling Omni API nodes (#11082) --- comfy_api_nodes/apis/kling_api.py | 30 +++++-- comfy_api_nodes/nodes_kling.py | 138 ++++++++++++++++++++++++++++-- 2 files changed, 155 insertions(+), 13 deletions(-) diff --git a/comfy_api_nodes/apis/kling_api.py b/comfy_api_nodes/apis/kling_api.py index 0a3b447c5..d8949f8ac 100644 --- a/comfy_api_nodes/apis/kling_api.py +++ b/comfy_api_nodes/apis/kling_api.py @@ -46,21 +46,41 @@ class TaskStatusVideoResult(BaseModel): url: str | None = Field(None, description="URL for generated video") -class TaskStatusVideoResults(BaseModel): +class TaskStatusImageResult(BaseModel): + index: int = Field(..., description="Image Number,0-9") + url: str = Field(..., description="URL for generated image") + + +class OmniTaskStatusResults(BaseModel): videos: list[TaskStatusVideoResult] | None = Field(None) + images: list[TaskStatusImageResult] | None = Field(None) -class TaskStatusVideoResponseData(BaseModel): +class OmniTaskStatusResponseData(BaseModel): created_at: int | None = Field(None, description="Task creation time") updated_at: int | None = Field(None, description="Task update time") task_status: str | None = None task_status_msg: str | None = Field(None, description="Additional failure reason. Only for polling endpoint.") task_id: str | None = Field(None, description="Task ID") - task_result: TaskStatusVideoResults | None = Field(None) + task_result: OmniTaskStatusResults | None = Field(None) -class TaskStatusVideoResponse(BaseModel): +class OmniTaskStatusResponse(BaseModel): code: int | None = Field(None, description="Error code") message: str | None = Field(None, description="Error message") request_id: str | None = Field(None, description="Request ID") - data: TaskStatusVideoResponseData | None = Field(None) + data: OmniTaskStatusResponseData | None = Field(None) + + +class OmniImageParamImage(BaseModel): + image: str = Field(...) + + +class OmniProImageRequest(BaseModel): + model_name: str = Field(..., description="kling-image-o1") + resolution: str = Field(..., description="'1k' or '2k'") + aspect_ratio: str | None = Field(...) + prompt: str = Field(...) + mode: str = Field("pro") + n: int | None = Field(1, le=9) + image_list: list[OmniImageParamImage] | None = Field(..., max_length=10) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 850c44db6..6c840dc47 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -6,6 +6,7 @@ For source of truth on the allowed permutations of request fields, please refere import logging import math +import re import torch from typing_extensions import override @@ -49,12 +50,14 @@ from comfy_api_nodes.apis import ( KlingSingleImageEffectModelName, ) from comfy_api_nodes.apis.kling_api import ( + OmniImageParamImage, OmniParamImage, OmniParamVideo, OmniProFirstLastFrameRequest, + OmniProImageRequest, OmniProReferences2VideoRequest, OmniProText2VideoRequest, - TaskStatusVideoResponse, + OmniTaskStatusResponse, ) from comfy_api_nodes.util import ( ApiEndpoint, @@ -210,7 +213,36 @@ VOICES_CONFIG = { } -async def finish_omni_video_task(cls: type[IO.ComfyNode], response: TaskStatusVideoResponse) -> IO.NodeOutput: +def normalize_omni_prompt_references(prompt: str) -> str: + """ + Rewrites Kling Omni-style placeholders used in the app, like: + + @image, @image1, @image2, ... @imageN + @video, @video1, @video2, ... @videoN + + into the API-compatible form: + + <<>>, <<>>, ... + <<>>, <<>>, ... + + This is a UX shim for ComfyUI so users can type the same syntax as in the Kling app. + """ + if not prompt: + return prompt + + def _image_repl(match): + return f"<<>>" + + def _video_repl(match): + return f"<<>>" + + # (? and not @imageFoo + prompt = re.sub(r"(?\d*)(?!\w)", _image_repl, prompt) + return re.sub(r"(?\d*)(?!\w)", _video_repl, prompt) + + +async def finish_omni_video_task(cls: type[IO.ComfyNode], response: OmniTaskStatusResponse) -> IO.NodeOutput: if response.code: raise RuntimeError( f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" @@ -218,8 +250,9 @@ async def finish_omni_video_task(cls: type[IO.ComfyNode], response: TaskStatusVi final_response = await poll_op( cls, ApiEndpoint(path=f"/proxy/kling/v1/videos/omni-video/{response.data.task_id}"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, status_extractor=lambda r: (r.data.task_status if r.data else None), + max_poll_attempts=160, ) return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) @@ -801,7 +834,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, data=OmniProText2VideoRequest( model_name=model_name, prompt=prompt, @@ -864,6 +897,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): end_frame: Input.Image | None = None, reference_images: Input.Image | None = None, ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) if end_frame is not None and reference_images is not None: raise ValueError("The 'end_frame' input cannot be used simultaneously with 'reference_images'.") @@ -895,7 +929,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, data=OmniProFirstLastFrameRequest( model_name=model_name, prompt=prompt, @@ -950,6 +984,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): duration: int, reference_images: Input.Image, ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) if get_number_of_images(reference_images) > 7: raise ValueError("The maximum number of reference images is 7.") @@ -962,7 +997,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, data=OmniProReferences2VideoRequest( model_name=model_name, prompt=prompt, @@ -1023,6 +1058,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): keep_original_sound: bool, reference_images: Input.Image | None = None, ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) validate_video_duration(reference_video, min_duration=3.0, max_duration=10.05) validate_video_dimensions(reference_video, min_width=720, min_height=720, max_width=2160, max_height=2160) @@ -1045,7 +1081,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, data=OmniProReferences2VideoRequest( model_name=model_name, prompt=prompt, @@ -1103,6 +1139,7 @@ class OmniProEditVideoNode(IO.ComfyNode): keep_original_sound: bool, reference_images: Input.Image | None = None, ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) validate_video_duration(video, min_duration=3.0, max_duration=10.05) validate_video_dimensions(video, min_width=720, min_height=720, max_width=2160, max_height=2160) @@ -1125,7 +1162,7 @@ class OmniProEditVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=TaskStatusVideoResponse, + response_model=OmniTaskStatusResponse, data=OmniProReferences2VideoRequest( model_name=model_name, prompt=prompt, @@ -1138,6 +1175,90 @@ class OmniProEditVideoNode(IO.ComfyNode): return await finish_omni_video_task(cls, response) +class OmniProImageNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingOmniProImageNode", + display_name="Kling Omni Image (Pro)", + category="api node/image/Kling", + description="Create or edit images with the latest model from Kling.", + inputs=[ + IO.Combo.Input("model_name", options=["kling-image-o1"]), + IO.String.Input( + "prompt", + multiline=True, + tooltip="A text prompt describing the image content. " + "This can include both positive and negative descriptions.", + ), + IO.Combo.Input("resolution", options=["1K", "2K"]), + IO.Combo.Input( + "aspect_ratio", + options=["16:9", "9:16", "1:1", "4:3", "3:4", "3:2", "2:3", "21:9"], + ), + IO.Image.Input( + "reference_images", + tooltip="Up to 10 additional reference images.", + optional=True, + ), + ], + outputs=[ + IO.Image.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + resolution: str, + aspect_ratio: str, + reference_images: Input.Image | None = None, + ) -> IO.NodeOutput: + prompt = normalize_omni_prompt_references(prompt) + validate_string(prompt, min_length=1, max_length=2500) + image_list: list[OmniImageParamImage] = [] + if reference_images is not None: + if get_number_of_images(reference_images) > 10: + raise ValueError("The maximum number of reference images is 10.") + for i in reference_images: + validate_image_dimensions(i, min_width=300, min_height=300) + validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) + for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): + image_list.append(OmniImageParamImage(image=i)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/images/omni-image", method="POST"), + response_model=OmniTaskStatusResponse, + data=OmniProImageRequest( + model_name=model_name, + prompt=prompt, + resolution=resolution.lower(), + aspect_ratio=aspect_ratio, + image_list=image_list if image_list else None, + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/images/omni-image/{response.data.task_id}"), + response_model=OmniTaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_image_tensor(final_response.data.task_result.images[0].url)) + + class KlingCameraControlT2VNode(IO.ComfyNode): """ Kling Text to Video Camera Control Node. This node is a text to video node, but it supports controlling the camera. @@ -1935,6 +2056,7 @@ class KlingExtension(ComfyExtension): OmniProImageToVideoNode, OmniProVideoToVideoNode, OmniProEditVideoNode, + # OmniProImageNode, # need support from backend ] From 440268d3940eb14a01595439bbc05c4aacde9c72 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 3 Dec 2025 23:52:31 +0200 Subject: [PATCH 099/271] convert nodes_load_3d.py to V3 schema (#10990) --- comfy_api/latest/_ui.py | 13 +++- comfy_extras/nodes_load_3d.py | 127 ++++++++++++++++------------------ 2 files changed, 71 insertions(+), 69 deletions(-) diff --git a/comfy_api/latest/_ui.py b/comfy_api/latest/_ui.py index b0bbabe2a..6d1bea599 100644 --- a/comfy_api/latest/_ui.py +++ b/comfy_api/latest/_ui.py @@ -3,6 +3,7 @@ from __future__ import annotations import json import os import random +import uuid from io import BytesIO from typing import Type @@ -436,9 +437,19 @@ class PreviewUI3D(_UIOutput): def __init__(self, model_file, camera_info, **kwargs): self.model_file = model_file self.camera_info = camera_info + self.bg_image_path = None + bg_image = kwargs.get("bg_image", None) + if bg_image is not None: + img_array = (bg_image[0].cpu().numpy() * 255).astype(np.uint8) + img = PILImage.fromarray(img_array) + temp_dir = folder_paths.get_temp_directory() + filename = f"bg_{uuid.uuid4().hex}.png" + bg_image_path = os.path.join(temp_dir, filename) + img.save(bg_image_path, compress_level=1) + self.bg_image_path = f"temp/{filename}" def as_dict(self): - return {"result": [self.model_file, self.camera_info]} + return {"result": [self.model_file, self.camera_info, self.bg_image_path]} class PreviewText(_UIOutput): diff --git a/comfy_extras/nodes_load_3d.py b/comfy_extras/nodes_load_3d.py index 54c66ef68..545588ef8 100644 --- a/comfy_extras/nodes_load_3d.py +++ b/comfy_extras/nodes_load_3d.py @@ -2,22 +2,18 @@ import nodes import folder_paths import os -from comfy.comfy_types import IO -from comfy_api.input_impl import VideoFromFile +from typing_extensions import override +from comfy_api.latest import IO, ComfyExtension, InputImpl, UI from pathlib import Path -from PIL import Image -import numpy as np - -import uuid def normalize_path(path): return path.replace('\\', '/') -class Load3D(): +class Load3D(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): + def define_schema(cls): input_dir = os.path.join(folder_paths.get_input_directory(), "3d") os.makedirs(input_dir, exist_ok=True) @@ -30,23 +26,29 @@ class Load3D(): for file_path in input_path.rglob("*") if file_path.suffix.lower() in {'.gltf', '.glb', '.obj', '.fbx', '.stl'} ] + return IO.Schema( + node_id="Load3D", + display_name="Load 3D & Animation", + category="3d", + is_experimental=True, + inputs=[ + IO.Combo.Input("model_file", options=sorted(files), upload=IO.UploadType.model), + IO.Load3D.Input("image"), + IO.Int.Input("width", default=1024, min=1, max=4096, step=1), + IO.Int.Input("height", default=1024, min=1, max=4096, step=1), + ], + outputs=[ + IO.Image.Output(display_name="image"), + IO.Mask.Output(display_name="mask"), + IO.String.Output(display_name="mesh_path"), + IO.Image.Output(display_name="normal"), + IO.Load3DCamera.Output(display_name="camera_info"), + IO.Video.Output(display_name="recording_video"), + ], + ) - return {"required": { - "model_file": (sorted(files), {"file_upload": True}), - "image": ("LOAD_3D", {}), - "width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), - "height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}), - }} - - RETURN_TYPES = ("IMAGE", "MASK", "STRING", "IMAGE", "LOAD3D_CAMERA", IO.VIDEO) - RETURN_NAMES = ("image", "mask", "mesh_path", "normal", "camera_info", "recording_video") - - FUNCTION = "process" - EXPERIMENTAL = True - - CATEGORY = "3d" - - def process(self, model_file, image, **kwargs): + @classmethod + def execute(cls, model_file, image, **kwargs) -> IO.NodeOutput: image_path = folder_paths.get_annotated_filepath(image['image']) mask_path = folder_paths.get_annotated_filepath(image['mask']) normal_path = folder_paths.get_annotated_filepath(image['normal']) @@ -61,58 +63,47 @@ class Load3D(): if image['recording'] != "": recording_video_path = folder_paths.get_annotated_filepath(image['recording']) - video = VideoFromFile(recording_video_path) + video = InputImpl.VideoFromFile(recording_video_path) - return output_image, output_mask, model_file, normal_image, image['camera_info'], video + return IO.NodeOutput(output_image, output_mask, model_file, normal_image, image['camera_info'], video) -class Preview3D(): + process = execute # TODO: remove + + +class Preview3D(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "model_file": ("STRING", {"default": "", "multiline": False}), - }, - "optional": { - "camera_info": ("LOAD3D_CAMERA", {}), - "bg_image": ("IMAGE", {}) - }} + def define_schema(cls): + return IO.Schema( + node_id="Preview3D", + display_name="Preview 3D & Animation", + category="3d", + is_experimental=True, + is_output_node=True, + inputs=[ + IO.String.Input("model_file", default="", multiline=False), + IO.Load3DCamera.Input("camera_info", optional=True), + IO.Image.Input("bg_image", optional=True), + ], + outputs=[], + ) - OUTPUT_NODE = True - RETURN_TYPES = () - - CATEGORY = "3d" - - FUNCTION = "process" - EXPERIMENTAL = True - - def process(self, model_file, **kwargs): + @classmethod + def execute(cls, model_file, **kwargs) -> IO.NodeOutput: camera_info = kwargs.get("camera_info", None) bg_image = kwargs.get("bg_image", None) + return IO.NodeOutput(ui=UI.PreviewUI3D(model_file, camera_info, bg_image=bg_image)) - bg_image_path = None - if bg_image is not None: + process = execute # TODO: remove - img_array = (bg_image[0].cpu().numpy() * 255).astype(np.uint8) - img = Image.fromarray(img_array) - temp_dir = folder_paths.get_temp_directory() - filename = f"bg_{uuid.uuid4().hex}.png" - bg_image_path = os.path.join(temp_dir, filename) - img.save(bg_image_path, compress_level=1) +class Load3DExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + Load3D, + Preview3D, + ] - bg_image_path = f"temp/{filename}" - return { - "ui": { - "result": [model_file, camera_info, bg_image_path] - } - } - -NODE_CLASS_MAPPINGS = { - "Load3D": Load3D, - "Preview3D": Preview3D, -} - -NODE_DISPLAY_NAME_MAPPINGS = { - "Load3D": "Load 3D & Animation", - "Preview3D": "Preview 3D & Animation", -} +async def comfy_entrypoint() -> Load3DExtension: + return Load3DExtension() From dce518c2b4f99634b5fdde1924d9b0bd468fe1ce Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Thu, 4 Dec 2025 03:35:04 +0200 Subject: [PATCH 100/271] convert nodes_audio.py to V3 schema (#10798) --- comfy_api/latest/_ui.py | 9 +- comfy_extras/nodes_audio.py | 744 ++++++++++++++++++------------------ 2 files changed, 382 insertions(+), 371 deletions(-) diff --git a/comfy_api/latest/_ui.py b/comfy_api/latest/_ui.py index 6d1bea599..5a75a3aae 100644 --- a/comfy_api/latest/_ui.py +++ b/comfy_api/latest/_ui.py @@ -319,9 +319,10 @@ class AudioSaveHelper: for key, value in metadata.items(): output_container.metadata[key] = value + layout = "mono" if waveform.shape[0] == 1 else "stereo" # Set up the output stream with appropriate properties if format == "opus": - out_stream = output_container.add_stream("libopus", rate=sample_rate) + out_stream = output_container.add_stream("libopus", rate=sample_rate, layout=layout) if quality == "64k": out_stream.bit_rate = 64000 elif quality == "96k": @@ -333,7 +334,7 @@ class AudioSaveHelper: elif quality == "320k": out_stream.bit_rate = 320000 elif format == "mp3": - out_stream = output_container.add_stream("libmp3lame", rate=sample_rate) + out_stream = output_container.add_stream("libmp3lame", rate=sample_rate, layout=layout) if quality == "V0": # TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool out_stream.codec_context.qscale = 1 @@ -342,12 +343,12 @@ class AudioSaveHelper: elif quality == "320k": out_stream.bit_rate = 320000 else: # format == "flac": - out_stream = output_container.add_stream("flac", rate=sample_rate) + out_stream = output_container.add_stream("flac", rate=sample_rate, layout=layout) frame = av.AudioFrame.from_ndarray( waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format="flt", - layout="mono" if waveform.shape[0] == 1 else "stereo", + layout=layout, ) frame.sample_rate = sample_rate frame.pts = 0 diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index 2ed7e0b22..812301fb7 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -6,65 +6,80 @@ import torch import comfy.model_management import folder_paths import os -import io -import json -import random import hashlib import node_helpers import logging -from comfy.cli_args import args -from comfy.comfy_types import FileLocator +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO, UI -class EmptyLatentAudio: - def __init__(self): - self.device = comfy.model_management.intermediate_device() +class EmptyLatentAudio(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="EmptyLatentAudio", + display_name="Empty Latent Audio", + category="latent/audio", + inputs=[ + IO.Float.Input("seconds", default=47.6, min=1.0, max=1000.0, step=0.1), + IO.Int.Input( + "batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch." + ), + ], + outputs=[IO.Latent.Output()], + ) @classmethod - def INPUT_TYPES(s): - return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}), - "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}), - }} - RETURN_TYPES = ("LATENT",) - FUNCTION = "generate" - - CATEGORY = "latent/audio" - - def generate(self, seconds, batch_size): + def execute(cls, seconds, batch_size) -> IO.NodeOutput: length = round((seconds * 44100 / 2048) / 2) * 2 - latent = torch.zeros([batch_size, 64, length], device=self.device) - return ({"samples":latent, "type": "audio"}, ) + latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device()) + return IO.NodeOutput({"samples":latent, "type": "audio"}) -class ConditioningStableAudio: + generate = execute # TODO: remove + + +class ConditioningStableAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"positive": ("CONDITIONING", ), - "negative": ("CONDITIONING", ), - "seconds_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.1}), - "seconds_total": ("FLOAT", {"default": 47.0, "min": 0.0, "max": 1000.0, "step": 0.1}), - }} + def define_schema(cls): + return IO.Schema( + node_id="ConditioningStableAudio", + category="conditioning", + inputs=[ + IO.Conditioning.Input("positive"), + IO.Conditioning.Input("negative"), + IO.Float.Input("seconds_start", default=0.0, min=0.0, max=1000.0, step=0.1), + IO.Float.Input("seconds_total", default=47.0, min=0.0, max=1000.0, step=0.1), + ], + outputs=[ + IO.Conditioning.Output(display_name="positive"), + IO.Conditioning.Output(display_name="negative"), + ], + ) - RETURN_TYPES = ("CONDITIONING","CONDITIONING") - RETURN_NAMES = ("positive", "negative") - - FUNCTION = "append" - - CATEGORY = "conditioning" - - def append(self, positive, negative, seconds_start, seconds_total): + @classmethod + def execute(cls, positive, negative, seconds_start, seconds_total) -> IO.NodeOutput: positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total}) negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total}) - return (positive, negative) + return IO.NodeOutput(positive, negative) -class VAEEncodeAudio: + append = execute # TODO: remove + + +class VAEEncodeAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}} - RETURN_TYPES = ("LATENT",) - FUNCTION = "encode" + def define_schema(cls): + return IO.Schema( + node_id="VAEEncodeAudio", + display_name="VAE Encode Audio", + category="latent/audio", + inputs=[ + IO.Audio.Input("audio"), + IO.Vae.Input("vae"), + ], + outputs=[IO.Latent.Output()], + ) - CATEGORY = "latent/audio" - - def encode(self, vae, audio): + @classmethod + def execute(cls, vae, audio) -> IO.NodeOutput: sample_rate = audio["sample_rate"] if 44100 != sample_rate: waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100) @@ -72,213 +87,134 @@ class VAEEncodeAudio: waveform = audio["waveform"] t = vae.encode(waveform.movedim(1, -1)) - return ({"samples":t}, ) + return IO.NodeOutput({"samples":t}) -class VAEDecodeAudio: + encode = execute # TODO: remove + + +class VAEDecodeAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} - RETURN_TYPES = ("AUDIO",) - FUNCTION = "decode" + def define_schema(cls): + return IO.Schema( + node_id="VAEDecodeAudio", + display_name="VAE Decode Audio", + category="latent/audio", + inputs=[ + IO.Latent.Input("samples"), + IO.Vae.Input("vae"), + ], + outputs=[IO.Audio.Output()], + ) - CATEGORY = "latent/audio" - - def decode(self, vae, samples): + @classmethod + def execute(cls, vae, samples) -> IO.NodeOutput: audio = vae.decode(samples["samples"]).movedim(-1, 1) std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 std[std < 1.0] = 1.0 audio /= std - return ({"waveform": audio, "sample_rate": 44100}, ) + return IO.NodeOutput({"waveform": audio, "sample_rate": 44100}) + + decode = execute # TODO: remove -def save_audio(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None, quality="128k"): - - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) - results: list[FileLocator] = [] - - # Prepare metadata dictionary - metadata = {} - if not args.disable_metadata: - if prompt is not None: - metadata["prompt"] = json.dumps(prompt) - if extra_pnginfo is not None: - for x in extra_pnginfo: - metadata[x] = json.dumps(extra_pnginfo[x]) - - # Opus supported sample rates - OPUS_RATES = [8000, 12000, 16000, 24000, 48000] - - for (batch_number, waveform) in enumerate(audio["waveform"].cpu()): - filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) - file = f"{filename_with_batch_num}_{counter:05}_.{format}" - output_path = os.path.join(full_output_folder, file) - - # Use original sample rate initially - sample_rate = audio["sample_rate"] - - # Handle Opus sample rate requirements - if format == "opus": - if sample_rate > 48000: - sample_rate = 48000 - elif sample_rate not in OPUS_RATES: - # Find the next highest supported rate - for rate in sorted(OPUS_RATES): - if rate > sample_rate: - sample_rate = rate - break - if sample_rate not in OPUS_RATES: # Fallback if still not supported - sample_rate = 48000 - - # Resample if necessary - if sample_rate != audio["sample_rate"]: - waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate) - - # Create output with specified format - output_buffer = io.BytesIO() - output_container = av.open(output_buffer, mode='w', format=format) - - # Set metadata on the container - for key, value in metadata.items(): - output_container.metadata[key] = value - - layout = 'mono' if waveform.shape[0] == 1 else 'stereo' - # Set up the output stream with appropriate properties - if format == "opus": - out_stream = output_container.add_stream("libopus", rate=sample_rate, layout=layout) - if quality == "64k": - out_stream.bit_rate = 64000 - elif quality == "96k": - out_stream.bit_rate = 96000 - elif quality == "128k": - out_stream.bit_rate = 128000 - elif quality == "192k": - out_stream.bit_rate = 192000 - elif quality == "320k": - out_stream.bit_rate = 320000 - elif format == "mp3": - out_stream = output_container.add_stream("libmp3lame", rate=sample_rate, layout=layout) - if quality == "V0": - #TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool - out_stream.codec_context.qscale = 1 - elif quality == "128k": - out_stream.bit_rate = 128000 - elif quality == "320k": - out_stream.bit_rate = 320000 - else: #format == "flac": - out_stream = output_container.add_stream("flac", rate=sample_rate, layout=layout) - - frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout=layout) - frame.sample_rate = sample_rate - frame.pts = 0 - output_container.mux(out_stream.encode(frame)) - - # Flush encoder - output_container.mux(out_stream.encode(None)) - - # Close containers - output_container.close() - - # Write the output to file - output_buffer.seek(0) - with open(output_path, 'wb') as f: - f.write(output_buffer.getbuffer()) - - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) - counter += 1 - - return { "ui": { "audio": results } } - -class SaveAudio: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAudio(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAudio", + display_name="Save Audio (FLAC)", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.String.Input("filename_prefix", default="audio/ComfyUI"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), - "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.AudioSaveHelper.get_save_audio_ui(audio, filename_prefix=filename_prefix, cls=cls, format=format) + ) - RETURN_TYPES = () - FUNCTION = "save_flac" + save_flac = execute # TODO: remove - OUTPUT_NODE = True - CATEGORY = "audio" - - def save_flac(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None): - return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo) - -class SaveAudioMP3: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAudioMP3(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAudioMP3", + display_name="Save Audio (MP3)", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.String.Input("filename_prefix", default="audio/ComfyUI"), + IO.Combo.Input("quality", options=["V0", "128k", "320k"], default="V0"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), - "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), - "quality": (["V0", "128k", "320k"], {"default": "V0"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio, filename_prefix="ComfyUI", format="mp3", quality="128k") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.AudioSaveHelper.get_save_audio_ui( + audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality + ) + ) - RETURN_TYPES = () - FUNCTION = "save_mp3" + save_mp3 = execute # TODO: remove - OUTPUT_NODE = True - CATEGORY = "audio" - - def save_mp3(self, audio, filename_prefix="ComfyUI", format="mp3", prompt=None, extra_pnginfo=None, quality="128k"): - return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality) - -class SaveAudioOpus: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAudioOpus(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAudioOpus", + display_name="Save Audio (Opus)", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.String.Input("filename_prefix", default="audio/ComfyUI"), + IO.Combo.Input("quality", options=["64k", "96k", "128k", "192k", "320k"], default="128k"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": { "audio": ("AUDIO", ), - "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), - "quality": (["64k", "96k", "128k", "192k", "320k"], {"default": "128k"}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio, filename_prefix="ComfyUI", format="opus", quality="V3") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.AudioSaveHelper.get_save_audio_ui( + audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality + ) + ) - RETURN_TYPES = () - FUNCTION = "save_opus" + save_opus = execute # TODO: remove - OUTPUT_NODE = True - CATEGORY = "audio" - - def save_opus(self, audio, filename_prefix="ComfyUI", format="opus", prompt=None, extra_pnginfo=None, quality="V3"): - return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality) - -class PreviewAudio(SaveAudio): - def __init__(self): - self.output_dir = folder_paths.get_temp_directory() - self.type = "temp" - self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) +class PreviewAudio(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="PreviewAudio", + display_name="Preview Audio", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return {"required": - {"audio": ("AUDIO", ), }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def execute(cls, audio) -> IO.NodeOutput: + return IO.NodeOutput(ui=UI.PreviewAudio(audio, cls=cls)) + + save_flac = execute # TODO: remove + def f32_pcm(wav: torch.Tensor) -> torch.Tensor: """Convert audio to float 32 bits PCM format.""" @@ -316,26 +252,30 @@ def load(filepath: str) -> tuple[torch.Tensor, int]: wav = f32_pcm(wav) return wav, sr -class LoadAudio: +class LoadAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): + def define_schema(cls): input_dir = folder_paths.get_input_directory() files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]) - return {"required": {"audio": (sorted(files), {"audio_upload": True})}} + return IO.Schema( + node_id="LoadAudio", + display_name="Load Audio", + category="audio", + inputs=[ + IO.Combo.Input("audio", upload=IO.UploadType.audio, options=sorted(files)), + ], + outputs=[IO.Audio.Output()], + ) - CATEGORY = "audio" - - RETURN_TYPES = ("AUDIO", ) - FUNCTION = "load" - - def load(self, audio): + @classmethod + def execute(cls, audio) -> IO.NodeOutput: audio_path = folder_paths.get_annotated_filepath(audio) waveform, sample_rate = load(audio_path) audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} - return (audio, ) + return IO.NodeOutput(audio) @classmethod - def IS_CHANGED(s, audio): + def fingerprint_inputs(cls, audio): image_path = folder_paths.get_annotated_filepath(audio) m = hashlib.sha256() with open(image_path, 'rb') as f: @@ -343,46 +283,69 @@ class LoadAudio: return m.digest().hex() @classmethod - def VALIDATE_INPUTS(s, audio): + def validate_inputs(cls, audio): if not folder_paths.exists_annotated_filepath(audio): return "Invalid audio file: {}".format(audio) return True -class RecordAudio: + load = execute # TODO: remove + + +class RecordAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"audio": ("AUDIO_RECORD", {})}} + def define_schema(cls): + return IO.Schema( + node_id="RecordAudio", + display_name="Record Audio", + category="audio", + inputs=[ + IO.Custom("AUDIO_RECORD").Input("audio"), + ], + outputs=[IO.Audio.Output()], + ) - CATEGORY = "audio" - - RETURN_TYPES = ("AUDIO", ) - FUNCTION = "load" - - def load(self, audio): + @classmethod + def execute(cls, audio) -> IO.NodeOutput: audio_path = folder_paths.get_annotated_filepath(audio) waveform, sample_rate = load(audio_path) audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} - return (audio, ) + return IO.NodeOutput(audio) + + load = execute # TODO: remove -class TrimAudioDuration: +class TrimAudioDuration(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "audio": ("AUDIO",), - "start_index": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Start time in seconds, can be negative to count from the end (supports sub-seconds)."}), - "duration": ("FLOAT", {"default": 60.0, "min": 0.0, "step": 0.01, "tooltip": "Duration in seconds"}), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="TrimAudioDuration", + display_name="Trim Audio Duration", + description="Trim audio tensor into chosen time range.", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.Float.Input( + "start_index", + default=0.0, + min=-0xffffffffffffffff, + max=0xffffffffffffffff, + step=0.01, + tooltip="Start time in seconds, can be negative to count from the end (supports sub-seconds).", + ), + IO.Float.Input( + "duration", + default=60.0, + min=0.0, + step=0.01, + tooltip="Duration in seconds", + ), + ], + outputs=[IO.Audio.Output()], + ) - FUNCTION = "trim" - RETURN_TYPES = ("AUDIO",) - CATEGORY = "audio" - DESCRIPTION = "Trim audio tensor into chosen time range." - - def trim(self, audio, start_index, duration): + @classmethod + def execute(cls, audio, start_index, duration) -> IO.NodeOutput: waveform = audio["waveform"] sample_rate = audio["sample_rate"] audio_length = waveform.shape[-1] @@ -399,23 +362,30 @@ class TrimAudioDuration: if start_frame >= end_frame: raise ValueError("AudioTrim: Start time must be less than end time and be within the audio length.") - return ({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate},) + return IO.NodeOutput({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate}) + + trim = execute # TODO: remove -class SplitAudioChannels: +class SplitAudioChannels(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "audio": ("AUDIO",), - }} + def define_schema(cls): + return IO.Schema( + node_id="SplitAudioChannels", + display_name="Split Audio Channels", + description="Separates the audio into left and right channels.", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + ], + outputs=[ + IO.Audio.Output(display_name="left"), + IO.Audio.Output(display_name="right"), + ], + ) - RETURN_TYPES = ("AUDIO", "AUDIO") - RETURN_NAMES = ("left", "right") - FUNCTION = "separate" - CATEGORY = "audio" - DESCRIPTION = "Separates the audio into left and right channels." - - def separate(self, audio): + @classmethod + def execute(cls, audio) -> IO.NodeOutput: waveform = audio["waveform"] sample_rate = audio["sample_rate"] @@ -425,7 +395,9 @@ class SplitAudioChannels: left_channel = waveform[..., 0:1, :] right_channel = waveform[..., 1:2, :] - return ({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate}) + return IO.NodeOutput({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate}) + + separate = execute # TODO: remove def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2): @@ -443,21 +415,29 @@ def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_ return waveform_1, waveform_2, output_sample_rate -class AudioConcat: +class AudioConcat(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "audio1": ("AUDIO",), - "audio2": ("AUDIO",), - "direction": (['after', 'before'], {"default": 'after', "tooltip": "Whether to append audio2 after or before audio1."}), - }} + def define_schema(cls): + return IO.Schema( + node_id="AudioConcat", + display_name="Audio Concat", + description="Concatenates the audio1 to audio2 in the specified direction.", + category="audio", + inputs=[ + IO.Audio.Input("audio1"), + IO.Audio.Input("audio2"), + IO.Combo.Input( + "direction", + options=['after', 'before'], + default="after", + tooltip="Whether to append audio2 after or before audio1.", + ) + ], + outputs=[IO.Audio.Output()], + ) - RETURN_TYPES = ("AUDIO",) - FUNCTION = "concat" - CATEGORY = "audio" - DESCRIPTION = "Concatenates the audio1 to audio2 in the specified direction." - - def concat(self, audio1, audio2, direction): + @classmethod + def execute(cls, audio1, audio2, direction) -> IO.NodeOutput: waveform_1 = audio1["waveform"] waveform_2 = audio2["waveform"] sample_rate_1 = audio1["sample_rate"] @@ -477,26 +457,33 @@ class AudioConcat: elif direction == 'before': concatenated_audio = torch.cat((waveform_2, waveform_1), dim=2) - return ({"waveform": concatenated_audio, "sample_rate": output_sample_rate},) + return IO.NodeOutput({"waveform": concatenated_audio, "sample_rate": output_sample_rate}) + + concat = execute # TODO: remove -class AudioMerge: +class AudioMerge(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "audio1": ("AUDIO",), - "audio2": ("AUDIO",), - "merge_method": (["add", "mean", "subtract", "multiply"], {"tooltip": "The method used to combine the audio waveforms."}), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="AudioMerge", + display_name="Audio Merge", + description="Combine two audio tracks by overlaying their waveforms.", + category="audio", + inputs=[ + IO.Audio.Input("audio1"), + IO.Audio.Input("audio2"), + IO.Combo.Input( + "merge_method", + options=["add", "mean", "subtract", "multiply"], + tooltip="The method used to combine the audio waveforms.", + ) + ], + outputs=[IO.Audio.Output()], + ) - FUNCTION = "merge" - RETURN_TYPES = ("AUDIO",) - CATEGORY = "audio" - DESCRIPTION = "Combine two audio tracks by overlaying their waveforms." - - def merge(self, audio1, audio2, merge_method): + @classmethod + def execute(cls, audio1, audio2, merge_method) -> IO.NodeOutput: waveform_1 = audio1["waveform"] waveform_2 = audio2["waveform"] sample_rate_1 = audio1["sample_rate"] @@ -530,85 +517,108 @@ class AudioMerge: if max_val > 1.0: waveform = waveform / max_val - return ({"waveform": waveform, "sample_rate": output_sample_rate},) + return IO.NodeOutput({"waveform": waveform, "sample_rate": output_sample_rate}) + + merge = execute # TODO: remove -class AudioAdjustVolume: +class AudioAdjustVolume(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "audio": ("AUDIO",), - "volume": ("INT", {"default": 1.0, "min": -100, "max": 100, "tooltip": "Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc"}), - }} + def define_schema(cls): + return IO.Schema( + node_id="AudioAdjustVolume", + display_name="Audio Adjust Volume", + category="audio", + inputs=[ + IO.Audio.Input("audio"), + IO.Int.Input( + "volume", + default=1, + min=-100, + max=100, + tooltip="Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc", + ) + ], + outputs=[IO.Audio.Output()], + ) - RETURN_TYPES = ("AUDIO",) - FUNCTION = "adjust_volume" - CATEGORY = "audio" - - def adjust_volume(self, audio, volume): + @classmethod + def execute(cls, audio, volume) -> IO.NodeOutput: if volume == 0: - return (audio,) + return IO.NodeOutput(audio) waveform = audio["waveform"] sample_rate = audio["sample_rate"] gain = 10 ** (volume / 20) waveform = waveform * gain - return ({"waveform": waveform, "sample_rate": sample_rate},) + return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate}) + + adjust_volume = execute # TODO: remove -class EmptyAudio: +class EmptyAudio(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { - "duration": ("FLOAT", {"default": 60.0, "min": 0.0, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Duration of the empty audio clip in seconds"}), - "sample_rate": ("INT", {"default": 44100, "tooltip": "Sample rate of the empty audio clip."}), - "channels": ("INT", {"default": 2, "min": 1, "max": 2, "tooltip": "Number of audio channels (1 for mono, 2 for stereo)."}), - }} + def define_schema(cls): + return IO.Schema( + node_id="EmptyAudio", + display_name="Empty Audio", + category="audio", + inputs=[ + IO.Float.Input( + "duration", + default=60.0, + min=0.0, + max=0xffffffffffffffff, + step=0.01, + tooltip="Duration of the empty audio clip in seconds", + ), + IO.Float.Input( + "sample_rate", + default=44100, + tooltip="Sample rate of the empty audio clip.", + ), + IO.Float.Input( + "channels", + default=2, + min=1, + max=2, + tooltip="Number of audio channels (1 for mono, 2 for stereo).", + ), + ], + outputs=[IO.Audio.Output()], + ) - RETURN_TYPES = ("AUDIO",) - FUNCTION = "create_empty_audio" - CATEGORY = "audio" - - def create_empty_audio(self, duration, sample_rate, channels): + @classmethod + def execute(cls, duration, sample_rate, channels) -> IO.NodeOutput: num_samples = int(round(duration * sample_rate)) waveform = torch.zeros((1, channels, num_samples), dtype=torch.float32) - return ({"waveform": waveform, "sample_rate": sample_rate},) + return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate}) + + create_empty_audio = execute # TODO: remove -NODE_CLASS_MAPPINGS = { - "EmptyLatentAudio": EmptyLatentAudio, - "VAEEncodeAudio": VAEEncodeAudio, - "VAEDecodeAudio": VAEDecodeAudio, - "SaveAudio": SaveAudio, - "SaveAudioMP3": SaveAudioMP3, - "SaveAudioOpus": SaveAudioOpus, - "LoadAudio": LoadAudio, - "PreviewAudio": PreviewAudio, - "ConditioningStableAudio": ConditioningStableAudio, - "RecordAudio": RecordAudio, - "TrimAudioDuration": TrimAudioDuration, - "SplitAudioChannels": SplitAudioChannels, - "AudioConcat": AudioConcat, - "AudioMerge": AudioMerge, - "AudioAdjustVolume": AudioAdjustVolume, - "EmptyAudio": EmptyAudio, -} +class AudioExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + EmptyLatentAudio, + VAEEncodeAudio, + VAEDecodeAudio, + SaveAudio, + SaveAudioMP3, + SaveAudioOpus, + LoadAudio, + PreviewAudio, + ConditioningStableAudio, + RecordAudio, + TrimAudioDuration, + SplitAudioChannels, + AudioConcat, + AudioMerge, + AudioAdjustVolume, + EmptyAudio, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - "EmptyLatentAudio": "Empty Latent Audio", - "VAEEncodeAudio": "VAE Encode Audio", - "VAEDecodeAudio": "VAE Decode Audio", - "PreviewAudio": "Preview Audio", - "LoadAudio": "Load Audio", - "SaveAudio": "Save Audio (FLAC)", - "SaveAudioMP3": "Save Audio (MP3)", - "SaveAudioOpus": "Save Audio (Opus)", - "RecordAudio": "Record Audio", - "TrimAudioDuration": "Trim Audio Duration", - "SplitAudioChannels": "Split Audio Channels", - "AudioConcat": "Audio Concat", - "AudioMerge": "Audio Merge", - "AudioAdjustVolume": "Audio Adjust Volume", - "EmptyAudio": "Empty Audio", -} +async def comfy_entrypoint() -> AudioExtension: + return AudioExtension() From ecdc8697d53919a9178bf53ef327a110582db8ea Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 3 Dec 2025 19:49:28 -0800 Subject: [PATCH 101/271] Qwen Image Lora training fix from #11090 (#11094) --- comfy_extras/nodes_train.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_train.py b/comfy_extras/nodes_train.py index cb24ab709..19b8baaf4 100644 --- a/comfy_extras/nodes_train.py +++ b/comfy_extras/nodes_train.py @@ -623,7 +623,7 @@ class TrainLoraNode(io.ComfyNode): noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed) if multi_res: # use first latent as dummy latent if multi_res - latents = latents[0].repeat(num_images, 1, 1, 1) + latents = latents[0].repeat((num_images,) + ((1,) * (latents[0].ndim - 1))) guider.sample( noise.generate_noise({"samples": latents}), latents, From ea17add3c62197b10fd0b71d9169d339adc55c47 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 3 Dec 2025 20:15:15 -0800 Subject: [PATCH 102/271] Fix case where text encoders where running on the CPU instead of GPU. (#11095) --- comfy/sd.py | 2 ++ comfy/sd1_clip.py | 9 ++++++++- 2 files changed, 10 insertions(+), 1 deletion(-) diff --git a/comfy/sd.py b/comfy/sd.py index f9e5efab5..734bd2845 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -193,6 +193,7 @@ class CLIP: self.cond_stage_model.set_clip_options({"projected_pooled": False}) self.load_model() + self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device}) all_hooks.reset() self.patcher.patch_hooks(None) if show_pbar: @@ -240,6 +241,7 @@ class CLIP: self.cond_stage_model.set_clip_options({"projected_pooled": False}) self.load_model() + self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device}) o = self.cond_stage_model.encode_token_weights(tokens) cond, pooled = o[:2] if return_dict: diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index 0fc9ab3db..503a51843 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -147,6 +147,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): self.layer_norm_hidden_state = layer_norm_hidden_state self.return_projected_pooled = return_projected_pooled self.return_attention_masks = return_attention_masks + self.execution_device = None if layer == "hidden": assert layer_idx is not None @@ -163,6 +164,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): def set_clip_options(self, options): layer_idx = options.get("layer", self.layer_idx) self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled) + self.execution_device = options.get("execution_device", self.execution_device) if isinstance(self.layer, list) or self.layer == "all": pass elif layer_idx is None or abs(layer_idx) > self.num_layers: @@ -175,6 +177,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): self.layer = self.options_default[0] self.layer_idx = self.options_default[1] self.return_projected_pooled = self.options_default[2] + self.execution_device = None def process_tokens(self, tokens, device): end_token = self.special_tokens.get("end", None) @@ -258,7 +261,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info def forward(self, tokens): - device = self.transformer.get_input_embeddings().weight.device + if self.execution_device is None: + device = self.transformer.get_input_embeddings().weight.device + else: + device = self.execution_device + embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device) attention_mask_model = None From 6be85c7920224b45bbc6417e00147815e78c12a9 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Thu, 4 Dec 2025 14:28:44 +1000 Subject: [PATCH 103/271] mp: use look-ahead actuals for stream offload VRAM calculation (#11096) TIL that the WAN TE has a 2GB weight followed by 16MB as the next size down. This means that team 8GB VRAM would fully offload the TE in async offload mode as it just multiplied this giant size my the num streams. Do the more complex logic of summing up the upcoming to-load weight sizes to avoid triple counting this massive weight. partial unload does the converse of recording the NS most recent unloads as they go. --- comfy/model_patcher.py | 12 +++++++++--- 1 file changed, 9 insertions(+), 3 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index df2d8e827..3dcac3eef 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -699,12 +699,12 @@ class ModelPatcher: offloaded = [] offload_buffer = 0 loading.sort(reverse=True) - for x in loading: + for i, x in enumerate(loading): module_offload_mem, module_mem, n, m, params = x lowvram_weight = False - potential_offload = max(offload_buffer, module_offload_mem + (comfy.model_management.NUM_STREAMS * module_mem)) + potential_offload = max(offload_buffer, module_offload_mem + sum([ x1[1] for x1 in loading[i+1:i+1+comfy.model_management.NUM_STREAMS]])) lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory weight_key = "{}.weight".format(n) @@ -876,14 +876,18 @@ class ModelPatcher: patch_counter = 0 unload_list = self._load_list() unload_list.sort() + offload_buffer = self.model.model_offload_buffer_memory + if len(unload_list) > 0: + NS = comfy.model_management.NUM_STREAMS + offload_weight_factor = [ min(offload_buffer / (NS + 1), unload_list[0][1]) ] * NS for unload in unload_list: if memory_to_free + offload_buffer - self.model.model_offload_buffer_memory < memory_freed: break module_offload_mem, module_mem, n, m, params = unload - potential_offload = module_offload_mem + (comfy.model_management.NUM_STREAMS * module_mem) + potential_offload = module_offload_mem + sum(offload_weight_factor) lowvram_possible = hasattr(m, "comfy_cast_weights") if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True: @@ -935,6 +939,8 @@ class ModelPatcher: m.comfy_patched_weights = False memory_freed += module_mem offload_buffer = max(offload_buffer, potential_offload) + offload_weight_factor.append(module_mem) + offload_weight_factor.pop(0) logging.debug("freed {}".format(n)) for param in params: From f4bdf5f8302ef10db99644a8672e614ddb29c473 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Fri, 5 Dec 2025 03:50:04 +1000 Subject: [PATCH 104/271] sd: revise hy VAE VRAM (#11105) This was recently collapsed down to rolling VAE through temporal. Clamp The time dimension. --- comfy/sd.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/comfy/sd.py b/comfy/sd.py index 734bd2845..fe4dd65f8 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -483,8 +483,10 @@ class VAE: self.latent_dim = 3 self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1] self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1]) - self.memory_used_decode = lambda shape, dtype: (1500 * shape[2] * shape[3] * shape[4] * (4 * 8 * 8)) * model_management.dtype_size(dtype) - self.memory_used_encode = lambda shape, dtype: (900 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype) + #This is likely to significantly over-estimate with single image or low frame counts as the + #implementation is able to completely skip caching. Rework if used as an image only VAE + self.memory_used_decode = lambda shape, dtype: (2800 * min(8, ((shape[2] - 1) * 4) + 1) * shape[3] * shape[4] * (8 * 8)) * model_management.dtype_size(dtype) + self.memory_used_encode = lambda shape, dtype: (1400 * min(9, shape[2]) * shape[3] * shape[4]) * model_management.dtype_size(dtype) self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] elif "decoder.unpatcher3d.wavelets" in sd: self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 8, 8) From 9bc893c5bbd2838bdd15ebd40e3a3e548ce3e4f0 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Fri, 5 Dec 2025 03:50:36 +1000 Subject: [PATCH 105/271] sd: bump HY1.5 VAE estimate (#11107) Im able to push vram above estimate on partial unload. Bump the estimate. This is experimentally determined with a 720P and 480P datapoint calibrating for 24GB VRAM total. --- comfy/sd.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/sd.py b/comfy/sd.py index fe4dd65f8..03bdb33d5 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -471,7 +471,7 @@ class VAE: decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig}) self.memory_used_encode = lambda shape, dtype: (1400 * 9 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype) - self.memory_used_decode = lambda shape, dtype: (2800 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype) + self.memory_used_decode = lambda shape, dtype: (3600 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype) elif "decoder.conv_in.conv.weight" in sd: ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} ddconfig["conv3d"] = True From 3c8456223c5f6a41af7d99219b391c8c58acb552 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 5 Dec 2025 00:05:28 +0200 Subject: [PATCH 106/271] [API Nodes]: fixes and refactor (#11104) * chore(api-nodes): applied ruff's pyupgrade(python3.10) to api-nodes client's to folder * chore(api-nodes): add validate_video_frame_count function from LTX PR * chore(api-nodes): replace deprecated V1 imports * fix(api-nodes): the types returned by the "poll_op" function are now correct. --- comfy_api_nodes/util/__init__.py | 2 + comfy_api_nodes/util/_helpers.py | 14 +-- comfy_api_nodes/util/client.py | 145 ++++++++++++----------- comfy_api_nodes/util/conversions.py | 21 ++-- comfy_api_nodes/util/download_helpers.py | 20 ++-- comfy_api_nodes/util/request_logger.py | 2 - comfy_api_nodes/util/upload_helpers.py | 16 ++- comfy_api_nodes/util/validation_utils.py | 61 ++++++---- 8 files changed, 146 insertions(+), 135 deletions(-) diff --git a/comfy_api_nodes/util/__init__.py b/comfy_api_nodes/util/__init__.py index 80292fb3c..4cc22abfb 100644 --- a/comfy_api_nodes/util/__init__.py +++ b/comfy_api_nodes/util/__init__.py @@ -47,6 +47,7 @@ from .validation_utils import ( validate_string, validate_video_dimensions, validate_video_duration, + validate_video_frame_count, ) __all__ = [ @@ -94,6 +95,7 @@ __all__ = [ "validate_string", "validate_video_dimensions", "validate_video_duration", + "validate_video_frame_count", # Misc functions "get_fs_object_size", ] diff --git a/comfy_api_nodes/util/_helpers.py b/comfy_api_nodes/util/_helpers.py index 328fe5227..491e6b6a8 100644 --- a/comfy_api_nodes/util/_helpers.py +++ b/comfy_api_nodes/util/_helpers.py @@ -2,8 +2,8 @@ import asyncio import contextlib import os import time +from collections.abc import Callable from io import BytesIO -from typing import Callable, Optional, Union from comfy.cli_args import args from comfy.model_management import processing_interrupted @@ -35,12 +35,12 @@ def default_base_url() -> str: async def sleep_with_interrupt( seconds: float, - node_cls: Optional[type[IO.ComfyNode]], - label: Optional[str] = None, - start_ts: Optional[float] = None, - estimated_total: Optional[int] = None, + node_cls: type[IO.ComfyNode] | None, + label: str | None = None, + start_ts: float | None = None, + estimated_total: int | None = None, *, - display_callback: Optional[Callable[[type[IO.ComfyNode], str, int, Optional[int]], None]] = None, + display_callback: Callable[[type[IO.ComfyNode], str, int, int | None], None] | None = None, ): """ Sleep in 1s slices while: @@ -65,7 +65,7 @@ def mimetype_to_extension(mime_type: str) -> str: return mime_type.split("/")[-1].lower() -def get_fs_object_size(path_or_object: Union[str, BytesIO]) -> int: +def get_fs_object_size(path_or_object: str | BytesIO) -> int: if isinstance(path_or_object, str): return os.path.getsize(path_or_object) return len(path_or_object.getvalue()) diff --git a/comfy_api_nodes/util/client.py b/comfy_api_nodes/util/client.py index bf01d7d36..bf37cba5f 100644 --- a/comfy_api_nodes/util/client.py +++ b/comfy_api_nodes/util/client.py @@ -4,10 +4,11 @@ import json import logging import time import uuid +from collections.abc import Callable, Iterable from dataclasses import dataclass from enum import Enum from io import BytesIO -from typing import Any, Callable, Iterable, Literal, Optional, Type, TypeVar, Union +from typing import Any, Literal, TypeVar from urllib.parse import urljoin, urlparse import aiohttp @@ -37,8 +38,8 @@ class ApiEndpoint: path: str, method: Literal["GET", "POST", "PUT", "DELETE", "PATCH"] = "GET", *, - query_params: Optional[dict[str, Any]] = None, - headers: Optional[dict[str, str]] = None, + query_params: dict[str, Any] | None = None, + headers: dict[str, str] | None = None, ): self.path = path self.method = method @@ -52,18 +53,18 @@ class _RequestConfig: endpoint: ApiEndpoint timeout: float content_type: str - data: Optional[dict[str, Any]] - files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] - multipart_parser: Optional[Callable] + data: dict[str, Any] | None + files: dict[str, Any] | list[tuple[str, Any]] | None + multipart_parser: Callable | None max_retries: int retry_delay: float retry_backoff: float wait_label: str = "Waiting" monitor_progress: bool = True - estimated_total: Optional[int] = None - final_label_on_success: Optional[str] = "Completed" - progress_origin_ts: Optional[float] = None - price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None + estimated_total: int | None = None + final_label_on_success: str | None = "Completed" + progress_origin_ts: float | None = None + price_extractor: Callable[[dict[str, Any]], float | None] | None = None @dataclass @@ -71,10 +72,10 @@ class _PollUIState: started: float status_label: str = "Queued" is_queued: bool = True - price: Optional[float] = None - estimated_duration: Optional[int] = None + price: float | None = None + estimated_duration: int | None = None base_processing_elapsed: float = 0.0 # sum of completed active intervals - active_since: Optional[float] = None # start time of current active interval (None if queued) + active_since: float | None = None # start time of current active interval (None if queued) _RETRY_STATUS = {408, 429, 500, 502, 503, 504} @@ -87,20 +88,20 @@ async def sync_op( cls: type[IO.ComfyNode], endpoint: ApiEndpoint, *, - response_model: Type[M], - price_extractor: Optional[Callable[[M], Optional[float]]] = None, - data: Optional[BaseModel] = None, - files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] = None, + response_model: type[M], + price_extractor: Callable[[M | Any], float | None] | None = None, + data: BaseModel | None = None, + files: dict[str, Any] | list[tuple[str, Any]] | None = None, content_type: str = "application/json", timeout: float = 3600.0, - multipart_parser: Optional[Callable] = None, + multipart_parser: Callable | None = None, max_retries: int = 3, retry_delay: float = 1.0, retry_backoff: float = 2.0, wait_label: str = "Waiting for server", - estimated_duration: Optional[int] = None, - final_label_on_success: Optional[str] = "Completed", - progress_origin_ts: Optional[float] = None, + estimated_duration: int | None = None, + final_label_on_success: str | None = "Completed", + progress_origin_ts: float | None = None, monitor_progress: bool = True, ) -> M: raw = await sync_op_raw( @@ -131,22 +132,22 @@ async def poll_op( cls: type[IO.ComfyNode], poll_endpoint: ApiEndpoint, *, - response_model: Type[M], - status_extractor: Callable[[M], Optional[Union[str, int]]], - progress_extractor: Optional[Callable[[M], Optional[int]]] = None, - price_extractor: Optional[Callable[[M], Optional[float]]] = None, - completed_statuses: Optional[list[Union[str, int]]] = None, - failed_statuses: Optional[list[Union[str, int]]] = None, - queued_statuses: Optional[list[Union[str, int]]] = None, - data: Optional[BaseModel] = None, + response_model: type[M], + status_extractor: Callable[[M | Any], str | int | None], + progress_extractor: Callable[[M | Any], int | None] | None = None, + price_extractor: Callable[[M | Any], float | None] | None = None, + completed_statuses: list[str | int] | None = None, + failed_statuses: list[str | int] | None = None, + queued_statuses: list[str | int] | None = None, + data: BaseModel | None = None, poll_interval: float = 5.0, max_poll_attempts: int = 120, timeout_per_poll: float = 120.0, max_retries_per_poll: int = 3, retry_delay_per_poll: float = 1.0, retry_backoff_per_poll: float = 2.0, - estimated_duration: Optional[int] = None, - cancel_endpoint: Optional[ApiEndpoint] = None, + estimated_duration: int | None = None, + cancel_endpoint: ApiEndpoint | None = None, cancel_timeout: float = 10.0, ) -> M: raw = await poll_op_raw( @@ -178,22 +179,22 @@ async def sync_op_raw( cls: type[IO.ComfyNode], endpoint: ApiEndpoint, *, - price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None, - data: Optional[Union[dict[str, Any], BaseModel]] = None, - files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]] = None, + price_extractor: Callable[[dict[str, Any]], float | None] | None = None, + data: dict[str, Any] | BaseModel | None = None, + files: dict[str, Any] | list[tuple[str, Any]] | None = None, content_type: str = "application/json", timeout: float = 3600.0, - multipart_parser: Optional[Callable] = None, + multipart_parser: Callable | None = None, max_retries: int = 3, retry_delay: float = 1.0, retry_backoff: float = 2.0, wait_label: str = "Waiting for server", - estimated_duration: Optional[int] = None, + estimated_duration: int | None = None, as_binary: bool = False, - final_label_on_success: Optional[str] = "Completed", - progress_origin_ts: Optional[float] = None, + final_label_on_success: str | None = "Completed", + progress_origin_ts: float | None = None, monitor_progress: bool = True, -) -> Union[dict[str, Any], bytes]: +) -> dict[str, Any] | bytes: """ Make a single network request. - If as_binary=False (default): returns JSON dict (or {'_raw': ''} if non-JSON). @@ -229,21 +230,21 @@ async def poll_op_raw( cls: type[IO.ComfyNode], poll_endpoint: ApiEndpoint, *, - status_extractor: Callable[[dict[str, Any]], Optional[Union[str, int]]], - progress_extractor: Optional[Callable[[dict[str, Any]], Optional[int]]] = None, - price_extractor: Optional[Callable[[dict[str, Any]], Optional[float]]] = None, - completed_statuses: Optional[list[Union[str, int]]] = None, - failed_statuses: Optional[list[Union[str, int]]] = None, - queued_statuses: Optional[list[Union[str, int]]] = None, - data: Optional[Union[dict[str, Any], BaseModel]] = None, + status_extractor: Callable[[dict[str, Any]], str | int | None], + progress_extractor: Callable[[dict[str, Any]], int | None] | None = None, + price_extractor: Callable[[dict[str, Any]], float | None] | None = None, + completed_statuses: list[str | int] | None = None, + failed_statuses: list[str | int] | None = None, + queued_statuses: list[str | int] | None = None, + data: dict[str, Any] | BaseModel | None = None, poll_interval: float = 5.0, max_poll_attempts: int = 120, timeout_per_poll: float = 120.0, max_retries_per_poll: int = 3, retry_delay_per_poll: float = 1.0, retry_backoff_per_poll: float = 2.0, - estimated_duration: Optional[int] = None, - cancel_endpoint: Optional[ApiEndpoint] = None, + estimated_duration: int | None = None, + cancel_endpoint: ApiEndpoint | None = None, cancel_timeout: float = 10.0, ) -> dict[str, Any]: """ @@ -261,7 +262,7 @@ async def poll_op_raw( consumed_attempts = 0 # counts only non-queued polls progress_bar = utils.ProgressBar(100) if progress_extractor else None - last_progress: Optional[int] = None + last_progress: int | None = None state = _PollUIState(started=started, estimated_duration=estimated_duration) stop_ticker = asyncio.Event() @@ -420,10 +421,10 @@ async def poll_op_raw( def _display_text( node_cls: type[IO.ComfyNode], - text: Optional[str], + text: str | None, *, - status: Optional[Union[str, int]] = None, - price: Optional[float] = None, + status: str | int | None = None, + price: float | None = None, ) -> None: display_lines: list[str] = [] if status: @@ -440,13 +441,13 @@ def _display_text( def _display_time_progress( node_cls: type[IO.ComfyNode], - status: Optional[Union[str, int]], + status: str | int | None, elapsed_seconds: int, - estimated_total: Optional[int] = None, + estimated_total: int | None = None, *, - price: Optional[float] = None, - is_queued: Optional[bool] = None, - processing_elapsed_seconds: Optional[int] = None, + price: float | None = None, + is_queued: bool | None = None, + processing_elapsed_seconds: int | None = None, ) -> None: if estimated_total is not None and estimated_total > 0 and is_queued is False: pe = processing_elapsed_seconds if processing_elapsed_seconds is not None else elapsed_seconds @@ -488,7 +489,7 @@ def _unpack_tuple(t: tuple) -> tuple[str, Any, str]: raise ValueError("files tuple must be (filename, file[, content_type])") -def _merge_params(endpoint_params: dict[str, Any], method: str, data: Optional[dict[str, Any]]) -> dict[str, Any]: +def _merge_params(endpoint_params: dict[str, Any], method: str, data: dict[str, Any] | None) -> dict[str, Any]: params = dict(endpoint_params or {}) if method.upper() == "GET" and data: for k, v in data.items(): @@ -534,9 +535,9 @@ def _generate_operation_id(method: str, path: str, attempt: int) -> str: def _snapshot_request_body_for_logging( content_type: str, method: str, - data: Optional[dict[str, Any]], - files: Optional[Union[dict[str, Any], list[tuple[str, Any]]]], -) -> Optional[Union[dict[str, Any], str]]: + data: dict[str, Any] | None, + files: dict[str, Any] | list[tuple[str, Any]] | None, +) -> dict[str, Any] | str | None: if method.upper() == "GET": return None if content_type == "multipart/form-data": @@ -586,13 +587,13 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool): attempt = 0 delay = cfg.retry_delay operation_succeeded: bool = False - final_elapsed_seconds: Optional[int] = None - extracted_price: Optional[float] = None + final_elapsed_seconds: int | None = None + extracted_price: float | None = None while True: attempt += 1 stop_event = asyncio.Event() - monitor_task: Optional[asyncio.Task] = None - sess: Optional[aiohttp.ClientSession] = None + monitor_task: asyncio.Task | None = None + sess: aiohttp.ClientSession | None = None operation_id = _generate_operation_id(method, cfg.endpoint.path, attempt) logging.debug("[DEBUG] HTTP %s %s (attempt %d)", method, url, attempt) @@ -887,7 +888,7 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool): ) -def _validate_or_raise(response_model: Type[M], payload: Any) -> M: +def _validate_or_raise(response_model: type[M], payload: Any) -> M: try: return response_model.model_validate(payload) except Exception as e: @@ -902,9 +903,9 @@ def _validate_or_raise(response_model: Type[M], payload: Any) -> M: def _wrap_model_extractor( - response_model: Type[M], - extractor: Optional[Callable[[M], Any]], -) -> Optional[Callable[[dict[str, Any]], Any]]: + response_model: type[M], + extractor: Callable[[M], Any] | None, +) -> Callable[[dict[str, Any]], Any] | None: """Wrap a typed extractor so it can be used by the dict-based poller. Validates the dict into `response_model` before invoking `extractor`. Uses a small per-wrapper cache keyed by `id(dict)` to avoid re-validating @@ -929,10 +930,10 @@ def _wrap_model_extractor( return _wrapped -def _normalize_statuses(values: Optional[Iterable[Union[str, int]]]) -> set[Union[str, int]]: +def _normalize_statuses(values: Iterable[str | int] | None) -> set[str | int]: if not values: return set() - out: set[Union[str, int]] = set() + out: set[str | int] = set() for v in values: nv = _normalize_status_value(v) if nv is not None: @@ -940,7 +941,7 @@ def _normalize_statuses(values: Optional[Iterable[Union[str, int]]]) -> set[Unio return out -def _normalize_status_value(val: Union[str, int, None]) -> Union[str, int, None]: +def _normalize_status_value(val: str | int | None) -> str | int | None: if isinstance(val, str): return val.strip().lower() return val diff --git a/comfy_api_nodes/util/conversions.py b/comfy_api_nodes/util/conversions.py index 971dc57de..c57457580 100644 --- a/comfy_api_nodes/util/conversions.py +++ b/comfy_api_nodes/util/conversions.py @@ -4,7 +4,6 @@ import math import mimetypes import uuid from io import BytesIO -from typing import Optional import av import numpy as np @@ -12,8 +11,7 @@ import torch from PIL import Image from comfy.utils import common_upscale -from comfy_api.latest import Input, InputImpl -from comfy_api.util import VideoCodec, VideoContainer +from comfy_api.latest import Input, InputImpl, Types from ._helpers import mimetype_to_extension @@ -57,7 +55,7 @@ def image_tensor_pair_to_batch(image1: torch.Tensor, image2: torch.Tensor) -> to def tensor_to_bytesio( image: torch.Tensor, - name: Optional[str] = None, + name: str | None = None, total_pixels: int = 2048 * 2048, mime_type: str = "image/png", ) -> BytesIO: @@ -177,8 +175,8 @@ def audio_to_base64_string(audio: Input.Audio, container_format: str = "mp4", co def video_to_base64_string( video: Input.Video, - container_format: VideoContainer = None, - codec: VideoCodec = None + container_format: Types.VideoContainer | None = None, + codec: Types.VideoCodec | None = None, ) -> str: """ Converts a video input to a base64 string. @@ -189,12 +187,11 @@ def video_to_base64_string( codec: Optional codec to use (defaults to video.codec if available) """ video_bytes_io = BytesIO() - - # Use provided format/codec if specified, otherwise use video's own if available - format_to_use = container_format if container_format is not None else getattr(video, 'container', VideoContainer.MP4) - codec_to_use = codec if codec is not None else getattr(video, 'codec', VideoCodec.H264) - - video.save_to(video_bytes_io, format=format_to_use, codec=codec_to_use) + video.save_to( + video_bytes_io, + format=container_format or getattr(video, "container", Types.VideoContainer.MP4), + codec=codec or getattr(video, "codec", Types.VideoCodec.H264), + ) video_bytes_io.seek(0) return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8") diff --git a/comfy_api_nodes/util/download_helpers.py b/comfy_api_nodes/util/download_helpers.py index 14207dc68..3e0d0352d 100644 --- a/comfy_api_nodes/util/download_helpers.py +++ b/comfy_api_nodes/util/download_helpers.py @@ -3,15 +3,15 @@ import contextlib import uuid from io import BytesIO from pathlib import Path -from typing import IO, Optional, Union +from typing import IO from urllib.parse import urljoin, urlparse import aiohttp import torch from aiohttp.client_exceptions import ClientError, ContentTypeError -from comfy_api.input_impl import VideoFromFile from comfy_api.latest import IO as COMFY_IO +from comfy_api.latest import InputImpl from . import request_logger from ._helpers import ( @@ -29,9 +29,9 @@ _RETRY_STATUS = {408, 429, 500, 502, 503, 504} async def download_url_to_bytesio( url: str, - dest: Optional[Union[BytesIO, IO[bytes], str, Path]], + dest: BytesIO | IO[bytes] | str | Path | None, *, - timeout: Optional[float] = None, + timeout: float | None = None, max_retries: int = 5, retry_delay: float = 1.0, retry_backoff: float = 2.0, @@ -71,10 +71,10 @@ async def download_url_to_bytesio( is_path_sink = isinstance(dest, (str, Path)) fhandle = None - session: Optional[aiohttp.ClientSession] = None - stop_evt: Optional[asyncio.Event] = None - monitor_task: Optional[asyncio.Task] = None - req_task: Optional[asyncio.Task] = None + session: aiohttp.ClientSession | None = None + stop_evt: asyncio.Event | None = None + monitor_task: asyncio.Task | None = None + req_task: asyncio.Task | None = None try: with contextlib.suppress(Exception): @@ -234,11 +234,11 @@ async def download_url_to_video_output( timeout: float = None, max_retries: int = 5, cls: type[COMFY_IO.ComfyNode] = None, -) -> VideoFromFile: +) -> InputImpl.VideoFromFile: """Downloads a video from a URL and returns a `VIDEO` output.""" result = BytesIO() await download_url_to_bytesio(video_url, result, timeout=timeout, max_retries=max_retries, cls=cls) - return VideoFromFile(result) + return InputImpl.VideoFromFile(result) async def download_url_as_bytesio( diff --git a/comfy_api_nodes/util/request_logger.py b/comfy_api_nodes/util/request_logger.py index ac52e2eab..e0cb4428d 100644 --- a/comfy_api_nodes/util/request_logger.py +++ b/comfy_api_nodes/util/request_logger.py @@ -1,5 +1,3 @@ -from __future__ import annotations - import datetime import hashlib import json diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index 0532bea9a..b8d33f4d1 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -4,15 +4,13 @@ import logging import time import uuid from io import BytesIO -from typing import Optional from urllib.parse import urlparse import aiohttp import torch from pydantic import BaseModel, Field -from comfy_api.latest import IO, Input -from comfy_api.util import VideoCodec, VideoContainer +from comfy_api.latest import IO, Input, Types from . import request_logger from ._helpers import is_processing_interrupted, sleep_with_interrupt @@ -32,7 +30,7 @@ from .conversions import ( class UploadRequest(BaseModel): file_name: str = Field(..., description="Filename to upload") - content_type: Optional[str] = Field( + content_type: str | None = Field( None, description="Mime type of the file. For example: image/png, image/jpeg, video/mp4, etc.", ) @@ -56,7 +54,7 @@ async def upload_images_to_comfyapi( Uploads images to ComfyUI API and returns download URLs. To upload multiple images, stack them in the batch dimension first. """ - # if batch, try to upload each file if max_images is greater than 0 + # if batched, try to upload each file if max_images is greater than 0 download_urls: list[str] = [] is_batch = len(image.shape) > 3 batch_len = image.shape[0] if is_batch else 1 @@ -100,9 +98,9 @@ async def upload_video_to_comfyapi( cls: type[IO.ComfyNode], video: Input.Video, *, - container: VideoContainer = VideoContainer.MP4, - codec: VideoCodec = VideoCodec.H264, - max_duration: Optional[int] = None, + container: Types.VideoContainer = Types.VideoContainer.MP4, + codec: Types.VideoCodec = Types.VideoCodec.H264, + max_duration: int | None = None, wait_label: str | None = "Uploading", ) -> str: """ @@ -220,7 +218,7 @@ async def upload_file( return monitor_task = asyncio.create_task(_monitor()) - sess: Optional[aiohttp.ClientSession] = None + sess: aiohttp.ClientSession | None = None try: try: request_logger.log_request_response( diff --git a/comfy_api_nodes/util/validation_utils.py b/comfy_api_nodes/util/validation_utils.py index ec7006aed..f01edea96 100644 --- a/comfy_api_nodes/util/validation_utils.py +++ b/comfy_api_nodes/util/validation_utils.py @@ -1,9 +1,7 @@ import logging -from typing import Optional import torch -from comfy_api.input.video_types import VideoInput from comfy_api.latest import Input @@ -18,10 +16,10 @@ def get_image_dimensions(image: torch.Tensor) -> tuple[int, int]: def validate_image_dimensions( image: torch.Tensor, - min_width: Optional[int] = None, - max_width: Optional[int] = None, - min_height: Optional[int] = None, - max_height: Optional[int] = None, + min_width: int | None = None, + max_width: int | None = None, + min_height: int | None = None, + max_height: int | None = None, ): height, width = get_image_dimensions(image) @@ -37,8 +35,8 @@ def validate_image_dimensions( def validate_image_aspect_ratio( image: torch.Tensor, - min_ratio: Optional[tuple[float, float]] = None, # e.g. (1, 4) - max_ratio: Optional[tuple[float, float]] = None, # e.g. (4, 1) + min_ratio: tuple[float, float] | None = None, # e.g. (1, 4) + max_ratio: tuple[float, float] | None = None, # e.g. (4, 1) *, strict: bool = True, # True -> (min, max); False -> [min, max] ) -> float: @@ -54,8 +52,8 @@ def validate_image_aspect_ratio( def validate_images_aspect_ratio_closeness( first_image: torch.Tensor, second_image: torch.Tensor, - min_rel: float, # e.g. 0.8 - max_rel: float, # e.g. 1.25 + min_rel: float, # e.g. 0.8 + max_rel: float, # e.g. 1.25 *, strict: bool = False, # True -> (min, max); False -> [min, max] ) -> float: @@ -84,8 +82,8 @@ def validate_images_aspect_ratio_closeness( def validate_aspect_ratio_string( aspect_ratio: str, - min_ratio: Optional[tuple[float, float]] = None, # e.g. (1, 4) - max_ratio: Optional[tuple[float, float]] = None, # e.g. (4, 1) + min_ratio: tuple[float, float] | None = None, # e.g. (1, 4) + max_ratio: tuple[float, float] | None = None, # e.g. (4, 1) *, strict: bool = False, # True -> (min, max); False -> [min, max] ) -> float: @@ -97,10 +95,10 @@ def validate_aspect_ratio_string( def validate_video_dimensions( video: Input.Video, - min_width: Optional[int] = None, - max_width: Optional[int] = None, - min_height: Optional[int] = None, - max_height: Optional[int] = None, + min_width: int | None = None, + max_width: int | None = None, + min_height: int | None = None, + max_height: int | None = None, ): try: width, height = video.get_dimensions() @@ -120,8 +118,8 @@ def validate_video_dimensions( def validate_video_duration( video: Input.Video, - min_duration: Optional[float] = None, - max_duration: Optional[float] = None, + min_duration: float | None = None, + max_duration: float | None = None, ): try: duration = video.get_duration() @@ -136,6 +134,23 @@ def validate_video_duration( raise ValueError(f"Video duration must be at most {max_duration}s, got {duration}s") +def validate_video_frame_count( + video: Input.Video, + min_frame_count: int | None = None, + max_frame_count: int | None = None, +): + try: + frame_count = video.get_frame_count() + except Exception as e: + logging.error("Error getting frame count of video: %s", e) + return + + if min_frame_count is not None and min_frame_count > frame_count: + raise ValueError(f"Video frame count must be at least {min_frame_count}, got {frame_count}") + if max_frame_count is not None and frame_count > max_frame_count: + raise ValueError(f"Video frame count must be at most {max_frame_count}, got {frame_count}") + + def get_number_of_images(images): if isinstance(images, torch.Tensor): return images.shape[0] if images.ndim >= 4 else 1 @@ -144,8 +159,8 @@ def get_number_of_images(images): def validate_audio_duration( audio: Input.Audio, - min_duration: Optional[float] = None, - max_duration: Optional[float] = None, + min_duration: float | None = None, + max_duration: float | None = None, ) -> None: sr = int(audio["sample_rate"]) dur = int(audio["waveform"].shape[-1]) / sr @@ -177,7 +192,7 @@ def validate_string( ) -def validate_container_format_is_mp4(video: VideoInput) -> None: +def validate_container_format_is_mp4(video: Input.Video) -> None: """Validates video container format is MP4.""" container_format = video.get_container_format() if container_format not in ["mp4", "mov,mp4,m4a,3gp,3g2,mj2"]: @@ -194,8 +209,8 @@ def _ratio_from_tuple(r: tuple[float, float]) -> float: def _assert_ratio_bounds( ar: float, *, - min_ratio: Optional[tuple[float, float]] = None, - max_ratio: Optional[tuple[float, float]] = None, + min_ratio: tuple[float, float] | None = None, + max_ratio: tuple[float, float] | None = None, strict: bool = True, ) -> None: """Validate a numeric aspect ratio against optional min/max ratio bounds.""" From 35fa091340c60612dfb71cb6822dc23b99a5dac2 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 4 Dec 2025 19:52:09 -0800 Subject: [PATCH 107/271] Forgot to put this in README. (#11112) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 91fb510e1..ed857df9f 100644 --- a/README.md +++ b/README.md @@ -81,6 +81,7 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith - [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/) - [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/) - [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/) + - [Hunyuan Video 1.5](https://docs.comfy.org/tutorials/video/hunyuan/hunyuan-video-1-5) - Audio Models - [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/) - [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/) From 0ec05b1481d12b299bc945dbd407b773cfb66483 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Fri, 5 Dec 2025 11:05:38 -0800 Subject: [PATCH 108/271] Remove line made unnecessary (and wrong) after transformer_options was added to NextDiT's _forward definition (#11118) --- comfy/ldm/lumina/model.py | 1 - 1 file changed, 1 deletion(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index f1c1a0ec3..6c24fed9b 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -586,7 +586,6 @@ class NextDiT(nn.Module): cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute patches = transformer_options.get("patches", {}) - transformer_options = kwargs.get("transformer_options", {}) x_is_tensor = isinstance(x, torch.Tensor) img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options) freqs_cis = freqs_cis.to(img.device) From 43071e3de3780f984a46549e90935a0bf405e9df Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 5 Dec 2025 11:35:42 -0800 Subject: [PATCH 109/271] Make old scaled fp8 format use the new mixed quant ops system. (#11000) --- comfy/model_base.py | 14 +- comfy/model_detection.py | 33 +--- comfy/model_patcher.py | 20 +-- comfy/ops.py | 145 +++++++----------- comfy/quant_ops.py | 30 ++-- comfy/sd.py | 68 ++++++-- comfy/sd1_clip.py | 22 +-- comfy/supported_models_base.py | 3 +- comfy/text_encoders/cosmos.py | 12 +- comfy/text_encoders/flux.py | 12 +- comfy/text_encoders/genmo.py | 6 +- comfy/text_encoders/hidream.py | 10 +- comfy/text_encoders/hunyuan_image.py | 12 +- comfy/text_encoders/hunyuan_video.py | 23 ++- comfy/text_encoders/lumina2.py | 6 +- comfy/text_encoders/omnigen2.py | 6 +- comfy/text_encoders/ovis.py | 5 +- comfy/text_encoders/pixart_t5.py | 6 +- comfy/text_encoders/qwen_image.py | 6 +- comfy/text_encoders/sd3_clip.py | 19 +-- comfy/text_encoders/wan.py | 6 +- comfy/text_encoders/z_image.py | 5 +- comfy/utils.py | 66 ++++++++ .../comfy_quant/test_mixed_precision.py | 18 ++- 24 files changed, 278 insertions(+), 275 deletions(-) diff --git a/comfy/model_base.py b/comfy/model_base.py index 9b76c285e..3cedd4f31 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -134,7 +134,7 @@ class BaseModel(torch.nn.Module): if not unet_config.get("disable_unet_model_creation", False): if model_config.custom_operations is None: fp8 = model_config.optimizations.get("fp8", False) - operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8, model_config=model_config) + operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, model_config=model_config) else: operations = model_config.custom_operations self.diffusion_model = unet_model(**unet_config, device=device, operations=operations) @@ -329,18 +329,6 @@ class BaseModel(torch.nn.Module): extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict)) unet_state_dict = self.diffusion_model.state_dict() - - if self.model_config.scaled_fp8 is not None: - unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8) - - # Save mixed precision metadata - if hasattr(self.model_config, 'layer_quant_config') and self.model_config.layer_quant_config: - metadata = { - "format_version": "1.0", - "layers": self.model_config.layer_quant_config - } - unet_state_dict["_quantization_metadata"] = metadata - unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) if self.model_type == ModelType.V_PREDICTION: diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 7d0517e61..fd1907627 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -6,20 +6,6 @@ import math import logging import torch - -def detect_layer_quantization(metadata): - quant_key = "_quantization_metadata" - if metadata is not None and quant_key in metadata: - quant_metadata = metadata.pop(quant_key) - quant_metadata = json.loads(quant_metadata) - if isinstance(quant_metadata, dict) and "layers" in quant_metadata: - logging.info(f"Found quantization metadata (version {quant_metadata.get('format_version', 'unknown')})") - return quant_metadata["layers"] - else: - raise ValueError("Invalid quantization metadata format") - return None - - def count_blocks(state_dict_keys, prefix_string): count = 0 while True: @@ -767,22 +753,11 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal if model_config is None and use_base_if_no_match: model_config = comfy.supported_models_base.BASE(unet_config) - scaled_fp8_key = "{}scaled_fp8".format(unet_key_prefix) - if scaled_fp8_key in state_dict: - scaled_fp8_weight = state_dict.pop(scaled_fp8_key) - model_config.scaled_fp8 = scaled_fp8_weight.dtype - if model_config.scaled_fp8 == torch.float32: - model_config.scaled_fp8 = torch.float8_e4m3fn - if scaled_fp8_weight.nelement() == 2: - model_config.optimizations["fp8"] = False - else: - model_config.optimizations["fp8"] = True - # Detect per-layer quantization (mixed precision) - layer_quant_config = detect_layer_quantization(metadata) - if layer_quant_config: - model_config.layer_quant_config = layer_quant_config - logging.info(f"Detected mixed precision quantization: {len(layer_quant_config)} layers quantized") + quant_config = comfy.utils.detect_layer_quantization(state_dict, unet_key_prefix) + if quant_config: + model_config.quant_config = quant_config + logging.info("Detected mixed precision quantization") return model_config diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 3dcac3eef..215784874 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -126,27 +126,11 @@ class LowVramPatch: def __init__(self, key, patches, convert_func=None, set_func=None): self.key = key self.patches = patches - self.convert_func = convert_func + self.convert_func = convert_func # TODO: remove self.set_func = set_func def __call__(self, weight): - intermediate_dtype = weight.dtype - if self.convert_func is not None: - weight = self.convert_func(weight, inplace=False) - - if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops - intermediate_dtype = torch.float32 - out = comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype) - if self.set_func is None: - return comfy.float.stochastic_rounding(out, weight.dtype, seed=string_to_seed(self.key)) - else: - return self.set_func(out, seed=string_to_seed(self.key), return_weight=True) - - out = comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype) - if self.set_func is not None: - return self.set_func(out, seed=string_to_seed(self.key), return_weight=True).to(dtype=intermediate_dtype) - else: - return out + return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=weight.dtype) #The above patch logic may cast up the weight to fp32, and do math. Go with fp32 x 3 LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 3 diff --git a/comfy/ops.py b/comfy/ops.py index eae434e68..dc06709a1 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -23,6 +23,7 @@ from comfy.cli_args import args, PerformanceFeature import comfy.float import comfy.rmsnorm import contextlib +import json def run_every_op(): if torch.compiler.is_compiling(): @@ -422,22 +423,12 @@ def fp8_linear(self, input): if input.ndim == 3 or input.ndim == 2: w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True) + scale_weight = torch.ones((), device=input.device, dtype=torch.float32) - scale_weight = self.scale_weight - scale_input = self.scale_input - if scale_weight is None: - scale_weight = torch.ones((), device=input.device, dtype=torch.float32) - else: - scale_weight = scale_weight.to(input.device) - - if scale_input is None: - scale_input = torch.ones((), device=input.device, dtype=torch.float32) - input = torch.clamp(input, min=-448, max=448, out=input) - layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype} - quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight) - else: - scale_input = scale_input.to(input.device) - quantized_input = QuantizedTensor.from_float(input, "TensorCoreFP8Layout", scale=scale_input, dtype=dtype) + scale_input = torch.ones((), device=input.device, dtype=torch.float32) + input = torch.clamp(input, min=-448, max=448, out=input) + layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype} + quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight) # Wrap weight in QuantizedTensor - this enables unified dispatch # Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py! @@ -458,7 +449,7 @@ class fp8_ops(manual_cast): return None def forward_comfy_cast_weights(self, input): - if not self.training: + if len(self.weight_function) == 0 and len(self.bias_function) == 0: try: out = fp8_linear(self, input) if out is not None: @@ -471,59 +462,6 @@ class fp8_ops(manual_cast): uncast_bias_weight(self, weight, bias, offload_stream) return x -def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None): - logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input)) - class scaled_fp8_op(manual_cast): - class Linear(manual_cast.Linear): - def __init__(self, *args, **kwargs): - if override_dtype is not None: - kwargs['dtype'] = override_dtype - super().__init__(*args, **kwargs) - - def reset_parameters(self): - if not hasattr(self, 'scale_weight'): - self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) - - if not scale_input: - self.scale_input = None - - if not hasattr(self, 'scale_input'): - self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False) - return None - - def forward_comfy_cast_weights(self, input): - if fp8_matrix_mult: - out = fp8_linear(self, input) - if out is not None: - return out - - weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True) - - if weight.numel() < input.numel(): #TODO: optimize - x = torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias) - else: - x = torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias) - uncast_bias_weight(self, weight, bias, offload_stream) - return x - - def convert_weight(self, weight, inplace=False, **kwargs): - if inplace: - weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype) - return weight - else: - return weight.to(dtype=torch.float32) * self.scale_weight.to(device=weight.device, dtype=torch.float32) - - def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): - weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed) - if return_weight: - return weight - if inplace_update: - self.weight.data.copy_(weight) - else: - self.weight = torch.nn.Parameter(weight, requires_grad=False) - - return scaled_fp8_op - CUBLAS_IS_AVAILABLE = False try: from cublas_ops import CublasLinear @@ -550,9 +488,9 @@ if CUBLAS_IS_AVAILABLE: from .quant_ops import QuantizedTensor, QUANT_ALGOS -def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False): +def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False): class MixedPrecisionOps(manual_cast): - _layer_quant_config = layer_quant_config + _quant_config = quant_config _compute_dtype = compute_dtype _full_precision_mm = full_precision_mm @@ -595,27 +533,36 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful manually_loaded_keys = [weight_key] - if layer_name not in MixedPrecisionOps._layer_quant_config: + layer_conf = state_dict.pop(f"{prefix}comfy_quant", None) + if layer_conf is not None: + layer_conf = json.loads(layer_conf.numpy().tobytes()) + + if layer_conf is None: self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False) else: - quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None) - if quant_format is None: + self.quant_format = layer_conf.get("format", None) + if not self._full_precision_mm: + self._full_precision_mm = layer_conf.get("full_precision_matrix_mult", False) + + if self.quant_format is None: raise ValueError(f"Unknown quantization format for layer {layer_name}") - qconfig = QUANT_ALGOS[quant_format] + qconfig = QUANT_ALGOS[self.quant_format] self.layout_type = qconfig["comfy_tensor_layout"] weight_scale_key = f"{prefix}weight_scale" + scale = state_dict.pop(weight_scale_key, None) layout_params = { - 'scale': state_dict.pop(weight_scale_key, None), + 'scale': scale, 'orig_dtype': MixedPrecisionOps._compute_dtype, 'block_size': qconfig.get("group_size", None), } - if layout_params['scale'] is not None: + + if scale is not None: manually_loaded_keys.append(weight_scale_key) self.weight = torch.nn.Parameter( - QuantizedTensor(weight.to(device=device), self.layout_type, layout_params), + QuantizedTensor(weight.to(device=device, dtype=qconfig.get("storage_t", None)), self.layout_type, layout_params), requires_grad=False ) @@ -624,7 +571,7 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful _v = state_dict.pop(param_key, None) if _v is None: continue - setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False)) + self.register_parameter(param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False)) manually_loaded_keys.append(param_key) super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) @@ -633,6 +580,16 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful if key in missing_keys: missing_keys.remove(key) + def state_dict(self, *args, destination=None, prefix="", **kwargs): + sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs) + if isinstance(self.weight, QuantizedTensor): + sd["{}weight_scale".format(prefix)] = self.weight._layout_params['scale'] + quant_conf = {"format": self.quant_format} + if self._full_precision_mm: + quant_conf["full_precision_matrix_mult"] = True + sd["{}comfy_quant".format(prefix)] = torch.frombuffer(json.dumps(quant_conf).encode('utf-8'), dtype=torch.uint8) + return sd + def _forward(self, input, weight, bias): return torch.nn.functional.linear(input, weight, bias) @@ -648,9 +605,8 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(input, *args, **kwargs) if (getattr(self, 'layout_type', None) is not None and - getattr(self, 'input_scale', None) is not None and not isinstance(input, QuantizedTensor)): - input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, dtype=self.weight.dtype) + input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None), dtype=self.weight.dtype) return self._forward(input, self.weight, self.bias) def convert_weight(self, weight, inplace=False, **kwargs): @@ -661,7 +617,7 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): if getattr(self, 'layout_type', None) is not None: - weight = QuantizedTensor.from_float(weight, self.layout_type, scale=None, dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True) + weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True) else: weight = weight.to(self.weight.dtype) if return_weight: @@ -670,17 +626,28 @@ def mixed_precision_ops(layer_quant_config={}, compute_dtype=torch.bfloat16, ful assert inplace_update is False # TODO: eventually remove the inplace_update stuff self.weight = torch.nn.Parameter(weight, requires_grad=False) + def _apply(self, fn, recurse=True): # This is to get torch.compile + moving weights to another device working + if recurse: + for module in self.children(): + module._apply(fn) + + for key, param in self._parameters.items(): + if param is None: + continue + self.register_parameter(key, torch.nn.Parameter(fn(param), requires_grad=False)) + for key, buf in self._buffers.items(): + if buf is not None: + self._buffers[key] = fn(buf) + return self + return MixedPrecisionOps -def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None): +def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, model_config=None): fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular - if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config: - logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers") - return mixed_precision_ops(model_config.layer_quant_config, compute_dtype, full_precision_mm=not fp8_compute) - - if scaled_fp8 is not None: - return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8) + if model_config and hasattr(model_config, 'quant_config') and model_config.quant_config: + logging.info("Using mixed precision operations") + return mixed_precision_ops(model_config.quant_config, compute_dtype, full_precision_mm=not fp8_compute) if ( fp8_compute and diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index bb1fb860c..571d3f760 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -238,6 +238,9 @@ class QuantizedTensor(torch.Tensor): def is_contiguous(self, *arg, **kwargs): return self._qdata.is_contiguous(*arg, **kwargs) + def storage(self): + return self._qdata.storage() + # ============================================================================== # Generic Utilities (Layout-Agnostic Operations) # ============================================================================== @@ -249,12 +252,6 @@ def _create_transformed_qtensor(qt, transform_fn): def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"): - if target_dtype is not None and target_dtype != qt.dtype: - logging.warning( - f"QuantizedTensor: dtype conversion requested to {target_dtype}, " - f"but not supported for quantized tensors. Ignoring dtype." - ) - if target_layout is not None and target_layout != torch.strided: logging.warning( f"QuantizedTensor: layout change requested to {target_layout}, " @@ -274,6 +271,8 @@ def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout= logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}") new_q_data = qt._qdata.to(device=target_device) new_params = _move_layout_params_to_device(qt._layout_params, target_device) + if target_dtype is not None: + new_params["orig_dtype"] = target_dtype new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params) logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}") return new_qt @@ -339,7 +338,9 @@ def generic_copy_(func, args, kwargs): # Copy from another quantized tensor qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking) qt_dest._layout_type = src._layout_type + orig_dtype = qt_dest._layout_params["orig_dtype"] _copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking) + qt_dest._layout_params["orig_dtype"] = orig_dtype else: # Copy from regular tensor - just copy raw data qt_dest._qdata.copy_(src) @@ -397,17 +398,20 @@ class TensorCoreFP8Layout(QuantizedLayout): def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn, stochastic_rounding=0, inplace_ops=False): orig_dtype = tensor.dtype - if scale is None: + if isinstance(scale, str) and scale == "recalculate": scale = torch.amax(tensor.abs()) / torch.finfo(dtype).max - if not isinstance(scale, torch.Tensor): - scale = torch.tensor(scale) - scale = scale.to(device=tensor.device, dtype=torch.float32) + if scale is not None: + if not isinstance(scale, torch.Tensor): + scale = torch.tensor(scale) + scale = scale.to(device=tensor.device, dtype=torch.float32) - if inplace_ops: - tensor *= (1.0 / scale).to(tensor.dtype) + if inplace_ops: + tensor *= (1.0 / scale).to(tensor.dtype) + else: + tensor = tensor * (1.0 / scale).to(tensor.dtype) else: - tensor = tensor * (1.0 / scale).to(tensor.dtype) + scale = torch.ones((), device=tensor.device, dtype=torch.float32) if stochastic_rounding > 0: tensor = comfy.float.stochastic_rounding(tensor, dtype=dtype, seed=stochastic_rounding) diff --git a/comfy/sd.py b/comfy/sd.py index 03bdb33d5..092715d79 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -968,10 +968,8 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI clip_data = [] for p in ckpt_paths: sd, metadata = comfy.utils.load_torch_file(p, safe_load=True, return_metadata=True) - if metadata is not None: - quant_metadata = metadata.get("_quantization_metadata", None) - if quant_metadata is not None: - sd["_quantization_metadata"] = quant_metadata + if model_options.get("custom_operations", None) is None: + sd, metadata = comfy.utils.convert_old_quants(sd, model_prefix="", metadata=metadata) clip_data.append(sd) return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options) @@ -1088,7 +1086,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False) clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer elif clip_type == CLIPType.HIDREAM: - clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None) + clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer else: clip_target.clip = sdxl_clip.SDXLRefinerClipModel @@ -1112,7 +1110,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) elif clip_type == CLIPType.HIDREAM: clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data), - clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None) + clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer else: #CLIPType.MOCHI clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data)) @@ -1141,7 +1139,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) elif te_model == TEModel.LLAMA3_8: clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data), - clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None) + clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer elif te_model == TEModel.QWEN25_3B: clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data)) @@ -1169,7 +1167,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False) clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer elif clip_type == CLIPType.HIDREAM: - clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None) + clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None) clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer else: clip_target.clip = sd1_clip.SD1ClipModel @@ -1224,8 +1222,6 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip parameters = 0 for c in clip_data: - if "_quantization_metadata" in c: - c.pop("_quantization_metadata") parameters += comfy.utils.calculate_parameters(c) tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options) @@ -1295,6 +1291,10 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix) load_device = model_management.get_torch_device() + custom_operations = model_options.get("custom_operations", None) + if custom_operations is None: + sd, metadata = comfy.utils.convert_old_quants(sd, diffusion_model_prefix, metadata=metadata) + model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata) if model_config is None: logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.") @@ -1303,18 +1303,22 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c return None return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used' - unet_weight_dtype = list(model_config.supported_inference_dtypes) - if model_config.scaled_fp8 is not None: + if model_config.quant_config is not None: weight_dtype = None - model_config.custom_operations = model_options.get("custom_operations", None) + if custom_operations is not None: + model_config.custom_operations = custom_operations + unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None)) if unet_dtype is None: unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype) - manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) + if model_config.quant_config is not None: + manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes) + else: + manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) if model_config.clip_vision_prefix is not None: @@ -1332,6 +1336,27 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c vae = VAE(sd=vae_sd, metadata=metadata) if output_clip: + if te_model_options.get("custom_operations", None) is None: + scaled_fp8_list = [] + for k in list(sd.keys()): # Convert scaled fp8 to mixed ops + if k.endswith(".scaled_fp8"): + scaled_fp8_list.append(k[:-len("scaled_fp8")]) + + if len(scaled_fp8_list) > 0: + out_sd = {} + for k in sd: + skip = False + for pref in scaled_fp8_list: + skip = skip or k.startswith(pref) + if not skip: + out_sd[k] = sd[k] + + for pref in scaled_fp8_list: + quant_sd, qmetadata = comfy.utils.convert_old_quants(sd, pref, metadata={}) + for k in quant_sd: + out_sd[k] = quant_sd[k] + sd = out_sd + clip_target = model_config.clip_target(state_dict=sd) if clip_target is not None: clip_sd = model_config.process_clip_state_dict(sd) @@ -1394,6 +1419,9 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None): if len(temp_sd) > 0: sd = temp_sd + custom_operations = model_options.get("custom_operations", None) + if custom_operations is None: + sd, metadata = comfy.utils.convert_old_quants(sd, "", metadata=metadata) parameters = comfy.utils.calculate_parameters(sd) weight_dtype = comfy.utils.weight_dtype(sd) @@ -1424,7 +1452,7 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None): offload_device = model_management.unet_offload_device() unet_weight_dtype = list(model_config.supported_inference_dtypes) - if model_config.scaled_fp8 is not None: + if model_config.quant_config is not None: weight_dtype = None if dtype is None: @@ -1432,12 +1460,15 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None): else: unet_dtype = dtype - if model_config.layer_quant_config is not None: + if model_config.quant_config is not None: manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes) else: manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) - model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations) + + if custom_operations is not None: + model_config.custom_operations = custom_operations + if model_options.get("fp8_optimizations", False): model_config.optimizations["fp8"] = True @@ -1476,6 +1507,9 @@ def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, m if vae is not None: vae_sd = vae.get_sd() + if metadata is None: + metadata = {} + model_management.load_models_gpu(load_models, force_patch_weights=True) clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd) diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index 503a51843..962948dae 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -107,29 +107,17 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): config[k] = v operations = model_options.get("custom_operations", None) - scaled_fp8 = None - quantization_metadata = model_options.get("quantization_metadata", None) + quant_config = model_options.get("quantization_metadata", None) if operations is None: - layer_quant_config = None - if quantization_metadata is not None: - layer_quant_config = json.loads(quantization_metadata).get("layers", None) - - if layer_quant_config is not None: - operations = comfy.ops.mixed_precision_ops(layer_quant_config, dtype, full_precision_mm=True) - logging.info(f"Using MixedPrecisionOps for text encoder: {len(layer_quant_config)} quantized layers") + if quant_config is not None: + operations = comfy.ops.mixed_precision_ops(quant_config, dtype, full_precision_mm=True) + logging.info("Using MixedPrecisionOps for text encoder") else: - # Fallback to scaled_fp8_ops for backward compatibility - scaled_fp8 = model_options.get("scaled_fp8", None) - if scaled_fp8 is not None: - operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8) - else: - operations = comfy.ops.manual_cast + operations = comfy.ops.manual_cast self.operations = operations self.transformer = model_class(config, dtype, device, self.operations) - if scaled_fp8 is not None: - self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8)) self.num_layers = self.transformer.num_layers diff --git a/comfy/supported_models_base.py b/comfy/supported_models_base.py index e4bd74514..9fd84d329 100644 --- a/comfy/supported_models_base.py +++ b/comfy/supported_models_base.py @@ -49,8 +49,7 @@ class BASE: manual_cast_dtype = None custom_operations = None - scaled_fp8 = None - layer_quant_config = None # Per-layer quantization configuration for mixed precision + quant_config = None # quantization configuration for mixed precision optimizations = {"fp8": False} @classmethod diff --git a/comfy/text_encoders/cosmos.py b/comfy/text_encoders/cosmos.py index a1adb5242..448381fa9 100644 --- a/comfy/text_encoders/cosmos.py +++ b/comfy/text_encoders/cosmos.py @@ -7,10 +7,10 @@ from transformers import T5TokenizerFast class T5XXLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_old_config_xxl.json") - t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None) - if t5xxl_scaled_fp8 is not None: + t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None) + if t5xxl_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = t5xxl_scaled_fp8 + model_options["quantization_metadata"] = t5xxl_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, zero_out_masked=attention_mask, model_options=model_options) @@ -30,12 +30,12 @@ class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) -def te(dtype_t5=None, t5xxl_scaled_fp8=None): +def te(dtype_t5=None, t5_quantization_metadata=None): class CosmosTEModel_(CosmosT5XXL): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py index 99f4812bb..21d93d757 100644 --- a/comfy/text_encoders/flux.py +++ b/comfy/text_encoders/flux.py @@ -63,12 +63,12 @@ class FluxClipModel(torch.nn.Module): else: return self.t5xxl.load_sd(sd) -def flux_clip(dtype_t5=None, t5xxl_scaled_fp8=None): +def flux_clip(dtype_t5=None, t5_quantization_metadata=None): class FluxClipModel_(FluxClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata super().__init__(dtype_t5=dtype_t5, device=device, dtype=dtype, model_options=model_options) return FluxClipModel_ @@ -159,15 +159,13 @@ class Flux2TEModel(sd1_clip.SD1ClipModel): out = out.reshape(out.shape[0], out.shape[1], -1) return out, pooled, extra -def flux2_te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None, pruned=False): +def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False): class Flux2TEModel_(Flux2TEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: - model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 if dtype_llama is not None: dtype = dtype_llama if llama_quantization_metadata is not None: + model_options = model_options.copy() model_options["quantization_metadata"] = llama_quantization_metadata if pruned: model_options = model_options.copy() diff --git a/comfy/text_encoders/genmo.py b/comfy/text_encoders/genmo.py index 9dcf190a2..5daea8135 100644 --- a/comfy/text_encoders/genmo.py +++ b/comfy/text_encoders/genmo.py @@ -26,12 +26,12 @@ class MochiT5Tokenizer(sd1_clip.SD1Tokenizer): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) -def mochi_te(dtype_t5=None, t5xxl_scaled_fp8=None): +def mochi_te(dtype_t5=None, t5_quantization_metadata=None): class MochiTEModel_(MochiT5XXL): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/hidream.py b/comfy/text_encoders/hidream.py index dbcf52784..600b34480 100644 --- a/comfy/text_encoders/hidream.py +++ b/comfy/text_encoders/hidream.py @@ -142,14 +142,14 @@ class HiDreamTEModel(torch.nn.Module): return self.llama.load_sd(sd) -def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None): +def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5_quantization_metadata=None, llama_quantization_metadata=None): class HiDreamTEModel_(HiDreamTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 - if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["llama_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options) return HiDreamTEModel_ diff --git a/comfy/text_encoders/hunyuan_image.py b/comfy/text_encoders/hunyuan_image.py index ff04726e1..cd198036c 100644 --- a/comfy/text_encoders/hunyuan_image.py +++ b/comfy/text_encoders/hunyuan_image.py @@ -40,10 +40,10 @@ class HunyuanImageTokenizer(QwenImageTokenizer): class Qwen25_7BVLIModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}): - llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None) - if llama_scaled_fp8 is not None: + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) @@ -91,12 +91,12 @@ class HunyuanImageTEModel(QwenImageTEModel): else: return super().load_sd(sd) -def te(byt5=True, dtype_llama=None, llama_scaled_fp8=None): +def te(byt5=True, dtype_llama=None, llama_quantization_metadata=None): class QwenImageTEModel_(HunyuanImageTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["qwen_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(byt5=byt5, device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/hunyuan_video.py b/comfy/text_encoders/hunyuan_video.py index 0110517bb..a9a6c525e 100644 --- a/comfy/text_encoders/hunyuan_video.py +++ b/comfy/text_encoders/hunyuan_video.py @@ -6,7 +6,7 @@ from transformers import LlamaTokenizerFast import torch import os import numbers - +import comfy.utils def llama_detect(state_dict, prefix=""): out = {} @@ -14,12 +14,9 @@ def llama_detect(state_dict, prefix=""): if t5_key in state_dict: out["dtype_llama"] = state_dict[t5_key].dtype - scaled_fp8_key = "{}scaled_fp8".format(prefix) - if scaled_fp8_key in state_dict: - out["llama_scaled_fp8"] = state_dict[scaled_fp8_key].dtype - - if "_quantization_metadata" in state_dict: - out["llama_quantization_metadata"] = state_dict["_quantization_metadata"] + quant = comfy.utils.detect_layer_quantization(state_dict, prefix) + if quant is not None: + out["llama_quantization_metadata"] = quant return out @@ -31,10 +28,10 @@ class LLAMA3Tokenizer(sd1_clip.SDTokenizer): class LLAMAModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}): - llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None) - if llama_scaled_fp8 is not None: + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata textmodel_json_config = {} vocab_size = model_options.get("vocab_size", None) @@ -161,11 +158,11 @@ class HunyuanVideoClipModel(torch.nn.Module): return self.llama.load_sd(sd) -def hunyuan_video_clip(dtype_llama=None, llama_scaled_fp8=None): +def hunyuan_video_clip(dtype_llama=None, llama_quantization_metadata=None): class HunyuanVideoClipModel_(HunyuanVideoClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["llama_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options) return HunyuanVideoClipModel_ diff --git a/comfy/text_encoders/lumina2.py b/comfy/text_encoders/lumina2.py index fd986e2c1..7a6cfdab2 100644 --- a/comfy/text_encoders/lumina2.py +++ b/comfy/text_encoders/lumina2.py @@ -40,7 +40,7 @@ class LuminaModel(sd1_clip.SD1ClipModel): super().__init__(device=device, dtype=dtype, name=name, clip_model=clip_model, model_options=model_options) -def te(dtype_llama=None, llama_scaled_fp8=None, model_type="gemma2_2b"): +def te(dtype_llama=None, llama_quantization_metadata=None, model_type="gemma2_2b"): if model_type == "gemma2_2b": model = Gemma2_2BModel elif model_type == "gemma3_4b": @@ -48,9 +48,9 @@ def te(dtype_llama=None, llama_scaled_fp8=None, model_type="gemma2_2b"): class LuminaTEModel_(LuminaModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(device=device, dtype=dtype, name=model_type, model_options=model_options, clip_model=model) diff --git a/comfy/text_encoders/omnigen2.py b/comfy/text_encoders/omnigen2.py index 1a01b2dd4..50aa4121f 100644 --- a/comfy/text_encoders/omnigen2.py +++ b/comfy/text_encoders/omnigen2.py @@ -32,12 +32,12 @@ class Omnigen2Model(sd1_clip.SD1ClipModel): super().__init__(device=device, dtype=dtype, name="qwen25_3b", clip_model=Qwen25_3BModel, model_options=model_options) -def te(dtype_llama=None, llama_scaled_fp8=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class Omnigen2TEModel_(Omnigen2Model): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/ovis.py b/comfy/text_encoders/ovis.py index 81c9bd51c..5754424d2 100644 --- a/comfy/text_encoders/ovis.py +++ b/comfy/text_encoders/ovis.py @@ -55,12 +55,9 @@ class OvisTEModel(sd1_clip.SD1ClipModel): return out, pooled, {} -def te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class OvisTEModel_(OvisTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: - model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 if dtype_llama is not None: dtype = dtype_llama if llama_quantization_metadata is not None: diff --git a/comfy/text_encoders/pixart_t5.py b/comfy/text_encoders/pixart_t5.py index 5f383de07..e5e5f18be 100644 --- a/comfy/text_encoders/pixart_t5.py +++ b/comfy/text_encoders/pixart_t5.py @@ -30,12 +30,12 @@ class PixArtTokenizer(sd1_clip.SD1Tokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) -def pixart_te(dtype_t5=None, t5xxl_scaled_fp8=None): +def pixart_te(dtype_t5=None, t5_quantization_metadata=None): class PixArtTEModel_(PixArtT5XXL): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/qwen_image.py b/comfy/text_encoders/qwen_image.py index c0d32a6ef..5c14dec23 100644 --- a/comfy/text_encoders/qwen_image.py +++ b/comfy/text_encoders/qwen_image.py @@ -85,12 +85,12 @@ class QwenImageTEModel(sd1_clip.SD1ClipModel): return out, pooled, extra -def te(dtype_llama=None, llama_scaled_fp8=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class QwenImageTEModel_(QwenImageTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/sd3_clip.py b/comfy/text_encoders/sd3_clip.py index ff5d412db..8b153c72b 100644 --- a/comfy/text_encoders/sd3_clip.py +++ b/comfy/text_encoders/sd3_clip.py @@ -6,14 +6,15 @@ import torch import os import comfy.model_management import logging +import comfy.utils class T5XXLModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json") - t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None) - if t5xxl_scaled_fp8 is not None: + t5xxl_quantization_metadata = model_options.get("t5xxl_quantization_metadata", None) + if t5xxl_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = t5xxl_scaled_fp8 + model_options["quantization_metadata"] = t5xxl_quantization_metadata model_options = {**model_options, "model_name": "t5xxl"} super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) @@ -25,9 +26,9 @@ def t5_xxl_detect(state_dict, prefix=""): if t5_key in state_dict: out["dtype_t5"] = state_dict[t5_key].dtype - scaled_fp8_key = "{}scaled_fp8".format(prefix) - if scaled_fp8_key in state_dict: - out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype + quant = comfy.utils.detect_layer_quantization(state_dict, prefix) + if quant is not None: + out["t5_quantization_metadata"] = quant return out @@ -156,11 +157,11 @@ class SD3ClipModel(torch.nn.Module): else: return self.t5xxl.load_sd(sd) -def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False): +def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_quantization_metadata=None, t5_attention_mask=False): class SD3ClipModel_(SD3ClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 + model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options) return SD3ClipModel_ diff --git a/comfy/text_encoders/wan.py b/comfy/text_encoders/wan.py index d50fa4b28..164a57edd 100644 --- a/comfy/text_encoders/wan.py +++ b/comfy/text_encoders/wan.py @@ -25,12 +25,12 @@ class WanT5Model(sd1_clip.SD1ClipModel): def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs): super().__init__(device=device, dtype=dtype, model_options=model_options, name="umt5xxl", clip_model=UMT5XXlModel, **kwargs) -def te(dtype_t5=None, t5xxl_scaled_fp8=None): +def te(dtype_t5=None, t5_quantization_metadata=None): class WanTEModel(WanT5Model): def __init__(self, device="cpu", dtype=None, model_options={}): - if t5xxl_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if t5_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = t5xxl_scaled_fp8 + model_options["quantization_metadata"] = t5_quantization_metadata if dtype_t5 is not None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) diff --git a/comfy/text_encoders/z_image.py b/comfy/text_encoders/z_image.py index bb9273b20..19adde0b7 100644 --- a/comfy/text_encoders/z_image.py +++ b/comfy/text_encoders/z_image.py @@ -34,12 +34,9 @@ class ZImageTEModel(sd1_clip.SD1ClipModel): super().__init__(device=device, dtype=dtype, name="qwen3_4b", clip_model=Qwen3_4BModel, model_options=model_options) -def te(dtype_llama=None, llama_scaled_fp8=None, llama_quantization_metadata=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class ZImageTEModel_(ZImageTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: - model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 if dtype_llama is not None: dtype = dtype_llama if llama_quantization_metadata is not None: diff --git a/comfy/utils.py b/comfy/utils.py index 37485e497..89846bc95 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -29,6 +29,7 @@ import itertools from torch.nn.functional import interpolate from einops import rearrange from comfy.cli_args import args +import json MMAP_TORCH_FILES = args.mmap_torch_files DISABLE_MMAP = args.disable_mmap @@ -1194,3 +1195,68 @@ def unpack_latents(combined_latent, latent_shapes): else: output_tensors = combined_latent return output_tensors + +def detect_layer_quantization(state_dict, prefix): + for k in state_dict: + if k.startswith(prefix) and k.endswith(".comfy_quant"): + logging.info("Found quantization metadata version 1") + return {"mixed_ops": True} + return None + +def convert_old_quants(state_dict, model_prefix="", metadata={}): + if metadata is None: + metadata = {} + + quant_metadata = None + if "_quantization_metadata" not in metadata: + scaled_fp8_key = "{}scaled_fp8".format(model_prefix) + + if scaled_fp8_key in state_dict: + scaled_fp8_weight = state_dict[scaled_fp8_key] + scaled_fp8_dtype = scaled_fp8_weight.dtype + if scaled_fp8_dtype == torch.float32: + scaled_fp8_dtype = torch.float8_e4m3fn + + if scaled_fp8_weight.nelement() == 2: + full_precision_matrix_mult = True + else: + full_precision_matrix_mult = False + + out_sd = {} + layers = {} + for k in list(state_dict.keys()): + if not k.startswith(model_prefix): + out_sd[k] = state_dict[k] + continue + k_out = k + w = state_dict.pop(k) + layer = None + if k_out.endswith(".scale_weight"): + layer = k_out[:-len(".scale_weight")] + k_out = "{}.weight_scale".format(layer) + + if layer is not None: + layer_conf = {"format": "float8_e4m3fn"} # TODO: check if anyone did some non e4m3fn scaled checkpoints + if full_precision_matrix_mult: + layer_conf["full_precision_matrix_mult"] = full_precision_matrix_mult + layers[layer] = layer_conf + + if k_out.endswith(".scale_input"): + layer = k_out[:-len(".scale_input")] + k_out = "{}.input_scale".format(layer) + if w.item() == 1.0: + continue + + out_sd[k_out] = w + + state_dict = out_sd + quant_metadata = {"layers": layers} + else: + quant_metadata = json.loads(metadata["_quantization_metadata"]) + + if quant_metadata is not None: + layers = quant_metadata["layers"] + for k, v in layers.items(): + state_dict["{}.comfy_quant".format(k)] = torch.frombuffer(json.dumps(v).encode('utf-8'), dtype=torch.uint8) + + return state_dict, metadata diff --git a/tests-unit/comfy_quant/test_mixed_precision.py b/tests-unit/comfy_quant/test_mixed_precision.py index 63361309f..3a54941e6 100644 --- a/tests-unit/comfy_quant/test_mixed_precision.py +++ b/tests-unit/comfy_quant/test_mixed_precision.py @@ -2,6 +2,7 @@ import unittest import torch import sys import os +import json # Add comfy to path sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "..")) @@ -15,6 +16,7 @@ if not has_gpu(): from comfy import ops from comfy.quant_ops import QuantizedTensor +import comfy.utils class SimpleModel(torch.nn.Module): @@ -94,8 +96,9 @@ class TestMixedPrecisionOps(unittest.TestCase): "layer3.weight_scale": torch.tensor(1.5, dtype=torch.float32), } + state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) # Create model and load state dict (strict=False because custom loading pops keys) - model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) + model = SimpleModel(operations=ops.mixed_precision_ops({})) model.load_state_dict(state_dict, strict=False) # Verify weights are wrapped in QuantizedTensor @@ -115,7 +118,8 @@ class TestMixedPrecisionOps(unittest.TestCase): # Forward pass input_tensor = torch.randn(5, 10, dtype=torch.bfloat16) - output = model(input_tensor) + with torch.inference_mode(): + output = model(input_tensor) self.assertEqual(output.shape, (5, 40)) @@ -141,7 +145,8 @@ class TestMixedPrecisionOps(unittest.TestCase): "layer3.bias": torch.randn(40, dtype=torch.bfloat16), } - model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) + state_dict1, _ = comfy.utils.convert_old_quants(state_dict1, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) + model = SimpleModel(operations=ops.mixed_precision_ops({})) model.load_state_dict(state_dict1, strict=False) # Save state dict @@ -178,7 +183,8 @@ class TestMixedPrecisionOps(unittest.TestCase): "layer3.bias": torch.randn(40, dtype=torch.bfloat16), } - model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) + state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) + model = SimpleModel(operations=ops.mixed_precision_ops({})) model.load_state_dict(state_dict, strict=False) # Add a weight function (simulating LoRA) @@ -215,8 +221,10 @@ class TestMixedPrecisionOps(unittest.TestCase): "layer3.bias": torch.randn(40, dtype=torch.bfloat16), } + state_dict, _ = comfy.utils.convert_old_quants(state_dict, metadata={"_quantization_metadata": json.dumps({"layers": layer_quant_config})}) + # Load should raise KeyError for unknown format in QUANT_FORMAT_MIXINS - model = SimpleModel(operations=ops.mixed_precision_ops(layer_quant_config)) + model = SimpleModel(operations=ops.mixed_precision_ops({})) with self.assertRaises(KeyError): model.load_state_dict(state_dict, strict=False) From 6fd463aec958f02be79a264eafd6c8fe7e52762a Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 5 Dec 2025 12:33:16 -0800 Subject: [PATCH 110/271] Fix regression when text encoder loaded directly on GPU. (#11129) --- comfy/ops.py | 2 ++ comfy/sd.py | 44 ++++++++++++++++++++++++-------------------- 2 files changed, 26 insertions(+), 20 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index dc06709a1..35237c9f7 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -552,6 +552,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec weight_scale_key = f"{prefix}weight_scale" scale = state_dict.pop(weight_scale_key, None) + if scale is not None: + scale = scale.to(device) layout_params = { 'scale': scale, 'orig_dtype': MixedPrecisionOps._compute_dtype, diff --git a/comfy/sd.py b/comfy/sd.py index 092715d79..c350322f8 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -98,7 +98,7 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip): class CLIP: - def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}): + def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, state_dict=[], model_options={}): if no_init: return params = target.params.copy() @@ -129,6 +129,27 @@ class CLIP: self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram self.patcher.is_clip = True self.apply_hooks_to_conds = None + if len(state_dict) > 0: + if isinstance(state_dict, list): + for c in state_dict: + m, u = self.load_sd(c) + if len(m) > 0: + logging.warning("clip missing: {}".format(m)) + + if len(u) > 0: + logging.debug("clip unexpected: {}".format(u)) + else: + m, u = self.load_sd(state_dict, full_model=True) + if len(m) > 0: + m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m)) + if len(m_filter) > 0: + logging.warning("clip missing: {}".format(m)) + else: + logging.debug("clip missing: {}".format(m)) + + if len(u) > 0: + logging.debug("clip unexpected {}:".format(u)) + if params['device'] == load_device: model_management.load_models_gpu([self.patcher], force_full_load=True) self.layer_idx = None @@ -1225,14 +1246,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip parameters += comfy.utils.calculate_parameters(c) tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options) - clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options) - for c in clip_data: - m, u = clip.load_sd(c) - if len(m) > 0: - logging.warning("clip missing: {}".format(m)) - - if len(u) > 0: - logging.debug("clip unexpected: {}".format(u)) + clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, state_dict=clip_data, model_options=model_options) return clip def load_gligen(ckpt_path): @@ -1362,17 +1376,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c clip_sd = model_config.process_clip_state_dict(sd) if len(clip_sd) > 0: parameters = comfy.utils.calculate_parameters(clip_sd) - clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options) - m, u = clip.load_sd(clip_sd, full_model=True) - if len(m) > 0: - m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m)) - if len(m_filter) > 0: - logging.warning("clip missing: {}".format(m)) - else: - logging.debug("clip missing: {}".format(m)) - - if len(u) > 0: - logging.debug("clip unexpected {}:".format(u)) + clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, state_dict=clip_sd, model_options=te_model_options) else: logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.") From 79d17ba2339aaf4f3422673b3dad24ba4dbd7552 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Fri, 5 Dec 2025 22:42:46 +0200 Subject: [PATCH 111/271] Context windows fixes and features (#10975) * Apply cond slice fix * Add FreeNoise * Update context_windows.py * Add option to retain condition by indexes for each window This allows for example Wan/HunyuanVideo image to video to "work" by using the initial start frame for each window, otherwise windows beyond first will be pure T2V generations. * Update context_windows.py * Allow splitting multiple conds into different windows * Add handling for audio_embed * whitespace * Allow freenoise to work on other dims, handle 4D batch timestep Refactor Freenoise function. And fix batch handling as timesteps seem to be expanded to batch size now. * Disable experimental options for now So that the Freenoise and bugfixes can be merged first --------- Co-authored-by: Jedrzej Kosinski Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com> --- comfy/context_windows.py | 104 ++++++++++++++++++++++---- comfy_extras/nodes_context_windows.py | 22 +++++- 2 files changed, 108 insertions(+), 18 deletions(-) diff --git a/comfy/context_windows.py b/comfy/context_windows.py index 041f380f9..5c412d1c2 100644 --- a/comfy/context_windows.py +++ b/comfy/context_windows.py @@ -51,26 +51,36 @@ class ContextHandlerABC(ABC): class IndexListContextWindow(ContextWindowABC): - def __init__(self, index_list: list[int], dim: int=0): + def __init__(self, index_list: list[int], dim: int=0, total_frames: int=0): self.index_list = index_list self.context_length = len(index_list) self.dim = dim + self.total_frames = total_frames + self.center_ratio = (min(index_list) + max(index_list)) / (2 * total_frames) - def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor: + def get_tensor(self, full: torch.Tensor, device=None, dim=None, retain_index_list=[]) -> torch.Tensor: if dim is None: dim = self.dim if dim == 0 and full.shape[dim] == 1: return full - idx = [slice(None)] * dim + [self.index_list] - return full[idx].to(device) + idx = tuple([slice(None)] * dim + [self.index_list]) + window = full[idx] + if retain_index_list: + idx = tuple([slice(None)] * dim + [retain_index_list]) + window[idx] = full[idx] + return window.to(device) def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor: if dim is None: dim = self.dim - idx = [slice(None)] * dim + [self.index_list] + idx = tuple([slice(None)] * dim + [self.index_list]) full[idx] += to_add return full + def get_region_index(self, num_regions: int) -> int: + region_idx = int(self.center_ratio * num_regions) + return min(max(region_idx, 0), num_regions - 1) + class IndexListCallbacks: EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows" @@ -94,7 +104,8 @@ class ContextFuseMethod: ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window']) class IndexListContextHandler(ContextHandlerABC): - def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0): + def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, + closed_loop: bool=False, dim:int=0, freenoise: bool=False, cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False): self.context_schedule = context_schedule self.fuse_method = fuse_method self.context_length = context_length @@ -103,13 +114,18 @@ class IndexListContextHandler(ContextHandlerABC): self.closed_loop = closed_loop self.dim = dim self._step = 0 + self.freenoise = freenoise + self.cond_retain_index_list = [int(x.strip()) for x in cond_retain_index_list.split(",")] if cond_retain_index_list else [] + self.split_conds_to_windows = split_conds_to_windows self.callbacks = {} def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool: # for now, assume first dim is batch - should have stored on BaseModel in actual implementation if x_in.size(self.dim) > self.context_length: - logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.") + logging.info(f"Using context windows {self.context_length} with overlap {self.context_overlap} for {x_in.size(self.dim)} frames.") + if self.cond_retain_index_list: + logging.info(f"Retaining original cond for indexes: {self.cond_retain_index_list}") return True return False @@ -123,6 +139,11 @@ class IndexListContextHandler(ContextHandlerABC): return None # reuse or resize cond items to match context requirements resized_cond = [] + # if multiple conds, split based on primary region + if self.split_conds_to_windows and len(cond_in) > 1: + region = window.get_region_index(len(cond_in)) + logging.info(f"Splitting conds to windows; using region {region} for window {window[0]}-{window[-1]} with center ratio {window.center_ratio:.3f}") + cond_in = [cond_in[region]] # cond object is a list containing a dict - outer list is irrelevant, so just loop through it for actual_cond in cond_in: resized_actual_cond = actual_cond.copy() @@ -146,12 +167,19 @@ class IndexListContextHandler(ContextHandlerABC): # when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor) for cond_key, cond_value in new_cond_item.items(): if isinstance(cond_value, torch.Tensor): - if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim): + if (self.dim < cond_value.ndim and cond_value(self.dim) == x_in.size(self.dim)) or \ + (cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim)): new_cond_item[cond_key] = window.get_tensor(cond_value, device) + # Handle audio_embed (temporal dim is 1) + elif cond_key == "audio_embed" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): + audio_cond = cond_value.cond + if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim): + new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1)) # if has cond that is a Tensor, check if needs to be subset elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): - if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim): - new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device)) + if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \ + (cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim)): + new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device, retain_index_list=self.cond_retain_index_list)) elif cond_key == "num_video_frames": # for SVD new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond) new_cond_item[cond_key].cond = window.context_length @@ -164,7 +192,7 @@ class IndexListContextHandler(ContextHandlerABC): return resized_cond def set_step(self, timestep: torch.Tensor, model_options: dict[str]): - mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001) + mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep[0], rtol=0.0001) matches = torch.nonzero(mask) if torch.numel(matches) == 0: raise Exception("No sample_sigmas matched current timestep; something went wrong.") @@ -173,7 +201,7 @@ class IndexListContextHandler(ContextHandlerABC): def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]: full_length = x_in.size(self.dim) # TODO: choose dim based on model context_windows = self.context_schedule.func(full_length, self, model_options) - context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows] + context_windows = [IndexListContextWindow(window, dim=self.dim, total_frames=full_length) for window in context_windows] return context_windows def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]): @@ -250,8 +278,8 @@ class IndexListContextHandler(ContextHandlerABC): prev_weight = (bias_total / (bias_total + bias)) new_weight = (bias / (bias_total + bias)) # account for dims of tensors - idx_window = [slice(None)] * self.dim + [idx] - pos_window = [slice(None)] * self.dim + [pos] + idx_window = tuple([slice(None)] * self.dim + [idx]) + pos_window = tuple([slice(None)] * self.dim + [pos]) # apply new values conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight biases_final[i][idx] = bias_total + bias @@ -287,6 +315,28 @@ def create_prepare_sampling_wrapper(model: ModelPatcher): ) +def _sampler_sample_wrapper(executor, guider, sigmas, extra_args, callback, noise, *args, **kwargs): + model_options = extra_args.get("model_options", None) + if model_options is None: + raise Exception("model_options not found in sampler_sample_wrapper; this should never happen, something went wrong.") + handler: IndexListContextHandler = model_options.get("context_handler", None) + if handler is None: + raise Exception("context_handler not found in sampler_sample_wrapper; this should never happen, something went wrong.") + if not handler.freenoise: + return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs) + noise = apply_freenoise(noise, handler.dim, handler.context_length, handler.context_overlap, extra_args["seed"]) + + return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs) + + +def create_sampler_sample_wrapper(model: ModelPatcher): + model.add_wrapper_with_key( + comfy.patcher_extension.WrappersMP.SAMPLER_SAMPLE, + "ContextWindows_sampler_sample", + _sampler_sample_wrapper + ) + + def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor: total_dims = len(x_in.shape) weights_tensor = torch.Tensor(weights).to(device=device) @@ -538,3 +588,29 @@ def shift_window_to_end(window: list[int], num_frames: int): for i in range(len(window)): # 2) add end_delta to each val to slide windows to end window[i] = window[i] + end_delta + + +# https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved/blob/90fb1331201a4b29488089e4fbffc0d82cc6d0a9/animatediff/sample_settings.py#L465 +def apply_freenoise(noise: torch.Tensor, dim: int, context_length: int, context_overlap: int, seed: int): + logging.info("Context windows: Applying FreeNoise") + generator = torch.Generator(device='cpu').manual_seed(seed) + latent_video_length = noise.shape[dim] + delta = context_length - context_overlap + + for start_idx in range(0, latent_video_length - context_length, delta): + place_idx = start_idx + context_length + + actual_delta = min(delta, latent_video_length - place_idx) + if actual_delta <= 0: + break + + list_idx = torch.randperm(actual_delta, generator=generator, device='cpu') + start_idx + + source_slice = [slice(None)] * noise.ndim + source_slice[dim] = list_idx + target_slice = [slice(None)] * noise.ndim + target_slice[dim] = slice(place_idx, place_idx + actual_delta) + + noise[tuple(target_slice)] = noise[tuple(source_slice)] + + return noise diff --git a/comfy_extras/nodes_context_windows.py b/comfy_extras/nodes_context_windows.py index 1c3d9e697..3799a9004 100644 --- a/comfy_extras/nodes_context_windows.py +++ b/comfy_extras/nodes_context_windows.py @@ -26,6 +26,9 @@ class ContextWindowsManualNode(io.ComfyNode): io.Boolean.Input("closed_loop", default=False, tooltip="Whether to close the context window loop; only applicable to looped schedules."), io.Combo.Input("fuse_method", options=comfy.context_windows.ContextFuseMethods.LIST_STATIC, default=comfy.context_windows.ContextFuseMethods.PYRAMID, tooltip="The method to use to fuse the context windows."), io.Int.Input("dim", min=0, max=5, default=0, tooltip="The dimension to apply the context windows to."), + io.Boolean.Input("freenoise", default=False, tooltip="Whether to apply FreeNoise noise shuffling, improves window blending."), + #io.String.Input("cond_retain_index_list", default="", tooltip="List of latent indices to retain in the conditioning tensors for each window, for example setting this to '0' will use the initial start image for each window."), + #io.Boolean.Input("split_conds_to_windows", default=False, tooltip="Whether to split multiple conditionings (created by ConditionCombine) to each window based on region index."), ], outputs=[ io.Model.Output(tooltip="The model with context windows applied during sampling."), @@ -34,7 +37,8 @@ class ContextWindowsManualNode(io.ComfyNode): ) @classmethod - def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, dim: int) -> io.Model: + def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, dim: int, freenoise: bool, + cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False) -> io.Model: model = model.clone() model.model_options["context_handler"] = comfy.context_windows.IndexListContextHandler( context_schedule=comfy.context_windows.get_matching_context_schedule(context_schedule), @@ -43,9 +47,15 @@ class ContextWindowsManualNode(io.ComfyNode): context_overlap=context_overlap, context_stride=context_stride, closed_loop=closed_loop, - dim=dim) + dim=dim, + freenoise=freenoise, + cond_retain_index_list=cond_retain_index_list, + split_conds_to_windows=split_conds_to_windows + ) # make memory usage calculation only take into account the context window latents comfy.context_windows.create_prepare_sampling_wrapper(model) + if freenoise: # no other use for this wrapper at this time + comfy.context_windows.create_sampler_sample_wrapper(model) return io.NodeOutput(model) class WanContextWindowsManualNode(ContextWindowsManualNode): @@ -68,14 +78,18 @@ class WanContextWindowsManualNode(ContextWindowsManualNode): io.Int.Input("context_stride", min=1, default=1, tooltip="The stride of the context window; only applicable to uniform schedules."), io.Boolean.Input("closed_loop", default=False, tooltip="Whether to close the context window loop; only applicable to looped schedules."), io.Combo.Input("fuse_method", options=comfy.context_windows.ContextFuseMethods.LIST_STATIC, default=comfy.context_windows.ContextFuseMethods.PYRAMID, tooltip="The method to use to fuse the context windows."), + io.Boolean.Input("freenoise", default=False, tooltip="Whether to apply FreeNoise noise shuffling, improves window blending."), + #io.String.Input("cond_retain_index_list", default="", tooltip="List of latent indices to retain in the conditioning tensors for each window, for example setting this to '0' will use the initial start image for each window."), + #io.Boolean.Input("split_conds_to_windows", default=False, tooltip="Whether to split multiple conditionings (created by ConditionCombine) to each window based on region index."), ] return schema @classmethod - def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str) -> io.Model: + def execute(cls, model: io.Model.Type, context_length: int, context_overlap: int, context_schedule: str, context_stride: int, closed_loop: bool, fuse_method: str, freenoise: bool, + cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False) -> io.Model: context_length = max(((context_length - 1) // 4) + 1, 1) # at least length 1 context_overlap = max(((context_overlap - 1) // 4) + 1, 0) # at least overlap 0 - return super().execute(model, context_length, context_overlap, context_schedule, context_stride, closed_loop, fuse_method, dim=2) + return super().execute(model, context_length, context_overlap, context_schedule, context_stride, closed_loop, fuse_method, dim=2, freenoise=freenoise, cond_retain_index_list=cond_retain_index_list, split_conds_to_windows=split_conds_to_windows) class ContextWindowsExtension(ComfyExtension): From 092ee8a5008c8d558b0a72cc7961a31d9cc5400b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 5 Dec 2025 15:25:31 -0800 Subject: [PATCH 112/271] Fix some custom nodes. (#11134) --- comfy/supported_models_base.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/comfy/supported_models_base.py b/comfy/supported_models_base.py index 9fd84d329..0e7a829ba 100644 --- a/comfy/supported_models_base.py +++ b/comfy/supported_models_base.py @@ -17,6 +17,7 @@ """ import torch +import logging from . import model_base from . import utils from . import latent_formats @@ -117,3 +118,7 @@ class BASE: def set_inference_dtype(self, dtype, manual_cast_dtype): self.unet_config['dtype'] = dtype self.manual_cast_dtype = manual_cast_dtype + + def __getattr__(self, name): + logging.warning("\nWARNING, you accessed {} from the model config object which doesn't exist. Please fix your code.\n".format(name)) + return None From bed12674a1d2c4bfdfbdd098686390f807996c90 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Sat, 6 Dec 2025 08:45:38 +0900 Subject: [PATCH 113/271] docs: add ComfyUI-Manager documentation and update to v4.0.3b4 (#11133) - Add manager setup instructions and command line options to README - Document --enable-manager, --enable-manager-legacy-ui, and --disable-manager-ui flags - Bump comfyui_manager version from 4.0.3b3 to 4.0.3b4 --- README.md | 26 ++++++++++++++++++++++++++ manager_requirements.txt | 2 +- 2 files changed, 27 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index ed857df9f..bae955b1b 100644 --- a/README.md +++ b/README.md @@ -320,6 +320,32 @@ For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step 1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536) 2. Launch ComfyUI by running `python main.py` + +## [ComfyUI-Manager](https://github.com/Comfy-Org/ComfyUI-Manager/tree/manager-v4) + +**ComfyUI-Manager** is an extension that allows you to easily install, update, and manage custom nodes for ComfyUI. + +### Setup + +1. Install the manager dependencies: + ```bash + pip install -r manager_requirements.txt + ``` + +2. Enable the manager with the `--enable-manager` flag when running ComfyUI: + ```bash + python main.py --enable-manager + ``` + +### Command Line Options + +| Flag | Description | +|------|-------------| +| `--enable-manager` | Enable ComfyUI-Manager | +| `--enable-manager-legacy-ui` | Use the legacy manager UI instead of the new UI (requires `--enable-manager`) | +| `--disable-manager-ui` | Disable the manager UI and endpoints while keeping background features like security checks and scheduled installation completion (requires `--enable-manager`) | + + # Running ```python main.py``` diff --git a/manager_requirements.txt b/manager_requirements.txt index 52cc5389c..b95cefb74 100644 --- a/manager_requirements.txt +++ b/manager_requirements.txt @@ -1 +1 @@ -comfyui_manager==4.0.3b3 +comfyui_manager==4.0.3b4 From fd109325db7126f92c2dfb7e6b25310eded8c1f8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Sat, 6 Dec 2025 05:20:22 +0200 Subject: [PATCH 114/271] Kandinsky5 model support (#10988) * Add Kandinsky5 model support lite and pro T2V tested to work * Update kandinsky5.py * Fix fp8 * Fix fp8_scaled text encoder * Add transformer_options for attention * Code cleanup, optimizations, use fp32 for all layers originally at fp32 * ImageToVideo -node * Fix I2V, add necessary latent post process nodes * Support text to image model * Support block replace patches (SLG mostly) * Support official LoRAs * Don't scale RoPE for lite model as that just doesn't work... * Update supported_models.py * Rever RoPE scaling to simpler one * Fix typo * Handle latent dim difference for image model in the VAE instead * Add node to use different prompts for clip_l and qwen25_7b * Reduce peak VRAM usage a bit * Further reduce peak VRAM consumption by chunking ffn * Update chunking * Update memory_usage_factor * Code cleanup, don't force the fp32 layers as it has minimal effect * Allow for stronger changes with first frames normalization Default values are too weak for any meaningful changes, these should probably be exposed as advanced node options when that's available. * Add image model's own chat template, remove unused image2video template * Remove hard error in ReplaceVideoLatentFrames -node * Update kandinsky5.py * Update supported_models.py * Fix typos in prompt template They were now fixed in the original repository as well * Update ReplaceVideoLatentFrames Add tooltips Make source optional Better handle negative index * Rename NormalizeVideoLatentFrames -node For bit better clarity what it does * Fix NormalizeVideoLatentStart node out on non-op --- comfy/ldm/kandinsky5/model.py | 407 ++++++++++++++++++++++++++++++ comfy/lora.py | 7 + comfy/model_base.py | 47 ++++ comfy/model_detection.py | 18 ++ comfy/sd.py | 11 + comfy/supported_models.py | 56 +++- comfy/text_encoders/kandinsky5.py | 68 +++++ comfy_api/latest/_io.py | 2 + comfy_extras/nodes_kandinsky5.py | 136 ++++++++++ comfy_extras/nodes_latent.py | 39 ++- nodes.py | 3 +- 11 files changed, 791 insertions(+), 3 deletions(-) create mode 100644 comfy/ldm/kandinsky5/model.py create mode 100644 comfy/text_encoders/kandinsky5.py create mode 100644 comfy_extras/nodes_kandinsky5.py diff --git a/comfy/ldm/kandinsky5/model.py b/comfy/ldm/kandinsky5/model.py new file mode 100644 index 000000000..a653e02fc --- /dev/null +++ b/comfy/ldm/kandinsky5/model.py @@ -0,0 +1,407 @@ +import torch +from torch import nn +import math + +import comfy.ldm.common_dit +from comfy.ldm.modules.attention import optimized_attention +from comfy.ldm.flux.math import apply_rope1 +from comfy.ldm.flux.layers import EmbedND + +def attention(q, k, v, heads, transformer_options={}): + return optimized_attention( + q.transpose(1, 2), + k.transpose(1, 2), + v.transpose(1, 2), + heads=heads, + skip_reshape=True, + transformer_options=transformer_options + ) + +def apply_scale_shift_norm(norm, x, scale, shift): + return torch.addcmul(shift, norm(x), scale + 1.0) + +def apply_gate_sum(x, out, gate): + return torch.addcmul(x, gate, out) + +def get_shift_scale_gate(params): + shift, scale, gate = torch.chunk(params, 3, dim=-1) + return tuple(x.unsqueeze(1) for x in (shift, scale, gate)) + +def get_freqs(dim, max_period=10000.0): + return torch.exp(-math.log(max_period) * torch.arange(start=0, end=dim, dtype=torch.float32) / dim) + + +class TimeEmbeddings(nn.Module): + def __init__(self, model_dim, time_dim, max_period=10000.0, operation_settings=None): + super().__init__() + assert model_dim % 2 == 0 + self.model_dim = model_dim + self.max_period = max_period + self.register_buffer("freqs", get_freqs(model_dim // 2, max_period), persistent=False) + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(model_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.activation = nn.SiLU() + self.out_layer = operations.Linear(time_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, timestep, dtype): + args = torch.outer(timestep, self.freqs.to(device=timestep.device)) + time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1).to(dtype) + time_embed = self.out_layer(self.activation(self.in_layer(time_embed))) + return time_embed + + +class TextEmbeddings(nn.Module): + def __init__(self, text_dim, model_dim, operation_settings=None): + super().__init__() + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(text_dim, model_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.norm = operations.LayerNorm(model_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, text_embed): + text_embed = self.in_layer(text_embed) + return self.norm(text_embed).type_as(text_embed) + + +class VisualEmbeddings(nn.Module): + def __init__(self, visual_dim, model_dim, patch_size, operation_settings=None): + super().__init__() + self.patch_size = patch_size + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(visual_dim, model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, x): + x = x.movedim(1, -1) # B C T H W -> B T H W C + B, T, H, W, dim = x.shape + pt, ph, pw = self.patch_size + + x = x.view( + B, + T // pt, pt, + H // ph, ph, + W // pw, pw, + dim, + ).permute(0, 1, 3, 5, 2, 4, 6, 7).flatten(4, 7) + + return self.in_layer(x) + + +class Modulation(nn.Module): + def __init__(self, time_dim, model_dim, num_params, operation_settings=None): + super().__init__() + self.activation = nn.SiLU() + self.out_layer = operation_settings.get("operations").Linear(time_dim, num_params * model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, x): + return self.out_layer(self.activation(x)) + + +class SelfAttention(nn.Module): + def __init__(self, num_channels, head_dim, operation_settings=None): + super().__init__() + assert num_channels % head_dim == 0 + self.num_heads = num_channels // head_dim + self.head_dim = head_dim + + operations = operation_settings.get("operations") + self.to_query = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.to_key = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.to_value = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.query_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.key_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + self.out_layer = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.num_chunks = 2 + + def _compute_qk(self, x, freqs, proj_fn, norm_fn): + result = proj_fn(x).view(*x.shape[:-1], self.num_heads, -1) + return apply_rope1(norm_fn(result), freqs) + + def _forward(self, x, freqs, transformer_options={}): + q = self._compute_qk(x, freqs, self.to_query, self.query_norm) + k = self._compute_qk(x, freqs, self.to_key, self.key_norm) + v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1) + out = attention(q, k, v, self.num_heads, transformer_options=transformer_options) + return self.out_layer(out) + + def _forward_chunked(self, x, freqs, transformer_options={}): + def process_chunks(proj_fn, norm_fn): + x_chunks = torch.chunk(x, self.num_chunks, dim=1) + freqs_chunks = torch.chunk(freqs, self.num_chunks, dim=1) + chunks = [] + for x_chunk, freqs_chunk in zip(x_chunks, freqs_chunks): + chunks.append(self._compute_qk(x_chunk, freqs_chunk, proj_fn, norm_fn)) + return torch.cat(chunks, dim=1) + + q = process_chunks(self.to_query, self.query_norm) + k = process_chunks(self.to_key, self.key_norm) + v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1) + out = attention(q, k, v, self.num_heads, transformer_options=transformer_options) + return self.out_layer(out) + + def forward(self, x, freqs, transformer_options={}): + if x.shape[1] > 8192: + return self._forward_chunked(x, freqs, transformer_options=transformer_options) + else: + return self._forward(x, freqs, transformer_options=transformer_options) + + +class CrossAttention(SelfAttention): + def get_qkv(self, x, context): + q = self.to_query(x).view(*x.shape[:-1], self.num_heads, -1) + k = self.to_key(context).view(*context.shape[:-1], self.num_heads, -1) + v = self.to_value(context).view(*context.shape[:-1], self.num_heads, -1) + return q, k, v + + def forward(self, x, context, transformer_options={}): + q, k, v = self.get_qkv(x, context) + out = attention(self.query_norm(q), self.key_norm(k), v, self.num_heads, transformer_options=transformer_options) + return self.out_layer(out) + + +class FeedForward(nn.Module): + def __init__(self, dim, ff_dim, operation_settings=None): + super().__init__() + operations = operation_settings.get("operations") + self.in_layer = operations.Linear(dim, ff_dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.activation = nn.GELU() + self.out_layer = operations.Linear(ff_dim, dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.num_chunks = 4 + + def _forward(self, x): + return self.out_layer(self.activation(self.in_layer(x))) + + def _forward_chunked(self, x): + chunks = torch.chunk(x, self.num_chunks, dim=1) + output_chunks = [] + for chunk in chunks: + output_chunks.append(self._forward(chunk)) + return torch.cat(output_chunks, dim=1) + + def forward(self, x): + if x.shape[1] > 8192: + return self._forward_chunked(x) + else: + return self._forward(x) + + +class OutLayer(nn.Module): + def __init__(self, model_dim, time_dim, visual_dim, patch_size, operation_settings=None): + super().__init__() + self.patch_size = patch_size + self.modulation = Modulation(time_dim, model_dim, 2, operation_settings=operation_settings) + operations = operation_settings.get("operations") + self.norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.out_layer = operations.Linear(model_dim, math.prod(patch_size) * visual_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + + def forward(self, visual_embed, time_embed): + B, T, H, W, _ = visual_embed.shape + shift, scale = torch.chunk(self.modulation(time_embed), 2, dim=-1) + scale = scale[:, None, None, None, :] + shift = shift[:, None, None, None, :] + visual_embed = apply_scale_shift_norm(self.norm, visual_embed, scale, shift) + x = self.out_layer(visual_embed) + + out_dim = x.shape[-1] // (self.patch_size[0] * self.patch_size[1] * self.patch_size[2]) + x = x.view( + B, T, H, W, + out_dim, + self.patch_size[0], self.patch_size[1], self.patch_size[2] + ) + return x.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(2, 3).flatten(3, 4).flatten(4, 5) + + +class TransformerEncoderBlock(nn.Module): + def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None): + super().__init__() + self.text_modulation = Modulation(time_dim, model_dim, 6, operation_settings=operation_settings) + operations = operation_settings.get("operations") + + self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings) + + self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings) + + def forward(self, x, time_embed, freqs, transformer_options={}): + self_attn_params, ff_params = torch.chunk(self.text_modulation(time_embed), 2, dim=-1) + shift, scale, gate = get_shift_scale_gate(self_attn_params) + out = apply_scale_shift_norm(self.self_attention_norm, x, scale, shift) + out = self.self_attention(out, freqs, transformer_options=transformer_options) + x = apply_gate_sum(x, out, gate) + + shift, scale, gate = get_shift_scale_gate(ff_params) + out = apply_scale_shift_norm(self.feed_forward_norm, x, scale, shift) + out = self.feed_forward(out) + x = apply_gate_sum(x, out, gate) + return x + + +class TransformerDecoderBlock(nn.Module): + def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None): + super().__init__() + self.visual_modulation = Modulation(time_dim, model_dim, 9, operation_settings=operation_settings) + + operations = operation_settings.get("operations") + self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings) + + self.cross_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.cross_attention = CrossAttention(model_dim, head_dim, operation_settings=operation_settings) + + self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings) + + def forward(self, visual_embed, text_embed, time_embed, freqs, transformer_options={}): + self_attn_params, cross_attn_params, ff_params = torch.chunk(self.visual_modulation(time_embed), 3, dim=-1) + # self attention + shift, scale, gate = get_shift_scale_gate(self_attn_params) + visual_out = apply_scale_shift_norm(self.self_attention_norm, visual_embed, scale, shift) + visual_out = self.self_attention(visual_out, freqs, transformer_options=transformer_options) + visual_embed = apply_gate_sum(visual_embed, visual_out, gate) + # cross attention + shift, scale, gate = get_shift_scale_gate(cross_attn_params) + visual_out = apply_scale_shift_norm(self.cross_attention_norm, visual_embed, scale, shift) + visual_out = self.cross_attention(visual_out, text_embed, transformer_options=transformer_options) + visual_embed = apply_gate_sum(visual_embed, visual_out, gate) + # feed forward + shift, scale, gate = get_shift_scale_gate(ff_params) + visual_out = apply_scale_shift_norm(self.feed_forward_norm, visual_embed, scale, shift) + visual_out = self.feed_forward(visual_out) + visual_embed = apply_gate_sum(visual_embed, visual_out, gate) + return visual_embed + + +class Kandinsky5(nn.Module): + def __init__( + self, + in_visual_dim=16, out_visual_dim=16, in_text_dim=3584, in_text_dim2=768, time_dim=512, + model_dim=1792, ff_dim=7168, visual_embed_dim=132, patch_size=(1, 2, 2), num_text_blocks=2, num_visual_blocks=32, + axes_dims=(16, 24, 24), rope_scale_factor=(1.0, 2.0, 2.0), + dtype=None, device=None, operations=None, **kwargs + ): + super().__init__() + head_dim = sum(axes_dims) + self.rope_scale_factor = rope_scale_factor + self.in_visual_dim = in_visual_dim + self.model_dim = model_dim + self.patch_size = patch_size + self.visual_embed_dim = visual_embed_dim + self.dtype = dtype + self.device = device + operation_settings = {"operations": operations, "device": device, "dtype": dtype} + + self.time_embeddings = TimeEmbeddings(model_dim, time_dim, operation_settings=operation_settings) + self.text_embeddings = TextEmbeddings(in_text_dim, model_dim, operation_settings=operation_settings) + self.pooled_text_embeddings = TextEmbeddings(in_text_dim2, time_dim, operation_settings=operation_settings) + self.visual_embeddings = VisualEmbeddings(visual_embed_dim, model_dim, patch_size, operation_settings=operation_settings) + + self.text_transformer_blocks = nn.ModuleList( + [TransformerEncoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_text_blocks)] + ) + + self.visual_transformer_blocks = nn.ModuleList( + [TransformerDecoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_visual_blocks)] + ) + + self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size, operation_settings=operation_settings) + + self.rope_embedder_3d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=axes_dims) + self.rope_embedder_1d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=[head_dim]) + + def rope_encode_1d(self, seq_len, seq_start=0, steps=None, device=None, dtype=None, transformer_options={}): + steps = seq_len if steps is None else steps + seq_ids = torch.linspace(seq_start, seq_start + (seq_len - 1), steps=steps, device=device, dtype=dtype) + seq_ids = seq_ids.reshape(-1, 1).unsqueeze(0) # Shape: (1, steps, 1) + freqs = self.rope_embedder_1d(seq_ids).movedim(1, 2) + return freqs + + def rope_encode_3d(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}): + + patch_size = self.patch_size + t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) + h_len = ((h + (patch_size[1] // 2)) // patch_size[1]) + w_len = ((w + (patch_size[2] // 2)) // patch_size[2]) + + if steps_t is None: + steps_t = t_len + if steps_h is None: + steps_h = h_len + if steps_w is None: + steps_w = w_len + + h_start = 0 + w_start = 0 + rope_options = transformer_options.get("rope_options", None) + if rope_options is not None: + t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0 + h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0 + w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0 + + t_start += rope_options.get("shift_t", 0.0) + h_start += rope_options.get("shift_y", 0.0) + w_start += rope_options.get("shift_x", 0.0) + else: + rope_scale_factor = self.rope_scale_factor + if self.model_dim == 4096: # pro video model uses different rope scaling at higher resolutions + if h * w >= 14080: + rope_scale_factor = (1.0, 3.16, 3.16) + + t_len = (t_len - 1.0) / rope_scale_factor[0] + 1.0 + h_len = (h_len - 1.0) / rope_scale_factor[1] + 1.0 + w_len = (w_len - 1.0) / rope_scale_factor[2] + 1.0 + + img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype) + img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1) + img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1) + img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1) + img_ids = img_ids.reshape(1, -1, img_ids.shape[-1]) + + freqs = self.rope_embedder_3d(img_ids).movedim(1, 2) + return freqs + + def forward_orig(self, x, timestep, context, y, freqs, freqs_text, transformer_options={}, **kwargs): + patches_replace = transformer_options.get("patches_replace", {}) + context = self.text_embeddings(context) + time_embed = self.time_embeddings(timestep, x.dtype) + self.pooled_text_embeddings(y) + + for block in self.text_transformer_blocks: + context = block(context, time_embed, freqs_text, transformer_options=transformer_options) + + visual_embed = self.visual_embeddings(x) + visual_shape = visual_embed.shape[:-1] + visual_embed = visual_embed.flatten(1, -2) + + blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.visual_transformer_blocks) + transformer_options["block_type"] = "double" + for i, block in enumerate(self.visual_transformer_blocks): + transformer_options["block_index"] = i + if ("double_block", i) in blocks_replace: + def block_wrap(args): + return block(x=args["x"], context=args["context"], time_embed=args["time_embed"], freqs=args["freqs"], transformer_options=args.get("transformer_options")) + visual_embed = blocks_replace[("double_block", i)]({"x": visual_embed, "context": context, "time_embed": time_embed, "freqs": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})["x"] + else: + visual_embed = block(visual_embed, context, time_embed, freqs=freqs, transformer_options=transformer_options) + + visual_embed = visual_embed.reshape(*visual_shape, -1) + return self.out_layer(visual_embed, time_embed) + + def _forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs): + bs, c, t_len, h, w = x.shape + x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size) + + if time_dim_replace is not None: + time_dim_replace = comfy.ldm.common_dit.pad_to_patch_size(time_dim_replace, self.patch_size) + x[:, :time_dim_replace.shape[1], :time_dim_replace.shape[2]] = time_dim_replace + + freqs = self.rope_encode_3d(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options) + freqs_text = self.rope_encode_1d(context.shape[1], device=x.device, dtype=x.dtype, transformer_options=transformer_options) + + return self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs) + + def forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs): + return comfy.patcher_extension.WrapperExecutor.new_class_executor( + self._forward, + self, + comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) + ).execute(x, timestep, context, y, time_dim_replace=time_dim_replace, transformer_options=transformer_options, **kwargs) diff --git a/comfy/lora.py b/comfy/lora.py index 3a9077869..e7202ce97 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -322,6 +322,13 @@ def model_lora_keys_unet(model, key_map={}): key_map["diffusion_model.{}".format(key_lora)] = to key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to + if isinstance(model, comfy.model_base.Kandinsky5): + for k in sdk: + if k.startswith("diffusion_model.") and k.endswith(".weight"): + key_lora = k[len("diffusion_model."):-len(".weight")] + key_map["{}".format(key_lora)] = k + key_map["transformer.{}".format(key_lora)] = k + return key_map diff --git a/comfy/model_base.py b/comfy/model_base.py index 3cedd4f31..0be006cc2 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -47,6 +47,7 @@ import comfy.ldm.chroma_radiance.model import comfy.ldm.ace.model import comfy.ldm.omnigen.omnigen2 import comfy.ldm.qwen_image.model +import comfy.ldm.kandinsky5.model import comfy.model_management import comfy.patcher_extension @@ -1630,3 +1631,49 @@ class HunyuanVideo15_SR_Distilled(HunyuanVideo15): out = super().extra_conds(**kwargs) out['disable_time_r'] = comfy.conds.CONDConstant(False) return out + +class Kandinsky5(BaseModel): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.kandinsky5.model.Kandinsky5) + + def encode_adm(self, **kwargs): + return kwargs["pooled_output"] + + def concat_cond(self, **kwargs): + noise = kwargs.get("noise", None) + device = kwargs["device"] + image = torch.zeros_like(noise) + + mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) + if mask is None: + mask = torch.zeros_like(noise)[:, :1] + else: + mask = 1.0 - mask + mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") + if mask.shape[-3] < noise.shape[-3]: + mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0) + mask = utils.resize_to_batch_size(mask, noise.shape[0]) + + return torch.cat((image, mask), dim=1) + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + attention_mask = kwargs.get("attention_mask", None) + if attention_mask is not None: + out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + + time_dim_replace = kwargs.get("time_dim_replace", None) + if time_dim_replace is not None: + out['time_dim_replace'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_replace)) + + return out + +class Kandinsky5Image(Kandinsky5): + def __init__(self, model_config, model_type=ModelType.FLOW, device=None): + super().__init__(model_config, model_type, device=device) + + def concat_cond(self, **kwargs): + return None diff --git a/comfy/model_detection.py b/comfy/model_detection.py index fd1907627..30b33a486 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -611,6 +611,24 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.') return dit_config + if '{}visual_transformer_blocks.0.cross_attention.key_norm.weight'.format(key_prefix) in state_dict_keys: # Kandinsky 5 + dit_config = {} + model_dim = state_dict['{}visual_embeddings.in_layer.bias'.format(key_prefix)].shape[0] + dit_config["model_dim"] = model_dim + if model_dim in [4096, 2560]: # pro video and lite image + dit_config["axes_dims"] = (32, 48, 48) + if model_dim == 2560: # lite image + dit_config["rope_scale_factor"] = (1.0, 1.0, 1.0) + elif model_dim == 1792: # lite video + dit_config["axes_dims"] = (16, 24, 24) + dit_config["time_dim"] = state_dict['{}time_embeddings.in_layer.bias'.format(key_prefix)].shape[0] + dit_config["image_model"] = "kandinsky5" + dit_config["ff_dim"] = state_dict['{}visual_transformer_blocks.0.feed_forward.in_layer.weight'.format(key_prefix)].shape[0] + dit_config["visual_embed_dim"] = state_dict['{}visual_embeddings.in_layer.weight'.format(key_prefix)].shape[1] + dit_config["num_text_blocks"] = count_blocks(state_dict_keys, '{}text_transformer_blocks.'.format(key_prefix) + '{}.') + dit_config["num_visual_blocks"] = count_blocks(state_dict_keys, '{}visual_transformer_blocks.'.format(key_prefix) + '{}.') + return dit_config + if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: return None diff --git a/comfy/sd.py b/comfy/sd.py index c350322f8..754b1703d 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -54,6 +54,7 @@ import comfy.text_encoders.qwen_image import comfy.text_encoders.hunyuan_image import comfy.text_encoders.z_image import comfy.text_encoders.ovis +import comfy.text_encoders.kandinsky5 import comfy.model_patcher import comfy.lora @@ -766,6 +767,8 @@ class VAE: self.throw_exception_if_invalid() pixel_samples = None do_tile = False + if self.latent_dim == 2 and samples_in.ndim == 5: + samples_in = samples_in[:, :, 0] try: memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload) @@ -983,6 +986,8 @@ class CLIPType(Enum): HUNYUAN_IMAGE = 19 HUNYUAN_VIDEO_15 = 20 OVIS = 21 + KANDINSKY5 = 22 + KANDINSKY5_IMAGE = 23 def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): @@ -1231,6 +1236,12 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif clip_type == CLIPType.HUNYUAN_VIDEO_15: clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer + elif clip_type == CLIPType.KANDINSKY5: + clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer + elif clip_type == CLIPType.KANDINSKY5_IMAGE: + clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage else: clip_target.clip = sdxl_clip.SDXLClipModel clip_target.tokenizer = sdxl_clip.SDXLTokenizer diff --git a/comfy/supported_models.py b/comfy/supported_models.py index afd97160b..91cc4ef08 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -21,6 +21,7 @@ import comfy.text_encoders.ace import comfy.text_encoders.omnigen2 import comfy.text_encoders.qwen_image import comfy.text_encoders.hunyuan_image +import comfy.text_encoders.kandinsky5 import comfy.text_encoders.z_image from . import supported_models_base @@ -1474,7 +1475,60 @@ class HunyuanVideo15_SR_Distilled(HunyuanVideo): hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect)) -models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2] +class Kandinsky5(supported_models_base.BASE): + unet_config = { + "image_model": "kandinsky5", + } + + sampling_settings = { + "shift": 10.0, + } + + unet_extra_config = {} + latent_format = latent_formats.HunyuanVideo + + memory_usage_factor = 1.1 #TODO + + supported_inference_dtypes = [torch.bfloat16, torch.float32] + + vae_key_prefix = ["vae."] + text_encoder_key_prefix = ["text_encoders."] + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Kandinsky5(self, device=device) + return out + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer, comfy.text_encoders.kandinsky5.te(**hunyuan_detect)) + + +class Kandinsky5Image(Kandinsky5): + unet_config = { + "image_model": "kandinsky5", + "model_dim": 2560, + "visual_embed_dim": 64, + } + + sampling_settings = { + "shift": 3.0, + } + + latent_format = latent_formats.Flux + memory_usage_factor = 1.1 #TODO + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Kandinsky5Image(self, device=device) + return out + + def clip_target(self, state_dict={}): + pref = self.text_encoder_key_prefix[0] + hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref)) + return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect)) + + +models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Kandinsky5Image, Kandinsky5] models += [SVD_img2vid] diff --git a/comfy/text_encoders/kandinsky5.py b/comfy/text_encoders/kandinsky5.py new file mode 100644 index 000000000..22f991c36 --- /dev/null +++ b/comfy/text_encoders/kandinsky5.py @@ -0,0 +1,68 @@ +from comfy import sd1_clip +from .qwen_image import QwenImageTokenizer, QwenImageTEModel +from .llama import Qwen25_7BVLI + + +class Kandinsky5Tokenizer(QwenImageTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + self.llama_template = "<|im_start|>system\nYou are a prompt engineer. Describe the video in detail.\nDescribe how the camera moves or shakes, describe the zoom and view angle, whether it follows the objects.\nDescribe the location of the video, main characters or objects and their action.\nDescribe the dynamism of the video and presented actions.\nName the visual style of the video: whether it is a professional footage, user generated content, some kind of animation, video game or screen content.\nDescribe the visual effects, postprocessing and transitions if they are presented in the video.\nPay attention to the order of key actions shown in the scene.<|im_end|>\n<|im_start|>user\n{}<|im_end|>" + self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + + def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): + out = super().tokenize_with_weights(text, return_word_ids, **kwargs) + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs) + + return out + + +class Kandinsky5TokenizerImage(Kandinsky5Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) + self.llama_template = "<|im_start|>system\nYou are a promt engineer. Describe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>" + + +class Qwen25_7BVLIModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="hidden", layer_idx=-1, dtype=None, attention_mask=True, model_options={}): + llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None) + if llama_scaled_fp8 is not None: + model_options = model_options.copy() + model_options["scaled_fp8"] = llama_scaled_fp8 + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + + +class Kandinsky5TEModel(QwenImageTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super(QwenImageTEModel, self).__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options) + self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options) + + def encode_token_weights(self, token_weight_pairs): + cond, p, extra = super().encode_token_weights(token_weight_pairs, template_end=-1) + l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs["l"]) + + return cond, l_pooled, extra + + def set_clip_options(self, options): + super().set_clip_options(options) + self.clip_l.set_clip_options(options) + + def reset_clip_options(self): + super().reset_clip_options() + self.clip_l.reset_clip_options() + + def load_sd(self, sd): + if "text_model.encoder.layers.1.mlp.fc1.weight" in sd: + return self.clip_l.load_sd(sd) + else: + return super().load_sd(sd) + +def te(dtype_llama=None, llama_scaled_fp8=None): + class Kandinsky5TEModel_(Kandinsky5TEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + model_options = model_options.copy() + model_options["qwen_scaled_fp8"] = llama_scaled_fp8 + if dtype_llama is not None: + dtype = dtype_llama + super().__init__(device=device, dtype=dtype, model_options=model_options) + return Kandinsky5TEModel_ diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 866c3e0eb..d7cbe68cf 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -568,6 +568,8 @@ class Conditioning(ComfyTypeIO): '''Used by WAN Camera.''' time_dim_concat: NotRequired[torch.Tensor] '''Used by WAN Phantom Subject.''' + time_dim_replace: NotRequired[torch.Tensor] + '''Used by Kandinsky5 I2V.''' CondList = list[tuple[torch.Tensor, PooledDict]] Type = CondList diff --git a/comfy_extras/nodes_kandinsky5.py b/comfy_extras/nodes_kandinsky5.py new file mode 100644 index 000000000..9cb234be1 --- /dev/null +++ b/comfy_extras/nodes_kandinsky5.py @@ -0,0 +1,136 @@ +import nodes +import node_helpers +import torch +import comfy.model_management +import comfy.utils + +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io + + +class Kandinsky5ImageToVideo(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="Kandinsky5ImageToVideo", + category="conditioning/video_models", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Vae.Input("vae"), + io.Int.Input("width", default=768, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=512, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=4), + io.Int.Input("batch_size", default=1, min=1, max=4096), + io.Image.Input("start_image", optional=True), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + io.Latent.Output(display_name="latent", tooltip="Empty video latent"), + io.Latent.Output(display_name="cond_latent", tooltip="Clean encoded start images, used to replace the noisy start of the model output latents"), + ], + ) + + @classmethod + def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None) -> io.NodeOutput: + latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) + cond_latent_out = {} + if start_image is not None: + start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) + encoded = vae.encode(start_image[:, :, :, :3]) + cond_latent_out["samples"] = encoded + + mask = torch.ones((1, 1, latent.shape[2], latent.shape[-2], latent.shape[-1]), device=start_image.device, dtype=start_image.dtype) + mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0 + + positive = node_helpers.conditioning_set_values(positive, {"time_dim_replace": encoded, "concat_mask": mask}) + negative = node_helpers.conditioning_set_values(negative, {"time_dim_replace": encoded, "concat_mask": mask}) + + out_latent = {} + out_latent["samples"] = latent + return io.NodeOutput(positive, negative, out_latent, cond_latent_out) + + +def adaptive_mean_std_normalization(source, reference, clump_mean_low=0.3, clump_mean_high=0.35, clump_std_low=0.35, clump_std_high=0.5): + source_mean = source.mean(dim=(1, 3, 4), keepdim=True) # mean over C, H, W + source_std = source.std(dim=(1, 3, 4), keepdim=True) # std over C, H, W + + reference_mean = torch.clamp(reference.mean(), source_mean - clump_mean_low, source_mean + clump_mean_high) + reference_std = torch.clamp(reference.std(), source_std - clump_std_low, source_std + clump_std_high) + + # normalization + normalized = (source - source_mean) / (source_std + 1e-8) + normalized = normalized * reference_std + reference_mean + + return normalized + + +class NormalizeVideoLatentStart(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="NormalizeVideoLatentStart", + category="conditioning/video_models", + description="Normalizes the initial frames of a video latent to match the mean and standard deviation of subsequent reference frames. Helps reduce differences between the starting frames and the rest of the video.", + inputs=[ + io.Latent.Input("latent"), + io.Int.Input("start_frame_count", default=4, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames to normalize, counted from the start"), + io.Int.Input("reference_frame_count", default=5, min=1, max=nodes.MAX_RESOLUTION, step=1, tooltip="Number of latent frames after the start frames to use as reference"), + ], + outputs=[ + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, latent, start_frame_count, reference_frame_count) -> io.NodeOutput: + if latent["samples"].shape[2] <= 1: + return io.NodeOutput(latent) + s = latent.copy() + samples = latent["samples"].clone() + + first_frames = samples[:, :, :start_frame_count] + reference_frames_data = samples[:, :, start_frame_count:start_frame_count+min(reference_frame_count, samples.shape[2]-1)] + normalized_first_frames = adaptive_mean_std_normalization(first_frames, reference_frames_data) + + samples[:, :, :start_frame_count] = normalized_first_frames + s["samples"] = samples + return io.NodeOutput(s) + + +class CLIPTextEncodeKandinsky5(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="CLIPTextEncodeKandinsky5", + category="advanced/conditioning/kandinsky5", + inputs=[ + io.Clip.Input("clip"), + io.String.Input("clip_l", multiline=True, dynamic_prompts=True), + io.String.Input("qwen25_7b", multiline=True, dynamic_prompts=True), + ], + outputs=[ + io.Conditioning.Output(), + ], + ) + + @classmethod + def execute(cls, clip, clip_l, qwen25_7b) -> io.NodeOutput: + tokens = clip.tokenize(clip_l) + tokens["qwen25_7b"] = clip.tokenize(qwen25_7b)["qwen25_7b"] + + return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens)) + + +class Kandinsky5Extension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + Kandinsky5ImageToVideo, + NormalizeVideoLatentStart, + CLIPTextEncodeKandinsky5, + ] + +async def comfy_entrypoint() -> Kandinsky5Extension: + return Kandinsky5Extension() diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py index d2df07ff9..e439b18ef 100644 --- a/comfy_extras/nodes_latent.py +++ b/comfy_extras/nodes_latent.py @@ -4,7 +4,7 @@ import torch import nodes from typing_extensions import override from comfy_api.latest import ComfyExtension, io - +import logging def reshape_latent_to(target_shape, latent, repeat_batch=True): if latent.shape[1:] != target_shape[1:]: @@ -388,6 +388,42 @@ class LatentOperationSharpen(io.ComfyNode): return luminance * sharpened return io.NodeOutput(sharpen) +class ReplaceVideoLatentFrames(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ReplaceVideoLatentFrames", + category="latent/batch", + inputs=[ + io.Latent.Input("destination", tooltip="The destination latent where frames will be replaced."), + io.Latent.Input("source", optional=True, tooltip="The source latent providing frames to insert into the destination latent. If not provided, the destination latent is returned unchanged."), + io.Int.Input("index", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1, tooltip="The starting latent frame index in the destination latent where the source latent frames will be placed. Negative values count from the end."), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, destination, index, source=None) -> io.NodeOutput: + if source is None: + return io.NodeOutput(destination) + dest_frames = destination["samples"].shape[2] + source_frames = source["samples"].shape[2] + if index < 0: + index = dest_frames + index + if index > dest_frames: + logging.warning(f"ReplaceVideoLatentFrames: Index {index} is out of bounds for destination latent frames {dest_frames}.") + return io.NodeOutput(destination) + if index + source_frames > dest_frames: + logging.warning(f"ReplaceVideoLatentFrames: Source latent frames {source_frames} do not fit within destination latent frames {dest_frames} at the specified index {index}.") + return io.NodeOutput(destination) + s = source.copy() + s_source = source["samples"] + s_destination = destination["samples"].clone() + s_destination[:, :, index:index + s_source.shape[2]] = s_source + s["samples"] = s_destination + return io.NodeOutput(s) class LatentExtension(ComfyExtension): @override @@ -405,6 +441,7 @@ class LatentExtension(ComfyExtension): LatentApplyOperationCFG, LatentOperationTonemapReinhard, LatentOperationSharpen, + ReplaceVideoLatentFrames ] diff --git a/nodes.py b/nodes.py index 356aa63df..8d28a725d 100644 --- a/nodes.py +++ b/nodes.py @@ -970,7 +970,7 @@ class DualCLIPLoader: def INPUT_TYPES(s): return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15"], ), + "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), @@ -2357,6 +2357,7 @@ async def init_builtin_extra_nodes(): "nodes_rope.py", "nodes_logic.py", "nodes_nop.py", + "nodes_kandinsky5.py", ] import_failed = [] From ae676ed105663bb225153c8bca406f00edf738b4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 5 Dec 2025 20:01:19 -0800 Subject: [PATCH 115/271] Fix regression. (#11137) --- comfy/supported_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 91cc4ef08..383c82c3e 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -1529,6 +1529,6 @@ class Kandinsky5Image(Kandinsky5): return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect)) -models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Kandinsky5Image, Kandinsky5] +models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5] models += [SVD_img2vid] From 117bf3f2bd9235cb5942a1de10a534c9869c7444 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 6 Dec 2025 06:22:02 +0200 Subject: [PATCH 116/271] convert nodes_freelunch.py to the V3 schema (#10904) --- comfy_extras/nodes_freelunch.py | 89 +++++++++++++++++---------- comfy_extras/nodes_model_downscale.py | 5 -- 2 files changed, 57 insertions(+), 37 deletions(-) diff --git a/comfy_extras/nodes_freelunch.py b/comfy_extras/nodes_freelunch.py index e3ac58447..3429b731e 100644 --- a/comfy_extras/nodes_freelunch.py +++ b/comfy_extras/nodes_freelunch.py @@ -2,6 +2,8 @@ import torch import logging +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO def Fourier_filter(x, threshold, scale): # FFT @@ -22,21 +24,26 @@ def Fourier_filter(x, threshold, scale): return x_filtered.to(x.dtype) -class FreeU: +class FreeU(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "model": ("MODEL",), - "b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}), - "b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}), - "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), - "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "patch" + def define_schema(cls): + return IO.Schema( + node_id="FreeU", + category="model_patches/unet", + inputs=[ + IO.Model.Input("model"), + IO.Float.Input("b1", default=1.1, min=0.0, max=10.0, step=0.01), + IO.Float.Input("b2", default=1.2, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01), + ], + outputs=[ + IO.Model.Output(), + ], + ) - CATEGORY = "model_patches/unet" - - def patch(self, model, b1, b2, s1, s2): + @classmethod + def execute(cls, model, b1, b2, s1, s2) -> IO.NodeOutput: model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} @@ -59,23 +66,31 @@ class FreeU: m = model.clone() m.set_model_output_block_patch(output_block_patch) - return (m, ) + return IO.NodeOutput(m) -class FreeU_V2: + patch = execute # TODO: remove + + +class FreeU_V2(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "model": ("MODEL",), - "b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}), - "b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}), - "s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}), - "s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}), - }} - RETURN_TYPES = ("MODEL",) - FUNCTION = "patch" + def define_schema(cls): + return IO.Schema( + node_id="FreeU_V2", + category="model_patches/unet", + inputs=[ + IO.Model.Input("model"), + IO.Float.Input("b1", default=1.3, min=0.0, max=10.0, step=0.01), + IO.Float.Input("b2", default=1.4, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01), + IO.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01), + ], + outputs=[ + IO.Model.Output(), + ], + ) - CATEGORY = "model_patches/unet" - - def patch(self, model, b1, b2, s1, s2): + @classmethod + def execute(cls, model, b1, b2, s1, s2) -> IO.NodeOutput: model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} @@ -105,9 +120,19 @@ class FreeU_V2: m = model.clone() m.set_model_output_block_patch(output_block_patch) - return (m, ) + return IO.NodeOutput(m) -NODE_CLASS_MAPPINGS = { - "FreeU": FreeU, - "FreeU_V2": FreeU_V2, -} + patch = execute # TODO: remove + + +class FreelunchExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + FreeU, + FreeU_V2, + ] + + +async def comfy_entrypoint() -> FreelunchExtension: + return FreelunchExtension() diff --git a/comfy_extras/nodes_model_downscale.py b/comfy_extras/nodes_model_downscale.py index f7ca9699d..dec2ae841 100644 --- a/comfy_extras/nodes_model_downscale.py +++ b/comfy_extras/nodes_model_downscale.py @@ -53,11 +53,6 @@ class PatchModelAddDownscale(io.ComfyNode): return io.NodeOutput(m) -NODE_DISPLAY_NAME_MAPPINGS = { - # Sampling - "PatchModelAddDownscale": "", -} - class ModelDownscaleExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: From 913f86b72740f84f759786a698108840a09b6498 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 6 Dec 2025 06:24:10 +0200 Subject: [PATCH 117/271] [V3] convert nodes_mask.py to V3 schema (#10669) * convert nodes_mask.py to V3 schema * set "Preview Mask" as display name for MaskPreview --- comfy_extras/nodes_mask.py | 508 +++++++++++++++++++------------------ 1 file changed, 263 insertions(+), 245 deletions(-) diff --git a/comfy_extras/nodes_mask.py b/comfy_extras/nodes_mask.py index a5e405008..290e6f55e 100644 --- a/comfy_extras/nodes_mask.py +++ b/comfy_extras/nodes_mask.py @@ -3,11 +3,10 @@ import scipy.ndimage import torch import comfy.utils import node_helpers -import folder_paths -import random +from typing_extensions import override +from comfy_api.latest import ComfyExtension, IO, UI import nodes -from nodes import MAX_RESOLUTION def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False): source = source.to(destination.device) @@ -46,202 +45,213 @@ def composite(destination, source, x, y, mask = None, multiplier = 8, resize_sou destination[..., top:bottom, left:right] = source_portion + destination_portion return destination -class LatentCompositeMasked: +class LatentCompositeMasked(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "destination": ("LATENT",), - "source": ("LATENT",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), - "resize_source": ("BOOLEAN", {"default": False}), - }, - "optional": { - "mask": ("MASK",), - } - } - RETURN_TYPES = ("LATENT",) - FUNCTION = "composite" + def define_schema(cls): + return IO.Schema( + node_id="LatentCompositeMasked", + category="latent", + inputs=[ + IO.Latent.Input("destination"), + IO.Latent.Input("source"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8), + IO.Boolean.Input("resize_source", default=False), + IO.Mask.Input("mask", optional=True), + ], + outputs=[IO.Latent.Output()], + ) - CATEGORY = "latent" - - def composite(self, destination, source, x, y, resize_source, mask = None): + @classmethod + def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput: output = destination.copy() destination = destination["samples"].clone() source = source["samples"] output["samples"] = composite(destination, source, x, y, mask, 8, resize_source) - return (output,) + return IO.NodeOutput(output) -class ImageCompositeMasked: + composite = execute # TODO: remove + + +class ImageCompositeMasked(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "destination": ("IMAGE",), - "source": ("IMAGE",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "resize_source": ("BOOLEAN", {"default": False}), - }, - "optional": { - "mask": ("MASK",), - } - } - RETURN_TYPES = ("IMAGE",) - FUNCTION = "composite" + def define_schema(cls): + return IO.Schema( + node_id="ImageCompositeMasked", + category="image", + inputs=[ + IO.Image.Input("destination"), + IO.Image.Input("source"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Boolean.Input("resize_source", default=False), + IO.Mask.Input("mask", optional=True), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image" - - def composite(self, destination, source, x, y, resize_source, mask = None): + @classmethod + def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput: destination, source = node_helpers.image_alpha_fix(destination, source) destination = destination.clone().movedim(-1, 1) output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1) - return (output,) + return IO.NodeOutput(output) -class MaskToImage: + composite = execute # TODO: remove + + +class MaskToImage(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "mask": ("MASK",), - } - } + def define_schema(cls): + return IO.Schema( + node_id="MaskToImage", + display_name="Convert Mask to Image", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("IMAGE",) - FUNCTION = "mask_to_image" - - def mask_to_image(self, mask): + @classmethod + def execute(cls, mask) -> IO.NodeOutput: result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) - return (result,) + return IO.NodeOutput(result) -class ImageToMask: + mask_to_image = execute # TODO: remove + + +class ImageToMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ("IMAGE",), - "channel": (["red", "green", "blue", "alpha"],), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ImageToMask", + display_name="Convert Image to Mask", + category="mask", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input("channel", options=["red", "green", "blue", "alpha"]), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - FUNCTION = "image_to_mask" - - def image_to_mask(self, image, channel): + @classmethod + def execute(cls, image, channel) -> IO.NodeOutput: channels = ["red", "green", "blue", "alpha"] mask = image[:, :, :, channels.index(channel)] - return (mask,) + return IO.NodeOutput(mask) -class ImageColorToMask: + image_to_mask = execute # TODO: remove + + +class ImageColorToMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": ("IMAGE",), - "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ImageColorToMask", + category="mask", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("color", default=0, min=0, max=0xFFFFFF, step=1, display_mode=IO.NumberDisplay.number), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - FUNCTION = "image_to_mask" - - def image_to_mask(self, image, color): + @classmethod + def execute(cls, image, color) -> IO.NodeOutput: temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int) temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2] mask = torch.where(temp == color, 1.0, 0).float() - return (mask,) + return IO.NodeOutput(mask) -class SolidMask: + image_to_mask = execute # TODO: remove + + +class SolidMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), - "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="SolidMask", + category="mask", + inputs=[ + IO.Float.Input("value", default=1.0, min=0.0, max=1.0, step=0.01), + IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "solid" - - def solid(self, value, width, height): + @classmethod + def execute(cls, value, width, height) -> IO.NodeOutput: out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu") - return (out,) + return IO.NodeOutput(out) -class InvertMask: + solid = execute # TODO: remove + + +class InvertMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - } - } + def define_schema(cls): + return IO.Schema( + node_id="InvertMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "invert" - - def invert(self, mask): + @classmethod + def execute(cls, mask) -> IO.NodeOutput: out = 1.0 - mask - return (out,) + return IO.NodeOutput(out) -class CropMask: + invert = execute # TODO: remove + + +class CropMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="CropMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "crop" - - def crop(self, mask, x, y, width, height): + @classmethod + def execute(cls, mask, x, y, width, height) -> IO.NodeOutput: mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) out = mask[:, y:y + height, x:x + width] - return (out,) + return IO.NodeOutput(out) -class MaskComposite: + crop = execute # TODO: remove + + +class MaskComposite(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "destination": ("MASK",), - "source": ("MASK",), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "operation": (["multiply", "add", "subtract", "and", "or", "xor"],), - } - } + def define_schema(cls): + return IO.Schema( + node_id="MaskComposite", + category="mask", + inputs=[ + IO.Mask.Input("destination"), + IO.Mask.Input("source"), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Combo.Input("operation", options=["multiply", "add", "subtract", "and", "or", "xor"]), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "combine" - - def combine(self, destination, source, x, y, operation): + @classmethod + def execute(cls, destination, source, x, y, operation) -> IO.NodeOutput: output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone() source = source.reshape((-1, source.shape[-2], source.shape[-1])) @@ -267,28 +277,29 @@ class MaskComposite: output = torch.clamp(output, 0.0, 1.0) - return (output,) + return IO.NodeOutput(output) -class FeatherMask: + combine = execute # TODO: remove + + +class FeatherMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="FeatherMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Int.Input("left", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("top", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("right", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("bottom", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "feather" - - def feather(self, mask, left, top, right, bottom): + @classmethod + def execute(cls, mask, left, top, right, bottom) -> IO.NodeOutput: output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone() left = min(left, output.shape[-1]) @@ -312,26 +323,28 @@ class FeatherMask: feather_rate = (y + 1) / bottom output[:, -y, :] *= feather_rate - return (output,) + return IO.NodeOutput(output) -class GrowMask: + feather = execute # TODO: remove + + +class GrowMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "mask": ("MASK",), - "expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}), - "tapered_corners": ("BOOLEAN", {"default": True}), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="GrowMask", + display_name="Grow Mask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Int.Input("expand", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1), + IO.Boolean.Input("tapered_corners", default=True), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - - FUNCTION = "expand_mask" - - def expand_mask(self, mask, expand, tapered_corners): + @classmethod + def execute(cls, mask, expand, tapered_corners) -> IO.NodeOutput: c = 0 if tapered_corners else 1 kernel = np.array([[c, 1, c], [1, 1, 1], @@ -347,69 +360,74 @@ class GrowMask: output = scipy.ndimage.grey_dilation(output, footprint=kernel) output = torch.from_numpy(output) out.append(output) - return (torch.stack(out, dim=0),) + return IO.NodeOutput(torch.stack(out, dim=0)) -class ThresholdMask: + expand_mask = execute # TODO: remove + + +class ThresholdMask(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "mask": ("MASK",), - "value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ThresholdMask", + category="mask", + inputs=[ + IO.Mask.Input("mask"), + IO.Float.Input("value", default=0.5, min=0.0, max=1.0, step=0.01), + ], + outputs=[IO.Mask.Output()], + ) - CATEGORY = "mask" - - RETURN_TYPES = ("MASK",) - FUNCTION = "image_to_mask" - - def image_to_mask(self, mask, value): + @classmethod + def execute(cls, mask, value) -> IO.NodeOutput: mask = (mask > value).float() - return (mask,) + return IO.NodeOutput(mask) + + image_to_mask = execute # TODO: remove + # Mask Preview - original implement from # https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81 # upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes -class MaskPreview(nodes.SaveImage): - def __init__(self): - self.output_dir = folder_paths.get_temp_directory() - self.type = "temp" - self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) - self.compress_level = 4 +class MaskPreview(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="MaskPreview", + display_name="Preview Mask", + category="mask", + description="Saves the input images to your ComfyUI output directory.", + inputs=[ + IO.Mask.Input("mask"), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) @classmethod - def INPUT_TYPES(s): - return { - "required": {"mask": ("MASK",), }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } - - FUNCTION = "execute" - CATEGORY = "mask" - - def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): - preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) - return self.save_images(preview, filename_prefix, prompt, extra_pnginfo) + def execute(cls, mask, filename_prefix="ComfyUI") -> IO.NodeOutput: + return IO.NodeOutput(ui=UI.PreviewMask(mask)) -NODE_CLASS_MAPPINGS = { - "LatentCompositeMasked": LatentCompositeMasked, - "ImageCompositeMasked": ImageCompositeMasked, - "MaskToImage": MaskToImage, - "ImageToMask": ImageToMask, - "ImageColorToMask": ImageColorToMask, - "SolidMask": SolidMask, - "InvertMask": InvertMask, - "CropMask": CropMask, - "MaskComposite": MaskComposite, - "FeatherMask": FeatherMask, - "GrowMask": GrowMask, - "ThresholdMask": ThresholdMask, - "MaskPreview": MaskPreview -} +class MaskExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + LatentCompositeMasked, + ImageCompositeMasked, + MaskToImage, + ImageToMask, + ImageColorToMask, + SolidMask, + InvertMask, + CropMask, + MaskComposite, + FeatherMask, + GrowMask, + ThresholdMask, + MaskPreview, + ] -NODE_DISPLAY_NAME_MAPPINGS = { - "ImageToMask": "Convert Image to Mask", - "MaskToImage": "Convert Mask to Image", -} + +async def comfy_entrypoint() -> MaskExtension: + return MaskExtension() From d7a0aef65033bf0fe56e521577a44fac1830b8b3 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 5 Dec 2025 21:15:21 -0800 Subject: [PATCH 118/271] Set OCL_SET_SVM_SIZE on AMD. (#11139) --- cuda_malloc.py | 27 +++++++++++++++++---------- main.py | 3 +++ 2 files changed, 20 insertions(+), 10 deletions(-) diff --git a/cuda_malloc.py b/cuda_malloc.py index 6520d5123..ee2bc4b69 100644 --- a/cuda_malloc.py +++ b/cuda_malloc.py @@ -63,18 +63,22 @@ def cuda_malloc_supported(): return True +version = "" + +try: + torch_spec = importlib.util.find_spec("torch") + for folder in torch_spec.submodule_search_locations: + ver_file = os.path.join(folder, "version.py") + if os.path.isfile(ver_file): + spec = importlib.util.spec_from_file_location("torch_version_import", ver_file) + module = importlib.util.module_from_spec(spec) + spec.loader.exec_module(module) + version = module.__version__ +except: + pass + if not args.cuda_malloc: try: - version = "" - torch_spec = importlib.util.find_spec("torch") - for folder in torch_spec.submodule_search_locations: - ver_file = os.path.join(folder, "version.py") - if os.path.isfile(ver_file): - spec = importlib.util.spec_from_file_location("torch_version_import", ver_file) - module = importlib.util.module_from_spec(spec) - spec.loader.exec_module(module) - version = module.__version__ - if int(version[0]) >= 2 and "+cu" in version: # enable by default for torch version 2.0 and up only on cuda torch if PerformanceFeature.AutoTune not in args.fast: # Autotune has issues with cuda malloc args.cuda_malloc = cuda_malloc_supported() @@ -90,3 +94,6 @@ if args.cuda_malloc and not args.disable_cuda_malloc: env_var += ",backend:cudaMallocAsync" os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var + +def get_torch_version_noimport(): + return str(version) diff --git a/main.py b/main.py index 0cd815d9e..0d02a087b 100644 --- a/main.py +++ b/main.py @@ -167,6 +167,9 @@ if __name__ == "__main__": os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8" import cuda_malloc + if "rocm" in cuda_malloc.get_torch_version_noimport(): + os.environ['OCL_SET_SVM_SIZE'] = '262144' # set at the request of AMD + if 'torch' in sys.modules: logging.warning("WARNING: Potential Error in code: Torch already imported, torch should never be imported before this point.") From 76f18e955dcbc88ed13d6802194fd897927f93e5 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 6 Dec 2025 13:28:08 +0200 Subject: [PATCH 119/271] marked all Pika API nodes a deprecated (#11146) --- comfy_api_nodes/nodes_pika.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/comfy_api_nodes/nodes_pika.py b/comfy_api_nodes/nodes_pika.py index 51148211b..acd88c391 100644 --- a/comfy_api_nodes/nodes_pika.py +++ b/comfy_api_nodes/nodes_pika.py @@ -92,6 +92,7 @@ class PikaImageToVideo(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -152,6 +153,7 @@ class PikaTextToVideoNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -239,6 +241,7 @@ class PikaScenes(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -323,6 +326,7 @@ class PikAdditionsNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -399,6 +403,7 @@ class PikaSwapsNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -466,6 +471,7 @@ class PikaffectsNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -515,6 +521,7 @@ class PikaStartEndFrameNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod From 7ac7d69d948e75c3a230d1262daab84d75aff895 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Sat, 6 Dec 2025 20:09:44 +0200 Subject: [PATCH 120/271] Fix EmptyAudio node input types (#11149) --- comfy_extras/nodes_audio.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index 812301fb7..c7916443c 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -573,12 +573,14 @@ class EmptyAudio(IO.ComfyNode): step=0.01, tooltip="Duration of the empty audio clip in seconds", ), - IO.Float.Input( + IO.Int.Input( "sample_rate", default=44100, tooltip="Sample rate of the empty audio clip.", + min=1, + max=192000, ), - IO.Float.Input( + IO.Int.Input( "channels", default=2, min=1, From 50ca97e7765d9bbdbeec31a75f1f6c747d76948c Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 6 Dec 2025 15:36:20 -0800 Subject: [PATCH 121/271] Speed up lora compute and lower memory usage by doing it in fp16. (#11161) --- comfy/model_management.py | 14 ++++++++++++++ comfy/model_patcher.py | 5 +++-- 2 files changed, 17 insertions(+), 2 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index aeddbaefe..40717b1e4 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1492,6 +1492,20 @@ def extended_fp16_support(): return True +LORA_COMPUTE_DTYPES = {} +def lora_compute_dtype(device): + dtype = LORA_COMPUTE_DTYPES.get(device, None) + if dtype is not None: + return dtype + + if should_use_fp16(device): + dtype = torch.float16 + else: + dtype = torch.float32 + + LORA_COMPUTE_DTYPES[device] = dtype + return dtype + def soft_empty_cache(force=False): global cpu_state if cpu_state == CPUState.MPS: diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 215784874..4f076a6aa 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -614,10 +614,11 @@ class ModelPatcher: if key not in self.backup: self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update) + temp_dtype = comfy.model_management.lora_compute_dtype(device_to) if device_to is not None: - temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) + temp_weight = comfy.model_management.cast_to_device(weight, device_to, temp_dtype, copy=True) else: - temp_weight = weight.to(torch.float32, copy=True) + temp_weight = weight.to(temp_dtype, copy=True) if convert_func is not None: temp_weight = convert_func(temp_weight, inplace=True) From 4086acf3c2f0ca3a8861b04f6179fa9f908e3e25 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Sun, 7 Dec 2025 09:42:09 +1000 Subject: [PATCH 122/271] Fix on-load VRAM OOM (#11144) slow down the CPU on model load to not run ahead. This fixes a VRAM on flux 2 load. I went to try and debug this with the memory trace pickles, which needs --disable-cuda-malloc which made the bug go away. So I tried this synchronize and it worked. The has some very complex interactions with the cuda malloc async and I dont have solid theory on this one yet. Still debugging but this gets us over the OOM for the moment. --- comfy/model_patcher.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 4f076a6aa..5b1ccb824 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -762,6 +762,8 @@ class ModelPatcher: key = "{}.{}".format(n, param) self.unpin_weight(key) self.patch_weight_to_device(key, device_to=device_to) + if comfy.model_management.is_device_cuda(device_to): + torch.cuda.synchronize() logging.debug("lowvram: loaded module regularly {} {}".format(n, m)) m.comfy_patched_weights = True From 329480da5ab32949a411548f821ea60ab3e90dc7 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 6 Dec 2025 17:50:10 -0800 Subject: [PATCH 123/271] Fix qwen scaled fp8 not working with kandinsky. Make basic t2i wf work. (#11162) --- comfy/ldm/kandinsky5/model.py | 8 +++++++- comfy/text_encoders/kandinsky5.py | 12 ++++++------ 2 files changed, 13 insertions(+), 7 deletions(-) diff --git a/comfy/ldm/kandinsky5/model.py b/comfy/ldm/kandinsky5/model.py index a653e02fc..1509de2f8 100644 --- a/comfy/ldm/kandinsky5/model.py +++ b/comfy/ldm/kandinsky5/model.py @@ -387,6 +387,9 @@ class Kandinsky5(nn.Module): return self.out_layer(visual_embed, time_embed) def _forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs): + original_dims = x.ndim + if original_dims == 4: + x = x.unsqueeze(2) bs, c, t_len, h, w = x.shape x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size) @@ -397,7 +400,10 @@ class Kandinsky5(nn.Module): freqs = self.rope_encode_3d(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options) freqs_text = self.rope_encode_1d(context.shape[1], device=x.device, dtype=x.dtype, transformer_options=transformer_options) - return self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs) + out = self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs) + if original_dims == 4: + out = out.squeeze(2) + return out def forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs): return comfy.patcher_extension.WrapperExecutor.new_class_executor( diff --git a/comfy/text_encoders/kandinsky5.py b/comfy/text_encoders/kandinsky5.py index 22f991c36..be086458c 100644 --- a/comfy/text_encoders/kandinsky5.py +++ b/comfy/text_encoders/kandinsky5.py @@ -24,10 +24,10 @@ class Kandinsky5TokenizerImage(Kandinsky5Tokenizer): class Qwen25_7BVLIModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-1, dtype=None, attention_mask=True, model_options={}): - llama_scaled_fp8 = model_options.get("qwen_scaled_fp8", None) - if llama_scaled_fp8 is not None: + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) @@ -56,12 +56,12 @@ class Kandinsky5TEModel(QwenImageTEModel): else: return super().load_sd(sd) -def te(dtype_llama=None, llama_scaled_fp8=None): +def te(dtype_llama=None, llama_quantization_metadata=None): class Kandinsky5TEModel_(Kandinsky5TEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["qwen_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(device=device, dtype=dtype, model_options=model_options) From 56fa7dbe380cb5591c5542f8aa51ce2fc26beedf Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 7 Dec 2025 04:44:55 -0800 Subject: [PATCH 124/271] Properly load the newbie diffusion model. (#11172) There is still one of the text encoders missing and I didn't actually test it. --- comfy/ldm/lumina/model.py | 35 +++++++++++++++++++++++++++++++++++ comfy/model_base.py | 4 ++++ comfy/model_detection.py | 3 +++ 3 files changed, 42 insertions(+) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 6c24fed9b..c47df49ca 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -377,6 +377,7 @@ class NextDiT(nn.Module): z_image_modulation=False, time_scale=1.0, pad_tokens_multiple=None, + clip_text_dim=None, image_model=None, device=None, dtype=None, @@ -447,6 +448,31 @@ class NextDiT(nn.Module): ), ) + self.clip_text_pooled_proj = None + + if clip_text_dim is not None: + self.clip_text_dim = clip_text_dim + self.clip_text_pooled_proj = nn.Sequential( + operation_settings.get("operations").RMSNorm(clip_text_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), + operation_settings.get("operations").Linear( + clip_text_dim, + clip_text_dim, + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) + self.time_text_embed = nn.Sequential( + nn.SiLU(), + operation_settings.get("operations").Linear( + min(dim, 1024) + clip_text_dim, + min(dim, 1024), + bias=True, + device=operation_settings.get("device"), + dtype=operation_settings.get("dtype"), + ), + ) + self.layers = nn.ModuleList( [ JointTransformerBlock( @@ -585,6 +611,15 @@ class NextDiT(nn.Module): cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute + if self.clip_text_pooled_proj is not None: + pooled = kwargs.get("clip_text_pooled", None) + if pooled is not None: + pooled = self.clip_text_pooled_proj(pooled) + else: + pooled = torch.zeros((1, self.clip_text_dim), device=x.device, dtype=x.dtype) + + adaln_input = self.time_text_embed(torch.cat((t, pooled), dim=-1)) + patches = transformer_options.get("patches", {}) x_is_tensor = isinstance(x, torch.Tensor) img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options) diff --git a/comfy/model_base.py b/comfy/model_base.py index 0be006cc2..6b8a8454d 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -1110,6 +1110,10 @@ class Lumina2(BaseModel): if 'num_tokens' not in out: out['num_tokens'] = comfy.conds.CONDConstant(cross_attn.shape[1]) + clip_text_pooled = kwargs["pooled_output"] # Newbie + if clip_text_pooled is not None: + out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled) + return out class WAN21(BaseModel): diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 30b33a486..74c547427 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -423,6 +423,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["axes_lens"] = [300, 512, 512] dit_config["rope_theta"] = 10000.0 dit_config["ffn_dim_multiplier"] = 4.0 + ctd_weight = state_dict.get('{}clip_text_pooled_proj.0.weight'.format(key_prefix), None) + if ctd_weight is not None: + dit_config["clip_text_dim"] = ctd_weight.shape[0] elif dit_config["dim"] == 3840: # Z image dit_config["n_heads"] = 30 dit_config["n_kv_heads"] = 30 From ec7f65187d85e22ea23345ce0d919e11768f255e Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Mon, 8 Dec 2025 11:21:41 +0200 Subject: [PATCH 125/271] chore(comfy_api): replace absolute imports with relative (#11145) --- comfy_api/latest/__init__.py | 8 ++++---- comfy_api/latest/_input/video_types.py | 2 +- comfy_api/latest/_input_impl/video_types.py | 4 ++-- comfy_api/latest/_io.py | 2 +- comfy_api/latest/_ui.py | 2 +- comfy_api/latest/_util/video_types.py | 2 +- 6 files changed, 10 insertions(+), 10 deletions(-) diff --git a/comfy_api/latest/__init__.py b/comfy_api/latest/__init__.py index 0fa01d1e7..35e1ac853 100644 --- a/comfy_api/latest/__init__.py +++ b/comfy_api/latest/__init__.py @@ -5,9 +5,9 @@ from typing import Type, TYPE_CHECKING from comfy_api.internal import ComfyAPIBase from comfy_api.internal.singleton import ProxiedSingleton from comfy_api.internal.async_to_sync import create_sync_class -from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput -from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents -from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL +from ._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput +from ._input_impl import VideoFromFile, VideoFromComponents +from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL from . import _io_public as io from . import _ui_public as ui # from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401 @@ -80,7 +80,7 @@ class ComfyExtension(ABC): async def on_load(self) -> None: """ Called when an extension is loaded. - This should be used to initialize any global resources neeeded by the extension. + This should be used to initialize any global resources needed by the extension. """ @abstractmethod diff --git a/comfy_api/latest/_input/video_types.py b/comfy_api/latest/_input/video_types.py index 87c81d73a..e634a0311 100644 --- a/comfy_api/latest/_input/video_types.py +++ b/comfy_api/latest/_input/video_types.py @@ -4,7 +4,7 @@ from fractions import Fraction from typing import Optional, Union, IO import io import av -from comfy_api.util import VideoContainer, VideoCodec, VideoComponents +from .._util import VideoContainer, VideoCodec, VideoComponents class VideoInput(ABC): """ diff --git a/comfy_api/latest/_input_impl/video_types.py b/comfy_api/latest/_input_impl/video_types.py index a4cd3737d..ea35c6062 100644 --- a/comfy_api/latest/_input_impl/video_types.py +++ b/comfy_api/latest/_input_impl/video_types.py @@ -3,14 +3,14 @@ from av.container import InputContainer from av.subtitles.stream import SubtitleStream from fractions import Fraction from typing import Optional -from comfy_api.latest._input import AudioInput, VideoInput +from .._input import AudioInput, VideoInput import av import io import json import numpy as np import math import torch -from comfy_api.latest._util import VideoContainer, VideoCodec, VideoComponents +from .._util import VideoContainer, VideoCodec, VideoComponents def container_to_output_format(container_format: str | None) -> str | None: diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index d7cbe68cf..313a5af20 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -26,7 +26,7 @@ if TYPE_CHECKING: from comfy_api.input import VideoInput from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class, prune_dict, shallow_clone_class) -from comfy_api.latest._resources import Resources, ResourcesLocal +from ._resources import Resources, ResourcesLocal from comfy_execution.graph_utils import ExecutionBlocker from ._util import MESH, VOXEL diff --git a/comfy_api/latest/_ui.py b/comfy_api/latest/_ui.py index 5a75a3aae..2babe209a 100644 --- a/comfy_api/latest/_ui.py +++ b/comfy_api/latest/_ui.py @@ -22,7 +22,7 @@ import folder_paths # used for image preview from comfy.cli_args import args -from comfy_api.latest._io import ComfyNode, FolderType, Image, _UIOutput +from ._io import ComfyNode, FolderType, Image, _UIOutput class SavedResult(dict): diff --git a/comfy_api/latest/_util/video_types.py b/comfy_api/latest/_util/video_types.py index c3e3d8e3a..fd3b5a510 100644 --- a/comfy_api/latest/_util/video_types.py +++ b/comfy_api/latest/_util/video_types.py @@ -3,7 +3,7 @@ from dataclasses import dataclass from enum import Enum from fractions import Fraction from typing import Optional -from comfy_api.latest._input import ImageInput, AudioInput +from .._input import ImageInput, AudioInput class VideoCodec(str, Enum): AUTO = "auto" From 058f084371ef2ed0c456118dfdd3d0bfed17259b Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Mon, 8 Dec 2025 17:22:51 +0800 Subject: [PATCH 126/271] Update workflow templates to v0.7.51 (#11150) * chore: update workflow templates to v0.7.50 * Update template to 0.7.51 --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index f98848e20..12a7c1089 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.33.10 -comfyui-workflow-templates==0.7.25 +comfyui-workflow-templates==0.7.51 comfyui-embedded-docs==0.3.1 torch torchsde From 85c4b4ae262c2de360891dd23c6504da2f5a6014 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Mon, 8 Dec 2025 11:27:02 +0200 Subject: [PATCH 127/271] chore: replace imports of deprecated V1 classes (#11127) --- comfy_api_nodes/apis/veo_api.py | 2 +- comfy_api_nodes/nodes_gemini.py | 19 ++++++++++--------- comfy_api_nodes/nodes_ltxv.py | 17 +++++++---------- comfy_api_nodes/nodes_moonvalley.py | 19 ++++++++----------- comfy_api_nodes/nodes_runway.py | 29 +++++++++++++---------------- comfy_api_nodes/nodes_veo2.py | 12 +++++------- comfy_extras/nodes_video.py | 27 +++++++++++---------------- 7 files changed, 55 insertions(+), 70 deletions(-) diff --git a/comfy_api_nodes/apis/veo_api.py b/comfy_api_nodes/apis/veo_api.py index 8328d1aa4..23ca725b7 100644 --- a/comfy_api_nodes/apis/veo_api.py +++ b/comfy_api_nodes/apis/veo_api.py @@ -85,7 +85,7 @@ class Response1(BaseModel): raiMediaFilteredReasons: Optional[list[str]] = Field( None, description='Reasons why media was filtered by responsible AI policies' ) - videos: Optional[list[Video]] = None + videos: Optional[list[Video]] = Field(None) class VeoGenVidPollResponse(BaseModel): diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index 08f7b0f64..0b7422ef7 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -13,8 +13,7 @@ import torch from typing_extensions import override import folder_paths -from comfy_api.latest import IO, ComfyExtension, Input -from comfy_api.util import VideoCodec, VideoContainer +from comfy_api.latest import IO, ComfyExtension, Input, Types from comfy_api_nodes.apis.gemini_api import ( GeminiContent, GeminiFileData, @@ -68,7 +67,7 @@ class GeminiImageModel(str, Enum): async def create_image_parts( cls: type[IO.ComfyNode], - images: torch.Tensor, + images: Input.Image, image_limit: int = 0, ) -> list[GeminiPart]: image_parts: list[GeminiPart] = [] @@ -154,8 +153,8 @@ def get_text_from_response(response: GeminiGenerateContentResponse) -> str: return "\n".join([part.text for part in parts]) -def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Tensor: - image_tensors: list[torch.Tensor] = [] +def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image: + image_tensors: list[Input.Image] = [] parts = get_parts_by_type(response, "image/png") for part in parts: image_data = base64.b64decode(part.inlineData.data) @@ -293,7 +292,9 @@ class GeminiNode(IO.ComfyNode): def create_video_parts(cls, video_input: Input.Video) -> list[GeminiPart]: """Convert video input to Gemini API compatible parts.""" - base_64_string = video_to_base64_string(video_input, container_format=VideoContainer.MP4, codec=VideoCodec.H264) + base_64_string = video_to_base64_string( + video_input, container_format=Types.VideoContainer.MP4, codec=Types.VideoCodec.H264 + ) return [ GeminiPart( inlineData=GeminiInlineData( @@ -343,7 +344,7 @@ class GeminiNode(IO.ComfyNode): prompt: str, model: str, seed: int, - images: torch.Tensor | None = None, + images: Input.Image | None = None, audio: Input.Audio | None = None, video: Input.Video | None = None, files: list[GeminiPart] | None = None, @@ -542,7 +543,7 @@ class GeminiImage(IO.ComfyNode): prompt: str, model: str, seed: int, - images: torch.Tensor | None = None, + images: Input.Image | None = None, files: list[GeminiPart] | None = None, aspect_ratio: str = "auto", response_modalities: str = "IMAGE+TEXT", @@ -662,7 +663,7 @@ class GeminiImage2(IO.ComfyNode): aspect_ratio: str, resolution: str, response_modalities: str, - images: torch.Tensor | None = None, + images: Input.Image | None = None, files: list[GeminiPart] | None = None, ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) diff --git a/comfy_api_nodes/nodes_ltxv.py b/comfy_api_nodes/nodes_ltxv.py index 0b757a62b..7e61560dc 100644 --- a/comfy_api_nodes/nodes_ltxv.py +++ b/comfy_api_nodes/nodes_ltxv.py @@ -1,12 +1,9 @@ from io import BytesIO -from typing import Optional -import torch from pydantic import BaseModel, Field from typing_extensions import override -from comfy_api.input_impl import VideoFromFile -from comfy_api.latest import IO, ComfyExtension +from comfy_api.latest import IO, ComfyExtension, Input, InputImpl from comfy_api_nodes.util import ( ApiEndpoint, get_number_of_images, @@ -26,9 +23,9 @@ class ExecuteTaskRequest(BaseModel): model: str = Field(...) duration: int = Field(...) resolution: str = Field(...) - fps: Optional[int] = Field(25) - generate_audio: Optional[bool] = Field(True) - image_uri: Optional[str] = Field(None) + fps: int | None = Field(25) + generate_audio: bool | None = Field(True) + image_uri: str | None = Field(None) class TextToVideoNode(IO.ComfyNode): @@ -103,7 +100,7 @@ class TextToVideoNode(IO.ComfyNode): as_binary=True, max_retries=1, ) - return IO.NodeOutput(VideoFromFile(BytesIO(response))) + return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(response))) class ImageToVideoNode(IO.ComfyNode): @@ -153,7 +150,7 @@ class ImageToVideoNode(IO.ComfyNode): @classmethod async def execute( cls, - image: torch.Tensor, + image: Input.Image, model: str, prompt: str, duration: int, @@ -183,7 +180,7 @@ class ImageToVideoNode(IO.ComfyNode): as_binary=True, max_retries=1, ) - return IO.NodeOutput(VideoFromFile(BytesIO(response))) + return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(response))) class LtxvApiExtension(ComfyExtension): diff --git a/comfy_api_nodes/nodes_moonvalley.py b/comfy_api_nodes/nodes_moonvalley.py index 7c31d95b3..2771e4790 100644 --- a/comfy_api_nodes/nodes_moonvalley.py +++ b/comfy_api_nodes/nodes_moonvalley.py @@ -1,11 +1,8 @@ import logging -from typing import Optional -import torch from typing_extensions import override -from comfy_api.input import VideoInput -from comfy_api.latest import IO, ComfyExtension +from comfy_api.latest import IO, ComfyExtension, Input from comfy_api_nodes.apis import ( MoonvalleyPromptResponse, MoonvalleyTextToVideoInferenceParams, @@ -61,7 +58,7 @@ def validate_task_creation_response(response) -> None: raise RuntimeError(error_msg) -def validate_video_to_video_input(video: VideoInput) -> VideoInput: +def validate_video_to_video_input(video: Input.Video) -> Input.Video: """ Validates and processes video input for Moonvalley Video-to-Video generation. @@ -82,7 +79,7 @@ def validate_video_to_video_input(video: VideoInput) -> VideoInput: return _validate_and_trim_duration(video) -def _get_video_dimensions(video: VideoInput) -> tuple[int, int]: +def _get_video_dimensions(video: Input.Video) -> tuple[int, int]: """Extracts video dimensions with error handling.""" try: return video.get_dimensions() @@ -106,7 +103,7 @@ def _validate_video_dimensions(width: int, height: int) -> None: raise ValueError(f"Resolution {width}x{height} not supported. Supported: {supported_list}") -def _validate_and_trim_duration(video: VideoInput) -> VideoInput: +def _validate_and_trim_duration(video: Input.Video) -> Input.Video: """Validates video duration and trims to 5 seconds if needed.""" duration = video.get_duration() _validate_minimum_duration(duration) @@ -119,7 +116,7 @@ def _validate_minimum_duration(duration: float) -> None: raise ValueError("Input video must be at least 5 seconds long.") -def _trim_if_too_long(video: VideoInput, duration: float) -> VideoInput: +def _trim_if_too_long(video: Input.Video, duration: float) -> Input.Video: """Trims video to 5 seconds if longer.""" if duration > 5: return trim_video(video, 5) @@ -241,7 +238,7 @@ class MoonvalleyImg2VideoNode(IO.ComfyNode): @classmethod async def execute( cls, - image: torch.Tensor, + image: Input.Image, prompt: str, negative_prompt: str, resolution: str, @@ -362,9 +359,9 @@ class MoonvalleyVideo2VideoNode(IO.ComfyNode): prompt: str, negative_prompt: str, seed: int, - video: Optional[VideoInput] = None, + video: Input.Video | None = None, control_type: str = "Motion Transfer", - motion_intensity: Optional[int] = 100, + motion_intensity: int | None = 100, steps=33, prompt_adherence=4.5, ) -> IO.NodeOutput: diff --git a/comfy_api_nodes/nodes_runway.py b/comfy_api_nodes/nodes_runway.py index 2fdafbbfe..3c55039c9 100644 --- a/comfy_api_nodes/nodes_runway.py +++ b/comfy_api_nodes/nodes_runway.py @@ -11,12 +11,11 @@ User Guides: """ -from typing import Union, Optional -from typing_extensions import override from enum import Enum -import torch +from typing_extensions import override +from comfy_api.latest import IO, ComfyExtension, Input, InputImpl from comfy_api_nodes.apis import ( RunwayImageToVideoRequest, RunwayImageToVideoResponse, @@ -44,8 +43,6 @@ from comfy_api_nodes.util import ( sync_op, poll_op, ) -from comfy_api.input_impl import VideoFromFile -from comfy_api.latest import ComfyExtension, IO PATH_IMAGE_TO_VIDEO = "/proxy/runway/image_to_video" PATH_TEXT_TO_IMAGE = "/proxy/runway/text_to_image" @@ -80,7 +77,7 @@ class RunwayGen3aAspectRatio(str, Enum): field_1280_768 = "1280:768" -def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]: +def get_video_url_from_task_status(response: TaskStatusResponse) -> str | None: """Returns the video URL from the task status response if it exists.""" if hasattr(response, "output") and len(response.output) > 0: return response.output[0] @@ -89,13 +86,13 @@ def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, N def extract_progress_from_task_status( response: TaskStatusResponse, -) -> Union[float, None]: +) -> float | None: if hasattr(response, "progress") and response.progress is not None: return response.progress * 100 return None -def get_image_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]: +def get_image_url_from_task_status(response: TaskStatusResponse) -> str | None: """Returns the image URL from the task status response if it exists.""" if hasattr(response, "output") and len(response.output) > 0: return response.output[0] @@ -103,7 +100,7 @@ def get_image_url_from_task_status(response: TaskStatusResponse) -> Union[str, N async def get_response( - cls: type[IO.ComfyNode], task_id: str, estimated_duration: Optional[int] = None + cls: type[IO.ComfyNode], task_id: str, estimated_duration: int | None = None ) -> TaskStatusResponse: """Poll the task status until it is finished then get the response.""" return await poll_op( @@ -119,8 +116,8 @@ async def get_response( async def generate_video( cls: type[IO.ComfyNode], request: RunwayImageToVideoRequest, - estimated_duration: Optional[int] = None, -) -> VideoFromFile: + estimated_duration: int | None = None, +) -> InputImpl.VideoFromFile: initial_response = await sync_op( cls, endpoint=ApiEndpoint(path=PATH_IMAGE_TO_VIDEO, method="POST"), @@ -193,7 +190,7 @@ class RunwayImageToVideoNodeGen3a(IO.ComfyNode): async def execute( cls, prompt: str, - start_frame: torch.Tensor, + start_frame: Input.Image, duration: str, ratio: str, seed: int, @@ -283,7 +280,7 @@ class RunwayImageToVideoNodeGen4(IO.ComfyNode): async def execute( cls, prompt: str, - start_frame: torch.Tensor, + start_frame: Input.Image, duration: str, ratio: str, seed: int, @@ -381,8 +378,8 @@ class RunwayFirstLastFrameNode(IO.ComfyNode): async def execute( cls, prompt: str, - start_frame: torch.Tensor, - end_frame: torch.Tensor, + start_frame: Input.Image, + end_frame: Input.Image, duration: str, ratio: str, seed: int, @@ -467,7 +464,7 @@ class RunwayTextToImageNode(IO.ComfyNode): cls, prompt: str, ratio: str, - reference_image: Optional[torch.Tensor] = None, + reference_image: Input.Image | None = None, ) -> IO.NodeOutput: validate_string(prompt, min_length=1) diff --git a/comfy_api_nodes/nodes_veo2.py b/comfy_api_nodes/nodes_veo2.py index a54dc13ab..e165b8380 100644 --- a/comfy_api_nodes/nodes_veo2.py +++ b/comfy_api_nodes/nodes_veo2.py @@ -1,11 +1,9 @@ import base64 from io import BytesIO -import torch from typing_extensions import override -from comfy_api.input_impl.video_types import VideoFromFile -from comfy_api.latest import IO, ComfyExtension +from comfy_api.latest import IO, ComfyExtension, Input, InputImpl from comfy_api_nodes.apis.veo_api import ( VeoGenVidPollRequest, VeoGenVidPollResponse, @@ -232,7 +230,7 @@ class VeoVideoGenerationNode(IO.ComfyNode): # Check if video is provided as base64 or URL if hasattr(video, "bytesBase64Encoded") and video.bytesBase64Encoded: - return IO.NodeOutput(VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded)))) + return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded)))) if hasattr(video, "gcsUri") and video.gcsUri: return IO.NodeOutput(await download_url_to_video_output(video.gcsUri)) @@ -431,8 +429,8 @@ class Veo3FirstLastFrameNode(IO.ComfyNode): aspect_ratio: str, duration: int, seed: int, - first_frame: torch.Tensor, - last_frame: torch.Tensor, + first_frame: Input.Image, + last_frame: Input.Image, model: str, generate_audio: bool, ): @@ -493,7 +491,7 @@ class Veo3FirstLastFrameNode(IO.ComfyNode): if response.videos: video = response.videos[0] if video.bytesBase64Encoded: - return IO.NodeOutput(VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded)))) + return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded)))) if video.gcsUri: return IO.NodeOutput(await download_url_to_video_output(video.gcsUri)) raise Exception("Video returned but no data or URL was provided") diff --git a/comfy_extras/nodes_video.py b/comfy_extras/nodes_video.py index 6cf6e39bf..c609e03da 100644 --- a/comfy_extras/nodes_video.py +++ b/comfy_extras/nodes_video.py @@ -8,10 +8,7 @@ import json from typing import Optional from typing_extensions import override from fractions import Fraction -from comfy_api.input import AudioInput, ImageInput, VideoInput -from comfy_api.input_impl import VideoFromComponents, VideoFromFile -from comfy_api.util import VideoCodec, VideoComponents, VideoContainer -from comfy_api.latest import ComfyExtension, io, ui +from comfy_api.latest import ComfyExtension, io, ui, Input, InputImpl, Types from comfy.cli_args import args class SaveWEBM(io.ComfyNode): @@ -28,7 +25,6 @@ class SaveWEBM(io.ComfyNode): io.Float.Input("fps", default=24.0, min=0.01, max=1000.0, step=0.01), io.Float.Input("crf", default=32.0, min=0, max=63.0, step=1, tooltip="Higher crf means lower quality with a smaller file size, lower crf means higher quality higher filesize."), ], - outputs=[], hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo], is_output_node=True, ) @@ -79,16 +75,15 @@ class SaveVideo(io.ComfyNode): inputs=[ io.Video.Input("video", tooltip="The video to save."), io.String.Input("filename_prefix", default="video/ComfyUI", tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."), - io.Combo.Input("format", options=VideoContainer.as_input(), default="auto", tooltip="The format to save the video as."), - io.Combo.Input("codec", options=VideoCodec.as_input(), default="auto", tooltip="The codec to use for the video."), + io.Combo.Input("format", options=Types.VideoContainer.as_input(), default="auto", tooltip="The format to save the video as."), + io.Combo.Input("codec", options=Types.VideoCodec.as_input(), default="auto", tooltip="The codec to use for the video."), ], - outputs=[], hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod - def execute(cls, video: VideoInput, filename_prefix, format: str, codec) -> io.NodeOutput: + def execute(cls, video: Input.Video, filename_prefix, format: str, codec) -> io.NodeOutput: width, height = video.get_dimensions() full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path( filename_prefix, @@ -105,10 +100,10 @@ class SaveVideo(io.ComfyNode): metadata["prompt"] = cls.hidden.prompt if len(metadata) > 0: saved_metadata = metadata - file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}" + file = f"{filename}_{counter:05}_.{Types.VideoContainer.get_extension(format)}" video.save_to( os.path.join(full_output_folder, file), - format=VideoContainer(format), + format=Types.VideoContainer(format), codec=codec, metadata=saved_metadata ) @@ -135,9 +130,9 @@ class CreateVideo(io.ComfyNode): ) @classmethod - def execute(cls, images: ImageInput, fps: float, audio: Optional[AudioInput] = None) -> io.NodeOutput: + def execute(cls, images: Input.Image, fps: float, audio: Optional[Input.Audio] = None) -> io.NodeOutput: return io.NodeOutput( - VideoFromComponents(VideoComponents(images=images, audio=audio, frame_rate=Fraction(fps))) + InputImpl.VideoFromComponents(Types.VideoComponents(images=images, audio=audio, frame_rate=Fraction(fps))) ) class GetVideoComponents(io.ComfyNode): @@ -159,11 +154,11 @@ class GetVideoComponents(io.ComfyNode): ) @classmethod - def execute(cls, video: VideoInput) -> io.NodeOutput: + def execute(cls, video: Input.Video) -> io.NodeOutput: components = video.get_components() - return io.NodeOutput(components.images, components.audio, float(components.frame_rate)) + class LoadVideo(io.ComfyNode): @classmethod def define_schema(cls): @@ -185,7 +180,7 @@ class LoadVideo(io.ComfyNode): @classmethod def execute(cls, file) -> io.NodeOutput: video_path = folder_paths.get_annotated_filepath(file) - return io.NodeOutput(VideoFromFile(video_path)) + return io.NodeOutput(InputImpl.VideoFromFile(video_path)) @classmethod def fingerprint_inputs(s, file): From c3c6313fc7b24a5811efde7cfe10b7cbbea52663 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Mon, 8 Dec 2025 11:28:17 +0200 Subject: [PATCH 128/271] Added "system_prompt" input to Gemini nodes (#11177) --- comfy_api_nodes/apis/gemini_api.py | 10 +----- comfy_api_nodes/nodes_gemini.py | 52 ++++++++++++++++++++++++++++-- 2 files changed, 51 insertions(+), 11 deletions(-) diff --git a/comfy_api_nodes/apis/gemini_api.py b/comfy_api_nodes/apis/gemini_api.py index a380ecc86..f8edc38c9 100644 --- a/comfy_api_nodes/apis/gemini_api.py +++ b/comfy_api_nodes/apis/gemini_api.py @@ -84,15 +84,7 @@ class GeminiSystemInstructionContent(BaseModel): description="A list of ordered parts that make up a single message. " "Different parts may have different IANA MIME types.", ) - role: GeminiRole = Field( - ..., - description="The identity of the entity that creates the message. " - "The following values are supported: " - "user: This indicates that the message is sent by a real person, typically a user-generated message. " - "model: This indicates that the message is generated by the model. " - "The model value is used to insert messages from model into the conversation during multi-turn conversations. " - "For non-multi-turn conversations, this field can be left blank or unset.", - ) + role: GeminiRole | None = Field(..., description="The role field of systemInstruction may be ignored.") class GeminiFunctionDeclaration(BaseModel): diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index 0b7422ef7..ad0f4b4d1 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -26,6 +26,8 @@ from comfy_api_nodes.apis.gemini_api import ( GeminiMimeType, GeminiPart, GeminiRole, + GeminiSystemInstructionContent, + GeminiTextPart, Modality, ) from comfy_api_nodes.util import ( @@ -42,6 +44,14 @@ from comfy_api_nodes.util import ( GEMINI_BASE_ENDPOINT = "/proxy/vertexai/gemini" GEMINI_MAX_INPUT_FILE_SIZE = 20 * 1024 * 1024 # 20 MB +GEMINI_IMAGE_SYS_PROMPT = ( + "You are an expert image-generation engine. You must ALWAYS produce an image.\n" + "Interpret all user input—regardless of " + "format, intent, or abstraction—as literal visual directives for image composition.\n" + "If a prompt is conversational or lacks specific visual details, " + "you must creatively invent a concrete visual scenario that depicts the concept.\n" + "Prioritize generating the visual representation above any text, formatting, or conversational requests." +) class GeminiModel(str, Enum): @@ -276,6 +286,13 @@ class GeminiNode(IO.ComfyNode): tooltip="Optional file(s) to use as context for the model. " "Accepts inputs from the Gemini Generate Content Input Files node.", ), + IO.String.Input( + "system_prompt", + multiline=True, + default="", + optional=True, + tooltip="Foundational instructions that dictate an AI's behavior.", + ), ], outputs=[ IO.String.Output(), @@ -348,6 +365,7 @@ class GeminiNode(IO.ComfyNode): audio: Input.Audio | None = None, video: Input.Video | None = None, files: list[GeminiPart] | None = None, + system_prompt: str = "", ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) @@ -364,7 +382,10 @@ class GeminiNode(IO.ComfyNode): if files is not None: parts.extend(files) - # Create response + gemini_system_prompt = None + if system_prompt: + gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None) + response = await sync_op( cls, endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"), @@ -374,7 +395,8 @@ class GeminiNode(IO.ComfyNode): role=GeminiRole.user, parts=parts, ) - ] + ], + systemInstruction=gemini_system_prompt, ), response_model=GeminiGenerateContentResponse, price_extractor=calculate_tokens_price, @@ -524,6 +546,13 @@ class GeminiImage(IO.ComfyNode): "'IMAGE+TEXT' to return both the generated image and a text response.", optional=True, ), + IO.String.Input( + "system_prompt", + multiline=True, + default=GEMINI_IMAGE_SYS_PROMPT, + optional=True, + tooltip="Foundational instructions that dictate an AI's behavior.", + ), ], outputs=[ IO.Image.Output(), @@ -547,6 +576,7 @@ class GeminiImage(IO.ComfyNode): files: list[GeminiPart] | None = None, aspect_ratio: str = "auto", response_modalities: str = "IMAGE+TEXT", + system_prompt: str = "", ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) parts: list[GeminiPart] = [GeminiPart(text=prompt)] @@ -560,6 +590,10 @@ class GeminiImage(IO.ComfyNode): if files is not None: parts.extend(files) + gemini_system_prompt = None + if system_prompt: + gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None) + response = await sync_op( cls, endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"), @@ -571,6 +605,7 @@ class GeminiImage(IO.ComfyNode): responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]), imageConfig=None if aspect_ratio == "auto" else image_config, ), + systemInstruction=gemini_system_prompt, ), response_model=GeminiGenerateContentResponse, price_extractor=calculate_tokens_price, @@ -641,6 +676,13 @@ class GeminiImage2(IO.ComfyNode): tooltip="Optional file(s) to use as context for the model. " "Accepts inputs from the Gemini Generate Content Input Files node.", ), + IO.String.Input( + "system_prompt", + multiline=True, + default=GEMINI_IMAGE_SYS_PROMPT, + optional=True, + tooltip="Foundational instructions that dictate an AI's behavior.", + ), ], outputs=[ IO.Image.Output(), @@ -665,6 +707,7 @@ class GeminiImage2(IO.ComfyNode): response_modalities: str, images: Input.Image | None = None, files: list[GeminiPart] | None = None, + system_prompt: str = "", ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) @@ -680,6 +723,10 @@ class GeminiImage2(IO.ComfyNode): if aspect_ratio != "auto": image_config.aspectRatio = aspect_ratio + gemini_system_prompt = None + if system_prompt: + gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None) + response = await sync_op( cls, ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"), @@ -691,6 +738,7 @@ class GeminiImage2(IO.ComfyNode): responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]), imageConfig=image_config, ), + systemInstruction=gemini_system_prompt, ), response_model=GeminiGenerateContentResponse, price_extractor=calculate_tokens_price, From fd271dedfde6e192a1f1a025521070876e89e04a Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Mon, 8 Dec 2025 11:33:46 +0200 Subject: [PATCH 129/271] [API Nodes] add support for seedance-1-0-pro-fast model (#10947) * feat(api-nodes): add support for seedance-1-0-pro-fast model * feat(api-nodes): add support for seedream-4.5 model --- comfy_api_nodes/apis/bytedance_api.py | 144 +++++++++++++++ comfy_api_nodes/nodes_bytedance.py | 255 ++++++-------------------- 2 files changed, 196 insertions(+), 203 deletions(-) create mode 100644 comfy_api_nodes/apis/bytedance_api.py diff --git a/comfy_api_nodes/apis/bytedance_api.py b/comfy_api_nodes/apis/bytedance_api.py new file mode 100644 index 000000000..77cd76f9b --- /dev/null +++ b/comfy_api_nodes/apis/bytedance_api.py @@ -0,0 +1,144 @@ +from typing import Literal + +from pydantic import BaseModel, Field + + +class Text2ImageTaskCreationRequest(BaseModel): + model: str = Field(...) + prompt: str = Field(...) + response_format: str | None = Field("url") + size: str | None = Field(None) + seed: int | None = Field(0, ge=0, le=2147483647) + guidance_scale: float | None = Field(..., ge=1.0, le=10.0) + watermark: bool | None = Field(True) + + +class Image2ImageTaskCreationRequest(BaseModel): + model: str = Field(...) + prompt: str = Field(...) + response_format: str | None = Field("url") + image: str = Field(..., description="Base64 encoded string or image URL") + size: str | None = Field("adaptive") + seed: int | None = Field(..., ge=0, le=2147483647) + guidance_scale: float | None = Field(..., ge=1.0, le=10.0) + watermark: bool | None = Field(True) + + +class Seedream4Options(BaseModel): + max_images: int = Field(15) + + +class Seedream4TaskCreationRequest(BaseModel): + model: str = Field(...) + prompt: str = Field(...) + response_format: str = Field("url") + image: list[str] | None = Field(None, description="Image URLs") + size: str = Field(...) + seed: int = Field(..., ge=0, le=2147483647) + sequential_image_generation: str = Field("disabled") + sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15)) + watermark: bool = Field(True) + + +class ImageTaskCreationResponse(BaseModel): + model: str = Field(...) + created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.") + data: list = Field([], description="Contains information about the generated image(s).") + error: dict = Field({}, description="Contains `code` and `message` fields in case of error.") + + +class TaskTextContent(BaseModel): + type: str = Field("text") + text: str = Field(...) + + +class TaskImageContentUrl(BaseModel): + url: str = Field(...) + + +class TaskImageContent(BaseModel): + type: str = Field("image_url") + image_url: TaskImageContentUrl = Field(...) + role: Literal["first_frame", "last_frame", "reference_image"] | None = Field(None) + + +class Text2VideoTaskCreationRequest(BaseModel): + model: str = Field(...) + content: list[TaskTextContent] = Field(..., min_length=1) + + +class Image2VideoTaskCreationRequest(BaseModel): + model: str = Field(...) + content: list[TaskTextContent | TaskImageContent] = Field(..., min_length=2) + + +class TaskCreationResponse(BaseModel): + id: str = Field(...) + + +class TaskStatusError(BaseModel): + code: str = Field(...) + message: str = Field(...) + + +class TaskStatusResult(BaseModel): + video_url: str = Field(...) + + +class TaskStatusResponse(BaseModel): + id: str = Field(...) + model: str = Field(...) + status: Literal["queued", "running", "cancelled", "succeeded", "failed"] = Field(...) + error: TaskStatusError | None = Field(None) + content: TaskStatusResult | None = Field(None) + + +RECOMMENDED_PRESETS = [ + ("1024x1024 (1:1)", 1024, 1024), + ("864x1152 (3:4)", 864, 1152), + ("1152x864 (4:3)", 1152, 864), + ("1280x720 (16:9)", 1280, 720), + ("720x1280 (9:16)", 720, 1280), + ("832x1248 (2:3)", 832, 1248), + ("1248x832 (3:2)", 1248, 832), + ("1512x648 (21:9)", 1512, 648), + ("2048x2048 (1:1)", 2048, 2048), + ("Custom", None, None), +] + +RECOMMENDED_PRESETS_SEEDREAM_4 = [ + ("2048x2048 (1:1)", 2048, 2048), + ("2304x1728 (4:3)", 2304, 1728), + ("1728x2304 (3:4)", 1728, 2304), + ("2560x1440 (16:9)", 2560, 1440), + ("1440x2560 (9:16)", 1440, 2560), + ("2496x1664 (3:2)", 2496, 1664), + ("1664x2496 (2:3)", 1664, 2496), + ("3024x1296 (21:9)", 3024, 1296), + ("4096x4096 (1:1)", 4096, 4096), + ("Custom", None, None), +] + +# The time in this dictionary are given for 10 seconds duration. +VIDEO_TASKS_EXECUTION_TIME = { + "seedance-1-0-lite-t2v-250428": { + "480p": 40, + "720p": 60, + "1080p": 90, + }, + "seedance-1-0-lite-i2v-250428": { + "480p": 40, + "720p": 60, + "1080p": 90, + }, + "seedance-1-0-pro-250528": { + "480p": 70, + "720p": 85, + "1080p": 115, + }, + "seedance-1-0-pro-fast-251015": { + "480p": 50, + "720p": 65, + "1080p": 100, + }, +} diff --git a/comfy_api_nodes/nodes_bytedance.py b/comfy_api_nodes/nodes_bytedance.py index caced471e..57c0218d0 100644 --- a/comfy_api_nodes/nodes_bytedance.py +++ b/comfy_api_nodes/nodes_bytedance.py @@ -1,13 +1,27 @@ import logging import math -from enum import Enum -from typing import Literal, Optional, Union import torch -from pydantic import BaseModel, Field from typing_extensions import override -from comfy_api.latest import IO, ComfyExtension +from comfy_api.latest import IO, ComfyExtension, Input +from comfy_api_nodes.apis.bytedance_api import ( + RECOMMENDED_PRESETS, + RECOMMENDED_PRESETS_SEEDREAM_4, + VIDEO_TASKS_EXECUTION_TIME, + Image2ImageTaskCreationRequest, + Image2VideoTaskCreationRequest, + ImageTaskCreationResponse, + Seedream4Options, + Seedream4TaskCreationRequest, + TaskCreationResponse, + TaskImageContent, + TaskImageContentUrl, + TaskStatusResponse, + TaskTextContent, + Text2ImageTaskCreationRequest, + Text2VideoTaskCreationRequest, +) from comfy_api_nodes.util import ( ApiEndpoint, download_url_to_image_tensor, @@ -29,162 +43,6 @@ BYTEPLUS_TASK_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" BYTEPLUS_TASK_STATUS_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" # + /{task_id} -class Text2ImageModelName(str, Enum): - seedream_3 = "seedream-3-0-t2i-250415" - - -class Image2ImageModelName(str, Enum): - seededit_3 = "seededit-3-0-i2i-250628" - - -class Text2VideoModelName(str, Enum): - seedance_1_pro = "seedance-1-0-pro-250528" - seedance_1_lite = "seedance-1-0-lite-t2v-250428" - - -class Image2VideoModelName(str, Enum): - """note(August 31): Pro model only supports FirstFrame: https://docs.byteplus.com/en/docs/ModelArk/1520757""" - - seedance_1_pro = "seedance-1-0-pro-250528" - seedance_1_lite = "seedance-1-0-lite-i2v-250428" - - -class Text2ImageTaskCreationRequest(BaseModel): - model: Text2ImageModelName = Text2ImageModelName.seedream_3 - prompt: str = Field(...) - response_format: Optional[str] = Field("url") - size: Optional[str] = Field(None) - seed: Optional[int] = Field(0, ge=0, le=2147483647) - guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0) - watermark: Optional[bool] = Field(True) - - -class Image2ImageTaskCreationRequest(BaseModel): - model: Image2ImageModelName = Image2ImageModelName.seededit_3 - prompt: str = Field(...) - response_format: Optional[str] = Field("url") - image: str = Field(..., description="Base64 encoded string or image URL") - size: Optional[str] = Field("adaptive") - seed: Optional[int] = Field(..., ge=0, le=2147483647) - guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0) - watermark: Optional[bool] = Field(True) - - -class Seedream4Options(BaseModel): - max_images: int = Field(15) - - -class Seedream4TaskCreationRequest(BaseModel): - model: str = Field("seedream-4-0-250828") - prompt: str = Field(...) - response_format: str = Field("url") - image: Optional[list[str]] = Field(None, description="Image URLs") - size: str = Field(...) - seed: int = Field(..., ge=0, le=2147483647) - sequential_image_generation: str = Field("disabled") - sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15)) - watermark: bool = Field(True) - - -class ImageTaskCreationResponse(BaseModel): - model: str = Field(...) - created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.") - data: list = Field([], description="Contains information about the generated image(s).") - error: dict = Field({}, description="Contains `code` and `message` fields in case of error.") - - -class TaskTextContent(BaseModel): - type: str = Field("text") - text: str = Field(...) - - -class TaskImageContentUrl(BaseModel): - url: str = Field(...) - - -class TaskImageContent(BaseModel): - type: str = Field("image_url") - image_url: TaskImageContentUrl = Field(...) - role: Optional[Literal["first_frame", "last_frame", "reference_image"]] = Field(None) - - -class Text2VideoTaskCreationRequest(BaseModel): - model: Text2VideoModelName = Text2VideoModelName.seedance_1_pro - content: list[TaskTextContent] = Field(..., min_length=1) - - -class Image2VideoTaskCreationRequest(BaseModel): - model: Image2VideoModelName = Image2VideoModelName.seedance_1_pro - content: list[Union[TaskTextContent, TaskImageContent]] = Field(..., min_length=2) - - -class TaskCreationResponse(BaseModel): - id: str = Field(...) - - -class TaskStatusError(BaseModel): - code: str = Field(...) - message: str = Field(...) - - -class TaskStatusResult(BaseModel): - video_url: str = Field(...) - - -class TaskStatusResponse(BaseModel): - id: str = Field(...) - model: str = Field(...) - status: Literal["queued", "running", "cancelled", "succeeded", "failed"] = Field(...) - error: Optional[TaskStatusError] = Field(None) - content: Optional[TaskStatusResult] = Field(None) - - -RECOMMENDED_PRESETS = [ - ("1024x1024 (1:1)", 1024, 1024), - ("864x1152 (3:4)", 864, 1152), - ("1152x864 (4:3)", 1152, 864), - ("1280x720 (16:9)", 1280, 720), - ("720x1280 (9:16)", 720, 1280), - ("832x1248 (2:3)", 832, 1248), - ("1248x832 (3:2)", 1248, 832), - ("1512x648 (21:9)", 1512, 648), - ("2048x2048 (1:1)", 2048, 2048), - ("Custom", None, None), -] - -RECOMMENDED_PRESETS_SEEDREAM_4 = [ - ("2048x2048 (1:1)", 2048, 2048), - ("2304x1728 (4:3)", 2304, 1728), - ("1728x2304 (3:4)", 1728, 2304), - ("2560x1440 (16:9)", 2560, 1440), - ("1440x2560 (9:16)", 1440, 2560), - ("2496x1664 (3:2)", 2496, 1664), - ("1664x2496 (2:3)", 1664, 2496), - ("3024x1296 (21:9)", 3024, 1296), - ("4096x4096 (1:1)", 4096, 4096), - ("Custom", None, None), -] - -# The time in this dictionary are given for 10 seconds duration. -VIDEO_TASKS_EXECUTION_TIME = { - "seedance-1-0-lite-t2v-250428": { - "480p": 40, - "720p": 60, - "1080p": 90, - }, - "seedance-1-0-lite-i2v-250428": { - "480p": 40, - "720p": 60, - "1080p": 90, - }, - "seedance-1-0-pro-250528": { - "480p": 70, - "720p": 85, - "1080p": 115, - }, -} - - def get_image_url_from_response(response: ImageTaskCreationResponse) -> str: if response.error: error_msg = f"ByteDance request failed. Code: {response.error['code']}, message: {response.error['message']}" @@ -194,13 +52,6 @@ def get_image_url_from_response(response: ImageTaskCreationResponse) -> str: return response.data[0]["url"] -def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]: - """Returns the video URL from the task status response if it exists.""" - if hasattr(response, "content") and response.content: - return response.content.video_url - return None - - class ByteDanceImageNode(IO.ComfyNode): @classmethod @@ -211,12 +62,7 @@ class ByteDanceImageNode(IO.ComfyNode): category="api node/image/ByteDance", description="Generate images using ByteDance models via api based on prompt", inputs=[ - IO.Combo.Input( - "model", - options=Text2ImageModelName, - default=Text2ImageModelName.seedream_3, - tooltip="Model name", - ), + IO.Combo.Input("model", options=["seedream-3-0-t2i-250415"]), IO.String.Input( "prompt", multiline=True, @@ -335,12 +181,7 @@ class ByteDanceImageEditNode(IO.ComfyNode): category="api node/image/ByteDance", description="Edit images using ByteDance models via api based on prompt", inputs=[ - IO.Combo.Input( - "model", - options=Image2ImageModelName, - default=Image2ImageModelName.seededit_3, - tooltip="Model name", - ), + IO.Combo.Input("model", options=["seededit-3-0-i2i-250628"]), IO.Image.Input( "image", tooltip="The base image to edit", @@ -394,7 +235,7 @@ class ByteDanceImageEditNode(IO.ComfyNode): async def execute( cls, model: str, - image: torch.Tensor, + image: Input.Image, prompt: str, seed: int, guidance_scale: float, @@ -434,7 +275,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): inputs=[ IO.Combo.Input( "model", - options=["seedream-4-0-250828"], + options=["seedream-4-5-251128", "seedream-4-0-250828"], tooltip="Model name", ), IO.String.Input( @@ -459,7 +300,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): default=2048, min=1024, max=4096, - step=64, + step=8, tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`", optional=True, ), @@ -468,7 +309,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): default=2048, min=1024, max=4096, - step=64, + step=8, tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`", optional=True, ), @@ -532,7 +373,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): cls, model: str, prompt: str, - image: torch.Tensor = None, + image: Input.Image | None = None, size_preset: str = RECOMMENDED_PRESETS_SEEDREAM_4[0][0], width: int = 2048, height: int = 2048, @@ -555,6 +396,18 @@ class ByteDanceSeedreamNode(IO.ComfyNode): raise ValueError( f"Custom size out of range: {w}x{h}. " "Both width and height must be between 1024 and 4096 pixels." ) + out_num_pixels = w * h + mp_provided = out_num_pixels / 1_000_000.0 + if "seedream-4-5" in model and out_num_pixels < 3686400: + raise ValueError( + f"Minimum image resolution that Seedream 4.5 can generate is 3.68MP, " + f"but {mp_provided:.2f}MP provided." + ) + if "seedream-4-0" in model and out_num_pixels < 921600: + raise ValueError( + f"Minimum image resolution that the selected model can generate is 0.92MP, " + f"but {mp_provided:.2f}MP provided." + ) n_input_images = get_number_of_images(image) if image is not None else 0 if n_input_images > 10: raise ValueError(f"Maximum of 10 reference images are supported, but {n_input_images} received.") @@ -607,9 +460,8 @@ class ByteDanceTextToVideoNode(IO.ComfyNode): inputs=[ IO.Combo.Input( "model", - options=Text2VideoModelName, - default=Text2VideoModelName.seedance_1_pro, - tooltip="Model name", + options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"], + default="seedance-1-0-pro-fast-251015", ), IO.String.Input( "prompt", @@ -714,9 +566,8 @@ class ByteDanceImageToVideoNode(IO.ComfyNode): inputs=[ IO.Combo.Input( "model", - options=Image2VideoModelName, - default=Image2VideoModelName.seedance_1_pro, - tooltip="Model name", + options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"], + default="seedance-1-0-pro-fast-251015", ), IO.String.Input( "prompt", @@ -787,7 +638,7 @@ class ByteDanceImageToVideoNode(IO.ComfyNode): cls, model: str, prompt: str, - image: torch.Tensor, + image: Input.Image, resolution: str, aspect_ratio: str, duration: int, @@ -833,9 +684,8 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode): inputs=[ IO.Combo.Input( "model", - options=[model.value for model in Image2VideoModelName], - default=Image2VideoModelName.seedance_1_lite.value, - tooltip="Model name", + options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"], + default="seedance-1-0-lite-i2v-250428", ), IO.String.Input( "prompt", @@ -910,8 +760,8 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode): cls, model: str, prompt: str, - first_frame: torch.Tensor, - last_frame: torch.Tensor, + first_frame: Input.Image, + last_frame: Input.Image, resolution: str, aspect_ratio: str, duration: int, @@ -968,9 +818,8 @@ class ByteDanceImageReferenceNode(IO.ComfyNode): inputs=[ IO.Combo.Input( "model", - options=[Image2VideoModelName.seedance_1_lite.value], - default=Image2VideoModelName.seedance_1_lite.value, - tooltip="Model name", + options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"], + default="seedance-1-0-lite-i2v-250428", ), IO.String.Input( "prompt", @@ -1034,7 +883,7 @@ class ByteDanceImageReferenceNode(IO.ComfyNode): cls, model: str, prompt: str, - images: torch.Tensor, + images: Input.Image, resolution: str, aspect_ratio: str, duration: int, @@ -1069,8 +918,8 @@ class ByteDanceImageReferenceNode(IO.ComfyNode): async def process_video_task( cls: type[IO.ComfyNode], - payload: Union[Text2VideoTaskCreationRequest, Image2VideoTaskCreationRequest], - estimated_duration: Optional[int], + payload: Text2VideoTaskCreationRequest | Image2VideoTaskCreationRequest, + estimated_duration: int | None, ) -> IO.NodeOutput: initial_response = await sync_op( cls, @@ -1085,7 +934,7 @@ async def process_video_task( estimated_duration=estimated_duration, response_model=TaskStatusResponse, ) - return IO.NodeOutput(await download_url_to_video_output(get_video_url_from_task_status(response))) + return IO.NodeOutput(await download_url_to_video_output(response.content.video_url)) def raise_if_text_params(prompt: str, text_params: list[str]) -> None: From 8e889c535d1fc407bf27dbf8359eef9580f2ed60 Mon Sep 17 00:00:00 2001 From: dxqb <183307934+dxqb@users.noreply.github.com> Date: Mon, 8 Dec 2025 21:17:26 +0100 Subject: [PATCH 130/271] Support "transformer." LoRA prefix for Z-Image (#11135) --- comfy/lora.py | 1 + 1 file changed, 1 insertion(+) diff --git a/comfy/lora.py b/comfy/lora.py index e7202ce97..2ed0acb9d 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -320,6 +320,7 @@ def model_lora_keys_unet(model, key_map={}): to = diffusers_keys[k] key_lora = k[:-len(".weight")] key_map["diffusion_model.{}".format(key_lora)] = to + key_map["transformer.{}".format(key_lora)] = to key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to if isinstance(model, comfy.model_base.Kandinsky5): From 60ee574748209a17ade1c7524e228be2802d1589 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Tue, 9 Dec 2025 06:18:06 +1000 Subject: [PATCH 131/271] retune lowVramPatch VRAM accounting (#11173) In the lowvram case, this now does its math in the model dtype in the post de-quantization domain. Account for that. The patching was also put back on the compute stream getting it off-peak so relax the MATH_FACTOR to only x2 so get out of the worst-case assumption of everything peaking at once. --- comfy/model_patcher.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 5b1ccb824..8b5edeb52 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -132,14 +132,14 @@ class LowVramPatch: def __call__(self, weight): return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=weight.dtype) -#The above patch logic may cast up the weight to fp32, and do math. Go with fp32 x 3 -LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 3 +LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 2 def low_vram_patch_estimate_vram(model, key): weight, set_func, convert_func = get_key_weight(model, key) if weight is None: return 0 - return weight.numel() * torch.float32.itemsize * LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR + model_dtype = getattr(model, "manual_cast_dtype", torch.float32) + return weight.numel() * model_dtype.itemsize * LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR def get_key_weight(model, key): set_func = None From 935493f6c186de8808508713a465d6bda75e5ce4 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Tue, 9 Dec 2025 04:18:53 +0800 Subject: [PATCH 132/271] chore: update workflow templates to v0.7.54 (#11192) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 12a7c1089..4bd4b21c3 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.33.10 -comfyui-workflow-templates==0.7.51 +comfyui-workflow-templates==0.7.54 comfyui-embedded-docs==0.3.1 torch torchsde From 3b0368aa34182fc7c97de92d59b609c77138def2 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 8 Dec 2025 14:38:36 -0800 Subject: [PATCH 133/271] Fix regression. (#11194) --- comfy/model_patcher.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 8b5edeb52..a7d24ac13 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -139,6 +139,9 @@ def low_vram_patch_estimate_vram(model, key): if weight is None: return 0 model_dtype = getattr(model, "manual_cast_dtype", torch.float32) + if model_dtype is None: + model_dtype = weight.dtype + return weight.numel() * model_dtype.itemsize * LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR def get_key_weight(model, key): From d50f342c90802830c1178ad9d7f2783dc2821af1 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 8 Dec 2025 20:20:04 -0800 Subject: [PATCH 134/271] Fix potential issue. (#11201) --- comfy/model_patcher.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index a7d24ac13..2e8ce2613 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -923,7 +923,7 @@ class ModelPatcher: patch_counter += 1 cast_weight = True - if cast_weight: + if cast_weight and hasattr(m, "comfy_cast_weights"): m.prev_comfy_cast_weights = m.comfy_cast_weights m.comfy_cast_weights = True m.comfy_patched_weights = False From e136b6dbb0b08341388f5bf9a00b1fca29992eb3 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Tue, 9 Dec 2025 14:21:31 +1000 Subject: [PATCH 135/271] dequantization offload accounting (fixes Flux2 OOMs - incl TEs) (#11171) * make setattr safe for non existent attributes Handle the case where the attribute doesnt exist by returning a static sentinel (distinct from None). If the sentinel is passed in as the set value, del the attr. * Account for dequantization and type-casts in offload costs When measuring the cost of offload, identify weights that need a type change or dequantization and add the size of the conversion result to the offload cost. This is mutually exclusive with lowvram patches which already has a large conservative estimate and wont overlap the dequant cost so\ dont double count. * Set the compute type on CLIP MPs So that the loader can know the size of weights for dequant accounting. --- comfy/model_patcher.py | 19 +++++++++++++------ comfy/sd.py | 2 ++ comfy/utils.py | 9 +++++++-- 3 files changed, 22 insertions(+), 8 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index 2e8ce2613..a486c2723 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -35,6 +35,7 @@ import comfy.model_management import comfy.patcher_extension import comfy.utils from comfy.comfy_types import UnetWrapperFunction +from comfy.quant_ops import QuantizedTensor from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP @@ -665,12 +666,18 @@ class ModelPatcher: module_mem = comfy.model_management.module_size(m) module_offload_mem = module_mem if hasattr(m, "comfy_cast_weights"): - weight_key = "{}.weight".format(n) - bias_key = "{}.bias".format(n) - if weight_key in self.patches: - module_offload_mem += low_vram_patch_estimate_vram(self.model, weight_key) - if bias_key in self.patches: - module_offload_mem += low_vram_patch_estimate_vram(self.model, bias_key) + def check_module_offload_mem(key): + if key in self.patches: + return low_vram_patch_estimate_vram(self.model, key) + model_dtype = getattr(self.model, "manual_cast_dtype", None) + weight, _, _ = get_key_weight(self.model, key) + if model_dtype is None or weight is None: + return 0 + if (weight.dtype != model_dtype or isinstance(weight, QuantizedTensor)): + return weight.numel() * model_dtype.itemsize + return 0 + module_offload_mem += check_module_offload_mem("{}.weight".format(n)) + module_offload_mem += check_module_offload_mem("{}.bias".format(n)) loading.append((module_offload_mem, module_mem, n, m, params)) return loading diff --git a/comfy/sd.py b/comfy/sd.py index 754b1703d..a16f2d14f 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -127,6 +127,8 @@ class CLIP: self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device) + #Match torch.float32 hardcode upcast in TE implemention + self.patcher.set_model_compute_dtype(torch.float32) self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram self.patcher.is_clip = True self.apply_hooks_to_conds = None diff --git a/comfy/utils.py b/comfy/utils.py index 89846bc95..9dc0d76ac 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -803,12 +803,17 @@ def safetensors_header(safetensors_path, max_size=100*1024*1024): return None return f.read(length_of_header) +ATTR_UNSET={} + def set_attr(obj, attr, value): attrs = attr.split(".") for name in attrs[:-1]: obj = getattr(obj, name) - prev = getattr(obj, attrs[-1]) - setattr(obj, attrs[-1], value) + prev = getattr(obj, attrs[-1], ATTR_UNSET) + if value is ATTR_UNSET: + delattr(obj, attrs[-1]) + else: + setattr(obj, attrs[-1], value) return prev def set_attr_param(obj, attr, value): From cabc4d351ff620ece87f18019d98131ebcbdf1aa Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Mon, 8 Dec 2025 20:22:02 -0800 Subject: [PATCH 136/271] bump comfyui-frontend-package to 1.33.13 (patch) (#11200) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 4bd4b21c3..11a7ac245 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.33.10 +comfyui-frontend-package==1.33.13 comfyui-workflow-templates==0.7.54 comfyui-embedded-docs==0.3.1 torch From b9fb542703085c58f082b4a822329fb6670e8016 Mon Sep 17 00:00:00 2001 From: Lodestone Date: Tue, 9 Dec 2025 11:33:29 +0700 Subject: [PATCH 137/271] add chroma-radiance-x0 mode (#11197) --- comfy/ldm/chroma_radiance/model.py | 20 ++++++++++++++++++-- comfy/model_detection.py | 2 ++ 2 files changed, 20 insertions(+), 2 deletions(-) diff --git a/comfy/ldm/chroma_radiance/model.py b/comfy/ldm/chroma_radiance/model.py index e643b4414..70d173889 100644 --- a/comfy/ldm/chroma_radiance/model.py +++ b/comfy/ldm/chroma_radiance/model.py @@ -37,7 +37,7 @@ class ChromaRadianceParams(ChromaParams): nerf_final_head_type: str # None means use the same dtype as the model. nerf_embedder_dtype: Optional[torch.dtype] - + use_x0: bool class ChromaRadiance(Chroma): """ @@ -159,6 +159,9 @@ class ChromaRadiance(Chroma): self.skip_dit = [] self.lite = False + if params.use_x0: + self.register_buffer("__x0__", torch.tensor([])) + @property def _nerf_final_layer(self) -> nn.Module: if self.params.nerf_final_head_type == "linear": @@ -276,6 +279,12 @@ class ChromaRadiance(Chroma): params_dict |= overrides return params.__class__(**params_dict) + def _apply_x0_residual(self, predicted, noisy, timesteps): + + # non zero during training to prevent 0 div + eps = 0.0 + return (noisy - predicted) / (timesteps.view(-1,1,1,1) + eps) + def _forward( self, x: Tensor, @@ -316,4 +325,11 @@ class ChromaRadiance(Chroma): transformer_options, attn_mask=kwargs.get("attention_mask", None), ) - return self.forward_nerf(img, img_out, params)[:, :, :h, :w] + + out = self.forward_nerf(img, img_out, params)[:, :, :h, :w] + + # If x0 variant → v-pred, just return this instead + if hasattr(self, "__x0__"): + out = self._apply_x0_residual(out, img, timestep) + return out + diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 74c547427..19e6aa954 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -257,6 +257,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["nerf_tile_size"] = 512 dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear" dit_config["nerf_embedder_dtype"] = torch.float32 + if "__x0__" in state_dict_keys: # x0 pred + dit_config["use_x0"] = True else: dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys From 9d252f3b70c0e89cbb581e28bb1862593c4e5ceb Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Tue, 9 Dec 2025 15:55:13 +1000 Subject: [PATCH 138/271] ops: delete dead code (#11204) This became dead code in https://github.com/comfyanonymous/ComfyUI/pull/11069 --- comfy/ops.py | 8 -------- 1 file changed, 8 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index 35237c9f7..6f34d50fc 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -22,7 +22,6 @@ import comfy.model_management from comfy.cli_args import args, PerformanceFeature import comfy.float import comfy.rmsnorm -import contextlib import json def run_every_op(): @@ -94,13 +93,6 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of else: offload_stream = None - if offload_stream is not None: - wf_context = offload_stream - if hasattr(wf_context, "as_context"): - wf_context = wf_context.as_context(offload_stream) - else: - wf_context = contextlib.nullcontext() - non_blocking = comfy.model_management.device_supports_non_blocking(device) weight_has_function = len(s.weight_function) > 0 From e2a800e7ef225260c078ce484c75bb40161d9d94 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Tue, 9 Dec 2025 23:59:16 +0200 Subject: [PATCH 139/271] Fix for HunyuanVideo1.5 meanflow distil (#11212) --- comfy/ldm/hunyuan_video/model.py | 3 ++- comfy/model_detection.py | 2 ++ 2 files changed, 4 insertions(+), 1 deletion(-) diff --git a/comfy/ldm/hunyuan_video/model.py b/comfy/ldm/hunyuan_video/model.py index 2749c53f5..55ab550f8 100644 --- a/comfy/ldm/hunyuan_video/model.py +++ b/comfy/ldm/hunyuan_video/model.py @@ -43,6 +43,7 @@ class HunyuanVideoParams: meanflow: bool use_cond_type_embedding: bool vision_in_dim: int + meanflow_sum: bool class SelfAttentionRef(nn.Module): @@ -317,7 +318,7 @@ class HunyuanVideo(nn.Module): timesteps_r = transformer_options['sample_sigmas'][w[0] + 1] timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype) vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype)) - vec = (vec + vec_r) / 2 + vec = (vec + vec_r) if self.params.meanflow_sum else (vec + vec_r) / 2 if ref_latent is not None: ref_latent_ids = self.img_ids(ref_latent) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 19e6aa954..1f5d34bdd 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -180,8 +180,10 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["use_cond_type_embedding"] = False if '{}vision_in.proj.0.weight'.format(key_prefix) in state_dict_keys: dit_config["vision_in_dim"] = state_dict['{}vision_in.proj.0.weight'.format(key_prefix)].shape[0] + dit_config["meanflow_sum"] = True else: dit_config["vision_in_dim"] = None + dit_config["meanflow_sum"] = False return dit_config if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight) From 791e30ff5037fa5e7aa4e1396099ea8d6bfb020b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 9 Dec 2025 14:03:21 -0800 Subject: [PATCH 140/271] Fix nan issue when quantizing fp16 tensor. (#11213) --- comfy/quant_ops.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index 571d3f760..cd96541d7 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -399,7 +399,10 @@ class TensorCoreFP8Layout(QuantizedLayout): orig_dtype = tensor.dtype if isinstance(scale, str) and scale == "recalculate": - scale = torch.amax(tensor.abs()) / torch.finfo(dtype).max + scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(dtype).max + if tensor.dtype not in [torch.float32, torch.bfloat16]: # Prevent scale from being too small + tensor_info = torch.finfo(tensor.dtype) + scale = (1.0 / torch.clamp((1.0 / scale), min=tensor_info.min, max=tensor_info.max)) if scale is not None: if not isinstance(scale, torch.Tensor): From fc657f471a29d07696ca16b566000e8e555d67d1 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 9 Dec 2025 18:22:09 -0500 Subject: [PATCH 141/271] ComfyUI version v0.4.0 From now on ComfyUI will do version numbers a bit differently, every stable off the master branch will increment the minor version. Anytime a fix needs to be backported onto a stable version the patch version will be incremented. Example: We release v0.6.0 off the master branch then a day later a bug is discovered and we decide to backport the fix onto the v0.6.0 stable, this will be done in a separate branch in the main repository and this new stable will be tagged v0.6.1 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 4b039356e..2f083edaf 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.3.76" +__version__ = "0.4.0" diff --git a/pyproject.toml b/pyproject.toml index 02b94a0ce..e4d3d616a 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.3.76" +version = "0.4.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From f668c2e3c99df40561b416cf62b0fd9eec96007a Mon Sep 17 00:00:00 2001 From: Benjamin Lu Date: Tue, 9 Dec 2025 19:27:07 -0800 Subject: [PATCH 142/271] bump comfyui-frontend-package to 1.34.8 (#11220) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 11a7ac245..9e9b25328 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.33.13 +comfyui-frontend-package==1.34.8 comfyui-workflow-templates==0.7.54 comfyui-embedded-docs==0.3.1 torch From 36357bbcc3c515e37a742457a2b2ab4b7ccc17a8 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 10 Dec 2025 21:55:09 +0200 Subject: [PATCH 143/271] process the NodeV1 dict results correctly (#11237) --- comfy_api/latest/_io.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 313a5af20..79217c813 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -1815,7 +1815,7 @@ class NodeOutput(_NodeOutputInternal): ui = data["ui"] if "expand" in data: expand = data["expand"] - return cls(args=args, ui=ui, expand=expand) + return cls(*args, ui=ui, expand=expand) def __getitem__(self, index) -> Any: return self.args[index] From 17c92a9f2843d7b9b727531066be2378b350a6ae Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 10 Dec 2025 16:59:48 -0800 Subject: [PATCH 144/271] Tweak Z Image memory estimation. (#11254) --- comfy/supported_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 383c82c3e..dd0f09f32 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -1026,7 +1026,7 @@ class ZImage(Lumina2): "shift": 3.0, } - memory_usage_factor = 1.7 + memory_usage_factor = 2.0 supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] From 57ddb7fd13d817e7259c2c992a852832b6b0f07a Mon Sep 17 00:00:00 2001 From: Johnpaul Chiwetelu <49923152+Myestery@users.noreply.github.com> Date: Thu, 11 Dec 2025 03:49:49 +0100 Subject: [PATCH 145/271] Fix: filter hidden files from /internal/files endpoint (#11191) --- api_server/routes/internal/internal_routes.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/api_server/routes/internal/internal_routes.py b/api_server/routes/internal/internal_routes.py index 613b0f7c7..b224306da 100644 --- a/api_server/routes/internal/internal_routes.py +++ b/api_server/routes/internal/internal_routes.py @@ -58,8 +58,13 @@ class InternalRoutes: return web.json_response({"error": "Invalid directory type"}, status=400) directory = get_directory_by_type(directory_type) + + def is_visible_file(entry: os.DirEntry) -> bool: + """Filter out hidden files (e.g., .DS_Store on macOS).""" + return entry.is_file() and not entry.name.startswith('.') + sorted_files = sorted( - (entry for entry in os.scandir(directory) if entry.is_file()), + (entry for entry in os.scandir(directory) if is_visible_file(entry)), key=lambda entry: -entry.stat().st_mtime ) return web.json_response([entry.name for entry in sorted_files], status=200) From e711aaf1a75120195c56ebd1f1ce829c6b7b84db Mon Sep 17 00:00:00 2001 From: Farshore <168402472+jiangchengchengark@users.noreply.github.com> Date: Thu, 11 Dec 2025 11:02:26 +0800 Subject: [PATCH 146/271] =?UTF-8?q?Lower=20VAE=20loading=20requirements?= =?UTF-8?q?=EF=BC=9ACreate=20a=20new=20branch=20for=20GPU=20memory=20calcu?= =?UTF-8?q?lations=20in=20qwen-image=20vae=20(#11199)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- comfy/sd.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/comfy/sd.py b/comfy/sd.py index a16f2d14f..1cad98aef 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -549,8 +549,10 @@ class VAE: ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0} self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig) self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] - self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype) - self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype) + self.memory_used_encode = lambda shape, dtype: (1500 if shape[2]<=4 else 6000) * shape[3] * shape[4] * model_management.dtype_size(dtype) + self.memory_used_decode = lambda shape, dtype: (2200 if shape[2]<=4 else 7000) * shape[3] * shape[4] * (8*8) * model_management.dtype_size(dtype) + + # Hunyuan 3d v2 2.0 & 2.1 elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd: From 93948e3fc598c14082f744fe82fae056b64ff481 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Thu, 11 Dec 2025 08:11:12 +0200 Subject: [PATCH 147/271] feat(api-nodes): enable Kling Omni O1 node (#11229) --- comfy_api_nodes/nodes_kling.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 6c840dc47..a2cc87d84 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -2056,7 +2056,7 @@ class KlingExtension(ComfyExtension): OmniProImageToVideoNode, OmniProVideoToVideoNode, OmniProEditVideoNode, - # OmniProImageNode, # need support from backend + OmniProImageNode, ] From f8321eb57b29a4b34cecd27d5d6365adf5e6e601 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 10 Dec 2025 22:30:31 -0800 Subject: [PATCH 148/271] Adjust memory usage factor. (#11257) --- comfy/supported_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index dd0f09f32..ef8c75c09 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -541,7 +541,7 @@ class SD3(supported_models_base.BASE): unet_extra_config = {} latent_format = latent_formats.SD3 - memory_usage_factor = 1.2 + memory_usage_factor = 1.6 text_encoder_key_prefix = ["text_encoders."] From fdebe182966d1dd9bee3138264937137bd2302d8 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 11 Dec 2025 14:09:35 -0800 Subject: [PATCH 149/271] Fix regular chroma radiance (#11276) --- comfy/model_detection.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 1f5d34bdd..94b54b7c2 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -261,6 +261,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["nerf_embedder_dtype"] = torch.float32 if "__x0__" in state_dict_keys: # x0 pred dit_config["use_x0"] = True + else: + dit_config["use_x0"] = False else: dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys From ae65433a602470eea271df47af0eb871d146a002 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 11 Dec 2025 14:15:00 -0800 Subject: [PATCH 150/271] This only works on radiance. (#11277) --- comfy/model_detection.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 94b54b7c2..dd6a703f6 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -259,10 +259,10 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["nerf_tile_size"] = 512 dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear" dit_config["nerf_embedder_dtype"] = torch.float32 - if "__x0__" in state_dict_keys: # x0 pred - dit_config["use_x0"] = True - else: - dit_config["use_x0"] = False + if "__x0__" in state_dict_keys: # x0 pred + dit_config["use_x0"] = True + else: + dit_config["use_x0"] = False else: dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys From eeb020b9b77e1f3c0c2806bc1e38c7ba9576439e Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 11 Dec 2025 14:33:09 -0800 Subject: [PATCH 151/271] Better chroma radiance and other models vram estimation. (#11278) --- comfy/supported_models.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index ef8c75c09..834dfcffc 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -965,7 +965,7 @@ class CosmosT2IPredict2(supported_models_base.BASE): def __init__(self, unet_config): super().__init__(unet_config) - self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.9 + self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.95 def get_model(self, state_dict, prefix="", device=None): out = model_base.CosmosPredict2(self, device=device) @@ -1289,7 +1289,7 @@ class ChromaRadiance(Chroma): latent_format = comfy.latent_formats.ChromaRadiance # Pixel-space model, no spatial compression for model input. - memory_usage_factor = 0.038 + memory_usage_factor = 0.044 def get_model(self, state_dict, prefix="", device=None): return model_base.ChromaRadiance(self, device=device) @@ -1332,7 +1332,7 @@ class Omnigen2(supported_models_base.BASE): "shift": 2.6, } - memory_usage_factor = 1.65 #TODO + memory_usage_factor = 1.95 #TODO unet_extra_config = {} latent_format = latent_formats.Flux @@ -1397,7 +1397,7 @@ class HunyuanImage21(HunyuanVideo): latent_format = latent_formats.HunyuanImage21 - memory_usage_factor = 7.7 + memory_usage_factor = 8.7 supported_inference_dtypes = [torch.bfloat16, torch.float32] @@ -1488,7 +1488,7 @@ class Kandinsky5(supported_models_base.BASE): unet_extra_config = {} latent_format = latent_formats.HunyuanVideo - memory_usage_factor = 1.1 #TODO + memory_usage_factor = 1.25 #TODO supported_inference_dtypes = [torch.bfloat16, torch.float32] @@ -1517,7 +1517,7 @@ class Kandinsky5Image(Kandinsky5): } latent_format = latent_formats.Flux - memory_usage_factor = 1.1 #TODO + memory_usage_factor = 1.25 #TODO def get_model(self, state_dict, prefix="", device=None): out = model_base.Kandinsky5Image(self, device=device) From 338d9ae3bbf24a9a06996cdf1c2f228acc65fd96 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 11 Dec 2025 15:56:33 -0800 Subject: [PATCH 152/271] Make portable updater work with repos in unmerged state. (#11281) --- .ci/update_windows/update.py | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/.ci/update_windows/update.py b/.ci/update_windows/update.py index 59ece5130..fe646a6ed 100755 --- a/.ci/update_windows/update.py +++ b/.ci/update_windows/update.py @@ -53,6 +53,16 @@ try: repo.stash(ident) except KeyError: print("nothing to stash") # noqa: T201 +except: + print("Could not stash, cleaning index and trying again.") # noqa: T201 + repo.state_cleanup() + repo.index.read_tree(repo.head.peel().tree) + repo.index.write() + try: + repo.stash(ident) + except KeyError: + print("nothing to stash.") # noqa: T201 + backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S')) print("creating backup branch: {}".format(backup_branch_name)) # noqa: T201 try: From 982876d59a659adb085be5e236aacc4f2c54c19c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jukka=20Sepp=C3=A4nen?= <40791699+kijai@users.noreply.github.com> Date: Fri, 12 Dec 2025 05:29:34 +0200 Subject: [PATCH 153/271] WanMove support (#11247) --- comfy_api/latest/_io.py | 8 + comfy_extras/nodes_wanmove.py | 535 ++++++++++++++++++++++++++++++++++ nodes.py | 1 + 3 files changed, 544 insertions(+) create mode 100644 comfy_extras/nodes_wanmove.py diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 79217c813..2b634d172 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -774,6 +774,13 @@ class AudioEncoder(ComfyTypeIO): class AudioEncoderOutput(ComfyTypeIO): Type = Any +@comfytype(io_type="TRACKS") +class Tracks(ComfyTypeIO): + class TrackDict(TypedDict): + track_path: torch.Tensor + track_visibility: torch.Tensor + Type = TrackDict + @comfytype(io_type="COMFY_MULTITYPED_V3") class MultiType: Type = Any @@ -1894,6 +1901,7 @@ __all__ = [ "SEGS", "AnyType", "MultiType", + "Tracks", # Dynamic Types "MatchType", # "DynamicCombo", diff --git a/comfy_extras/nodes_wanmove.py b/comfy_extras/nodes_wanmove.py new file mode 100644 index 000000000..5f39afa46 --- /dev/null +++ b/comfy_extras/nodes_wanmove.py @@ -0,0 +1,535 @@ +import nodes +import node_helpers +import torch +import torchvision.transforms.functional as TF +import comfy.model_management +import comfy.utils +import numpy as np +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io +from comfy_extras.nodes_wan import parse_json_tracks + +# https://github.com/ali-vilab/Wan-Move/blob/main/wan/modules/trajectory.py +from PIL import Image, ImageDraw + +SKIP_ZERO = False + +def get_pos_emb( + pos_k: torch.Tensor, # A 1D tensor containing positions for which to generate embeddings. + pos_emb_dim: int, + theta_func: callable = lambda i, d: torch.pow(10000, torch.mul(2, torch.div(i.to(torch.float32), d))), #Function to compute thetas based on position and embedding dimensions. + device: torch.device = torch.device("cpu"), + dtype: torch.dtype = torch.float32, +) -> torch.Tensor: # The position embeddings (batch_size, pos_emb_dim) + + assert pos_emb_dim % 2 == 0, "The dimension of position embeddings must be even." + pos_k = pos_k.to(device, dtype) + if SKIP_ZERO: + pos_k = pos_k + 1 + batch_size = pos_k.size(0) + + denominator = torch.arange(0, pos_emb_dim // 2, device=device, dtype=dtype) + # Expand denominator to match the shape needed for broadcasting + denominator_expanded = denominator.view(1, -1).expand(batch_size, -1) + + thetas = theta_func(denominator_expanded, pos_emb_dim) + + # Ensure pos_k is in the correct shape for broadcasting + pos_k_expanded = pos_k.view(-1, 1).to(dtype) + sin_thetas = torch.sin(torch.div(pos_k_expanded, thetas)) + cos_thetas = torch.cos(torch.div(pos_k_expanded, thetas)) + + # Concatenate sine and cosine embeddings along the last dimension + pos_emb = torch.cat([sin_thetas, cos_thetas], dim=-1) + + return pos_emb + +def create_pos_embeddings( + pred_tracks: torch.Tensor, # the predicted tracks, [T, N, 2] + pred_visibility: torch.Tensor, # the predicted visibility [T, N] + downsample_ratios: list[int], # the ratios for downsampling time, height, and width + height: int, # the height of the feature map + width: int, # the width of the feature map + track_num: int = -1, # the number of tracks to use + t_down_strategy: str = "sample", # the strategy for downsampling time dimension +): + assert t_down_strategy in ["sample", "average"], "Invalid strategy for downsampling time dimension." + + t, n, _ = pred_tracks.shape + t_down, h_down, w_down = downsample_ratios + track_pos = - torch.ones(n, (t-1) // t_down + 1, 2, dtype=torch.long) + + if track_num == -1: + track_num = n + + tracks_idx = torch.randperm(n)[:track_num] + tracks = pred_tracks[:, tracks_idx] + visibility = pred_visibility[:, tracks_idx] + + for t_idx in range(0, t, t_down): + if t_down_strategy == "sample" or t_idx == 0: + cur_tracks = tracks[t_idx] # [N, 2] + cur_visibility = visibility[t_idx] # [N] + else: + cur_tracks = tracks[t_idx:t_idx+t_down].mean(dim=0) + cur_visibility = torch.any(visibility[t_idx:t_idx+t_down], dim=0) + + for i in range(track_num): + if not cur_visibility[i] or cur_tracks[i][0] < 0 or cur_tracks[i][1] < 0 or cur_tracks[i][0] >= width or cur_tracks[i][1] >= height: + continue + x, y = cur_tracks[i] + x, y = int(x // w_down), int(y // h_down) + track_pos[i, t_idx // t_down, 0], track_pos[i, t_idx // t_down, 1] = y, x + + return track_pos # the position embeddings, [N, T', 2], 2 = height, width + +def replace_feature( + vae_feature: torch.Tensor, # [B, C', T', H', W'] + track_pos: torch.Tensor, # [B, N, T', 2] + strength: float = 1.0 +) -> torch.Tensor: + b, _, t, h, w = vae_feature.shape + assert b == track_pos.shape[0], "Batch size mismatch." + n = track_pos.shape[1] + + # Shuffle the trajectory order + track_pos = track_pos[:, torch.randperm(n), :, :] + + # Extract coordinates at time steps ≥ 1 and generate a valid mask + current_pos = track_pos[:, :, 1:, :] # [B, N, T-1, 2] + mask = (current_pos[..., 0] >= 0) & (current_pos[..., 1] >= 0) # [B, N, T-1] + + # Get all valid indices + valid_indices = mask.nonzero(as_tuple=False) # [num_valid, 3] + num_valid = valid_indices.shape[0] + + if num_valid == 0: + return vae_feature + + # Decompose valid indices into each dimension + batch_idx = valid_indices[:, 0] + track_idx = valid_indices[:, 1] + t_rel = valid_indices[:, 2] + t_target = t_rel + 1 # Convert to original time step indices + + # Extract target position coordinates + h_target = current_pos[batch_idx, track_idx, t_rel, 0].long() # Ensure integer indices + w_target = current_pos[batch_idx, track_idx, t_rel, 1].long() + + # Extract source position coordinates (t=0) + h_source = track_pos[batch_idx, track_idx, 0, 0].long() + w_source = track_pos[batch_idx, track_idx, 0, 1].long() + + # Get source features and assign to target positions + src_features = vae_feature[batch_idx, :, 0, h_source, w_source] + dst_features = vae_feature[batch_idx, :, t_target, h_target, w_target] + + vae_feature[batch_idx, :, t_target, h_target, w_target] = dst_features + (src_features - dst_features) * strength + + + return vae_feature + +# Visualize functions + +def _draw_gradient_polyline_on_overlay(overlay, line_width, points, start_color, opacity=1.0): + draw = ImageDraw.Draw(overlay, 'RGBA') + points = points[::-1] + + # Compute total length + total_length = 0 + segment_lengths = [] + for i in range(len(points) - 1): + dx = points[i + 1][0] - points[i][0] + dy = points[i + 1][1] - points[i][1] + length = (dx * dx + dy * dy) ** 0.5 + segment_lengths.append(length) + total_length += length + + if total_length == 0: + return + + accumulated_length = 0 + + # Draw the gradient polyline + for idx, (start_point, end_point) in enumerate(zip(points[:-1], points[1:])): + segment_length = segment_lengths[idx] + steps = max(int(segment_length), 1) + + for i in range(steps): + current_length = accumulated_length + (i / steps) * segment_length + ratio = current_length / total_length + + alpha = int(255 * (1 - ratio) * opacity) + color = (*start_color, alpha) + + x = int(start_point[0] + (end_point[0] - start_point[0]) * i / steps) + y = int(start_point[1] + (end_point[1] - start_point[1]) * i / steps) + + dynamic_line_width = max(int(line_width * (1 - ratio)), 1) + draw.line([(x, y), (x + 1, y)], fill=color, width=dynamic_line_width) + + accumulated_length += segment_length + + +def add_weighted(rgb, track): + rgb = np.array(rgb) # [H, W, C] "RGB" + track = np.array(track) # [H, W, C] "RGBA" + + alpha = track[:, :, 3] / 255.0 + alpha = np.stack([alpha] * 3, axis=-1) + blend_img = track[:, :, :3] * alpha + rgb * (1 - alpha) + + return Image.fromarray(blend_img.astype(np.uint8)) + +def draw_tracks_on_video(video, tracks, visibility=None, track_frame=24, circle_size=12, opacity=0.5, line_width=16): + color_map = [(102, 153, 255), (0, 255, 255), (255, 255, 0), (255, 102, 204), (0, 255, 0)] + + video = video.byte().cpu().numpy() # (81, 480, 832, 3) + tracks = tracks[0].long().detach().cpu().numpy() + if visibility is not None: + visibility = visibility[0].detach().cpu().numpy() + + num_frames, height, width = video.shape[:3] + num_tracks = tracks.shape[1] + alpha_opacity = int(255 * opacity) + + output_frames = [] + for t in range(num_frames): + frame_rgb = video[t].astype(np.float32) + + # Create a single RGBA overlay for all tracks in this frame + overlay = Image.new("RGBA", (width, height), (0, 0, 0, 0)) + draw_overlay = ImageDraw.Draw(overlay) + + polyline_data = [] + + # Draw all circles on a single overlay + for n in range(num_tracks): + if visibility is not None and visibility[t, n] == 0: + continue + + track_coord = tracks[t, n] + color = color_map[n % len(color_map)] + circle_color = color + (alpha_opacity,) + + draw_overlay.ellipse((track_coord[0] - circle_size, track_coord[1] - circle_size, track_coord[0] + circle_size, track_coord[1] + circle_size), + fill=circle_color + ) + + # Store polyline data for batch processing + tracks_coord = tracks[max(t - track_frame, 0):t + 1, n] + if len(tracks_coord) > 1: + polyline_data.append((tracks_coord, color)) + + # Blend circles overlay once + overlay_np = np.array(overlay) + alpha = overlay_np[:, :, 3:4] / 255.0 + frame_rgb = overlay_np[:, :, :3] * alpha + frame_rgb * (1 - alpha) + + # Draw all polylines on a single overlay + if polyline_data: + polyline_overlay = Image.new("RGBA", (width, height), (0, 0, 0, 0)) + for tracks_coord, color in polyline_data: + _draw_gradient_polyline_on_overlay(polyline_overlay, line_width, tracks_coord, color, opacity) + + # Blend polylines overlay once + polyline_np = np.array(polyline_overlay) + alpha = polyline_np[:, :, 3:4] / 255.0 + frame_rgb = polyline_np[:, :, :3] * alpha + frame_rgb * (1 - alpha) + + output_frames.append(Image.fromarray(frame_rgb.astype(np.uint8))) + + return output_frames + + +class WanMoveVisualizeTracks(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="WanMoveVisualizeTracks", + category="conditioning/video_models", + inputs=[ + io.Image.Input("images"), + io.Tracks.Input("tracks", optional=True), + io.Int.Input("line_resolution", default=24, min=1, max=1024), + io.Int.Input("circle_size", default=12, min=1, max=128), + io.Float.Input("opacity", default=0.75, min=0.0, max=1.0, step=0.01), + io.Int.Input("line_width", default=16, min=1, max=128), + ], + outputs=[ + io.Image.Output(), + ], + ) + + @classmethod + def execute(cls, images, line_resolution, circle_size, opacity, line_width, tracks=None) -> io.NodeOutput: + if tracks is None: + return io.NodeOutput(images) + + track_path = tracks["track_path"].unsqueeze(0) + track_visibility = tracks["track_visibility"].unsqueeze(0) + images_in = images * 255.0 + if images_in.shape[0] != track_path.shape[1]: + repeat_count = track_path.shape[1] // images.shape[0] + images_in = images_in.repeat(repeat_count, 1, 1, 1) + track_video = draw_tracks_on_video(images_in, track_path, track_visibility, track_frame=line_resolution, circle_size=circle_size, opacity=opacity, line_width=line_width) + track_video = torch.stack([TF.to_tensor(frame) for frame in track_video], dim=0).movedim(1, -1).float() + + return io.NodeOutput(track_video.to(comfy.model_management.intermediate_device())) + + +class WanMoveTracksFromCoords(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="WanMoveTracksFromCoords", + category="conditioning/video_models", + inputs=[ + io.String.Input("track_coords", force_input=True, default="[]", optional=True), + io.Mask.Input("track_mask", optional=True), + ], + outputs=[ + io.Tracks.Output(), + io.Int.Output(display_name="track_length"), + ], + ) + + @classmethod + def execute(cls, track_coords, track_mask=None) -> io.NodeOutput: + device=comfy.model_management.intermediate_device() + + tracks_data = parse_json_tracks(track_coords) + track_length = len(tracks_data[0]) + + track_list = [ + [[track[frame]['x'], track[frame]['y']] for track in tracks_data] + for frame in range(len(tracks_data[0])) + ] + tracks = torch.tensor(track_list, dtype=torch.float32, device=device) # [frames, num_tracks, 2] + + num_tracks = tracks.shape[-2] + if track_mask is None: + track_visibility = torch.ones((track_length, num_tracks), dtype=torch.bool, device=device) + else: + track_visibility = (track_mask > 0).any(dim=(1, 2)).unsqueeze(-1) + + out_track_info = {} + out_track_info["track_path"] = tracks + out_track_info["track_visibility"] = track_visibility + return io.NodeOutput(out_track_info, track_length) + + +class GenerateTracks(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="GenerateTracks", + category="conditioning/video_models", + inputs=[ + io.Int.Input("width", default=832, min=16, max=4096, step=16), + io.Int.Input("height", default=480, min=16, max=4096, step=16), + io.Float.Input("start_x", default=0.0, min=0.0, max=1.0, step=0.01, tooltip="Normalized X coordinate (0-1) for start position."), + io.Float.Input("start_y", default=0.0, min=0.0, max=1.0, step=0.01, tooltip="Normalized Y coordinate (0-1) for start position."), + io.Float.Input("end_x", default=1.0, min=0.0, max=1.0, step=0.01, tooltip="Normalized X coordinate (0-1) for end position."), + io.Float.Input("end_y", default=1.0, min=0.0, max=1.0, step=0.01, tooltip="Normalized Y coordinate (0-1) for end position."), + io.Int.Input("num_frames", default=81, min=1, max=1024), + io.Int.Input("num_tracks", default=5, min=1, max=100), + io.Float.Input("track_spread", default=0.025, min=0.0, max=1.0, step=0.001, tooltip="Normalized distance between tracks. Tracks are spread perpendicular to the motion direction."), + io.Boolean.Input("bezier", default=False, tooltip="Enable Bezier curve path using the mid point as control point."), + io.Float.Input("mid_x", default=0.5, min=0.0, max=1.0, step=0.01, tooltip="Normalized X control point for Bezier curve. Only used when 'bezier' is enabled."), + io.Float.Input("mid_y", default=0.5, min=0.0, max=1.0, step=0.01, tooltip="Normalized Y control point for Bezier curve. Only used when 'bezier' is enabled."), + io.Combo.Input( + "interpolation", + options=["linear", "ease_in", "ease_out", "ease_in_out", "constant"], + tooltip="Controls the timing/speed of movement along the path.", + ), + io.Mask.Input("track_mask", optional=True, tooltip="Optional mask to indicate visible frames."), + ], + outputs=[ + io.Tracks.Output(), + io.Int.Output(display_name="track_length"), + ], + ) + + @classmethod + def execute(cls, width, height, start_x, start_y, mid_x, mid_y, end_x, end_y, num_frames, num_tracks, + track_spread, bezier=False, interpolation="linear", track_mask=None) -> io.NodeOutput: + device = comfy.model_management.intermediate_device() + track_length = num_frames + + # normalized coordinates to pixel coordinates + start_x_px = start_x * width + start_y_px = start_y * height + mid_x_px = mid_x * width + mid_y_px = mid_y * height + end_x_px = end_x * width + end_y_px = end_y * height + + track_spread_px = track_spread * (width + height) / 2 # Use average of width/height for spread to keep it proportional + + t = torch.linspace(0, 1, num_frames, device=device) + if interpolation == "constant": # All points stay at start position + interp_values = torch.zeros_like(t) + elif interpolation == "linear": + interp_values = t + elif interpolation == "ease_in": + interp_values = t ** 2 + elif interpolation == "ease_out": + interp_values = 1 - (1 - t) ** 2 + elif interpolation == "ease_in_out": + interp_values = t * t * (3 - 2 * t) + + if bezier: # apply interpolation to t for timing control along the bezier path + t_interp = interp_values + one_minus_t = 1 - t_interp + x_positions = one_minus_t ** 2 * start_x_px + 2 * one_minus_t * t_interp * mid_x_px + t_interp ** 2 * end_x_px + y_positions = one_minus_t ** 2 * start_y_px + 2 * one_minus_t * t_interp * mid_y_px + t_interp ** 2 * end_y_px + tangent_x = 2 * one_minus_t * (mid_x_px - start_x_px) + 2 * t_interp * (end_x_px - mid_x_px) + tangent_y = 2 * one_minus_t * (mid_y_px - start_y_px) + 2 * t_interp * (end_y_px - mid_y_px) + else: # calculate base x and y positions for each frame (center track) + x_positions = start_x_px + (end_x_px - start_x_px) * interp_values + y_positions = start_y_px + (end_y_px - start_y_px) * interp_values + # For non-bezier, tangent is constant (direction from start to end) + tangent_x = torch.full_like(t, end_x_px - start_x_px) + tangent_y = torch.full_like(t, end_y_px - start_y_px) + + track_list = [] + for frame_idx in range(num_frames): + # Calculate perpendicular direction at this frame + tx = tangent_x[frame_idx].item() + ty = tangent_y[frame_idx].item() + length = (tx ** 2 + ty ** 2) ** 0.5 + + if length > 0: # Perpendicular unit vector (rotate 90 degrees) + perp_x = -ty / length + perp_y = tx / length + else: # If tangent is zero, spread horizontally + perp_x = 1.0 + perp_y = 0.0 + + frame_tracks = [] + for track_idx in range(num_tracks): # center tracks around the main path offset ranges from -(num_tracks-1)/2 to +(num_tracks-1)/2 + offset = (track_idx - (num_tracks - 1) / 2) * track_spread_px + track_x = x_positions[frame_idx].item() + perp_x * offset + track_y = y_positions[frame_idx].item() + perp_y * offset + frame_tracks.append([track_x, track_y]) + track_list.append(frame_tracks) + + tracks = torch.tensor(track_list, dtype=torch.float32, device=device) # [frames, num_tracks, 2] + + if track_mask is None: + track_visibility = torch.ones((track_length, num_tracks), dtype=torch.bool, device=device) + else: + track_visibility = (track_mask > 0).any(dim=(1, 2)).unsqueeze(-1) + + out_track_info = {} + out_track_info["track_path"] = tracks + out_track_info["track_visibility"] = track_visibility + return io.NodeOutput(out_track_info, track_length) + + +class WanMoveConcatTrack(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="WanMoveConcatTrack", + category="conditioning/video_models", + inputs=[ + io.Tracks.Input("tracks_1"), + io.Tracks.Input("tracks_2", optional=True), + ], + outputs=[ + io.Tracks.Output(), + ], + ) + + @classmethod + def execute(cls, tracks_1=None, tracks_2=None) -> io.NodeOutput: + if tracks_2 is None: + return io.NodeOutput(tracks_1) + + tracks_out = torch.cat([tracks_1["track_path"], tracks_2["track_path"]], dim=1) # Concatenate along the track dimension + mask_out = torch.cat([tracks_1["track_visibility"], tracks_2["track_visibility"]], dim=-1) + + out_track_info = {} + out_track_info["track_path"] = tracks_out + out_track_info["track_visibility"] = mask_out + return io.NodeOutput(out_track_info) + + +class WanMoveTrackToVideo(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="WanMoveTrackToVideo", + category="conditioning/video_models", + inputs=[ + io.Conditioning.Input("positive"), + io.Conditioning.Input("negative"), + io.Vae.Input("vae"), + io.Tracks.Input("tracks", optional=True), + io.Float.Input("strength", default=1.0, min=0.0, max=100.0, step=0.01, tooltip="Strength of the track conditioning."), + io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4), + io.Int.Input("batch_size", default=1, min=1, max=4096), + io.Image.Input("start_image"), + io.ClipVisionOutput.Input("clip_vision_output", optional=True), + ], + outputs=[ + io.Conditioning.Output(display_name="positive"), + io.Conditioning.Output(display_name="negative"), + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, positive, negative, vae, width, height, length, batch_size, strength, tracks=None, start_image=None, clip_vision_output=None) -> io.NodeOutput: + device=comfy.model_management.intermediate_device() + latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=device) + if start_image is not None: + start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) + image = torch.ones((length, height, width, start_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) * 0.5 + image[:start_image.shape[0]] = start_image + + concat_latent_image = vae.encode(image[:, :, :, :3]) + mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) + mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0 + + if tracks is not None and strength > 0.0: + tracks_path = tracks["track_path"][:length] # [T, N, 2] + num_tracks = tracks_path.shape[-2] + + track_visibility = tracks.get("track_visibility", torch.ones((length, num_tracks), dtype=torch.bool, device=device)) + + track_pos = create_pos_embeddings(tracks_path, track_visibility, [4, 8, 8], height, width, track_num=num_tracks) + track_pos = comfy.utils.resize_to_batch_size(track_pos.unsqueeze(0), batch_size) + concat_latent_image_pos = replace_feature(concat_latent_image, track_pos, strength) + else: + concat_latent_image_pos = concat_latent_image + + positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image_pos, "concat_mask": mask}) + negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) + + if clip_vision_output is not None: + positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) + negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) + + out_latent = {} + out_latent["samples"] = latent + return io.NodeOutput(positive, negative, out_latent) + + +class WanMoveExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + WanMoveTrackToVideo, + WanMoveTracksFromCoords, + WanMoveConcatTrack, + WanMoveVisualizeTracks, + GenerateTracks, + ] + +async def comfy_entrypoint() -> WanMoveExtension: + return WanMoveExtension() diff --git a/nodes.py b/nodes.py index 8d28a725d..8678f510a 100644 --- a/nodes.py +++ b/nodes.py @@ -2358,6 +2358,7 @@ async def init_builtin_extra_nodes(): "nodes_logic.py", "nodes_nop.py", "nodes_kandinsky5.py", + "nodes_wanmove.py", ] import_failed = [] From 5495589db38409353a85b06df7d10f8de2f9c78d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 11 Dec 2025 20:32:27 -0800 Subject: [PATCH 154/271] Respect the dtype the op was initialized in for non quant mixed op. (#11282) --- comfy/ops.py | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index 6f34d50fc..6ae6e791a 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -497,8 +497,10 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec ) -> None: super().__init__() - self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype} - # self.factory_kwargs = {"device": device, "dtype": dtype} + if dtype is None: + dtype = MixedPrecisionOps._compute_dtype + + self.factory_kwargs = {"device": device, "dtype": dtype} self.in_features = in_features self.out_features = out_features @@ -530,7 +532,10 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec layer_conf = json.loads(layer_conf.numpy().tobytes()) if layer_conf is None: - self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False) + dtype = self.factory_kwargs["dtype"] + self.weight = torch.nn.Parameter(weight.to(device=device, dtype=dtype), requires_grad=False) + if dtype != MixedPrecisionOps._compute_dtype: + self.comfy_cast_weights = True else: self.quant_format = layer_conf.get("format", None) if not self._full_precision_mm: From 908fd7d7496f6de88722263e1e00fcd3d22e584f Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 12 Dec 2025 10:18:31 +0200 Subject: [PATCH 155/271] feat(api-nodes): new TextToVideoWithAudio and ImageToVideoWithAudio nodes (#11267) --- comfy_api_nodes/apis/kling_api.py | 28 ++++- comfy_api_nodes/nodes_kling.py | 169 ++++++++++++++++++++++++++---- 2 files changed, 174 insertions(+), 23 deletions(-) diff --git a/comfy_api_nodes/apis/kling_api.py b/comfy_api_nodes/apis/kling_api.py index d8949f8ac..80a758466 100644 --- a/comfy_api_nodes/apis/kling_api.py +++ b/comfy_api_nodes/apis/kling_api.py @@ -51,25 +51,25 @@ class TaskStatusImageResult(BaseModel): url: str = Field(..., description="URL for generated image") -class OmniTaskStatusResults(BaseModel): +class TaskStatusResults(BaseModel): videos: list[TaskStatusVideoResult] | None = Field(None) images: list[TaskStatusImageResult] | None = Field(None) -class OmniTaskStatusResponseData(BaseModel): +class TaskStatusResponseData(BaseModel): created_at: int | None = Field(None, description="Task creation time") updated_at: int | None = Field(None, description="Task update time") task_status: str | None = None task_status_msg: str | None = Field(None, description="Additional failure reason. Only for polling endpoint.") task_id: str | None = Field(None, description="Task ID") - task_result: OmniTaskStatusResults | None = Field(None) + task_result: TaskStatusResults | None = Field(None) -class OmniTaskStatusResponse(BaseModel): +class TaskStatusResponse(BaseModel): code: int | None = Field(None, description="Error code") message: str | None = Field(None, description="Error message") request_id: str | None = Field(None, description="Request ID") - data: OmniTaskStatusResponseData | None = Field(None) + data: TaskStatusResponseData | None = Field(None) class OmniImageParamImage(BaseModel): @@ -84,3 +84,21 @@ class OmniProImageRequest(BaseModel): mode: str = Field("pro") n: int | None = Field(1, le=9) image_list: list[OmniImageParamImage] | None = Field(..., max_length=10) + + +class TextToVideoWithAudioRequest(BaseModel): + model_name: str = Field(..., description="kling-v2-6") + aspect_ratio: str = Field(..., description="'16:9', '9:16' or '1:1'") + duration: str = Field(..., description="'5' or '10'") + prompt: str = Field(...) + mode: str = Field("pro") + sound: str = Field(..., description="'on' or 'off'") + + +class ImageToVideoWithAudioRequest(BaseModel): + model_name: str = Field(..., description="kling-v2-6") + image: str = Field(...) + duration: str = Field(..., description="'5' or '10'") + prompt: str = Field(...) + mode: str = Field("pro") + sound: str = Field(..., description="'on' or 'off'") diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index a2cc87d84..e545fe490 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -50,6 +50,7 @@ from comfy_api_nodes.apis import ( KlingSingleImageEffectModelName, ) from comfy_api_nodes.apis.kling_api import ( + ImageToVideoWithAudioRequest, OmniImageParamImage, OmniParamImage, OmniParamVideo, @@ -57,7 +58,8 @@ from comfy_api_nodes.apis.kling_api import ( OmniProImageRequest, OmniProReferences2VideoRequest, OmniProText2VideoRequest, - OmniTaskStatusResponse, + TaskStatusResponse, + TextToVideoWithAudioRequest, ) from comfy_api_nodes.util import ( ApiEndpoint, @@ -242,7 +244,7 @@ def normalize_omni_prompt_references(prompt: str) -> str: return re.sub(r"(?\d*)(?!\w)", _video_repl, prompt) -async def finish_omni_video_task(cls: type[IO.ComfyNode], response: OmniTaskStatusResponse) -> IO.NodeOutput: +async def finish_omni_video_task(cls: type[IO.ComfyNode], response: TaskStatusResponse) -> IO.NodeOutput: if response.code: raise RuntimeError( f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" @@ -250,7 +252,7 @@ async def finish_omni_video_task(cls: type[IO.ComfyNode], response: OmniTaskStat final_response = await poll_op( cls, ApiEndpoint(path=f"/proxy/kling/v1/videos/omni-video/{response.data.task_id}"), - response_model=OmniTaskStatusResponse, + response_model=TaskStatusResponse, status_extractor=lambda r: (r.data.task_status if r.data else None), max_poll_attempts=160, ) @@ -483,12 +485,12 @@ async def execute_image2video( task_id = task_creation_response.data.task_id final_response = await poll_op( - cls, - ApiEndpoint(path=f"{PATH_IMAGE_TO_VIDEO}/{task_id}"), - response_model=KlingImage2VideoResponse, - estimated_duration=AVERAGE_DURATION_I2V, - status_extractor=lambda r: (r.data.task_status.value if r.data and r.data.task_status else None), - ) + cls, + ApiEndpoint(path=f"{PATH_IMAGE_TO_VIDEO}/{task_id}"), + response_model=KlingImage2VideoResponse, + estimated_duration=AVERAGE_DURATION_I2V, + status_extractor=lambda r: (r.data.task_status.value if r.data and r.data.task_status else None), + ) validate_video_result_response(final_response) video = get_video_from_response(final_response) @@ -834,7 +836,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=OmniTaskStatusResponse, + response_model=TaskStatusResponse, data=OmniProText2VideoRequest( model_name=model_name, prompt=prompt, @@ -929,7 +931,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=OmniTaskStatusResponse, + response_model=TaskStatusResponse, data=OmniProFirstLastFrameRequest( model_name=model_name, prompt=prompt, @@ -997,7 +999,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=OmniTaskStatusResponse, + response_model=TaskStatusResponse, data=OmniProReferences2VideoRequest( model_name=model_name, prompt=prompt, @@ -1081,7 +1083,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=OmniTaskStatusResponse, + response_model=TaskStatusResponse, data=OmniProReferences2VideoRequest( model_name=model_name, prompt=prompt, @@ -1162,7 +1164,7 @@ class OmniProEditVideoNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), - response_model=OmniTaskStatusResponse, + response_model=TaskStatusResponse, data=OmniProReferences2VideoRequest( model_name=model_name, prompt=prompt, @@ -1237,7 +1239,7 @@ class OmniProImageNode(IO.ComfyNode): response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/images/omni-image", method="POST"), - response_model=OmniTaskStatusResponse, + response_model=TaskStatusResponse, data=OmniProImageRequest( model_name=model_name, prompt=prompt, @@ -1253,7 +1255,7 @@ class OmniProImageNode(IO.ComfyNode): final_response = await poll_op( cls, ApiEndpoint(path=f"/proxy/kling/v1/images/omni-image/{response.data.task_id}"), - response_model=OmniTaskStatusResponse, + response_model=TaskStatusResponse, status_extractor=lambda r: (r.data.task_status if r.data else None), ) return IO.NodeOutput(await download_url_to_image_tensor(final_response.data.task_result.images[0].url)) @@ -1328,9 +1330,8 @@ class KlingImage2VideoNode(IO.ComfyNode): def define_schema(cls) -> IO.Schema: return IO.Schema( node_id="KlingImage2VideoNode", - display_name="Kling Image to Video", + display_name="Kling Image(First Frame) to Video", category="api node/video/Kling", - description="Kling Image to Video Node", inputs=[ IO.Image.Input("start_frame", tooltip="The reference image used to generate the video."), IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"), @@ -2034,6 +2035,136 @@ class KlingImageGenerationNode(IO.ComfyNode): return IO.NodeOutput(await image_result_to_node_output(images)) +class TextToVideoWithAudio(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingTextToVideoWithAudio", + display_name="Kling Text to Video with Audio", + category="api node/video/Kling", + inputs=[ + IO.Combo.Input("model_name", options=["kling-v2-6"]), + IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt."), + IO.Combo.Input("mode", options=["pro"]), + IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), + IO.Combo.Input("duration", options=[5, 10]), + IO.Boolean.Input("generate_audio", default=True), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + prompt: str, + mode: str, + aspect_ratio: str, + duration: int, + generate_audio: bool, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/text2video", method="POST"), + response_model=TaskStatusResponse, + data=TextToVideoWithAudioRequest( + model_name=model_name, + prompt=prompt, + mode=mode, + aspect_ratio=aspect_ratio, + duration=str(duration), + sound="on" if generate_audio else "off", + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/text2video/{response.data.task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + +class ImageToVideoWithAudio(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingImageToVideoWithAudio", + display_name="Kling Image(First Frame) to Video with Audio", + category="api node/video/Kling", + inputs=[ + IO.Combo.Input("model_name", options=["kling-v2-6"]), + IO.Image.Input("start_frame"), + IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt."), + IO.Combo.Input("mode", options=["pro"]), + IO.Combo.Input("duration", options=[5, 10]), + IO.Boolean.Input("generate_audio", default=True), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model_name: str, + start_frame: Input.Image, + prompt: str, + mode: str, + duration: int, + generate_audio: bool, + ) -> IO.NodeOutput: + validate_string(prompt, min_length=1, max_length=2500) + validate_image_dimensions(start_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(start_frame, (1, 2.5), (2.5, 1)) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/image2video", method="POST"), + response_model=TaskStatusResponse, + data=ImageToVideoWithAudioRequest( + model_name=model_name, + image=(await upload_images_to_comfyapi(cls, start_frame))[0], + prompt=prompt, + mode=mode, + duration=str(duration), + sound="on" if generate_audio else "off", + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/image2video/{response.data.task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + class KlingExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: @@ -2057,6 +2188,8 @@ class KlingExtension(ComfyExtension): OmniProVideoToVideoNode, OmniProEditVideoNode, OmniProImageNode, + TextToVideoWithAudio, + ImageToVideoWithAudio, ] From c5a47a16924e1be96241553a1448b298e57e50a1 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 12 Dec 2025 08:49:35 -0800 Subject: [PATCH 156/271] Fix bias dtype issue in mixed ops. (#11293) --- comfy/ops.py | 14 ++++++++++---- 1 file changed, 10 insertions(+), 4 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index 6ae6e791a..0384c8717 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -504,10 +504,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec self.in_features = in_features self.out_features = out_features - if bias: - self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs)) - else: - self.register_parameter("bias", None) + self._has_bias = bias self.tensor_class = None self._full_precision_mm = MixedPrecisionOps._full_precision_mm @@ -536,6 +533,10 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec self.weight = torch.nn.Parameter(weight.to(device=device, dtype=dtype), requires_grad=False) if dtype != MixedPrecisionOps._compute_dtype: self.comfy_cast_weights = True + if self._has_bias: + self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=dtype)) + else: + self.register_parameter("bias", None) else: self.quant_format = layer_conf.get("format", None) if not self._full_precision_mm: @@ -565,6 +566,11 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec requires_grad=False ) + if self._has_bias: + self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=MixedPrecisionOps._compute_dtype)) + else: + self.register_parameter("bias", None) + for param_name in qconfig["parameters"]: param_key = f"{prefix}{param_name}" _v = state_dict.pop(param_key, None) From da2bfb5b0af26c7a1c44ec951dbd0fffe413c793 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 12 Dec 2025 22:39:11 -0800 Subject: [PATCH 157/271] Basic implementation of z image fun control union 2.0 (#11304) The inpaint part is currently missing and will be implemented later. I think they messed up this model pretty bad. They added some control_noise_refiner blocks but don't actually use them. There is a typo in their code so instead of doing control_noise_refiner -> control_layers it runs the whole control_layers twice. Unfortunately they trained with this typo so the model works but is kind of slow and would probably perform a lot better if they corrected their code and trained it again. --- comfy/ldm/lumina/controlnet.py | 95 +++++++++++++++++++++++-------- comfy/ldm/lumina/model.py | 16 +++++- comfy/model_patcher.py | 3 + comfy_extras/nodes_model_patch.py | 72 +++++++++++++++++------ 4 files changed, 142 insertions(+), 44 deletions(-) diff --git a/comfy/ldm/lumina/controlnet.py b/comfy/ldm/lumina/controlnet.py index fd7ce3b5c..8e2de7977 100644 --- a/comfy/ldm/lumina/controlnet.py +++ b/comfy/ldm/lumina/controlnet.py @@ -41,6 +41,11 @@ class ZImage_Control(torch.nn.Module): ffn_dim_multiplier: float = (8.0 / 3.0), norm_eps: float = 1e-5, qk_norm: bool = True, + n_control_layers=6, + control_in_dim=16, + additional_in_dim=0, + broken=False, + refiner_control=False, dtype=None, device=None, operations=None, @@ -49,10 +54,11 @@ class ZImage_Control(torch.nn.Module): super().__init__() operation_settings = {"operations": operations, "device": device, "dtype": dtype} - self.additional_in_dim = 0 - self.control_in_dim = 16 + self.broken = broken + self.additional_in_dim = additional_in_dim + self.control_in_dim = control_in_dim n_refiner_layers = 2 - self.n_control_layers = 6 + self.n_control_layers = n_control_layers self.control_layers = nn.ModuleList( [ ZImageControlTransformerBlock( @@ -74,28 +80,49 @@ class ZImage_Control(torch.nn.Module): all_x_embedder = {} patch_size = 2 f_patch_size = 1 - x_embedder = operations.Linear(f_patch_size * patch_size * patch_size * self.control_in_dim, dim, bias=True, device=device, dtype=dtype) + x_embedder = operations.Linear(f_patch_size * patch_size * patch_size * (self.control_in_dim + self.additional_in_dim), dim, bias=True, device=device, dtype=dtype) all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder + self.refiner_control = refiner_control + self.control_all_x_embedder = nn.ModuleDict(all_x_embedder) - self.control_noise_refiner = nn.ModuleList( - [ - JointTransformerBlock( - layer_id, - dim, - n_heads, - n_kv_heads, - multiple_of, - ffn_dim_multiplier, - norm_eps, - qk_norm, - modulation=True, - z_image_modulation=True, - operation_settings=operation_settings, - ) - for layer_id in range(n_refiner_layers) - ] - ) + if self.refiner_control: + self.control_noise_refiner = nn.ModuleList( + [ + ZImageControlTransformerBlock( + layer_id, + dim, + n_heads, + n_kv_heads, + multiple_of, + ffn_dim_multiplier, + norm_eps, + qk_norm, + block_id=layer_id, + operation_settings=operation_settings, + ) + for layer_id in range(n_refiner_layers) + ] + ) + else: + self.control_noise_refiner = nn.ModuleList( + [ + JointTransformerBlock( + layer_id, + dim, + n_heads, + n_kv_heads, + multiple_of, + ffn_dim_multiplier, + norm_eps, + qk_norm, + modulation=True, + z_image_modulation=True, + operation_settings=operation_settings, + ) + for layer_id in range(n_refiner_layers) + ] + ) def forward(self, cap_feats, control_context, x_freqs_cis, adaln_input): patch_size = 2 @@ -105,9 +132,29 @@ class ZImage_Control(torch.nn.Module): control_context = self.control_all_x_embedder[f"{patch_size}-{f_patch_size}"](control_context.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2)) x_attn_mask = None - for layer in self.control_noise_refiner: - control_context = layer(control_context, x_attn_mask, x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input) + if not self.refiner_control: + for layer in self.control_noise_refiner: + control_context = layer(control_context, x_attn_mask, x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input) + return control_context + def forward_noise_refiner_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input): + if self.refiner_control: + if self.broken: + if layer_id == 0: + return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input) + if layer_id > 0: + out = None + for i in range(1, len(self.control_layers)): + o, control_context = self.control_layers[i](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input) + if out is None: + out = o + + return (out, control_context) + else: + return self.control_noise_refiner[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input) + else: + return (None, control_context) + def forward_control_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input): return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index c47df49ca..96cb37fa6 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -536,6 +536,7 @@ class NextDiT(nn.Module): bsz = len(x) pH = pW = self.patch_size device = x[0].device + orig_x = x if self.pad_tokens_multiple is not None: pad_extra = (-cap_feats.shape[1]) % self.pad_tokens_multiple @@ -572,13 +573,21 @@ class NextDiT(nn.Module): freqs_cis = self.rope_embedder(torch.cat((cap_pos_ids, x_pos_ids), dim=1)).movedim(1, 2) + patches = transformer_options.get("patches", {}) + # refine context for layer in self.context_refiner: cap_feats = layer(cap_feats, cap_mask, freqs_cis[:, :cap_pos_ids.shape[1]], transformer_options=transformer_options) padded_img_mask = None - for layer in self.noise_refiner: + x_input = x + for i, layer in enumerate(self.noise_refiner): x = layer(x, padded_img_mask, freqs_cis[:, cap_pos_ids.shape[1]:], t, transformer_options=transformer_options) + if "noise_refiner" in patches: + for p in patches["noise_refiner"]: + out = p({"img": x, "img_input": x_input, "txt": cap_feats, "pe": freqs_cis[:, cap_pos_ids.shape[1]:], "vec": t, "x": orig_x, "block_index": i, "transformer_options": transformer_options, "block_type": "noise_refiner"}) + if "img" in out: + x = out["img"] padded_full_embed = torch.cat((cap_feats, x), dim=1) mask = None @@ -622,14 +631,15 @@ class NextDiT(nn.Module): patches = transformer_options.get("patches", {}) x_is_tensor = isinstance(x, torch.Tensor) - img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options) + img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input, num_tokens, transformer_options=transformer_options) freqs_cis = freqs_cis.to(img.device) + img_input = img for i, layer in enumerate(self.layers): img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options) if "double_block" in patches: for p in patches["double_block"]: - out = p({"img": img[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options}) + out = p({"img": img[:, cap_size[0]:], "img_input": img_input[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options}) if "img" in out: img[:, cap_size[0]:] = out["img"] if "txt" in out: diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index a486c2723..93d26c690 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -454,6 +454,9 @@ class ModelPatcher: def set_model_post_input_patch(self, patch): self.set_model_patch(patch, "post_input") + def set_model_noise_refiner_patch(self, patch): + self.set_model_patch(patch, "noise_refiner") + def set_model_rope_options(self, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t, **kwargs): rope_options = self.model_options["transformer_options"].get("rope_options", {}) rope_options["scale_x"] = scale_x diff --git a/comfy_extras/nodes_model_patch.py b/comfy_extras/nodes_model_patch.py index c61810dbf..ec0e790dc 100644 --- a/comfy_extras/nodes_model_patch.py +++ b/comfy_extras/nodes_model_patch.py @@ -243,7 +243,13 @@ class ModelPatchLoader: model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) elif 'control_all_x_embedder.2-1.weight' in sd: # alipai z image fun controlnet sd = z_image_convert(sd) - model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) + config = {} + if 'control_layers.14.adaLN_modulation.0.weight' in sd: + config['n_control_layers'] = 15 + config['additional_in_dim'] = 17 + config['refiner_control'] = True + config['broken'] = True + model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast, **config) model.load_state_dict(sd) model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) @@ -297,56 +303,86 @@ class DiffSynthCnetPatch: return [self.model_patch] class ZImageControlPatch: - def __init__(self, model_patch, vae, image, strength): + def __init__(self, model_patch, vae, image, strength, inpaint_image=None, mask=None): self.model_patch = model_patch self.vae = vae self.image = image + self.inpaint_image = inpaint_image + self.mask = mask self.strength = strength self.encoded_image = self.encode_latent_cond(image) self.encoded_image_size = (image.shape[1], image.shape[2]) self.temp_data = None - def encode_latent_cond(self, image): - latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(image)) - return latent_image + def encode_latent_cond(self, control_image, inpaint_image=None): + latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(control_image)) + if self.model_patch.model.additional_in_dim > 0: + if self.mask is None: + mask_ = torch.zeros_like(latent_image)[:, :1] + else: + mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none") + if inpaint_image is None: + inpaint_image = torch.ones_like(control_image) * 0.5 + + inpaint_image_latent = comfy.latent_formats.Flux().process_in(self.vae.encode(inpaint_image)) + + return torch.cat([latent_image, mask_, inpaint_image_latent], dim=1) + else: + return latent_image def __call__(self, kwargs): x = kwargs.get("x") img = kwargs.get("img") + img_input = kwargs.get("img_input") txt = kwargs.get("txt") pe = kwargs.get("pe") vec = kwargs.get("vec") block_index = kwargs.get("block_index") + block_type = kwargs.get("block_type", "") spacial_compression = self.vae.spacial_compression_encode() if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression): image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center") + inpaint_scaled = None + if self.inpaint_image is not None: + inpaint_scaled = comfy.utils.common_upscale(self.inpaint_image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center").movedim(1, -1) loaded_models = comfy.model_management.loaded_models(only_currently_used=True) - self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1)) + self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1), inpaint_scaled) self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1]) comfy.model_management.load_models_gpu(loaded_models) - cnet_index = (block_index // 5) - cnet_index_float = (block_index / 5) + cnet_blocks = self.model_patch.model.n_control_layers + div = round(30 / cnet_blocks) + + cnet_index = (block_index // div) + cnet_index_float = (block_index / div) kwargs.pop("img") # we do ops in place kwargs.pop("txt") - cnet_blocks = self.model_patch.model.n_control_layers if cnet_index_float > (cnet_blocks - 1): self.temp_data = None return kwargs if self.temp_data is None or self.temp_data[0] > cnet_index: - self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec))) + if block_type == "noise_refiner": + self.temp_data = (-3, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec))) + else: + self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec))) - while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks: + if block_type == "noise_refiner": next_layer = self.temp_data[0] + 1 - self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img[:, :self.temp_data[1][1].shape[1]], None, pe, vec)) + self.temp_data = (next_layer, self.model_patch.model.forward_noise_refiner_block(block_index, self.temp_data[1][1], img_input[:, :self.temp_data[1][1].shape[1]], None, pe, vec)) + if self.temp_data[1][0] is not None: + img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength) + else: + while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks: + next_layer = self.temp_data[0] + 1 + self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img_input[:, :self.temp_data[1][1].shape[1]], None, pe, vec)) - if cnet_index_float == self.temp_data[0]: - img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength) - if cnet_blocks == self.temp_data[0] + 1: - self.temp_data = None + if cnet_index_float == self.temp_data[0]: + img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength) + if cnet_blocks == self.temp_data[0] + 1: + self.temp_data = None return kwargs @@ -386,7 +422,9 @@ class QwenImageDiffsynthControlnet: mask = 1.0 - mask if isinstance(model_patch.model, comfy.ldm.lumina.controlnet.ZImage_Control): - model_patched.set_model_double_block_patch(ZImageControlPatch(model_patch, vae, image, strength)) + patch = ZImageControlPatch(model_patch, vae, image, strength, mask=mask) + model_patched.set_model_noise_refiner_patch(patch) + model_patched.set_model_double_block_patch(patch) else: model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) return (model_patched,) From 971cefe7d4ca15c949d5d901a663cb66562a4f10 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 13 Dec 2025 15:45:23 -0800 Subject: [PATCH 158/271] Fix pytorch warnings. (#11314) --- comfy/ops.py | 2 +- comfy/utils.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index 0384c8717..16889bb82 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -592,7 +592,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec quant_conf = {"format": self.quant_format} if self._full_precision_mm: quant_conf["full_precision_matrix_mult"] = True - sd["{}comfy_quant".format(prefix)] = torch.frombuffer(json.dumps(quant_conf).encode('utf-8'), dtype=torch.uint8) + sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8) return sd def _forward(self, input, weight, bias): diff --git a/comfy/utils.py b/comfy/utils.py index 9dc0d76ac..3866cda2e 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -1262,6 +1262,6 @@ def convert_old_quants(state_dict, model_prefix="", metadata={}): if quant_metadata is not None: layers = quant_metadata["layers"] for k, v in layers.items(): - state_dict["{}.comfy_quant".format(k)] = torch.frombuffer(json.dumps(v).encode('utf-8'), dtype=torch.uint8) + state_dict["{}.comfy_quant".format(k)] = torch.tensor(list(json.dumps(v).encode('utf-8')), dtype=torch.uint8) return state_dict, metadata From 6592bffc609da4738b111dbffca1f473972f3574 Mon Sep 17 00:00:00 2001 From: chaObserv <154517000+chaObserv@users.noreply.github.com> Date: Sun, 14 Dec 2025 13:03:29 +0800 Subject: [PATCH 159/271] seeds_2: add phi_2 variant and sampler node (#11309) * Add phi_2 solver type to seeds_2 * Add sampler node of seeds_2 --- comfy/k_diffusion/sampling.py | 15 ++++++++++++--- comfy_extras/nodes_custom_sampler.py | 26 ++++++++++++++++++++++++++ 2 files changed, 38 insertions(+), 3 deletions(-) diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index 0e2cda291..753c66afa 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -1557,10 +1557,13 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None @torch.no_grad() -def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5): +def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5, solver_type="phi_1"): """SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2. arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023) """ + if solver_type not in {"phi_1", "phi_2"}: + raise ValueError("solver_type must be 'phi_1' or 'phi_2'") + extra_args = {} if extra_args is None else extra_args seed = extra_args.get("seed", None) noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler @@ -1600,8 +1603,14 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args) # Step 2 - denoised_d = torch.lerp(denoised, denoised_2, fac) - x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d + if solver_type == "phi_1": + denoised_d = torch.lerp(denoised, denoised_2, fac) + x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d + elif solver_type == "phi_2": + b2 = ei_h_phi_2(-h_eta) / r + b1 = ei_h_phi_1(-h_eta) - b2 + x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b2 * denoised_2) + if inject_noise: segment_factor = (r - 1) * h * eta sde_noise = sde_noise * segment_factor.exp() diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index fbb080886..71ea4e9ec 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -659,6 +659,31 @@ class SamplerSASolver(io.ComfyNode): get_sampler = execute +class SamplerSEEDS2(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="SamplerSEEDS2", + category="sampling/custom_sampling/samplers", + inputs=[ + io.Combo.Input("solver_type", options=["phi_1", "phi_2"]), + io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="Stochastic strength"), + io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="SDE noise multiplier"), + io.Float.Input("r", default=0.5, min=0.01, max=1.0, step=0.01, round=False, tooltip="Relative step size for the intermediate stage (c2 node)"), + ], + outputs=[io.Sampler.Output()] + ) + + @classmethod + def execute(cls, solver_type, eta, s_noise, r) -> io.NodeOutput: + sampler_name = "seeds_2" + sampler = comfy.samplers.ksampler( + sampler_name, + {"eta": eta, "s_noise": s_noise, "r": r, "solver_type": solver_type}, + ) + return io.NodeOutput(sampler) + + class Noise_EmptyNoise: def __init__(self): self.seed = 0 @@ -996,6 +1021,7 @@ class CustomSamplersExtension(ComfyExtension): SamplerDPMAdaptative, SamplerER_SDE, SamplerSASolver, + SamplerSEEDS2, SplitSigmas, SplitSigmasDenoise, FlipSigmas, From 5ac3b26a7dedb9b13c681abe8733c54f13353273 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 14 Dec 2025 01:02:50 -0800 Subject: [PATCH 160/271] Update warning for old pytorch version. (#11319) Versions below 2.4 are no longer supported. We will not break support on purpose but will not fix it if we do. --- comfy/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/utils.py b/comfy/utils.py index 3866cda2e..8d4e2b445 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -53,7 +53,7 @@ if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in ALWAYS_SAFE_LOAD = True logging.info("Checkpoint files will always be loaded safely.") else: - logging.info("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended.") + logging.warning("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended as older versions of pytorch are no longer supported.") def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False): if device is None: From a5e85017d8574cb99024d320f7a53a77a9e6aa5a Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Tue, 16 Dec 2025 04:24:01 +0900 Subject: [PATCH 161/271] bump manager requirments to the 4.0.3b5 (#11324) --- manager_requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/manager_requirements.txt b/manager_requirements.txt index b95cefb74..5ef0d3a1d 100644 --- a/manager_requirements.txt +++ b/manager_requirements.txt @@ -1 +1 @@ -comfyui_manager==4.0.3b4 +comfyui_manager==4.0.3b5 From 51347f9fb8a8e60d3add049c6f241822c84c8a87 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Tue, 16 Dec 2025 05:28:55 +0800 Subject: [PATCH 162/271] chore: update workflow templates to v0.7.59 (#11337) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 9e9b25328..117260515 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.34.8 -comfyui-workflow-templates==0.7.54 +comfyui-workflow-templates==0.7.59 comfyui-embedded-docs==0.3.1 torch torchsde From 5cb1e0c9a0439f1f95a0b372474bd4845e38009c Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 15 Dec 2025 13:49:29 -0800 Subject: [PATCH 163/271] Disable guards on transformer_options when torch.compile (#11317) --- comfy_extras/nodes_torch_compile.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/comfy_extras/nodes_torch_compile.py b/comfy_extras/nodes_torch_compile.py index adbeece2f..c43e8ad63 100644 --- a/comfy_extras/nodes_torch_compile.py +++ b/comfy_extras/nodes_torch_compile.py @@ -2,6 +2,8 @@ from typing_extensions import override from comfy_api.latest import ComfyExtension, io from comfy_api.torch_helpers import set_torch_compile_wrapper +def skip_torch_compile_dict(guard_entries): + return [("transformer_options" not in entry.name) for entry in guard_entries] class TorchCompileModel(io.ComfyNode): @classmethod @@ -23,7 +25,7 @@ class TorchCompileModel(io.ComfyNode): @classmethod def execute(cls, model, backend) -> io.NodeOutput: m = model.clone() - set_torch_compile_wrapper(model=m, backend=backend) + set_torch_compile_wrapper(model=m, backend=backend, options={"guard_filter_fn": skip_torch_compile_dict}) return io.NodeOutput(m) From af91eb6c9931d0a2c99cf8a6d4974a6abf9a09fa Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 16 Dec 2025 01:30:24 +0200 Subject: [PATCH 164/271] api-nodes: drop Kling v1 model (#11307) --- comfy_api_nodes/nodes_kling.py | 12 +++--------- 1 file changed, 3 insertions(+), 9 deletions(-) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index e545fe490..1a6364fa0 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -105,10 +105,6 @@ AVERAGE_DURATION_VIDEO_EXTEND = 320 MODE_TEXT2VIDEO = { - "standard mode / 5s duration / kling-v1": ("std", "5", "kling-v1"), - "standard mode / 10s duration / kling-v1": ("std", "10", "kling-v1"), - "pro mode / 5s duration / kling-v1": ("pro", "5", "kling-v1"), - "pro mode / 10s duration / kling-v1": ("pro", "10", "kling-v1"), "standard mode / 5s duration / kling-v1-6": ("std", "5", "kling-v1-6"), "standard mode / 10s duration / kling-v1-6": ("std", "10", "kling-v1-6"), "pro mode / 5s duration / kling-v2-master": ("pro", "5", "kling-v2-master"), @@ -129,8 +125,6 @@ See: [Kling API Docs Capability Map](https://app.klingai.com/global/dev/document MODE_START_END_FRAME = { - "standard mode / 5s duration / kling-v1": ("std", "5", "kling-v1"), - "pro mode / 5s duration / kling-v1": ("pro", "5", "kling-v1"), "pro mode / 5s duration / kling-v1-5": ("pro", "5", "kling-v1-5"), "pro mode / 10s duration / kling-v1-5": ("pro", "10", "kling-v1-5"), "pro mode / 5s duration / kling-v1-6": ("pro", "5", "kling-v1-6"), @@ -754,7 +748,7 @@ class KlingTextToVideoNode(IO.ComfyNode): IO.Combo.Input( "mode", options=modes, - default=modes[4], + default=modes[8], tooltip="The configuration to use for the video generation following the format: mode / duration / model_name.", ), ], @@ -1489,7 +1483,7 @@ class KlingStartEndFrameNode(IO.ComfyNode): IO.Combo.Input( "mode", options=modes, - default=modes[8], + default=modes[6], tooltip="The configuration to use for the video generation following the format: mode / duration / model_name.", ), ], @@ -1952,7 +1946,7 @@ class KlingImageGenerationNode(IO.ComfyNode): IO.Combo.Input( "model_name", options=[i.value for i in KlingImageGenModelName], - default="kling-v1", + default="kling-v2", ), IO.Combo.Input( "aspect_ratio", From 33c7f1179d4a961e4ca1dd78188c5134e0ee8e8c Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 16 Dec 2025 01:32:29 +0200 Subject: [PATCH 165/271] drop Pika API nodes (#11306) --- comfy_api_nodes/apis/pika_api.py | 100 ------ comfy_api_nodes/nodes_pika.py | 575 ------------------------------- nodes.py | 1 - 3 files changed, 676 deletions(-) delete mode 100644 comfy_api_nodes/apis/pika_api.py delete mode 100644 comfy_api_nodes/nodes_pika.py diff --git a/comfy_api_nodes/apis/pika_api.py b/comfy_api_nodes/apis/pika_api.py deleted file mode 100644 index 232558cd7..000000000 --- a/comfy_api_nodes/apis/pika_api.py +++ /dev/null @@ -1,100 +0,0 @@ -from typing import Optional -from enum import Enum -from pydantic import BaseModel, Field - - -class Pikaffect(str, Enum): - Cake_ify = "Cake-ify" - Crumble = "Crumble" - Crush = "Crush" - Decapitate = "Decapitate" - Deflate = "Deflate" - Dissolve = "Dissolve" - Explode = "Explode" - Eye_pop = "Eye-pop" - Inflate = "Inflate" - Levitate = "Levitate" - Melt = "Melt" - Peel = "Peel" - Poke = "Poke" - Squish = "Squish" - Ta_da = "Ta-da" - Tear = "Tear" - - -class PikaBodyGenerate22C2vGenerate22PikascenesPost(BaseModel): - aspectRatio: Optional[float] = Field(None, description='Aspect ratio (width / height)') - duration: Optional[int] = Field(5) - ingredientsMode: str = Field(...) - negativePrompt: Optional[str] = Field(None) - promptText: Optional[str] = Field(None) - resolution: Optional[str] = Field('1080p') - seed: Optional[int] = Field(None) - - -class PikaGenerateResponse(BaseModel): - video_id: str = Field(...) - - -class PikaBodyGenerate22I2vGenerate22I2vPost(BaseModel): - duration: Optional[int] = 5 - negativePrompt: Optional[str] = Field(None) - promptText: Optional[str] = Field(None) - resolution: Optional[str] = '1080p' - seed: Optional[int] = Field(None) - - -class PikaBodyGenerate22KeyframeGenerate22PikaframesPost(BaseModel): - duration: Optional[int] = Field(None, ge=5, le=10) - negativePrompt: Optional[str] = Field(None) - promptText: str = Field(...) - resolution: Optional[str] = '1080p' - seed: Optional[int] = Field(None) - - -class PikaBodyGenerate22T2vGenerate22T2vPost(BaseModel): - aspectRatio: Optional[float] = Field( - 1.7777777777777777, - description='Aspect ratio (width / height)', - ge=0.4, - le=2.5, - ) - duration: Optional[int] = 5 - negativePrompt: Optional[str] = Field(None) - promptText: str = Field(...) - resolution: Optional[str] = '1080p' - seed: Optional[int] = Field(None) - - -class PikaBodyGeneratePikadditionsGeneratePikadditionsPost(BaseModel): - negativePrompt: Optional[str] = Field(None) - promptText: Optional[str] = Field(None) - seed: Optional[int] = Field(None) - - -class PikaBodyGeneratePikaffectsGeneratePikaffectsPost(BaseModel): - negativePrompt: Optional[str] = Field(None) - pikaffect: Optional[str] = None - promptText: Optional[str] = Field(None) - seed: Optional[int] = Field(None) - - -class PikaBodyGeneratePikaswapsGeneratePikaswapsPost(BaseModel): - negativePrompt: Optional[str] = Field(None) - promptText: Optional[str] = Field(None) - seed: Optional[int] = Field(None) - modifyRegionRoi: Optional[str] = Field(None) - - -class PikaStatusEnum(str, Enum): - queued = "queued" - started = "started" - finished = "finished" - failed = "failed" - - -class PikaVideoResponse(BaseModel): - id: str = Field(...) - progress: Optional[int] = Field(None) - status: PikaStatusEnum - url: Optional[str] = Field(None) diff --git a/comfy_api_nodes/nodes_pika.py b/comfy_api_nodes/nodes_pika.py deleted file mode 100644 index acd88c391..000000000 --- a/comfy_api_nodes/nodes_pika.py +++ /dev/null @@ -1,575 +0,0 @@ -""" -Pika x ComfyUI API Nodes - -Pika API docs: https://pika-827374fb.mintlify.app/api-reference -""" -from __future__ import annotations - -from io import BytesIO -import logging -from typing import Optional - -import torch - -from typing_extensions import override -from comfy_api.latest import ComfyExtension, IO -from comfy_api.input_impl.video_types import VideoCodec, VideoContainer, VideoInput -from comfy_api_nodes.apis import pika_api as pika_defs -from comfy_api_nodes.util import ( - validate_string, - download_url_to_video_output, - tensor_to_bytesio, - ApiEndpoint, - sync_op, - poll_op, -) - - -PATH_PIKADDITIONS = "/proxy/pika/generate/pikadditions" -PATH_PIKASWAPS = "/proxy/pika/generate/pikaswaps" -PATH_PIKAFFECTS = "/proxy/pika/generate/pikaffects" - -PIKA_API_VERSION = "2.2" -PATH_TEXT_TO_VIDEO = f"/proxy/pika/generate/{PIKA_API_VERSION}/t2v" -PATH_IMAGE_TO_VIDEO = f"/proxy/pika/generate/{PIKA_API_VERSION}/i2v" -PATH_PIKAFRAMES = f"/proxy/pika/generate/{PIKA_API_VERSION}/pikaframes" -PATH_PIKASCENES = f"/proxy/pika/generate/{PIKA_API_VERSION}/pikascenes" - -PATH_VIDEO_GET = "/proxy/pika/videos" - - -async def execute_task( - task_id: str, - cls: type[IO.ComfyNode], -) -> IO.NodeOutput: - final_response: pika_defs.PikaVideoResponse = await poll_op( - cls, - ApiEndpoint(path=f"{PATH_VIDEO_GET}/{task_id}"), - response_model=pika_defs.PikaVideoResponse, - status_extractor=lambda response: (response.status.value if response.status else None), - progress_extractor=lambda response: (response.progress if hasattr(response, "progress") else None), - estimated_duration=60, - max_poll_attempts=240, - ) - if not final_response.url: - error_msg = f"Pika task {task_id} succeeded but no video data found in response:\n{final_response}" - logging.error(error_msg) - raise Exception(error_msg) - video_url = final_response.url - logging.info("Pika task %s succeeded. Video URL: %s", task_id, video_url) - return IO.NodeOutput(await download_url_to_video_output(video_url)) - - -def get_base_inputs_types() -> list[IO.Input]: - """Get the base required inputs types common to all Pika nodes.""" - return [ - IO.String.Input("prompt_text", multiline=True), - IO.String.Input("negative_prompt", multiline=True), - IO.Int.Input("seed", min=0, max=0xFFFFFFFF, control_after_generate=True), - IO.Combo.Input("resolution", options=["1080p", "720p"], default="1080p"), - IO.Combo.Input("duration", options=[5, 10], default=5), - ] - - -class PikaImageToVideo(IO.ComfyNode): - """Pika 2.2 Image to Video Node.""" - - @classmethod - def define_schema(cls) -> IO.Schema: - return IO.Schema( - node_id="PikaImageToVideoNode2_2", - display_name="Pika Image to Video", - description="Sends an image and prompt to the Pika API v2.2 to generate a video.", - category="api node/video/Pika", - inputs=[ - IO.Image.Input("image", tooltip="The image to convert to video"), - *get_base_inputs_types(), - ], - outputs=[IO.Video.Output()], - hidden=[ - IO.Hidden.auth_token_comfy_org, - IO.Hidden.api_key_comfy_org, - IO.Hidden.unique_id, - ], - is_api_node=True, - is_deprecated=True, - ) - - @classmethod - async def execute( - cls, - image: torch.Tensor, - prompt_text: str, - negative_prompt: str, - seed: int, - resolution: str, - duration: int, - ) -> IO.NodeOutput: - image_bytes_io = tensor_to_bytesio(image) - pika_files = {"image": ("image.png", image_bytes_io, "image/png")} - pika_request_data = pika_defs.PikaBodyGenerate22I2vGenerate22I2vPost( - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - resolution=resolution, - duration=duration, - ) - initial_operation = await sync_op( - cls, - ApiEndpoint(path=PATH_IMAGE_TO_VIDEO, method="POST"), - response_model=pika_defs.PikaGenerateResponse, - data=pika_request_data, - files=pika_files, - content_type="multipart/form-data", - ) - return await execute_task(initial_operation.video_id, cls) - - -class PikaTextToVideoNode(IO.ComfyNode): - """Pika Text2Video v2.2 Node.""" - - @classmethod - def define_schema(cls) -> IO.Schema: - return IO.Schema( - node_id="PikaTextToVideoNode2_2", - display_name="Pika Text to Video", - description="Sends a text prompt to the Pika API v2.2 to generate a video.", - category="api node/video/Pika", - inputs=[ - *get_base_inputs_types(), - IO.Float.Input( - "aspect_ratio", - step=0.001, - min=0.4, - max=2.5, - default=1.7777777777777777, - tooltip="Aspect ratio (width / height)", - ) - ], - outputs=[IO.Video.Output()], - hidden=[ - IO.Hidden.auth_token_comfy_org, - IO.Hidden.api_key_comfy_org, - IO.Hidden.unique_id, - ], - is_api_node=True, - is_deprecated=True, - ) - - @classmethod - async def execute( - cls, - prompt_text: str, - negative_prompt: str, - seed: int, - resolution: str, - duration: int, - aspect_ratio: float, - ) -> IO.NodeOutput: - initial_operation = await sync_op( - cls, - ApiEndpoint(path=PATH_TEXT_TO_VIDEO, method="POST"), - response_model=pika_defs.PikaGenerateResponse, - data=pika_defs.PikaBodyGenerate22T2vGenerate22T2vPost( - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - resolution=resolution, - duration=duration, - aspectRatio=aspect_ratio, - ), - content_type="application/x-www-form-urlencoded", - ) - return await execute_task(initial_operation.video_id, cls) - - -class PikaScenes(IO.ComfyNode): - """PikaScenes v2.2 Node.""" - - @classmethod - def define_schema(cls) -> IO.Schema: - return IO.Schema( - node_id="PikaScenesV2_2", - display_name="Pika Scenes (Video Image Composition)", - description="Combine your images to create a video with the objects in them. Upload multiple images as ingredients and generate a high-quality video that incorporates all of them.", - category="api node/video/Pika", - inputs=[ - *get_base_inputs_types(), - IO.Combo.Input( - "ingredients_mode", - options=["creative", "precise"], - default="creative", - ), - IO.Float.Input( - "aspect_ratio", - step=0.001, - min=0.4, - max=2.5, - default=1.7777777777777777, - tooltip="Aspect ratio (width / height)", - ), - IO.Image.Input( - "image_ingredient_1", - optional=True, - tooltip="Image that will be used as ingredient to create a video.", - ), - IO.Image.Input( - "image_ingredient_2", - optional=True, - tooltip="Image that will be used as ingredient to create a video.", - ), - IO.Image.Input( - "image_ingredient_3", - optional=True, - tooltip="Image that will be used as ingredient to create a video.", - ), - IO.Image.Input( - "image_ingredient_4", - optional=True, - tooltip="Image that will be used as ingredient to create a video.", - ), - IO.Image.Input( - "image_ingredient_5", - optional=True, - tooltip="Image that will be used as ingredient to create a video.", - ), - ], - outputs=[IO.Video.Output()], - hidden=[ - IO.Hidden.auth_token_comfy_org, - IO.Hidden.api_key_comfy_org, - IO.Hidden.unique_id, - ], - is_api_node=True, - is_deprecated=True, - ) - - @classmethod - async def execute( - cls, - prompt_text: str, - negative_prompt: str, - seed: int, - resolution: str, - duration: int, - ingredients_mode: str, - aspect_ratio: float, - image_ingredient_1: Optional[torch.Tensor] = None, - image_ingredient_2: Optional[torch.Tensor] = None, - image_ingredient_3: Optional[torch.Tensor] = None, - image_ingredient_4: Optional[torch.Tensor] = None, - image_ingredient_5: Optional[torch.Tensor] = None, - ) -> IO.NodeOutput: - all_image_bytes_io = [] - for image in [ - image_ingredient_1, - image_ingredient_2, - image_ingredient_3, - image_ingredient_4, - image_ingredient_5, - ]: - if image is not None: - all_image_bytes_io.append(tensor_to_bytesio(image)) - - pika_files = [ - ("images", (f"image_{i}.png", image_bytes_io, "image/png")) - for i, image_bytes_io in enumerate(all_image_bytes_io) - ] - - pika_request_data = pika_defs.PikaBodyGenerate22C2vGenerate22PikascenesPost( - ingredientsMode=ingredients_mode, - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - resolution=resolution, - duration=duration, - aspectRatio=aspect_ratio, - ) - initial_operation = await sync_op( - cls, - ApiEndpoint(path=PATH_PIKASCENES, method="POST"), - response_model=pika_defs.PikaGenerateResponse, - data=pika_request_data, - files=pika_files, - content_type="multipart/form-data", - ) - - return await execute_task(initial_operation.video_id, cls) - - -class PikAdditionsNode(IO.ComfyNode): - """Pika Pikadditions Node. Add an image into a video.""" - - @classmethod - def define_schema(cls) -> IO.Schema: - return IO.Schema( - node_id="Pikadditions", - display_name="Pikadditions (Video Object Insertion)", - description="Add any object or image into your video. Upload a video and specify what you'd like to add to create a seamlessly integrated result.", - category="api node/video/Pika", - inputs=[ - IO.Video.Input("video", tooltip="The video to add an image to."), - IO.Image.Input("image", tooltip="The image to add to the video."), - IO.String.Input("prompt_text", multiline=True), - IO.String.Input("negative_prompt", multiline=True), - IO.Int.Input( - "seed", - min=0, - max=0xFFFFFFFF, - control_after_generate=True, - ), - ], - outputs=[IO.Video.Output()], - hidden=[ - IO.Hidden.auth_token_comfy_org, - IO.Hidden.api_key_comfy_org, - IO.Hidden.unique_id, - ], - is_api_node=True, - is_deprecated=True, - ) - - @classmethod - async def execute( - cls, - video: VideoInput, - image: torch.Tensor, - prompt_text: str, - negative_prompt: str, - seed: int, - ) -> IO.NodeOutput: - video_bytes_io = BytesIO() - video.save_to(video_bytes_io, format=VideoContainer.MP4, codec=VideoCodec.H264) - video_bytes_io.seek(0) - - image_bytes_io = tensor_to_bytesio(image) - pika_files = { - "video": ("video.mp4", video_bytes_io, "video/mp4"), - "image": ("image.png", image_bytes_io, "image/png"), - } - pika_request_data = pika_defs.PikaBodyGeneratePikadditionsGeneratePikadditionsPost( - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - ) - initial_operation = await sync_op( - cls, - ApiEndpoint(path=PATH_PIKADDITIONS, method="POST"), - response_model=pika_defs.PikaGenerateResponse, - data=pika_request_data, - files=pika_files, - content_type="multipart/form-data", - ) - - return await execute_task(initial_operation.video_id, cls) - - -class PikaSwapsNode(IO.ComfyNode): - """Pika Pikaswaps Node.""" - - @classmethod - def define_schema(cls) -> IO.Schema: - return IO.Schema( - node_id="Pikaswaps", - display_name="Pika Swaps (Video Object Replacement)", - description="Swap out any object or region of your video with a new image or object. Define areas to replace either with a mask or coordinates.", - category="api node/video/Pika", - inputs=[ - IO.Video.Input("video", tooltip="The video to swap an object in."), - IO.Image.Input( - "image", - tooltip="The image used to replace the masked object in the video.", - optional=True, - ), - IO.Mask.Input( - "mask", - tooltip="Use the mask to define areas in the video to replace.", - optional=True, - ), - IO.String.Input("prompt_text", multiline=True, optional=True), - IO.String.Input("negative_prompt", multiline=True, optional=True), - IO.Int.Input("seed", min=0, max=0xFFFFFFFF, control_after_generate=True, optional=True), - IO.String.Input( - "region_to_modify", - multiline=True, - optional=True, - tooltip="Plaintext description of the object / region to modify.", - ), - ], - outputs=[IO.Video.Output()], - hidden=[ - IO.Hidden.auth_token_comfy_org, - IO.Hidden.api_key_comfy_org, - IO.Hidden.unique_id, - ], - is_api_node=True, - is_deprecated=True, - ) - - @classmethod - async def execute( - cls, - video: VideoInput, - image: Optional[torch.Tensor] = None, - mask: Optional[torch.Tensor] = None, - prompt_text: str = "", - negative_prompt: str = "", - seed: int = 0, - region_to_modify: str = "", - ) -> IO.NodeOutput: - video_bytes_io = BytesIO() - video.save_to(video_bytes_io, format=VideoContainer.MP4, codec=VideoCodec.H264) - video_bytes_io.seek(0) - pika_files = { - "video": ("video.mp4", video_bytes_io, "video/mp4"), - } - if mask is not None: - pika_files["modifyRegionMask"] = ("mask.png", tensor_to_bytesio(mask), "image/png") - if image is not None: - pika_files["image"] = ("image.png", tensor_to_bytesio(image), "image/png") - - pika_request_data = pika_defs.PikaBodyGeneratePikaswapsGeneratePikaswapsPost( - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - modifyRegionRoi=region_to_modify if region_to_modify else None, - ) - initial_operation = await sync_op( - cls, - ApiEndpoint(path=PATH_PIKASWAPS, method="POST"), - response_model=pika_defs.PikaGenerateResponse, - data=pika_request_data, - files=pika_files, - content_type="multipart/form-data", - ) - return await execute_task(initial_operation.video_id, cls) - - -class PikaffectsNode(IO.ComfyNode): - """Pika Pikaffects Node.""" - - @classmethod - def define_schema(cls) -> IO.Schema: - return IO.Schema( - node_id="Pikaffects", - display_name="Pikaffects (Video Effects)", - description="Generate a video with a specific Pikaffect. Supported Pikaffects: Cake-ify, Crumble, Crush, Decapitate, Deflate, Dissolve, Explode, Eye-pop, Inflate, Levitate, Melt, Peel, Poke, Squish, Ta-da, Tear", - category="api node/video/Pika", - inputs=[ - IO.Image.Input("image", tooltip="The reference image to apply the Pikaffect to."), - IO.Combo.Input( - "pikaffect", options=pika_defs.Pikaffect, default="Cake-ify" - ), - IO.String.Input("prompt_text", multiline=True), - IO.String.Input("negative_prompt", multiline=True), - IO.Int.Input("seed", min=0, max=0xFFFFFFFF, control_after_generate=True), - ], - outputs=[IO.Video.Output()], - hidden=[ - IO.Hidden.auth_token_comfy_org, - IO.Hidden.api_key_comfy_org, - IO.Hidden.unique_id, - ], - is_api_node=True, - is_deprecated=True, - ) - - @classmethod - async def execute( - cls, - image: torch.Tensor, - pikaffect: str, - prompt_text: str, - negative_prompt: str, - seed: int, - ) -> IO.NodeOutput: - initial_operation = await sync_op( - cls, - ApiEndpoint(path=PATH_PIKAFFECTS, method="POST"), - response_model=pika_defs.PikaGenerateResponse, - data=pika_defs.PikaBodyGeneratePikaffectsGeneratePikaffectsPost( - pikaffect=pikaffect, - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - ), - files={"image": ("image.png", tensor_to_bytesio(image), "image/png")}, - content_type="multipart/form-data", - ) - return await execute_task(initial_operation.video_id, cls) - - -class PikaStartEndFrameNode(IO.ComfyNode): - """PikaFrames v2.2 Node.""" - - @classmethod - def define_schema(cls) -> IO.Schema: - return IO.Schema( - node_id="PikaStartEndFrameNode2_2", - display_name="Pika Start and End Frame to Video", - description="Generate a video by combining your first and last frame. Upload two images to define the start and end points, and let the AI create a smooth transition between them.", - category="api node/video/Pika", - inputs=[ - IO.Image.Input("image_start", tooltip="The first image to combine."), - IO.Image.Input("image_end", tooltip="The last image to combine."), - *get_base_inputs_types(), - ], - outputs=[IO.Video.Output()], - hidden=[ - IO.Hidden.auth_token_comfy_org, - IO.Hidden.api_key_comfy_org, - IO.Hidden.unique_id, - ], - is_api_node=True, - is_deprecated=True, - ) - - @classmethod - async def execute( - cls, - image_start: torch.Tensor, - image_end: torch.Tensor, - prompt_text: str, - negative_prompt: str, - seed: int, - resolution: str, - duration: int, - ) -> IO.NodeOutput: - validate_string(prompt_text, field_name="prompt_text", min_length=1) - pika_files = [ - ("keyFrames", ("image_start.png", tensor_to_bytesio(image_start), "image/png")), - ("keyFrames", ("image_end.png", tensor_to_bytesio(image_end), "image/png")), - ] - initial_operation = await sync_op( - cls, - ApiEndpoint(path=PATH_PIKAFRAMES, method="POST"), - response_model=pika_defs.PikaGenerateResponse, - data=pika_defs.PikaBodyGenerate22KeyframeGenerate22PikaframesPost( - promptText=prompt_text, - negativePrompt=negative_prompt, - seed=seed, - resolution=resolution, - duration=duration, - ), - files=pika_files, - content_type="multipart/form-data", - ) - return await execute_task(initial_operation.video_id, cls) - - -class PikaApiNodesExtension(ComfyExtension): - @override - async def get_node_list(self) -> list[type[IO.ComfyNode]]: - return [ - PikaImageToVideo, - PikaTextToVideoNode, - PikaScenes, - PikAdditionsNode, - PikaSwapsNode, - PikaffectsNode, - PikaStartEndFrameNode, - ] - - -async def comfy_entrypoint() -> PikaApiNodesExtension: - return PikaApiNodesExtension() diff --git a/nodes.py b/nodes.py index 8678f510a..3fa543294 100644 --- a/nodes.py +++ b/nodes.py @@ -2384,7 +2384,6 @@ async def init_builtin_api_nodes(): "nodes_recraft.py", "nodes_pixverse.py", "nodes_stability.py", - "nodes_pika.py", "nodes_runway.py", "nodes_sora.py", "nodes_topaz.py", From dbd330454ada04609c69fda2ae7c002d7ea05f67 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Tue, 16 Dec 2025 08:57:39 +0900 Subject: [PATCH 166/271] feat(preview): add per-queue live preview method override (#11261) - Add set_preview_method() to override live preview method per queue item - Read extra_data.preview_method from /prompt request - Support values: taesd, latent2rgb, none, auto, default - "default" or unset uses server's CLI --preview-method setting - Add 44 tests (37 unit + 7 E2E) --- comfy/cli_args.py | 7 + execution.py | 3 + latent_preview.py | 10 + .../preview_method_override_test.py | 352 +++++++++++++++++ tests/execution/test_preview_method.py | 358 ++++++++++++++++++ 5 files changed, 730 insertions(+) create mode 100644 tests-unit/execution_test/preview_method_override_test.py create mode 100644 tests/execution/test_preview_method.py diff --git a/comfy/cli_args.py b/comfy/cli_args.py index 209fc185b..dae9a895d 100644 --- a/comfy/cli_args.py +++ b/comfy/cli_args.py @@ -97,6 +97,13 @@ class LatentPreviewMethod(enum.Enum): Latent2RGB = "latent2rgb" TAESD = "taesd" + @classmethod + def from_string(cls, value: str): + for member in cls: + if member.value == value: + return member + return None + parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction) parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.") diff --git a/execution.py b/execution.py index c2186ac98..0c239efd7 100644 --- a/execution.py +++ b/execution.py @@ -13,6 +13,7 @@ import asyncio import torch import comfy.model_management +from latent_preview import set_preview_method import nodes from comfy_execution.caching import ( BasicCache, @@ -669,6 +670,8 @@ class PromptExecutor: asyncio.run(self.execute_async(prompt, prompt_id, extra_data, execute_outputs)) async def execute_async(self, prompt, prompt_id, extra_data={}, execute_outputs=[]): + set_preview_method(extra_data.get("preview_method")) + nodes.interrupt_processing(False) if "client_id" in extra_data: diff --git a/latent_preview.py b/latent_preview.py index 66bded4b9..d52e3f7a1 100644 --- a/latent_preview.py +++ b/latent_preview.py @@ -8,6 +8,8 @@ import folder_paths import comfy.utils import logging +default_preview_method = args.preview_method + MAX_PREVIEW_RESOLUTION = args.preview_size VIDEO_TAES = ["taehv", "lighttaew2_2", "lighttaew2_1", "lighttaehy1_5"] @@ -125,3 +127,11 @@ def prepare_callback(model, steps, x0_output_dict=None): pbar.update_absolute(step + 1, total_steps, preview_bytes) return callback +def set_preview_method(override: str = None): + if override and override != "default": + method = LatentPreviewMethod.from_string(override) + if method is not None: + args.preview_method = method + return + args.preview_method = default_preview_method + diff --git a/tests-unit/execution_test/preview_method_override_test.py b/tests-unit/execution_test/preview_method_override_test.py new file mode 100644 index 000000000..79432d610 --- /dev/null +++ b/tests-unit/execution_test/preview_method_override_test.py @@ -0,0 +1,352 @@ +""" +Unit tests for Queue-specific Preview Method Override feature. + +Tests the preview method override functionality: +- LatentPreviewMethod.from_string() method +- set_preview_method() function in latent_preview.py +- default_preview_method variable +- Integration with args.preview_method +""" +import pytest +from comfy.cli_args import args, LatentPreviewMethod +from latent_preview import set_preview_method, default_preview_method + + +class TestLatentPreviewMethodFromString: + """Test LatentPreviewMethod.from_string() classmethod.""" + + @pytest.mark.parametrize("value,expected", [ + ("auto", LatentPreviewMethod.Auto), + ("latent2rgb", LatentPreviewMethod.Latent2RGB), + ("taesd", LatentPreviewMethod.TAESD), + ("none", LatentPreviewMethod.NoPreviews), + ]) + def test_valid_values_return_enum(self, value, expected): + """Valid string values should return corresponding enum.""" + assert LatentPreviewMethod.from_string(value) == expected + + @pytest.mark.parametrize("invalid", [ + "invalid", + "TAESD", # Case sensitive + "AUTO", # Case sensitive + "Latent2RGB", # Case sensitive + "latent", + "", + "default", # default is special, not a method + ]) + def test_invalid_values_return_none(self, invalid): + """Invalid string values should return None.""" + assert LatentPreviewMethod.from_string(invalid) is None + + +class TestLatentPreviewMethodEnumValues: + """Test LatentPreviewMethod enum has expected values.""" + + def test_enum_values(self): + """Verify enum values match expected strings.""" + assert LatentPreviewMethod.NoPreviews.value == "none" + assert LatentPreviewMethod.Auto.value == "auto" + assert LatentPreviewMethod.Latent2RGB.value == "latent2rgb" + assert LatentPreviewMethod.TAESD.value == "taesd" + + def test_enum_count(self): + """Verify exactly 4 preview methods exist.""" + assert len(LatentPreviewMethod) == 4 + + +class TestSetPreviewMethod: + """Test set_preview_method() function from latent_preview.py.""" + + def setup_method(self): + """Store original value before each test.""" + self.original = args.preview_method + + def teardown_method(self): + """Restore original value after each test.""" + args.preview_method = self.original + + def test_override_with_taesd(self): + """'taesd' should set args.preview_method to TAESD.""" + set_preview_method("taesd") + assert args.preview_method == LatentPreviewMethod.TAESD + + def test_override_with_latent2rgb(self): + """'latent2rgb' should set args.preview_method to Latent2RGB.""" + set_preview_method("latent2rgb") + assert args.preview_method == LatentPreviewMethod.Latent2RGB + + def test_override_with_auto(self): + """'auto' should set args.preview_method to Auto.""" + set_preview_method("auto") + assert args.preview_method == LatentPreviewMethod.Auto + + def test_override_with_none_value(self): + """'none' should set args.preview_method to NoPreviews.""" + set_preview_method("none") + assert args.preview_method == LatentPreviewMethod.NoPreviews + + def test_default_restores_original(self): + """'default' should restore to default_preview_method.""" + # First override to something else + set_preview_method("taesd") + assert args.preview_method == LatentPreviewMethod.TAESD + + # Then use 'default' to restore + set_preview_method("default") + assert args.preview_method == default_preview_method + + def test_none_param_restores_original(self): + """None parameter should restore to default_preview_method.""" + # First override to something else + set_preview_method("taesd") + assert args.preview_method == LatentPreviewMethod.TAESD + + # Then use None to restore + set_preview_method(None) + assert args.preview_method == default_preview_method + + def test_empty_string_restores_original(self): + """Empty string should restore to default_preview_method.""" + set_preview_method("taesd") + set_preview_method("") + assert args.preview_method == default_preview_method + + def test_invalid_value_restores_original(self): + """Invalid value should restore to default_preview_method.""" + set_preview_method("taesd") + set_preview_method("invalid_method") + assert args.preview_method == default_preview_method + + def test_case_sensitive_invalid_restores(self): + """Case-mismatched values should restore to default.""" + set_preview_method("taesd") + set_preview_method("TAESD") # Wrong case + assert args.preview_method == default_preview_method + + +class TestDefaultPreviewMethod: + """Test default_preview_method module variable.""" + + def test_default_is_not_none(self): + """default_preview_method should not be None.""" + assert default_preview_method is not None + + def test_default_is_enum_member(self): + """default_preview_method should be a LatentPreviewMethod enum.""" + assert isinstance(default_preview_method, LatentPreviewMethod) + + def test_default_matches_args_initial(self): + """default_preview_method should match CLI default or user setting.""" + # This tests that default_preview_method was captured at module load + # After set_preview_method(None), args should equal default + original = args.preview_method + set_preview_method("taesd") + set_preview_method(None) + assert args.preview_method == default_preview_method + args.preview_method = original + + +class TestArgsPreviewMethodModification: + """Test args.preview_method can be modified correctly.""" + + def setup_method(self): + """Store original value before each test.""" + self.original = args.preview_method + + def teardown_method(self): + """Restore original value after each test.""" + args.preview_method = self.original + + def test_args_accepts_all_enum_values(self): + """args.preview_method should accept all LatentPreviewMethod values.""" + for method in LatentPreviewMethod: + args.preview_method = method + assert args.preview_method == method + + def test_args_modification_and_restoration(self): + """args.preview_method should be modifiable and restorable.""" + original = args.preview_method + + args.preview_method = LatentPreviewMethod.TAESD + assert args.preview_method == LatentPreviewMethod.TAESD + + args.preview_method = original + assert args.preview_method == original + + +class TestExecutionFlow: + """Test the execution flow pattern used in execution.py.""" + + def setup_method(self): + """Store original value before each test.""" + self.original = args.preview_method + + def teardown_method(self): + """Restore original value after each test.""" + args.preview_method = self.original + + def test_sequential_executions_with_different_methods(self): + """Simulate multiple queue executions with different preview methods.""" + # Execution 1: taesd + set_preview_method("taesd") + assert args.preview_method == LatentPreviewMethod.TAESD + + # Execution 2: none + set_preview_method("none") + assert args.preview_method == LatentPreviewMethod.NoPreviews + + # Execution 3: default (restore) + set_preview_method("default") + assert args.preview_method == default_preview_method + + # Execution 4: auto + set_preview_method("auto") + assert args.preview_method == LatentPreviewMethod.Auto + + # Execution 5: no override (None) + set_preview_method(None) + assert args.preview_method == default_preview_method + + def test_override_then_default_pattern(self): + """Test the pattern: override -> execute -> next call restores.""" + # First execution with override + set_preview_method("latent2rgb") + assert args.preview_method == LatentPreviewMethod.Latent2RGB + + # Second execution without override restores default + set_preview_method(None) + assert args.preview_method == default_preview_method + + def test_extra_data_simulation(self): + """Simulate extra_data.get('preview_method') patterns.""" + # Simulate: extra_data = {"preview_method": "taesd"} + extra_data = {"preview_method": "taesd"} + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.TAESD + + # Simulate: extra_data = {} + extra_data = {} + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == default_preview_method + + # Simulate: extra_data = {"preview_method": "default"} + extra_data = {"preview_method": "default"} + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == default_preview_method + + +class TestRealWorldScenarios: + """Tests using real-world prompt data patterns.""" + + def setup_method(self): + """Store original value before each test.""" + self.original = args.preview_method + + def teardown_method(self): + """Restore original value after each test.""" + args.preview_method = self.original + + def test_captured_prompt_without_preview_method(self): + """ + Test with captured prompt that has no preview_method. + Based on: tests-unit/execution_test/fixtures/default_prompt.json + """ + # Real captured extra_data structure (preview_method absent) + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "271314f0dabd48e5aaa488ed7a4ceb0d", + "create_time": 1765416558179 + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == default_preview_method + + def test_captured_prompt_with_preview_method_taesd(self): + """Test captured prompt with preview_method: taesd.""" + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "271314f0dabd48e5aaa488ed7a4ceb0d", + "preview_method": "taesd" + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.TAESD + + def test_captured_prompt_with_preview_method_none(self): + """Test captured prompt with preview_method: none (disable preview).""" + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "test-client", + "preview_method": "none" + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.NoPreviews + + def test_captured_prompt_with_preview_method_latent2rgb(self): + """Test captured prompt with preview_method: latent2rgb.""" + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "test-client", + "preview_method": "latent2rgb" + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.Latent2RGB + + def test_captured_prompt_with_preview_method_auto(self): + """Test captured prompt with preview_method: auto.""" + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "test-client", + "preview_method": "auto" + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.Auto + + def test_captured_prompt_with_preview_method_default(self): + """Test captured prompt with preview_method: default (use CLI setting).""" + # First set to something else + set_preview_method("taesd") + assert args.preview_method == LatentPreviewMethod.TAESD + + # Then simulate a prompt with "default" + extra_data = { + "extra_pnginfo": {"workflow": {}}, + "client_id": "test-client", + "preview_method": "default" + } + + set_preview_method(extra_data.get("preview_method")) + assert args.preview_method == default_preview_method + + def test_sequential_queue_with_different_preview_methods(self): + """ + Simulate real queue scenario: multiple prompts with different settings. + This tests the actual usage pattern in ComfyUI. + """ + # Queue 1: User wants TAESD preview + extra_data_1 = {"client_id": "client-1", "preview_method": "taesd"} + set_preview_method(extra_data_1.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.TAESD + + # Queue 2: User wants no preview (faster execution) + extra_data_2 = {"client_id": "client-2", "preview_method": "none"} + set_preview_method(extra_data_2.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.NoPreviews + + # Queue 3: User doesn't specify (use server default) + extra_data_3 = {"client_id": "client-3"} + set_preview_method(extra_data_3.get("preview_method")) + assert args.preview_method == default_preview_method + + # Queue 4: User explicitly wants default + extra_data_4 = {"client_id": "client-4", "preview_method": "default"} + set_preview_method(extra_data_4.get("preview_method")) + assert args.preview_method == default_preview_method + + # Queue 5: User wants latent2rgb + extra_data_5 = {"client_id": "client-5", "preview_method": "latent2rgb"} + set_preview_method(extra_data_5.get("preview_method")) + assert args.preview_method == LatentPreviewMethod.Latent2RGB diff --git a/tests/execution/test_preview_method.py b/tests/execution/test_preview_method.py new file mode 100644 index 000000000..c3037553b --- /dev/null +++ b/tests/execution/test_preview_method.py @@ -0,0 +1,358 @@ +""" +E2E tests for Queue-specific Preview Method Override feature. + +Tests actual execution with different preview_method values. +Requires a running ComfyUI server with models. + +Usage: + COMFYUI_SERVER=http://localhost:8988 pytest test_preview_method_e2e.py -v -m preview_method + +Note: + These tests execute actual image generation and wait for completion. + Tests verify preview image transmission based on preview_method setting. +""" +import os +import json +import pytest +import uuid +import time +import random +import websocket +import urllib.request +from pathlib import Path + + +# Server configuration +SERVER_URL = os.environ.get("COMFYUI_SERVER", "http://localhost:8988") +SERVER_HOST = SERVER_URL.replace("http://", "").replace("https://", "") + +# Use existing inference graph fixture +GRAPH_FILE = Path(__file__).parent.parent / "inference" / "graphs" / "default_graph_sdxl1_0.json" + + +def is_server_running() -> bool: + """Check if ComfyUI server is running.""" + try: + request = urllib.request.Request(f"{SERVER_URL}/system_stats") + with urllib.request.urlopen(request, timeout=2.0): + return True + except Exception: + return False + + +def prepare_graph_for_test(graph: dict, steps: int = 5) -> dict: + """Prepare graph for testing: randomize seeds and reduce steps.""" + adapted = json.loads(json.dumps(graph)) # Deep copy + for node_id, node in adapted.items(): + inputs = node.get("inputs", {}) + # Handle both "seed" and "noise_seed" (used by KSamplerAdvanced) + if "seed" in inputs: + inputs["seed"] = random.randint(0, 2**32 - 1) + if "noise_seed" in inputs: + inputs["noise_seed"] = random.randint(0, 2**32 - 1) + # Reduce steps for faster testing (default 20 -> 5) + if "steps" in inputs: + inputs["steps"] = steps + return adapted + + +# Alias for backward compatibility +randomize_seed = prepare_graph_for_test + + +class PreviewMethodClient: + """Client for testing preview_method with WebSocket execution tracking.""" + + def __init__(self, server_address: str): + self.server_address = server_address + self.client_id = str(uuid.uuid4()) + self.ws = None + + def connect(self): + """Connect to WebSocket.""" + self.ws = websocket.WebSocket() + self.ws.settimeout(120) # 2 minute timeout for sampling + self.ws.connect(f"ws://{self.server_address}/ws?clientId={self.client_id}") + + def close(self): + """Close WebSocket connection.""" + if self.ws: + self.ws.close() + + def queue_prompt(self, prompt: dict, extra_data: dict = None) -> dict: + """Queue a prompt and return response with prompt_id.""" + data = { + "prompt": prompt, + "client_id": self.client_id, + "extra_data": extra_data or {} + } + req = urllib.request.Request( + f"http://{self.server_address}/prompt", + data=json.dumps(data).encode("utf-8"), + headers={"Content-Type": "application/json"} + ) + return json.loads(urllib.request.urlopen(req).read()) + + def wait_for_execution(self, prompt_id: str, timeout: float = 120.0) -> dict: + """ + Wait for execution to complete via WebSocket. + + Returns: + dict with keys: completed, error, preview_count, execution_time + """ + result = { + "completed": False, + "error": None, + "preview_count": 0, + "execution_time": 0.0 + } + + start_time = time.time() + self.ws.settimeout(timeout) + + try: + while True: + out = self.ws.recv() + elapsed = time.time() - start_time + + if isinstance(out, str): + message = json.loads(out) + msg_type = message.get("type") + data = message.get("data", {}) + + if data.get("prompt_id") != prompt_id: + continue + + if msg_type == "executing": + if data.get("node") is None: + # Execution complete + result["completed"] = True + result["execution_time"] = elapsed + break + + elif msg_type == "execution_error": + result["error"] = data + result["execution_time"] = elapsed + break + + elif msg_type == "progress": + # Progress update during sampling + pass + + elif isinstance(out, bytes): + # Binary data = preview image + result["preview_count"] += 1 + + except websocket.WebSocketTimeoutException: + result["error"] = "Timeout waiting for execution" + result["execution_time"] = time.time() - start_time + + return result + + +def load_graph() -> dict: + """Load the SDXL graph fixture with randomized seed.""" + with open(GRAPH_FILE) as f: + graph = json.load(f) + return randomize_seed(graph) # Avoid caching + + +# Skip all tests if server is not running +pytestmark = [ + pytest.mark.skipif( + not is_server_running(), + reason=f"ComfyUI server not running at {SERVER_URL}" + ), + pytest.mark.preview_method, + pytest.mark.execution, +] + + +@pytest.fixture +def client(): + """Create and connect a test client.""" + c = PreviewMethodClient(SERVER_HOST) + c.connect() + yield c + c.close() + + +@pytest.fixture +def graph(): + """Load the test graph.""" + return load_graph() + + +class TestPreviewMethodExecution: + """Test actual execution with different preview methods.""" + + def test_execution_with_latent2rgb(self, client, graph): + """ + Execute with preview_method=latent2rgb. + Should complete and potentially receive preview images. + """ + extra_data = {"preview_method": "latent2rgb"} + + response = client.queue_prompt(graph, extra_data) + assert "prompt_id" in response + + result = client.wait_for_execution(response["prompt_id"]) + + # Should complete (may error if model missing, but that's separate) + assert result["completed"] or result["error"] is not None + # Execution should take some time (sampling) + if result["completed"]: + assert result["execution_time"] > 0.5, "Execution too fast - likely didn't run" + # latent2rgb should produce previews + print(f"latent2rgb: {result['preview_count']} previews in {result['execution_time']:.2f}s") # noqa: T201 + + def test_execution_with_taesd(self, client, graph): + """ + Execute with preview_method=taesd. + TAESD provides higher quality previews. + """ + extra_data = {"preview_method": "taesd"} + + response = client.queue_prompt(graph, extra_data) + assert "prompt_id" in response + + result = client.wait_for_execution(response["prompt_id"]) + + assert result["completed"] or result["error"] is not None + if result["completed"]: + assert result["execution_time"] > 0.5 + # taesd should also produce previews + print(f"taesd: {result['preview_count']} previews in {result['execution_time']:.2f}s") # noqa: T201 + + def test_execution_with_none_preview(self, client, graph): + """ + Execute with preview_method=none. + No preview images should be generated. + """ + extra_data = {"preview_method": "none"} + + response = client.queue_prompt(graph, extra_data) + assert "prompt_id" in response + + result = client.wait_for_execution(response["prompt_id"]) + + assert result["completed"] or result["error"] is not None + if result["completed"]: + # With "none", should receive no preview images + assert result["preview_count"] == 0, \ + f"Expected no previews with 'none', got {result['preview_count']}" + print(f"none: {result['preview_count']} previews in {result['execution_time']:.2f}s") # noqa: T201 + + def test_execution_with_default(self, client, graph): + """ + Execute with preview_method=default. + Should use server's CLI default setting. + """ + extra_data = {"preview_method": "default"} + + response = client.queue_prompt(graph, extra_data) + assert "prompt_id" in response + + result = client.wait_for_execution(response["prompt_id"]) + + assert result["completed"] or result["error"] is not None + if result["completed"]: + print(f"default: {result['preview_count']} previews in {result['execution_time']:.2f}s") # noqa: T201 + + def test_execution_without_preview_method(self, client, graph): + """ + Execute without preview_method in extra_data. + Should use server's default preview method. + """ + extra_data = {} # No preview_method + + response = client.queue_prompt(graph, extra_data) + assert "prompt_id" in response + + result = client.wait_for_execution(response["prompt_id"]) + + assert result["completed"] or result["error"] is not None + if result["completed"]: + print(f"(no override): {result['preview_count']} previews in {result['execution_time']:.2f}s") # noqa: T201 + + +class TestPreviewMethodComparison: + """Compare preview behavior between different methods.""" + + def test_none_vs_latent2rgb_preview_count(self, client, graph): + """ + Compare preview counts: 'none' should have 0, others should have >0. + This is the key verification that preview_method actually works. + """ + results = {} + + # Run with none (randomize seed to avoid caching) + graph_none = randomize_seed(graph) + extra_data_none = {"preview_method": "none"} + response = client.queue_prompt(graph_none, extra_data_none) + results["none"] = client.wait_for_execution(response["prompt_id"]) + + # Run with latent2rgb (randomize seed again) + graph_rgb = randomize_seed(graph) + extra_data_rgb = {"preview_method": "latent2rgb"} + response = client.queue_prompt(graph_rgb, extra_data_rgb) + results["latent2rgb"] = client.wait_for_execution(response["prompt_id"]) + + # Verify both completed + assert results["none"]["completed"], f"'none' execution failed: {results['none']['error']}" + assert results["latent2rgb"]["completed"], f"'latent2rgb' execution failed: {results['latent2rgb']['error']}" + + # Key assertion: 'none' should have 0 previews + assert results["none"]["preview_count"] == 0, \ + f"'none' should have 0 previews, got {results['none']['preview_count']}" + + # 'latent2rgb' should have at least 1 preview (depends on steps) + assert results["latent2rgb"]["preview_count"] > 0, \ + f"'latent2rgb' should have >0 previews, got {results['latent2rgb']['preview_count']}" + + print("\nPreview count comparison:") # noqa: T201 + print(f" none: {results['none']['preview_count']} previews") # noqa: T201 + print(f" latent2rgb: {results['latent2rgb']['preview_count']} previews") # noqa: T201 + + +class TestPreviewMethodSequential: + """Test sequential execution with different preview methods.""" + + def test_sequential_different_methods(self, client, graph): + """ + Execute multiple prompts sequentially with different preview methods. + Each should complete independently with correct preview behavior. + """ + methods = ["latent2rgb", "none", "default"] + results = [] + + for method in methods: + # Randomize seed for each execution to avoid caching + graph_run = randomize_seed(graph) + extra_data = {"preview_method": method} + response = client.queue_prompt(graph_run, extra_data) + + result = client.wait_for_execution(response["prompt_id"]) + results.append({ + "method": method, + "completed": result["completed"], + "preview_count": result["preview_count"], + "execution_time": result["execution_time"], + "error": result["error"] + }) + + # All should complete or have clear errors + for r in results: + assert r["completed"] or r["error"] is not None, \ + f"Method {r['method']} neither completed nor errored" + + # "none" should have zero previews if completed + none_result = next(r for r in results if r["method"] == "none") + if none_result["completed"]: + assert none_result["preview_count"] == 0, \ + f"'none' should have 0 previews, got {none_result['preview_count']}" + + print("\nSequential execution results:") # noqa: T201 + for r in results: + status = "✓" if r["completed"] else f"✗ ({r['error']})" + print(f" {r['method']}: {status}, {r['preview_count']} previews, {r['execution_time']:.2f}s") # noqa: T201 From 43e0d4e3ccfe8b5eac81bcee6f912f661849aafb Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 16 Dec 2025 02:01:10 +0200 Subject: [PATCH 167/271] comfy_api: remove usage of "Type","List" and "Dict" types (#11238) --- comfy_api/feature_flags.py | 10 +++++----- comfy_api/internal/api_registry.py | 10 +++++----- comfy_api/internal/async_to_sync.py | 14 ++++++------- comfy_api/internal/singleton.py | 6 +++--- comfy_api/latest/__init__.py | 4 ++-- comfy_api/latest/_input/basic_types.py | 4 ++-- comfy_api/latest/_ui.py | 27 +++++++++++++------------- comfy_api/version_list.py | 3 +-- 8 files changed, 38 insertions(+), 40 deletions(-) diff --git a/comfy_api/feature_flags.py b/comfy_api/feature_flags.py index bfb77eb5f..de167f037 100644 --- a/comfy_api/feature_flags.py +++ b/comfy_api/feature_flags.py @@ -5,12 +5,12 @@ This module handles capability negotiation between frontend and backend, allowing graceful protocol evolution while maintaining backward compatibility. """ -from typing import Any, Dict +from typing import Any from comfy.cli_args import args # Default server capabilities -SERVER_FEATURE_FLAGS: Dict[str, Any] = { +SERVER_FEATURE_FLAGS: dict[str, Any] = { "supports_preview_metadata": True, "max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes "extension": {"manager": {"supports_v4": True}}, @@ -18,7 +18,7 @@ SERVER_FEATURE_FLAGS: Dict[str, Any] = { def get_connection_feature( - sockets_metadata: Dict[str, Dict[str, Any]], + sockets_metadata: dict[str, dict[str, Any]], sid: str, feature_name: str, default: Any = False @@ -42,7 +42,7 @@ def get_connection_feature( def supports_feature( - sockets_metadata: Dict[str, Dict[str, Any]], + sockets_metadata: dict[str, dict[str, Any]], sid: str, feature_name: str ) -> bool: @@ -60,7 +60,7 @@ def supports_feature( return get_connection_feature(sockets_metadata, sid, feature_name, False) is True -def get_server_features() -> Dict[str, Any]: +def get_server_features() -> dict[str, Any]: """ Get the server's feature flags. diff --git a/comfy_api/internal/api_registry.py b/comfy_api/internal/api_registry.py index 7e3375cf6..2b1cb016a 100644 --- a/comfy_api/internal/api_registry.py +++ b/comfy_api/internal/api_registry.py @@ -1,4 +1,4 @@ -from typing import Type, List, NamedTuple +from typing import NamedTuple from comfy_api.internal.singleton import ProxiedSingleton from packaging import version as packaging_version @@ -10,7 +10,7 @@ class ComfyAPIBase(ProxiedSingleton): class ComfyAPIWithVersion(NamedTuple): version: str - api_class: Type[ComfyAPIBase] + api_class: type[ComfyAPIBase] def parse_version(version_str: str) -> packaging_version.Version: @@ -23,16 +23,16 @@ def parse_version(version_str: str) -> packaging_version.Version: return packaging_version.parse(version_str) -registered_versions: List[ComfyAPIWithVersion] = [] +registered_versions: list[ComfyAPIWithVersion] = [] -def register_versions(versions: List[ComfyAPIWithVersion]): +def register_versions(versions: list[ComfyAPIWithVersion]): versions.sort(key=lambda x: parse_version(x.version)) global registered_versions registered_versions = versions -def get_all_versions() -> List[ComfyAPIWithVersion]: +def get_all_versions() -> list[ComfyAPIWithVersion]: """ Returns a list of all registered ComfyAPI versions. """ diff --git a/comfy_api/internal/async_to_sync.py b/comfy_api/internal/async_to_sync.py index 257ade82e..c9b0576e1 100644 --- a/comfy_api/internal/async_to_sync.py +++ b/comfy_api/internal/async_to_sync.py @@ -8,7 +8,7 @@ import os import textwrap import threading from enum import Enum -from typing import Optional, Type, get_origin, get_args, get_type_hints +from typing import Optional, get_origin, get_args, get_type_hints class TypeTracker: @@ -193,7 +193,7 @@ class AsyncToSyncConverter: return result_container["result"] @classmethod - def create_sync_class(cls, async_class: Type, thread_pool_size=10) -> Type: + def create_sync_class(cls, async_class: type, thread_pool_size=10) -> type: """ Creates a new class with synchronous versions of all async methods. @@ -563,7 +563,7 @@ class AsyncToSyncConverter: @classmethod def _generate_imports( - cls, async_class: Type, type_tracker: TypeTracker + cls, async_class: type, type_tracker: TypeTracker ) -> list[str]: """Generate import statements for the stub file.""" imports = [] @@ -628,7 +628,7 @@ class AsyncToSyncConverter: return imports @classmethod - def _get_class_attributes(cls, async_class: Type) -> list[tuple[str, Type]]: + def _get_class_attributes(cls, async_class: type) -> list[tuple[str, type]]: """Extract class attributes that are classes themselves.""" class_attributes = [] @@ -654,7 +654,7 @@ class AsyncToSyncConverter: def _generate_inner_class_stub( cls, name: str, - attr: Type, + attr: type, indent: str = " ", type_tracker: Optional[TypeTracker] = None, ) -> list[str]: @@ -782,7 +782,7 @@ class AsyncToSyncConverter: return processed @classmethod - def generate_stub_file(cls, async_class: Type, sync_class: Type) -> None: + def generate_stub_file(cls, async_class: type, sync_class: type) -> None: """ Generate a .pyi stub file for the sync class to help IDEs with type checking. """ @@ -988,7 +988,7 @@ class AsyncToSyncConverter: logging.error(traceback.format_exc()) -def create_sync_class(async_class: Type, thread_pool_size=10) -> Type: +def create_sync_class(async_class: type, thread_pool_size=10) -> type: """ Creates a sync version of an async class diff --git a/comfy_api/internal/singleton.py b/comfy_api/internal/singleton.py index 75f16f98e..d89380262 100644 --- a/comfy_api/internal/singleton.py +++ b/comfy_api/internal/singleton.py @@ -1,4 +1,4 @@ -from typing import Type, TypeVar +from typing import TypeVar class SingletonMetaclass(type): T = TypeVar("T", bound="SingletonMetaclass") @@ -11,13 +11,13 @@ class SingletonMetaclass(type): ) return cls._instances[cls] - def inject_instance(cls: Type[T], instance: T) -> None: + def inject_instance(cls: type[T], instance: T) -> None: assert cls not in SingletonMetaclass._instances, ( "Cannot inject instance after first instantiation" ) SingletonMetaclass._instances[cls] = instance - def get_instance(cls: Type[T], *args, **kwargs) -> T: + def get_instance(cls: type[T], *args, **kwargs) -> T: """ Gets the singleton instance of the class, creating it if it doesn't exist. """ diff --git a/comfy_api/latest/__init__.py b/comfy_api/latest/__init__.py index 35e1ac853..fab63c7df 100644 --- a/comfy_api/latest/__init__.py +++ b/comfy_api/latest/__init__.py @@ -1,7 +1,7 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import Type, TYPE_CHECKING +from typing import TYPE_CHECKING from comfy_api.internal import ComfyAPIBase from comfy_api.internal.singleton import ProxiedSingleton from comfy_api.internal.async_to_sync import create_sync_class @@ -113,7 +113,7 @@ ComfyAPI = ComfyAPI_latest if TYPE_CHECKING: import comfy_api.latest.generated.ComfyAPISyncStub # type: ignore - ComfyAPISync: Type[comfy_api.latest.generated.ComfyAPISyncStub.ComfyAPISyncStub] + ComfyAPISync: type[comfy_api.latest.generated.ComfyAPISyncStub.ComfyAPISyncStub] ComfyAPISync = create_sync_class(ComfyAPI_latest) # create new aliases for io and ui diff --git a/comfy_api/latest/_input/basic_types.py b/comfy_api/latest/_input/basic_types.py index 245c6cbb1..d73deabd2 100644 --- a/comfy_api/latest/_input/basic_types.py +++ b/comfy_api/latest/_input/basic_types.py @@ -1,5 +1,5 @@ import torch -from typing import TypedDict, List, Optional +from typing import TypedDict, Optional ImageInput = torch.Tensor """ @@ -39,4 +39,4 @@ class LatentInput(TypedDict): Optional noise mask tensor in the same format as samples. """ - batch_index: Optional[List[int]] + batch_index: Optional[list[int]] diff --git a/comfy_api/latest/_ui.py b/comfy_api/latest/_ui.py index 2babe209a..e238cdf3c 100644 --- a/comfy_api/latest/_ui.py +++ b/comfy_api/latest/_ui.py @@ -5,7 +5,6 @@ import os import random import uuid from io import BytesIO -from typing import Type import av import numpy as np @@ -83,7 +82,7 @@ class ImageSaveHelper: return PILImage.fromarray(np.clip(255.0 * image_tensor.cpu().numpy(), 0, 255).astype(np.uint8)) @staticmethod - def _create_png_metadata(cls: Type[ComfyNode] | None) -> PngInfo | None: + def _create_png_metadata(cls: type[ComfyNode] | None) -> PngInfo | None: """Creates a PngInfo object with prompt and extra_pnginfo.""" if args.disable_metadata or cls is None or not cls.hidden: return None @@ -96,7 +95,7 @@ class ImageSaveHelper: return metadata @staticmethod - def _create_animated_png_metadata(cls: Type[ComfyNode] | None) -> PngInfo | None: + def _create_animated_png_metadata(cls: type[ComfyNode] | None) -> PngInfo | None: """Creates a PngInfo object with prompt and extra_pnginfo for animated PNGs (APNG).""" if args.disable_metadata or cls is None or not cls.hidden: return None @@ -121,7 +120,7 @@ class ImageSaveHelper: return metadata @staticmethod - def _create_webp_metadata(pil_image: PILImage.Image, cls: Type[ComfyNode] | None) -> PILImage.Exif: + def _create_webp_metadata(pil_image: PILImage.Image, cls: type[ComfyNode] | None) -> PILImage.Exif: """Creates EXIF metadata bytes for WebP images.""" exif_data = pil_image.getexif() if args.disable_metadata or cls is None or cls.hidden is None: @@ -137,7 +136,7 @@ class ImageSaveHelper: @staticmethod def save_images( - images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, compress_level = 4, + images, filename_prefix: str, folder_type: FolderType, cls: type[ComfyNode] | None, compress_level = 4, ) -> list[SavedResult]: """Saves a batch of images as individual PNG files.""" full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( @@ -155,7 +154,7 @@ class ImageSaveHelper: return results @staticmethod - def get_save_images_ui(images, filename_prefix: str, cls: Type[ComfyNode] | None, compress_level=4) -> SavedImages: + def get_save_images_ui(images, filename_prefix: str, cls: type[ComfyNode] | None, compress_level=4) -> SavedImages: """Saves a batch of images and returns a UI object for the node output.""" return SavedImages( ImageSaveHelper.save_images( @@ -169,7 +168,7 @@ class ImageSaveHelper: @staticmethod def save_animated_png( - images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNode] | None, fps: float, compress_level: int + images, filename_prefix: str, folder_type: FolderType, cls: type[ComfyNode] | None, fps: float, compress_level: int ) -> SavedResult: """Saves a batch of images as a single animated PNG.""" full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path( @@ -191,7 +190,7 @@ class ImageSaveHelper: @staticmethod def get_save_animated_png_ui( - images, filename_prefix: str, cls: Type[ComfyNode] | None, fps: float, compress_level: int + images, filename_prefix: str, cls: type[ComfyNode] | None, fps: float, compress_level: int ) -> SavedImages: """Saves an animated PNG and returns a UI object for the node output.""" result = ImageSaveHelper.save_animated_png( @@ -209,7 +208,7 @@ class ImageSaveHelper: images, filename_prefix: str, folder_type: FolderType, - cls: Type[ComfyNode] | None, + cls: type[ComfyNode] | None, fps: float, lossless: bool, quality: int, @@ -238,7 +237,7 @@ class ImageSaveHelper: def get_save_animated_webp_ui( images, filename_prefix: str, - cls: Type[ComfyNode] | None, + cls: type[ComfyNode] | None, fps: float, lossless: bool, quality: int, @@ -267,7 +266,7 @@ class AudioSaveHelper: audio: dict, filename_prefix: str, folder_type: FolderType, - cls: Type[ComfyNode] | None, + cls: type[ComfyNode] | None, format: str = "flac", quality: str = "128k", ) -> list[SavedResult]: @@ -372,7 +371,7 @@ class AudioSaveHelper: @staticmethod def get_save_audio_ui( - audio, filename_prefix: str, cls: Type[ComfyNode] | None, format: str = "flac", quality: str = "128k", + audio, filename_prefix: str, cls: type[ComfyNode] | None, format: str = "flac", quality: str = "128k", ) -> SavedAudios: """Save and instantly wrap for UI.""" return SavedAudios( @@ -388,7 +387,7 @@ class AudioSaveHelper: class PreviewImage(_UIOutput): - def __init__(self, image: Image.Type, animated: bool = False, cls: Type[ComfyNode] = None, **kwargs): + def __init__(self, image: Image.Type, animated: bool = False, cls: type[ComfyNode] = None, **kwargs): self.values = ImageSaveHelper.save_images( image, filename_prefix="ComfyUI_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for _ in range(5)), @@ -412,7 +411,7 @@ class PreviewMask(PreviewImage): class PreviewAudio(_UIOutput): - def __init__(self, audio: dict, cls: Type[ComfyNode] = None, **kwargs): + def __init__(self, audio: dict, cls: type[ComfyNode] = None, **kwargs): self.values = AudioSaveHelper.save_audio( audio, filename_prefix="ComfyUI_temp_" + "".join(random.choice("abcdefghijklmnopqrstuvwxyz") for _ in range(5)), diff --git a/comfy_api/version_list.py b/comfy_api/version_list.py index 7cb1871d5..be6e1db66 100644 --- a/comfy_api/version_list.py +++ b/comfy_api/version_list.py @@ -2,9 +2,8 @@ from comfy_api.latest import ComfyAPI_latest from comfy_api.v0_0_2 import ComfyAPIAdapter_v0_0_2 from comfy_api.v0_0_1 import ComfyAPIAdapter_v0_0_1 from comfy_api.internal import ComfyAPIBase -from typing import List, Type -supported_versions: List[Type[ComfyAPIBase]] = [ +supported_versions: list[type[ComfyAPIBase]] = [ ComfyAPI_latest, ComfyAPIAdapter_v0_0_2, ComfyAPIAdapter_v0_0_1, From 77b2f7c228a0db6643bb7f29be4db0bff6799db2 Mon Sep 17 00:00:00 2001 From: drozbay <17261091+drozbay@users.noreply.github.com> Date: Mon, 15 Dec 2025 17:06:32 -0700 Subject: [PATCH 168/271] Add context windows callback for custom cond handling (#11208) Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com> --- comfy/context_windows.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/comfy/context_windows.py b/comfy/context_windows.py index 5c412d1c2..2979b3ca1 100644 --- a/comfy/context_windows.py +++ b/comfy/context_windows.py @@ -87,6 +87,7 @@ class IndexListCallbacks: COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results" EXECUTE_START = "execute_start" EXECUTE_CLEANUP = "execute_cleanup" + RESIZE_COND_ITEM = "resize_cond_item" def init_callbacks(self): return {} @@ -166,6 +167,18 @@ class IndexListContextHandler(ContextHandlerABC): new_cond_item = cond_item.copy() # when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor) for cond_key, cond_value in new_cond_item.items(): + # Allow callbacks to handle custom conditioning items + handled = False + for callback in comfy.patcher_extension.get_all_callbacks( + IndexListCallbacks.RESIZE_COND_ITEM, self.callbacks + ): + result = callback(cond_key, cond_value, window, x_in, device, new_cond_item) + if result is not None: + new_cond_item[cond_key] = result + handled = True + break + if handled: + continue if isinstance(cond_value, torch.Tensor): if (self.dim < cond_value.ndim and cond_value(self.dim) == x_in.size(self.dim)) or \ (cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim)): From 70541d4e7769c6c40eae6594e677355eacd181fe Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 15 Dec 2025 16:20:34 -0800 Subject: [PATCH 169/271] Support the new qwen edit 2511 reference method. (#11340) index_timestep_zero can be selected in the FluxKontextMultiReferenceLatentMethod now with the display name set to the more generic "Edit Model Reference Method" node. --- comfy/ldm/qwen_image/model.py | 47 +++++++++++++++++++++++++++++------ comfy_extras/nodes_flux.py | 3 ++- 2 files changed, 41 insertions(+), 9 deletions(-) diff --git a/comfy/ldm/qwen_image/model.py b/comfy/ldm/qwen_image/model.py index 8c75670cd..96590088b 100644 --- a/comfy/ldm/qwen_image/model.py +++ b/comfy/ldm/qwen_image/model.py @@ -218,9 +218,24 @@ class QwenImageTransformerBlock(nn.Module): operations=operations, ) - def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + def _apply_gate(self, x, y, gate, timestep_zero_index=None): + if timestep_zero_index is not None: + return y + torch.cat((x[:, :timestep_zero_index] * gate[0], x[:, timestep_zero_index:] * gate[1]), dim=1) + else: + return torch.addcmul(y, gate, x) + + def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor, timestep_zero_index=None) -> Tuple[torch.Tensor, torch.Tensor]: shift, scale, gate = torch.chunk(mod_params, 3, dim=-1) - return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1) + if timestep_zero_index is not None: + actual_batch = shift.size(0) // 2 + shift, shift_0 = shift[:actual_batch], shift[actual_batch:] + scale, scale_0 = scale[:actual_batch], scale[actual_batch:] + gate, gate_0 = gate[:actual_batch], gate[actual_batch:] + reg = torch.addcmul(shift.unsqueeze(1), x[:, :timestep_zero_index], 1 + scale.unsqueeze(1)) + zero = torch.addcmul(shift_0.unsqueeze(1), x[:, timestep_zero_index:], 1 + scale_0.unsqueeze(1)) + return torch.cat((reg, zero), dim=1), (gate.unsqueeze(1), gate_0.unsqueeze(1)) + else: + return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1) def forward( self, @@ -229,14 +244,19 @@ class QwenImageTransformerBlock(nn.Module): encoder_hidden_states_mask: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + timestep_zero_index=None, transformer_options={}, ) -> Tuple[torch.Tensor, torch.Tensor]: img_mod_params = self.img_mod(temb) + + if timestep_zero_index is not None: + temb = temb.chunk(2, dim=0)[0] + txt_mod_params = self.txt_mod(temb) img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) - img_modulated, img_gate1 = self._modulate(self.img_norm1(hidden_states), img_mod1) + img_modulated, img_gate1 = self._modulate(self.img_norm1(hidden_states), img_mod1, timestep_zero_index) del img_mod1 txt_modulated, txt_gate1 = self._modulate(self.txt_norm1(encoder_hidden_states), txt_mod1) del txt_mod1 @@ -251,15 +271,15 @@ class QwenImageTransformerBlock(nn.Module): del img_modulated del txt_modulated - hidden_states = hidden_states + img_gate1 * img_attn_output + hidden_states = self._apply_gate(img_attn_output, hidden_states, img_gate1, timestep_zero_index) encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output del img_attn_output del txt_attn_output del img_gate1 del txt_gate1 - img_modulated2, img_gate2 = self._modulate(self.img_norm2(hidden_states), img_mod2) - hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2)) + img_modulated2, img_gate2 = self._modulate(self.img_norm2(hidden_states), img_mod2, timestep_zero_index) + hidden_states = self._apply_gate(self.img_mlp(img_modulated2), hidden_states, img_gate2, timestep_zero_index) txt_modulated2, txt_gate2 = self._modulate(self.txt_norm2(encoder_hidden_states), txt_mod2) encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2)) @@ -391,11 +411,14 @@ class QwenImageTransformer2DModel(nn.Module): hidden_states, img_ids, orig_shape = self.process_img(x) num_embeds = hidden_states.shape[1] + timestep_zero_index = None if ref_latents is not None: h = 0 w = 0 index = 0 - index_ref_method = kwargs.get("ref_latents_method", "index") == "index" + ref_method = kwargs.get("ref_latents_method", "index") + index_ref_method = (ref_method == "index") or (ref_method == "index_timestep_zero") + timestep_zero = ref_method == "index_timestep_zero" for ref in ref_latents: if index_ref_method: index += 1 @@ -415,6 +438,10 @@ class QwenImageTransformer2DModel(nn.Module): kontext, kontext_ids, _ = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset) hidden_states = torch.cat([hidden_states, kontext], dim=1) img_ids = torch.cat([img_ids, kontext_ids], dim=1) + if timestep_zero: + if index > 0: + timestep = torch.cat([timestep, timestep * 0], dim=0) + timestep_zero_index = num_embeds txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2)) txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3) @@ -446,7 +473,7 @@ class QwenImageTransformer2DModel(nn.Module): if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} - out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"]) + out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], timestep_zero_index=timestep_zero_index, transformer_options=args["transformer_options"]) return out out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap}) hidden_states = out["img"] @@ -458,6 +485,7 @@ class QwenImageTransformer2DModel(nn.Module): encoder_hidden_states_mask=encoder_hidden_states_mask, temb=temb, image_rotary_emb=image_rotary_emb, + timestep_zero_index=timestep_zero_index, transformer_options=transformer_options, ) @@ -474,6 +502,9 @@ class QwenImageTransformer2DModel(nn.Module): if add is not None: hidden_states[:, :add.shape[1]] += add + if timestep_zero_index is not None: + temb = temb.chunk(2, dim=0)[0] + hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) diff --git a/comfy_extras/nodes_flux.py b/comfy_extras/nodes_flux.py index d9c4bba81..12c8ed3e6 100644 --- a/comfy_extras/nodes_flux.py +++ b/comfy_extras/nodes_flux.py @@ -154,12 +154,13 @@ class FluxKontextMultiReferenceLatentMethod(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="FluxKontextMultiReferenceLatentMethod", + display_name="Edit Model Reference Method", category="advanced/conditioning/flux", inputs=[ io.Conditioning.Input("conditioning"), io.Combo.Input( "reference_latents_method", - options=["offset", "index", "uxo/uno"], + options=["offset", "index", "uxo/uno", "index_timestep_zero"], ), ], outputs=[ From d02d0e5744f2e06fc40834d3c5bb387de4532007 Mon Sep 17 00:00:00 2001 From: seed93 Date: Tue, 16 Dec 2025 09:38:46 +0800 Subject: [PATCH 170/271] [add] tripo3.0 (#10663) * [add] tripo3.0 * [tripo] change paramter order * change order --------- Co-authored-by: liangd --- comfy_api_nodes/apis/tripo_api.py | 46 ++++++++++++++--- comfy_api_nodes/nodes_tripo.py | 86 ++++++++++++++++++++++++++++++- 2 files changed, 122 insertions(+), 10 deletions(-) diff --git a/comfy_api_nodes/apis/tripo_api.py b/comfy_api_nodes/apis/tripo_api.py index 713260e2a..ffaaa7dc1 100644 --- a/comfy_api_nodes/apis/tripo_api.py +++ b/comfy_api_nodes/apis/tripo_api.py @@ -5,11 +5,17 @@ from typing import Optional, List, Dict, Any, Union from pydantic import BaseModel, Field, RootModel class TripoModelVersion(str, Enum): + v3_0_20250812 = 'v3.0-20250812' v2_5_20250123 = 'v2.5-20250123' v2_0_20240919 = 'v2.0-20240919' v1_4_20240625 = 'v1.4-20240625' +class TripoGeometryQuality(str, Enum): + standard = 'standard' + detailed = 'detailed' + + class TripoTextureQuality(str, Enum): standard = 'standard' detailed = 'detailed' @@ -61,14 +67,20 @@ class TripoSpec(str, Enum): class TripoAnimation(str, Enum): IDLE = "preset:idle" WALK = "preset:walk" + RUN = "preset:run" + DIVE = "preset:dive" CLIMB = "preset:climb" JUMP = "preset:jump" - RUN = "preset:run" SLASH = "preset:slash" SHOOT = "preset:shoot" HURT = "preset:hurt" FALL = "preset:fall" TURN = "preset:turn" + QUADRUPED_WALK = "preset:quadruped:walk" + HEXAPOD_WALK = "preset:hexapod:walk" + OCTOPOD_WALK = "preset:octopod:walk" + SERPENTINE_MARCH = "preset:serpentine:march" + AQUATIC_MARCH = "preset:aquatic:march" class TripoStylizeStyle(str, Enum): LEGO = "lego" @@ -105,6 +117,11 @@ class TripoTaskStatus(str, Enum): BANNED = "banned" EXPIRED = "expired" +class TripoFbxPreset(str, Enum): + BLENDER = "blender" + MIXAMO = "mixamo" + _3DSMAX = "3dsmax" + class TripoFileTokenReference(BaseModel): type: Optional[str] = Field(None, description='The type of the reference') file_token: str @@ -142,6 +159,7 @@ class TripoTextToModelRequest(BaseModel): model_seed: Optional[int] = Field(None, description='The seed for the model') texture_seed: Optional[int] = Field(None, description='The seed for the texture') texture_quality: Optional[TripoTextureQuality] = TripoTextureQuality.standard + geometry_quality: Optional[TripoGeometryQuality] = TripoGeometryQuality.standard style: Optional[TripoStyle] = None auto_size: Optional[bool] = Field(False, description='Whether to auto-size the model') quad: Optional[bool] = Field(False, description='Whether to apply quad to the generated model') @@ -156,6 +174,7 @@ class TripoImageToModelRequest(BaseModel): model_seed: Optional[int] = Field(None, description='The seed for the model') texture_seed: Optional[int] = Field(None, description='The seed for the texture') texture_quality: Optional[TripoTextureQuality] = TripoTextureQuality.standard + geometry_quality: Optional[TripoGeometryQuality] = TripoGeometryQuality.standard texture_alignment: Optional[TripoTextureAlignment] = Field(TripoTextureAlignment.ORIGINAL_IMAGE, description='The texture alignment method') style: Optional[TripoStyle] = Field(None, description='The style to apply to the generated model') auto_size: Optional[bool] = Field(False, description='Whether to auto-size the model') @@ -173,6 +192,7 @@ class TripoMultiviewToModelRequest(BaseModel): model_seed: Optional[int] = Field(None, description='The seed for the model') texture_seed: Optional[int] = Field(None, description='The seed for the texture') texture_quality: Optional[TripoTextureQuality] = TripoTextureQuality.standard + geometry_quality: Optional[TripoGeometryQuality] = TripoGeometryQuality.standard texture_alignment: Optional[TripoTextureAlignment] = TripoTextureAlignment.ORIGINAL_IMAGE auto_size: Optional[bool] = Field(False, description='Whether to auto-size the model') orientation: Optional[TripoOrientation] = Field(TripoOrientation.DEFAULT, description='The orientation for the model') @@ -219,14 +239,24 @@ class TripoConvertModelRequest(BaseModel): type: TripoTaskType = Field(TripoTaskType.CONVERT_MODEL, description='Type of task') format: TripoConvertFormat = Field(..., description='The format to convert to') original_model_task_id: str = Field(..., description='The task ID of the original model') - quad: Optional[bool] = Field(False, description='Whether to apply quad to the model') - force_symmetry: Optional[bool] = Field(False, description='Whether to force symmetry') - face_limit: Optional[int] = Field(10000, description='The number of faces to limit the conversion to') - flatten_bottom: Optional[bool] = Field(False, description='Whether to flatten the bottom of the model') - flatten_bottom_threshold: Optional[float] = Field(0.01, description='The threshold for flattening the bottom') - texture_size: Optional[int] = Field(4096, description='The size of the texture') + quad: Optional[bool] = Field(None, description='Whether to apply quad to the model') + force_symmetry: Optional[bool] = Field(None, description='Whether to force symmetry') + face_limit: Optional[int] = Field(None, description='The number of faces to limit the conversion to') + flatten_bottom: Optional[bool] = Field(None, description='Whether to flatten the bottom of the model') + flatten_bottom_threshold: Optional[float] = Field(None, description='The threshold for flattening the bottom') + texture_size: Optional[int] = Field(None, description='The size of the texture') texture_format: Optional[TripoTextureFormat] = Field(TripoTextureFormat.JPEG, description='The format of the texture') - pivot_to_center_bottom: Optional[bool] = Field(False, description='Whether to pivot to the center bottom') + pivot_to_center_bottom: Optional[bool] = Field(None, description='Whether to pivot to the center bottom') + scale_factor: Optional[float] = Field(None, description='The scale factor for the model') + with_animation: Optional[bool] = Field(None, description='Whether to include animations') + pack_uv: Optional[bool] = Field(None, description='Whether to pack the UVs') + bake: Optional[bool] = Field(None, description='Whether to bake the model') + part_names: Optional[List[str]] = Field(None, description='The names of the parts to include') + fbx_preset: Optional[TripoFbxPreset] = Field(None, description='The preset for the FBX export') + export_vertex_colors: Optional[bool] = Field(None, description='Whether to export the vertex colors') + export_orientation: Optional[TripoOrientation] = Field(None, description='The orientation for the export') + animate_in_place: Optional[bool] = Field(None, description='Whether to animate in place') + class TripoTaskRequest(RootModel): root: Union[ diff --git a/comfy_api_nodes/nodes_tripo.py b/comfy_api_nodes/nodes_tripo.py index 697100ff2..bd3c24fb3 100644 --- a/comfy_api_nodes/nodes_tripo.py +++ b/comfy_api_nodes/nodes_tripo.py @@ -102,8 +102,9 @@ class TripoTextToModelNode(IO.ComfyNode): IO.Int.Input("model_seed", default=42, optional=True), IO.Int.Input("texture_seed", default=42, optional=True), IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True), - IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True), + IO.Int.Input("face_limit", default=-1, min=-1, max=2000000, optional=True), IO.Boolean.Input("quad", default=False, optional=True), + IO.Combo.Input("geometry_quality", default="standard", options=["standard", "detailed"], optional=True), ], outputs=[ IO.String.Output(display_name="model_file"), @@ -131,6 +132,7 @@ class TripoTextToModelNode(IO.ComfyNode): model_seed: Optional[int] = None, texture_seed: Optional[int] = None, texture_quality: Optional[str] = None, + geometry_quality: Optional[str] = None, face_limit: Optional[int] = None, quad: Optional[bool] = None, ) -> IO.NodeOutput: @@ -154,6 +156,7 @@ class TripoTextToModelNode(IO.ComfyNode): texture_seed=texture_seed, texture_quality=texture_quality, face_limit=face_limit, + geometry_quality=geometry_quality, auto_size=True, quad=quad, ), @@ -194,6 +197,7 @@ class TripoImageToModelNode(IO.ComfyNode): ), IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True), IO.Boolean.Input("quad", default=False, optional=True), + IO.Combo.Input("geometry_quality", default="standard", options=["standard", "detailed"], optional=True), ], outputs=[ IO.String.Output(display_name="model_file"), @@ -220,6 +224,7 @@ class TripoImageToModelNode(IO.ComfyNode): orientation=None, texture_seed: Optional[int] = None, texture_quality: Optional[str] = None, + geometry_quality: Optional[str] = None, texture_alignment: Optional[str] = None, face_limit: Optional[int] = None, quad: Optional[bool] = None, @@ -246,6 +251,7 @@ class TripoImageToModelNode(IO.ComfyNode): pbr=pbr, model_seed=model_seed, orientation=orientation, + geometry_quality=geometry_quality, texture_alignment=texture_alignment, texture_seed=texture_seed, texture_quality=texture_quality, @@ -295,6 +301,7 @@ class TripoMultiviewToModelNode(IO.ComfyNode): ), IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True), IO.Boolean.Input("quad", default=False, optional=True), + IO.Combo.Input("geometry_quality", default="standard", options=["standard", "detailed"], optional=True), ], outputs=[ IO.String.Output(display_name="model_file"), @@ -323,6 +330,7 @@ class TripoMultiviewToModelNode(IO.ComfyNode): model_seed: Optional[int] = None, texture_seed: Optional[int] = None, texture_quality: Optional[str] = None, + geometry_quality: Optional[str] = None, texture_alignment: Optional[str] = None, face_limit: Optional[int] = None, quad: Optional[bool] = None, @@ -359,6 +367,7 @@ class TripoMultiviewToModelNode(IO.ComfyNode): model_seed=model_seed, texture_seed=texture_seed, texture_quality=texture_quality, + geometry_quality=geometry_quality, texture_alignment=texture_alignment, face_limit=face_limit, quad=quad, @@ -508,6 +517,8 @@ class TripoRetargetNode(IO.ComfyNode): options=[ "preset:idle", "preset:walk", + "preset:run", + "preset:dive", "preset:climb", "preset:jump", "preset:slash", @@ -515,6 +526,11 @@ class TripoRetargetNode(IO.ComfyNode): "preset:hurt", "preset:fall", "preset:turn", + "preset:quadruped:walk", + "preset:hexapod:walk", + "preset:octopod:walk", + "preset:serpentine:march", + "preset:aquatic:march" ], ), ], @@ -563,7 +579,7 @@ class TripoConversionNode(IO.ComfyNode): "face_limit", default=-1, min=-1, - max=500000, + max=2000000, optional=True, ), IO.Int.Input( @@ -579,6 +595,40 @@ class TripoConversionNode(IO.ComfyNode): default="JPEG", optional=True, ), + IO.Boolean.Input("force_symmetry", default=False, optional=True), + IO.Boolean.Input("flatten_bottom", default=False, optional=True), + IO.Float.Input( + "flatten_bottom_threshold", + default=0.0, + min=0.0, + max=1.0, + optional=True, + ), + IO.Boolean.Input("pivot_to_center_bottom", default=False, optional=True), + IO.Float.Input( + "scale_factor", + default=1.0, + min=0.0, + optional=True, + ), + IO.Boolean.Input("with_animation", default=False, optional=True), + IO.Boolean.Input("pack_uv", default=False, optional=True), + IO.Boolean.Input("bake", default=False, optional=True), + IO.String.Input("part_names", default="", optional=True), # comma-separated list + IO.Combo.Input( + "fbx_preset", + options=["blender", "mixamo", "3dsmax"], + default="blender", + optional=True, + ), + IO.Boolean.Input("export_vertex_colors", default=False, optional=True), + IO.Combo.Input( + "export_orientation", + options=["align_image", "default"], + default="default", + optional=True, + ), + IO.Boolean.Input("animate_in_place", default=False, optional=True), ], outputs=[], hidden=[ @@ -604,12 +654,31 @@ class TripoConversionNode(IO.ComfyNode): original_model_task_id, format: str, quad: bool, + force_symmetry: bool, face_limit: int, + flatten_bottom: bool, + flatten_bottom_threshold: float, texture_size: int, texture_format: str, + pivot_to_center_bottom: bool, + scale_factor: float, + with_animation: bool, + pack_uv: bool, + bake: bool, + part_names: str, + fbx_preset: str, + export_vertex_colors: bool, + export_orientation: str, + animate_in_place: bool, ) -> IO.NodeOutput: if not original_model_task_id: raise RuntimeError("original_model_task_id is required") + + # Parse part_names from comma-separated string to list + part_names_list = None + if part_names and part_names.strip(): + part_names_list = [name.strip() for name in part_names.split(',') if name.strip()] + response = await sync_op( cls, endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"), @@ -618,9 +687,22 @@ class TripoConversionNode(IO.ComfyNode): original_model_task_id=original_model_task_id, format=format, quad=quad if quad else None, + force_symmetry=force_symmetry if force_symmetry else None, face_limit=face_limit if face_limit != -1 else None, + flatten_bottom=flatten_bottom if flatten_bottom else None, + flatten_bottom_threshold=flatten_bottom_threshold if flatten_bottom_threshold != 0.0 else None, texture_size=texture_size if texture_size != 4096 else None, texture_format=texture_format if texture_format != "JPEG" else None, + pivot_to_center_bottom=pivot_to_center_bottom if pivot_to_center_bottom else None, + scale_factor=scale_factor if scale_factor != 1.0 else None, + with_animation=with_animation if with_animation else None, + pack_uv=pack_uv if pack_uv else None, + bake=bake if bake else None, + part_names=part_names_list, + fbx_preset=fbx_preset if fbx_preset != "blender" else None, + export_vertex_colors=export_vertex_colors if export_vertex_colors else None, + export_orientation=export_orientation if export_orientation != "default" else None, + animate_in_place=animate_in_place if animate_in_place else None, ), ) return await poll_until_finished(cls, response, average_duration=30) From 41bcf0619db87d443d468c9ddad4454bdbc1b084 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 15 Dec 2025 17:51:06 -0800 Subject: [PATCH 171/271] Add code to detect if a z image fun controlnet is broken or not. (#11341) --- comfy_extras/nodes_model_patch.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/comfy_extras/nodes_model_patch.py b/comfy_extras/nodes_model_patch.py index ec0e790dc..fdd5d0d3f 100644 --- a/comfy_extras/nodes_model_patch.py +++ b/comfy_extras/nodes_model_patch.py @@ -248,7 +248,10 @@ class ModelPatchLoader: config['n_control_layers'] = 15 config['additional_in_dim'] = 17 config['refiner_control'] = True - config['broken'] = True + ref_weight = sd.get("control_noise_refiner.0.after_proj.weight", None) + if ref_weight is not None: + if torch.count_nonzero(ref_weight) == 0: + config['broken'] = True model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast, **config) model.load_state_dict(sd) From fc4af8606880be0374cf1f1f45bc5730e6d22bf5 Mon Sep 17 00:00:00 2001 From: Haoming <73768377+Haoming02@users.noreply.github.com> Date: Tue, 16 Dec 2025 09:57:28 +0800 Subject: [PATCH 172/271] [BlockInfo] Lumina (#11227) * block info * device * Make tensor int again --------- Co-authored-by: Jedrzej Kosinski --- comfy/ldm/lumina/model.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 96cb37fa6..5628e2ba3 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -634,8 +634,11 @@ class NextDiT(nn.Module): img, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input, num_tokens, transformer_options=transformer_options) freqs_cis = freqs_cis.to(img.device) + transformer_options["total_blocks"] = len(self.layers) + transformer_options["block_type"] = "double" img_input = img for i, layer in enumerate(self.layers): + transformer_options["block_index"] = i img = layer(img, mask, freqs_cis, adaln_input, transformer_options=transformer_options) if "double_block" in patches: for p in patches["double_block"]: From ea2c117bc3c9d3b38d68e651905ed0d6dd682f92 Mon Sep 17 00:00:00 2001 From: Haoming <73768377+Haoming02@users.noreply.github.com> Date: Tue, 16 Dec 2025 09:59:16 +0800 Subject: [PATCH 173/271] [BlockInfo] Wan (#10845) * block info * animate * tensor * device * revert --- comfy/ldm/wan/model.py | 21 ++++++++++++++++++--- comfy/ldm/wan/model_animate.py | 3 +++ 2 files changed, 21 insertions(+), 3 deletions(-) diff --git a/comfy/ldm/wan/model.py b/comfy/ldm/wan/model.py index a9d5e10d9..4216ce831 100644 --- a/comfy/ldm/wan/model.py +++ b/comfy/ldm/wan/model.py @@ -568,7 +568,10 @@ class WanModel(torch.nn.Module): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -763,7 +766,10 @@ class VaceWanModel(WanModel): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -862,7 +868,10 @@ class CameraWanModel(WanModel): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} @@ -1326,16 +1335,19 @@ class WanModel_S2V(WanModel): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} - out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"]) + out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], transformer_options=args["transformer_options"]) return out - out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap}) + out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap}) x = out["img"] else: - x = block(x, e=e0, freqs=freqs, context=context) + x = block(x, e=e0, freqs=freqs, context=context, transformer_options=transformer_options) if audio_emb is not None: x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len) # head @@ -1574,7 +1586,10 @@ class HumoWanModel(WanModel): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} diff --git a/comfy/ldm/wan/model_animate.py b/comfy/ldm/wan/model_animate.py index 7c87835d4..84d7adec4 100644 --- a/comfy/ldm/wan/model_animate.py +++ b/comfy/ldm/wan/model_animate.py @@ -523,7 +523,10 @@ class AnimateWanModel(WanModel): patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + transformer_options["total_blocks"] = len(self.blocks) + transformer_options["block_type"] = "double" for i, block in enumerate(self.blocks): + transformer_options["block_index"] = i if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} From 683569de5527379d9a095af88a9e1349fb7e46b5 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 15 Dec 2025 19:33:27 -0800 Subject: [PATCH 174/271] Only enable fp16 on ZImage on newer pytorch. (#11344) --- comfy/supported_models.py | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 834dfcffc..1888f35ba 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -28,6 +28,7 @@ from . import supported_models_base from . import latent_formats from . import diffusers_convert +import comfy.model_management class SD15(supported_models_base.BASE): unet_config = { @@ -1028,7 +1029,13 @@ class ZImage(Lumina2): memory_usage_factor = 2.0 - supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] + supported_inference_dtypes = [torch.bfloat16, torch.float32] + + def __init__(self, unet_config): + super().__init__(unet_config) + if comfy.model_management.extended_fp16_support(): + self.supported_inference_dtypes = self.supported_inference_dtypes.copy() + self.supported_inference_dtypes.insert(1, torch.float16) def clip_target(self, state_dict={}): pref = self.text_encoder_key_prefix[0] From 3d082c32065e0653490b9a4ae45dd33b6c7bffb7 Mon Sep 17 00:00:00 2001 From: Christian Byrne Date: Mon, 15 Dec 2025 20:35:37 -0800 Subject: [PATCH 175/271] bump comfyui-frontend-package to 1.34.9 (patch) (#11342) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 117260515..9b9e61683 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.34.8 +comfyui-frontend-package==1.34.9 comfyui-workflow-templates==0.7.59 comfyui-embedded-docs==0.3.1 torch From 645ee1881e739b3013eeb26dbb335280bfbf443e Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 15 Dec 2025 20:38:12 -0800 Subject: [PATCH 176/271] Inpainting for z image fun control. Use the ZImageFunControlnet node. (#11346) image -> control image ex: pose inpaint_image -> image for inpainting mask -> inpaint mask --- comfy_extras/nodes_model_patch.py | 77 ++++++++++++++++++++++++------- 1 file changed, 61 insertions(+), 16 deletions(-) diff --git a/comfy_extras/nodes_model_patch.py b/comfy_extras/nodes_model_patch.py index fdd5d0d3f..2a0cfcf18 100644 --- a/comfy_extras/nodes_model_patch.py +++ b/comfy_extras/nodes_model_patch.py @@ -313,22 +313,46 @@ class ZImageControlPatch: self.inpaint_image = inpaint_image self.mask = mask self.strength = strength - self.encoded_image = self.encode_latent_cond(image) - self.encoded_image_size = (image.shape[1], image.shape[2]) + self.is_inpaint = self.model_patch.model.additional_in_dim > 0 + + skip_encoding = False + if self.image is not None and self.inpaint_image is not None: + if self.image.shape != self.inpaint_image.shape: + skip_encoding = True + + if skip_encoding: + self.encoded_image = None + else: + self.encoded_image = self.encode_latent_cond(self.image, self.inpaint_image) + if self.image is None: + self.encoded_image_size = (self.inpaint_image.shape[1], self.inpaint_image.shape[2]) + else: + self.encoded_image_size = (self.image.shape[1], self.image.shape[2]) self.temp_data = None - def encode_latent_cond(self, control_image, inpaint_image=None): - latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(control_image)) - if self.model_patch.model.additional_in_dim > 0: - if self.mask is None: - mask_ = torch.zeros_like(latent_image)[:, :1] - else: - mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none") + def encode_latent_cond(self, control_image=None, inpaint_image=None): + latent_image = None + if control_image is not None: + latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(control_image)) + + if self.is_inpaint: if inpaint_image is None: inpaint_image = torch.ones_like(control_image) * 0.5 + if self.mask is not None: + mask_inpaint = comfy.utils.common_upscale(self.mask.view(self.mask.shape[0], -1, self.mask.shape[-2], self.mask.shape[-1]).mean(dim=1, keepdim=True), inpaint_image.shape[-2], inpaint_image.shape[-3], "bilinear", "center") + inpaint_image = ((inpaint_image - 0.5) * mask_inpaint.movedim(1, -1).round()) + 0.5 + inpaint_image_latent = comfy.latent_formats.Flux().process_in(self.vae.encode(inpaint_image)) + if self.mask is None: + mask_ = torch.zeros_like(inpaint_image_latent)[:, :1] + else: + mask_ = comfy.utils.common_upscale(self.mask.view(self.mask.shape[0], -1, self.mask.shape[-2], self.mask.shape[-1]).mean(dim=1, keepdim=True), inpaint_image_latent.shape[-1], inpaint_image_latent.shape[-2], "nearest", "center") + + if latent_image is None: + latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(torch.ones_like(inpaint_image) * 0.5)) + return torch.cat([latent_image, mask_, inpaint_image_latent], dim=1) else: return latent_image @@ -344,13 +368,18 @@ class ZImageControlPatch: block_type = kwargs.get("block_type", "") spacial_compression = self.vae.spacial_compression_encode() if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression): - image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center") + image_scaled = None + if self.image is not None: + image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center").movedim(1, -1) + self.encoded_image_size = (image_scaled.shape[-3], image_scaled.shape[-2]) + inpaint_scaled = None if self.inpaint_image is not None: inpaint_scaled = comfy.utils.common_upscale(self.inpaint_image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center").movedim(1, -1) + self.encoded_image_size = (inpaint_scaled.shape[-3], inpaint_scaled.shape[-2]) + loaded_models = comfy.model_management.loaded_models(only_currently_used=True) - self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1), inpaint_scaled) - self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1]) + self.encoded_image = self.encode_latent_cond(image_scaled, inpaint_scaled) comfy.model_management.load_models_gpu(loaded_models) cnet_blocks = self.model_patch.model.n_control_layers @@ -391,7 +420,8 @@ class ZImageControlPatch: def to(self, device_or_dtype): if isinstance(device_or_dtype, torch.device): - self.encoded_image = self.encoded_image.to(device_or_dtype) + if self.encoded_image is not None: + self.encoded_image = self.encoded_image.to(device_or_dtype) self.temp_data = None return self @@ -414,9 +444,12 @@ class QwenImageDiffsynthControlnet: CATEGORY = "advanced/loaders/qwen" - def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None): + def diffsynth_controlnet(self, model, model_patch, vae, image=None, strength=1.0, inpaint_image=None, mask=None): model_patched = model.clone() - image = image[:, :, :, :3] + if image is not None: + image = image[:, :, :, :3] + if inpaint_image is not None: + inpaint_image = inpaint_image[:, :, :, :3] if mask is not None: if mask.ndim == 3: mask = mask.unsqueeze(1) @@ -425,13 +458,24 @@ class QwenImageDiffsynthControlnet: mask = 1.0 - mask if isinstance(model_patch.model, comfy.ldm.lumina.controlnet.ZImage_Control): - patch = ZImageControlPatch(model_patch, vae, image, strength, mask=mask) + patch = ZImageControlPatch(model_patch, vae, image, strength, inpaint_image=inpaint_image, mask=mask) model_patched.set_model_noise_refiner_patch(patch) model_patched.set_model_double_block_patch(patch) else: model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) return (model_patched,) +class ZImageFunControlnet(QwenImageDiffsynthControlnet): + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "model_patch": ("MODEL_PATCH",), + "vae": ("VAE",), + "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + }, + "optional": {"image": ("IMAGE",), "inpaint_image": ("IMAGE",), "mask": ("MASK",)}} + + CATEGORY = "advanced/loaders/zimage" class UsoStyleProjectorPatch: def __init__(self, model_patch, encoded_image): @@ -479,5 +523,6 @@ class USOStyleReference: NODE_CLASS_MAPPINGS = { "ModelPatchLoader": ModelPatchLoader, "QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet, + "ZImageFunControlnet": ZImageFunControlnet, "USOStyleReference": USOStyleReference, } From bc606d7d645f9edfcac7cca3558210d3ee391d94 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 15 Dec 2025 22:26:55 -0800 Subject: [PATCH 177/271] Add a way to set the default ref method in the qwen image code. (#11349) --- comfy/ldm/qwen_image/model.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/comfy/ldm/qwen_image/model.py b/comfy/ldm/qwen_image/model.py index 96590088b..8481f7711 100644 --- a/comfy/ldm/qwen_image/model.py +++ b/comfy/ldm/qwen_image/model.py @@ -322,6 +322,7 @@ class QwenImageTransformer2DModel(nn.Module): pooled_projection_dim: int = 768, guidance_embeds: bool = False, axes_dims_rope: Tuple[int, int, int] = (16, 56, 56), + default_ref_method="index", image_model=None, final_layer=True, dtype=None, @@ -334,6 +335,7 @@ class QwenImageTransformer2DModel(nn.Module): self.in_channels = in_channels self.out_channels = out_channels or in_channels self.inner_dim = num_attention_heads * attention_head_dim + self.default_ref_method = default_ref_method self.pe_embedder = EmbedND(dim=attention_head_dim, theta=10000, axes_dim=list(axes_dims_rope)) @@ -416,7 +418,7 @@ class QwenImageTransformer2DModel(nn.Module): h = 0 w = 0 index = 0 - ref_method = kwargs.get("ref_latents_method", "index") + ref_method = kwargs.get("ref_latents_method", self.default_ref_method) index_ref_method = (ref_method == "index") or (ref_method == "index_timestep_zero") timestep_zero = ref_method == "index_timestep_zero" for ref in ref_latents: From 9304e47351be8d178a093b30bcaf5d72c3a2baf5 Mon Sep 17 00:00:00 2001 From: Benjamin Lu Date: Mon, 15 Dec 2025 23:24:18 -0800 Subject: [PATCH 178/271] Update workflows for new release process (#11064) * Update release workflows for branch process * Adjust branch order in workflow triggers * Revert changes in test workflows --- .github/workflows/test-ci.yml | 1 + .github/workflows/test-execution.yml | 4 ++-- .github/workflows/test-launch.yml | 4 ++-- .github/workflows/test-unit.yml | 4 ++-- .github/workflows/update-version.yml | 1 + 5 files changed, 8 insertions(+), 6 deletions(-) diff --git a/.github/workflows/test-ci.yml b/.github/workflows/test-ci.yml index 1660ec8e3..adfc5dd32 100644 --- a/.github/workflows/test-ci.yml +++ b/.github/workflows/test-ci.yml @@ -5,6 +5,7 @@ on: push: branches: - master + - release/** paths-ignore: - 'app/**' - 'input/**' diff --git a/.github/workflows/test-execution.yml b/.github/workflows/test-execution.yml index 00ef07ebf..9012633d8 100644 --- a/.github/workflows/test-execution.yml +++ b/.github/workflows/test-execution.yml @@ -2,9 +2,9 @@ name: Execution Tests on: push: - branches: [ main, master ] + branches: [ main, master, release/** ] pull_request: - branches: [ main, master ] + branches: [ main, master, release/** ] jobs: test: diff --git a/.github/workflows/test-launch.yml b/.github/workflows/test-launch.yml index 1735fd83b..fd70aff23 100644 --- a/.github/workflows/test-launch.yml +++ b/.github/workflows/test-launch.yml @@ -2,9 +2,9 @@ name: Test server launches without errors on: push: - branches: [ main, master ] + branches: [ main, master, release/** ] pull_request: - branches: [ main, master ] + branches: [ main, master, release/** ] jobs: test: diff --git a/.github/workflows/test-unit.yml b/.github/workflows/test-unit.yml index 00caf5b8a..d05179cd3 100644 --- a/.github/workflows/test-unit.yml +++ b/.github/workflows/test-unit.yml @@ -2,9 +2,9 @@ name: Unit Tests on: push: - branches: [ main, master ] + branches: [ main, master, release/** ] pull_request: - branches: [ main, master ] + branches: [ main, master, release/** ] jobs: test: diff --git a/.github/workflows/update-version.yml b/.github/workflows/update-version.yml index d9d488974..c2343cc39 100644 --- a/.github/workflows/update-version.yml +++ b/.github/workflows/update-version.yml @@ -6,6 +6,7 @@ on: - "pyproject.toml" branches: - master + - release/** jobs: update-version: From 65e2103b09f66e45438445fb0e99709ae7639869 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 16 Dec 2025 23:51:48 +0200 Subject: [PATCH 179/271] feat(api-nodes): add Wan2.6 model to video nodes (#11357) --- comfy_api_nodes/nodes_wan.py | 162 ++++++++++++++++++++--------------- 1 file changed, 95 insertions(+), 67 deletions(-) diff --git a/comfy_api_nodes/nodes_wan.py b/comfy_api_nodes/nodes_wan.py index 2aab3c2ff..17b680e13 100644 --- a/comfy_api_nodes/nodes_wan.py +++ b/comfy_api_nodes/nodes_wan.py @@ -1,7 +1,5 @@ import re -from typing import Optional -import torch from pydantic import BaseModel, Field from typing_extensions import override @@ -21,26 +19,26 @@ from comfy_api_nodes.util import ( class Text2ImageInputField(BaseModel): prompt: str = Field(...) - negative_prompt: Optional[str] = Field(None) + negative_prompt: str | None = Field(None) class Image2ImageInputField(BaseModel): prompt: str = Field(...) - negative_prompt: Optional[str] = Field(None) + negative_prompt: str | None = Field(None) images: list[str] = Field(..., min_length=1, max_length=2) class Text2VideoInputField(BaseModel): prompt: str = Field(...) - negative_prompt: Optional[str] = Field(None) - audio_url: Optional[str] = Field(None) + negative_prompt: str | None = Field(None) + audio_url: str | None = Field(None) class Image2VideoInputField(BaseModel): prompt: str = Field(...) - negative_prompt: Optional[str] = Field(None) + negative_prompt: str | None = Field(None) img_url: str = Field(...) - audio_url: Optional[str] = Field(None) + audio_url: str | None = Field(None) class Txt2ImageParametersField(BaseModel): @@ -52,7 +50,7 @@ class Txt2ImageParametersField(BaseModel): class Image2ImageParametersField(BaseModel): - size: Optional[str] = Field(None) + size: str | None = Field(None) n: int = Field(1, description="Number of images to generate.") # we support only value=1 seed: int = Field(..., ge=0, le=2147483647) watermark: bool = Field(True) @@ -61,19 +59,21 @@ class Image2ImageParametersField(BaseModel): class Text2VideoParametersField(BaseModel): size: str = Field(...) seed: int = Field(..., ge=0, le=2147483647) - duration: int = Field(5, ge=5, le=10) + duration: int = Field(5, ge=5, le=15) prompt_extend: bool = Field(True) watermark: bool = Field(True) - audio: bool = Field(False, description="Should be audio generated automatically") + audio: bool = Field(False, description="Whether to generate audio automatically.") + shot_type: str = Field("single") class Image2VideoParametersField(BaseModel): resolution: str = Field(...) seed: int = Field(..., ge=0, le=2147483647) - duration: int = Field(5, ge=5, le=10) + duration: int = Field(5, ge=5, le=15) prompt_extend: bool = Field(True) watermark: bool = Field(True) - audio: bool = Field(False, description="Should be audio generated automatically") + audio: bool = Field(False, description="Whether to generate audio automatically.") + shot_type: str = Field("single") class Text2ImageTaskCreationRequest(BaseModel): @@ -106,39 +106,39 @@ class TaskCreationOutputField(BaseModel): class TaskCreationResponse(BaseModel): - output: Optional[TaskCreationOutputField] = Field(None) + output: TaskCreationOutputField | None = Field(None) request_id: str = Field(...) - code: Optional[str] = Field(None, description="The error code of the failed request.") - message: Optional[str] = Field(None, description="Details of the failed request.") + code: str | None = Field(None, description="Error code for the failed request.") + message: str | None = Field(None, description="Details about the failed request.") class TaskResult(BaseModel): - url: Optional[str] = Field(None) - code: Optional[str] = Field(None) - message: Optional[str] = Field(None) + url: str | None = Field(None) + code: str | None = Field(None) + message: str | None = Field(None) class ImageTaskStatusOutputField(TaskCreationOutputField): task_id: str = Field(...) task_status: str = Field(...) - results: Optional[list[TaskResult]] = Field(None) + results: list[TaskResult] | None = Field(None) class VideoTaskStatusOutputField(TaskCreationOutputField): task_id: str = Field(...) task_status: str = Field(...) - video_url: Optional[str] = Field(None) - code: Optional[str] = Field(None) - message: Optional[str] = Field(None) + video_url: str | None = Field(None) + code: str | None = Field(None) + message: str | None = Field(None) class ImageTaskStatusResponse(BaseModel): - output: Optional[ImageTaskStatusOutputField] = Field(None) + output: ImageTaskStatusOutputField | None = Field(None) request_id: str = Field(...) class VideoTaskStatusResponse(BaseModel): - output: Optional[VideoTaskStatusOutputField] = Field(None) + output: VideoTaskStatusOutputField | None = Field(None) request_id: str = Field(...) @@ -152,7 +152,7 @@ class WanTextToImageApi(IO.ComfyNode): node_id="WanTextToImageApi", display_name="Wan Text to Image", category="api node/image/Wan", - description="Generates image based on text prompt.", + description="Generates an image based on a text prompt.", inputs=[ IO.Combo.Input( "model", @@ -164,13 +164,13 @@ class WanTextToImageApi(IO.ComfyNode): "prompt", multiline=True, default="", - tooltip="Prompt used to describe the elements and visual features, supports English/Chinese.", + tooltip="Prompt describing the elements and visual features. Supports English and Chinese.", ), IO.String.Input( "negative_prompt", multiline=True, default="", - tooltip="Negative text prompt to guide what to avoid.", + tooltip="Negative prompt describing what to avoid.", optional=True, ), IO.Int.Input( @@ -209,7 +209,7 @@ class WanTextToImageApi(IO.ComfyNode): IO.Boolean.Input( "watermark", default=True, - tooltip='Whether to add an "AI generated" watermark to the result.', + tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), ], @@ -252,7 +252,7 @@ class WanTextToImageApi(IO.ComfyNode): ), ) if not initial_response.output: - raise Exception(f"Unknown error occurred: {initial_response.code} - {initial_response.message}") + raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}") response = await poll_op( cls, ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"), @@ -272,7 +272,7 @@ class WanImageToImageApi(IO.ComfyNode): display_name="Wan Image to Image", category="api node/image/Wan", description="Generates an image from one or two input images and a text prompt. " - "The output image is currently fixed at 1.6 MP; its aspect ratio matches the input image(s).", + "The output image is currently fixed at 1.6 MP, and its aspect ratio matches the input image(s).", inputs=[ IO.Combo.Input( "model", @@ -282,19 +282,19 @@ class WanImageToImageApi(IO.ComfyNode): ), IO.Image.Input( "image", - tooltip="Single-image editing or multi-image fusion, maximum 2 images.", + tooltip="Single-image editing or multi-image fusion. Maximum 2 images.", ), IO.String.Input( "prompt", multiline=True, default="", - tooltip="Prompt used to describe the elements and visual features, supports English/Chinese.", + tooltip="Prompt describing the elements and visual features. Supports English and Chinese.", ), IO.String.Input( "negative_prompt", multiline=True, default="", - tooltip="Negative text prompt to guide what to avoid.", + tooltip="Negative prompt describing what to avoid.", optional=True, ), # redo this later as an optional combo of recommended resolutions @@ -328,7 +328,7 @@ class WanImageToImageApi(IO.ComfyNode): IO.Boolean.Input( "watermark", default=True, - tooltip='Whether to add an "AI generated" watermark to the result.', + tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), ], @@ -347,7 +347,7 @@ class WanImageToImageApi(IO.ComfyNode): async def execute( cls, model: str, - image: torch.Tensor, + image: Input.Image, prompt: str, negative_prompt: str = "", # width: int = 1024, @@ -357,7 +357,7 @@ class WanImageToImageApi(IO.ComfyNode): ): n_images = get_number_of_images(image) if n_images not in (1, 2): - raise ValueError(f"Expected 1 or 2 input images, got {n_images}.") + raise ValueError(f"Expected 1 or 2 input images, but got {n_images}.") images = [] for i in image: images.append("data:image/png;base64," + tensor_to_base64_string(i, total_pixels=4096 * 4096)) @@ -376,7 +376,7 @@ class WanImageToImageApi(IO.ComfyNode): ), ) if not initial_response.output: - raise Exception(f"Unknown error occurred: {initial_response.code} - {initial_response.message}") + raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}") response = await poll_op( cls, ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"), @@ -395,25 +395,25 @@ class WanTextToVideoApi(IO.ComfyNode): node_id="WanTextToVideoApi", display_name="Wan Text to Video", category="api node/video/Wan", - description="Generates video based on text prompt.", + description="Generates a video based on a text prompt.", inputs=[ IO.Combo.Input( "model", - options=["wan2.5-t2v-preview"], - default="wan2.5-t2v-preview", + options=["wan2.5-t2v-preview", "wan2.6-t2v"], + default="wan2.6-t2v", tooltip="Model to use.", ), IO.String.Input( "prompt", multiline=True, default="", - tooltip="Prompt used to describe the elements and visual features, supports English/Chinese.", + tooltip="Prompt describing the elements and visual features. Supports English and Chinese.", ), IO.String.Input( "negative_prompt", multiline=True, default="", - tooltip="Negative text prompt to guide what to avoid.", + tooltip="Negative prompt describing what to avoid.", optional=True, ), IO.Combo.Input( @@ -433,23 +433,23 @@ class WanTextToVideoApi(IO.ComfyNode): "1080p: 4:3 (1632x1248)", "1080p: 3:4 (1248x1632)", ], - default="480p: 1:1 (624x624)", + default="720p: 1:1 (960x960)", optional=True, ), IO.Int.Input( "duration", default=5, min=5, - max=10, + max=15, step=5, display_mode=IO.NumberDisplay.number, - tooltip="Available durations: 5 and 10 seconds", + tooltip="A 15-second duration is available only for the Wan 2.6 model.", optional=True, ), IO.Audio.Input( "audio", optional=True, - tooltip="Audio must contain a clear, loud voice, without extraneous noise, background music.", + tooltip="Audio must contain a clear, loud voice, without extraneous noise or background music.", ), IO.Int.Input( "seed", @@ -466,7 +466,7 @@ class WanTextToVideoApi(IO.ComfyNode): "generate_audio", default=False, optional=True, - tooltip="If there is no audio input, generate audio automatically.", + tooltip="If no audio input is provided, generate audio automatically.", ), IO.Boolean.Input( "prompt_extend", @@ -477,7 +477,15 @@ class WanTextToVideoApi(IO.ComfyNode): IO.Boolean.Input( "watermark", default=True, - tooltip='Whether to add an "AI generated" watermark to the result.', + tooltip="Whether to add an AI-generated watermark to the result.", + optional=True, + ), + IO.Combo.Input( + "shot_type", + options=["single", "multi"], + tooltip="Specifies the shot type for the generated video, that is, whether the video is a " + "single continuous shot or multiple shots with cuts. " + "This parameter takes effect only when prompt_extend is True.", optional=True, ), ], @@ -498,14 +506,19 @@ class WanTextToVideoApi(IO.ComfyNode): model: str, prompt: str, negative_prompt: str = "", - size: str = "480p: 1:1 (624x624)", + size: str = "720p: 1:1 (960x960)", duration: int = 5, - audio: Optional[Input.Audio] = None, + audio: Input.Audio | None = None, seed: int = 0, generate_audio: bool = False, prompt_extend: bool = True, watermark: bool = True, + shot_type: str = "single", ): + if "480p" in size and model == "wan2.6-t2v": + raise ValueError("The Wan 2.6 model does not support 480p.") + if duration == 15 and model == "wan2.5-t2v-preview": + raise ValueError("A 15-second duration is supported only by the Wan 2.6 model.") width, height = RES_IN_PARENS.search(size).groups() audio_url = None if audio is not None: @@ -526,11 +539,12 @@ class WanTextToVideoApi(IO.ComfyNode): audio=generate_audio, prompt_extend=prompt_extend, watermark=watermark, + shot_type=shot_type, ), ), ) if not initial_response.output: - raise Exception(f"Unknown error occurred: {initial_response.code} - {initial_response.message}") + raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}") response = await poll_op( cls, ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"), @@ -549,12 +563,12 @@ class WanImageToVideoApi(IO.ComfyNode): node_id="WanImageToVideoApi", display_name="Wan Image to Video", category="api node/video/Wan", - description="Generates video based on the first frame and text prompt.", + description="Generates a video from the first frame and a text prompt.", inputs=[ IO.Combo.Input( "model", - options=["wan2.5-i2v-preview"], - default="wan2.5-i2v-preview", + options=["wan2.5-i2v-preview", "wan2.6-i2v"], + default="wan2.6-i2v", tooltip="Model to use.", ), IO.Image.Input( @@ -564,13 +578,13 @@ class WanImageToVideoApi(IO.ComfyNode): "prompt", multiline=True, default="", - tooltip="Prompt used to describe the elements and visual features, supports English/Chinese.", + tooltip="Prompt describing the elements and visual features. Supports English and Chinese.", ), IO.String.Input( "negative_prompt", multiline=True, default="", - tooltip="Negative text prompt to guide what to avoid.", + tooltip="Negative prompt describing what to avoid.", optional=True, ), IO.Combo.Input( @@ -580,23 +594,23 @@ class WanImageToVideoApi(IO.ComfyNode): "720P", "1080P", ], - default="480P", + default="720P", optional=True, ), IO.Int.Input( "duration", default=5, min=5, - max=10, + max=15, step=5, display_mode=IO.NumberDisplay.number, - tooltip="Available durations: 5 and 10 seconds", + tooltip="Duration 15 available only for WAN2.6 model.", optional=True, ), IO.Audio.Input( "audio", optional=True, - tooltip="Audio must contain a clear, loud voice, without extraneous noise, background music.", + tooltip="Audio must contain a clear, loud voice, without extraneous noise or background music.", ), IO.Int.Input( "seed", @@ -613,7 +627,7 @@ class WanImageToVideoApi(IO.ComfyNode): "generate_audio", default=False, optional=True, - tooltip="If there is no audio input, generate audio automatically.", + tooltip="If no audio input is provided, generate audio automatically.", ), IO.Boolean.Input( "prompt_extend", @@ -624,7 +638,15 @@ class WanImageToVideoApi(IO.ComfyNode): IO.Boolean.Input( "watermark", default=True, - tooltip='Whether to add an "AI generated" watermark to the result.', + tooltip="Whether to add an AI-generated watermark to the result.", + optional=True, + ), + IO.Combo.Input( + "shot_type", + options=["single", "multi"], + tooltip="Specifies the shot type for the generated video, that is, whether the video is a " + "single continuous shot or multiple shots with cuts. " + "This parameter takes effect only when prompt_extend is True.", optional=True, ), ], @@ -643,19 +665,24 @@ class WanImageToVideoApi(IO.ComfyNode): async def execute( cls, model: str, - image: torch.Tensor, + image: Input.Image, prompt: str, negative_prompt: str = "", - resolution: str = "480P", + resolution: str = "720P", duration: int = 5, - audio: Optional[Input.Audio] = None, + audio: Input.Audio | None = None, seed: int = 0, generate_audio: bool = False, prompt_extend: bool = True, watermark: bool = True, + shot_type: str = "single", ): if get_number_of_images(image) != 1: raise ValueError("Exactly one input image is required.") + if "480P" in resolution and model == "wan2.6-i2v": + raise ValueError("The Wan 2.6 model does not support 480P.") + if duration == 15 and model == "wan2.5-i2v-preview": + raise ValueError("A 15-second duration is supported only by the Wan 2.6 model.") image_url = "data:image/png;base64," + tensor_to_base64_string(image, total_pixels=2000 * 2000) audio_url = None if audio is not None: @@ -677,11 +704,12 @@ class WanImageToVideoApi(IO.ComfyNode): audio=generate_audio, prompt_extend=prompt_extend, watermark=watermark, + shot_type=shot_type, ), ), ) if not initial_response.output: - raise Exception(f"Unknown error occurred: {initial_response.code} - {initial_response.message}") + raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}") response = await poll_op( cls, ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"), From ffdd53b327f7ebd48cf81a1c8b06d846cf354a66 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 16 Dec 2025 14:03:17 -0800 Subject: [PATCH 180/271] Check state dict key to auto enable the index_timestep_zero ref method. (#11362) --- comfy/ldm/qwen_image/model.py | 3 +++ comfy/model_detection.py | 4 +++- 2 files changed, 6 insertions(+), 1 deletion(-) diff --git a/comfy/ldm/qwen_image/model.py b/comfy/ldm/qwen_image/model.py index 8481f7711..902af30ed 100644 --- a/comfy/ldm/qwen_image/model.py +++ b/comfy/ldm/qwen_image/model.py @@ -363,6 +363,9 @@ class QwenImageTransformer2DModel(nn.Module): for _ in range(num_layers) ]) + if self.default_ref_method == "index_timestep_zero": + self.register_buffer("__index_timestep_zero__", torch.tensor([])) + if final_layer: self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations) self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index dd6a703f6..7148c77fd 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -259,7 +259,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["nerf_tile_size"] = 512 dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear" dit_config["nerf_embedder_dtype"] = torch.float32 - if "__x0__" in state_dict_keys: # x0 pred + if "{}__x0__".format(key_prefix) in state_dict_keys: # x0 pred dit_config["use_x0"] = True else: dit_config["use_x0"] = False @@ -618,6 +618,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["image_model"] = "qwen_image" dit_config["in_channels"] = state_dict['{}img_in.weight'.format(key_prefix)].shape[1] dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.') + if "{}__index_timestep_zero__".format(key_prefix) in state_dict_keys: # 2511 + dit_config["default_ref_method"] = "index_timestep_zero" return dit_config if '{}visual_transformer_blocks.0.cross_attention.key_norm.weight'.format(key_prefix) in state_dict_keys: # Kandinsky 5 From 827bb1512b17e349238e69b2d4f463390a5b0d14 Mon Sep 17 00:00:00 2001 From: chaObserv <154517000+chaObserv@users.noreply.github.com> Date: Wed, 17 Dec 2025 12:35:43 +0800 Subject: [PATCH 181/271] Add exp_heun_2_x0 sampler series (#11360) --- comfy/k_diffusion/sampling.py | 11 +++++++++++ comfy/samplers.py | 2 +- comfy_extras/nodes_custom_sampler.py | 11 ++++++++++- 3 files changed, 22 insertions(+), 2 deletions(-) diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index 753c66afa..c004b3b47 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -1618,6 +1618,17 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non x = x + sde_noise * sigmas[i + 1] * s_noise return x +@torch.no_grad() +def sample_exp_heun_2_x0(model, x, sigmas, extra_args=None, callback=None, disable=None, solver_type="phi_2"): + """Deterministic exponential Heun second order method in data prediction (x0) and logSNR time.""" + return sample_seeds_2(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=0.0, s_noise=0.0, noise_sampler=None, r=1.0, solver_type=solver_type) + + +@torch.no_grad() +def sample_exp_heun_2_x0_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type="phi_2"): + """Stochastic exponential Heun second order method in data prediction (x0) and logSNR time.""" + return sample_seeds_2(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=1.0, solver_type=solver_type) + @torch.no_grad() def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3): diff --git a/comfy/samplers.py b/comfy/samplers.py index fa4640842..8340d376c 100755 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -720,7 +720,7 @@ class Sampler: sigma = float(sigmas[0]) return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma -KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral", +KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2", "exp_heun_2_x0", "exp_heun_2_x0_sde", "dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu", "dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_2m_sde_heun", "dpmpp_2m_sde_heun_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp", diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index 71ea4e9ec..7ee4caac1 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -671,7 +671,16 @@ class SamplerSEEDS2(io.ComfyNode): io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="SDE noise multiplier"), io.Float.Input("r", default=0.5, min=0.01, max=1.0, step=0.01, round=False, tooltip="Relative step size for the intermediate stage (c2 node)"), ], - outputs=[io.Sampler.Output()] + outputs=[io.Sampler.Output()], + description=( + "This sampler node can represent multiple samplers:\n\n" + "seeds_2\n" + "- default setting\n\n" + "exp_heun_2_x0\n" + "- solver_type=phi_2, r=1.0, eta=0.0\n\n" + "exp_heun_2_x0_sde\n" + "- solver_type=phi_2, r=1.0, eta=1.0, s_noise=1.0" + ) ) @classmethod From 3a5f239cb622d7d8b1706d0b63c469dfef2eaf73 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 17 Dec 2025 03:46:11 -0500 Subject: [PATCH 182/271] ComfyUI v0.5.0 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 2f083edaf..5edf270e7 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.4.0" +__version__ = "0.5.0" diff --git a/pyproject.toml b/pyproject.toml index e4d3d616a..c402f278c 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.4.0" +version = "0.5.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 887143854bb2ae1e0f975e4461f376844a1628c8 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 17 Dec 2025 19:43:41 +0200 Subject: [PATCH 183/271] feat(api-nodes): add GPT-Image-1.5 (#11368) --- comfy_api_nodes/apis/openai_api.py | 52 +++++++ comfy_api_nodes/nodes_openai.py | 209 +++++++++++++++------------- comfy_api_nodes/util/conversions.py | 2 +- 3 files changed, 168 insertions(+), 95 deletions(-) create mode 100644 comfy_api_nodes/apis/openai_api.py diff --git a/comfy_api_nodes/apis/openai_api.py b/comfy_api_nodes/apis/openai_api.py new file mode 100644 index 000000000..ae5bb2673 --- /dev/null +++ b/comfy_api_nodes/apis/openai_api.py @@ -0,0 +1,52 @@ +from pydantic import BaseModel, Field + + +class Datum2(BaseModel): + b64_json: str | None = Field(None, description="Base64 encoded image data") + revised_prompt: str | None = Field(None, description="Revised prompt") + url: str | None = Field(None, description="URL of the image") + + +class InputTokensDetails(BaseModel): + image_tokens: int | None = None + text_tokens: int | None = None + + +class Usage(BaseModel): + input_tokens: int | None = None + input_tokens_details: InputTokensDetails | None = None + output_tokens: int | None = None + total_tokens: int | None = None + + +class OpenAIImageGenerationResponse(BaseModel): + data: list[Datum2] | None = None + usage: Usage | None = None + + +class OpenAIImageEditRequest(BaseModel): + background: str | None = Field(None, description="Background transparency") + model: str = Field(...) + moderation: str | None = Field(None) + n: int | None = Field(None, description="The number of images to generate") + output_compression: int | None = Field(None, description="Compression level for JPEG or WebP (0-100)") + output_format: str | None = Field(None) + prompt: str = Field(...) + quality: str | None = Field(None, description="Size of the image (e.g., 1024x1024, 1536x1024, auto)") + size: str | None = Field(None, description="Size of the output image") + + +class OpenAIImageGenerationRequest(BaseModel): + background: str | None = Field(None, description="Background transparency") + model: str | None = Field(None) + moderation: str | None = Field(None) + n: int | None = Field( + None, + description="The number of images to generate.", + ) + output_compression: int | None = Field(None, description="Compression level for JPEG or WebP (0-100)") + output_format: str | None = Field(None) + prompt: str = Field(...) + quality: str | None = Field(None, description="The quality of the generated image") + size: str | None = Field(None, description="Size of the image (e.g., 1024x1024, 1536x1024, auto)") + style: str | None = Field(None, description="Style of the image (only for dall-e-3)") diff --git a/comfy_api_nodes/nodes_openai.py b/comfy_api_nodes/nodes_openai.py index c8da5464b..a6205a34f 100644 --- a/comfy_api_nodes/nodes_openai.py +++ b/comfy_api_nodes/nodes_openai.py @@ -1,46 +1,45 @@ -from io import BytesIO +import base64 import os from enum import Enum -from inspect import cleandoc +from io import BytesIO + import numpy as np import torch from PIL import Image -import folder_paths -import base64 -from comfy_api.latest import IO, ComfyExtension from typing_extensions import override - +import folder_paths +from comfy_api.latest import IO, ComfyExtension, Input from comfy_api_nodes.apis import ( - OpenAIImageGenerationRequest, - OpenAIImageEditRequest, - OpenAIImageGenerationResponse, - OpenAICreateResponse, - OpenAIResponse, CreateModelResponseProperties, - Item, - OutputContent, - InputImageContent, Detail, - InputTextContent, - InputMessage, - InputMessageContentList, InputContent, InputFileContent, + InputImageContent, + InputMessage, + InputMessageContentList, + InputTextContent, + Item, + OpenAICreateResponse, + OpenAIResponse, + OutputContent, +) +from comfy_api_nodes.apis.openai_api import ( + OpenAIImageEditRequest, + OpenAIImageGenerationRequest, + OpenAIImageGenerationResponse, ) - from comfy_api_nodes.util import ( - downscale_image_tensor, - download_url_to_bytesio, - validate_string, - tensor_to_base64_string, ApiEndpoint, - sync_op, + download_url_to_bytesio, + downscale_image_tensor, poll_op, + sync_op, + tensor_to_base64_string, text_filepath_to_data_uri, + validate_string, ) - RESPONSES_ENDPOINT = "/proxy/openai/v1/responses" STARTING_POINT_ID_PATTERN = r"" @@ -98,9 +97,6 @@ async def validate_and_cast_response(response, timeout: int = None) -> torch.Ten class OpenAIDalle2(IO.ComfyNode): - """ - Generates images synchronously via OpenAI's DALL·E 2 endpoint. - """ @classmethod def define_schema(cls): @@ -108,7 +104,7 @@ class OpenAIDalle2(IO.ComfyNode): node_id="OpenAIDalle2", display_name="OpenAI DALL·E 2", category="api node/image/OpenAI", - description=cleandoc(cls.__doc__ or ""), + description="Generates images synchronously via OpenAI's DALL·E 2 endpoint.", inputs=[ IO.String.Input( "prompt", @@ -234,9 +230,6 @@ class OpenAIDalle2(IO.ComfyNode): class OpenAIDalle3(IO.ComfyNode): - """ - Generates images synchronously via OpenAI's DALL·E 3 endpoint. - """ @classmethod def define_schema(cls): @@ -244,7 +237,7 @@ class OpenAIDalle3(IO.ComfyNode): node_id="OpenAIDalle3", display_name="OpenAI DALL·E 3", category="api node/image/OpenAI", - description=cleandoc(cls.__doc__ or ""), + description="Generates images synchronously via OpenAI's DALL·E 3 endpoint.", inputs=[ IO.String.Input( "prompt", @@ -326,10 +319,16 @@ class OpenAIDalle3(IO.ComfyNode): return IO.NodeOutput(await validate_and_cast_response(response)) +def calculate_tokens_price_image_1(response: OpenAIImageGenerationResponse) -> float | None: + # https://platform.openai.com/docs/pricing + return ((response.usage.input_tokens * 10.0) + (response.usage.output_tokens * 40.0)) / 1_000_000.0 + + +def calculate_tokens_price_image_1_5(response: OpenAIImageGenerationResponse) -> float | None: + return ((response.usage.input_tokens * 8.0) + (response.usage.output_tokens * 32.0)) / 1_000_000.0 + + class OpenAIGPTImage1(IO.ComfyNode): - """ - Generates images synchronously via OpenAI's GPT Image 1 endpoint. - """ @classmethod def define_schema(cls): @@ -337,13 +336,13 @@ class OpenAIGPTImage1(IO.ComfyNode): node_id="OpenAIGPTImage1", display_name="OpenAI GPT Image 1", category="api node/image/OpenAI", - description=cleandoc(cls.__doc__ or ""), + description="Generates images synchronously via OpenAI's GPT Image 1 endpoint.", inputs=[ IO.String.Input( "prompt", default="", multiline=True, - tooltip="Text prompt for GPT Image 1", + tooltip="Text prompt for GPT Image", ), IO.Int.Input( "seed", @@ -365,8 +364,8 @@ class OpenAIGPTImage1(IO.ComfyNode): ), IO.Combo.Input( "background", - default="opaque", - options=["opaque", "transparent"], + default="auto", + options=["auto", "opaque", "transparent"], tooltip="Return image with or without background", optional=True, ), @@ -397,6 +396,11 @@ class OpenAIGPTImage1(IO.ComfyNode): tooltip="Optional mask for inpainting (white areas will be replaced)", optional=True, ), + IO.Combo.Input( + "model", + options=["gpt-image-1", "gpt-image-1.5"], + optional=True, + ), ], outputs=[ IO.Image.Output(), @@ -412,32 +416,34 @@ class OpenAIGPTImage1(IO.ComfyNode): @classmethod async def execute( cls, - prompt, - seed=0, - quality="low", - background="opaque", - image=None, - mask=None, - n=1, - size="1024x1024", + prompt: str, + seed: int = 0, + quality: str = "low", + background: str = "opaque", + image: Input.Image | None = None, + mask: Input.Image | None = None, + n: int = 1, + size: str = "1024x1024", + model: str = "gpt-image-1", ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=False) - model = "gpt-image-1" - path = "/proxy/openai/images/generations" - content_type = "application/json" - request_class = OpenAIImageGenerationRequest - files = [] + + if mask is not None and image is None: + raise ValueError("Cannot use a mask without an input image") + + if model == "gpt-image-1": + price_extractor = calculate_tokens_price_image_1 + elif model == "gpt-image-1.5": + price_extractor = calculate_tokens_price_image_1_5 + else: + raise ValueError(f"Unknown model: {model}") if image is not None: - path = "/proxy/openai/images/edits" - request_class = OpenAIImageEditRequest - content_type = "multipart/form-data" - + files = [] batch_size = image.shape[0] - for i in range(batch_size): - single_image = image[i : i + 1] - scaled_image = downscale_image_tensor(single_image).squeeze() + single_image = image[i: i + 1] + scaled_image = downscale_image_tensor(single_image, total_pixels=2048*2048).squeeze() image_np = (scaled_image.numpy() * 255).astype(np.uint8) img = Image.fromarray(image_np) @@ -450,44 +456,59 @@ class OpenAIGPTImage1(IO.ComfyNode): else: files.append(("image[]", (f"image_{i}.png", img_byte_arr, "image/png"))) - if mask is not None: - if image is None: - raise Exception("Cannot use a mask without an input image") - if image.shape[0] != 1: - raise Exception("Cannot use a mask with multiple image") - if mask.shape[1:] != image.shape[1:-1]: - raise Exception("Mask and Image must be the same size") - batch, height, width = mask.shape - rgba_mask = torch.zeros(height, width, 4, device="cpu") - rgba_mask[:, :, 3] = 1 - mask.squeeze().cpu() + if mask is not None: + if image.shape[0] != 1: + raise Exception("Cannot use a mask with multiple image") + if mask.shape[1:] != image.shape[1:-1]: + raise Exception("Mask and Image must be the same size") + _, height, width = mask.shape + rgba_mask = torch.zeros(height, width, 4, device="cpu") + rgba_mask[:, :, 3] = 1 - mask.squeeze().cpu() - scaled_mask = downscale_image_tensor(rgba_mask.unsqueeze(0)).squeeze() + scaled_mask = downscale_image_tensor(rgba_mask.unsqueeze(0), total_pixels=2048*2048).squeeze() - mask_np = (scaled_mask.numpy() * 255).astype(np.uint8) - mask_img = Image.fromarray(mask_np) - mask_img_byte_arr = BytesIO() - mask_img.save(mask_img_byte_arr, format="PNG") - mask_img_byte_arr.seek(0) - files.append(("mask", ("mask.png", mask_img_byte_arr, "image/png"))) - - # Build the operation - response = await sync_op( - cls, - ApiEndpoint(path=path, method="POST"), - response_model=OpenAIImageGenerationResponse, - data=request_class( - model=model, - prompt=prompt, - quality=quality, - background=background, - n=n, - seed=seed, - size=size, - ), - files=files if files else None, - content_type=content_type, - ) + mask_np = (scaled_mask.numpy() * 255).astype(np.uint8) + mask_img = Image.fromarray(mask_np) + mask_img_byte_arr = BytesIO() + mask_img.save(mask_img_byte_arr, format="PNG") + mask_img_byte_arr.seek(0) + files.append(("mask", ("mask.png", mask_img_byte_arr, "image/png"))) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/openai/images/edits", method="POST"), + response_model=OpenAIImageGenerationResponse, + data=OpenAIImageEditRequest( + model=model, + prompt=prompt, + quality=quality, + background=background, + n=n, + seed=seed, + size=size, + moderation="low", + ), + content_type="multipart/form-data", + files=files, + price_extractor=price_extractor, + ) + else: + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/openai/images/generations", method="POST"), + response_model=OpenAIImageGenerationResponse, + data=OpenAIImageGenerationRequest( + model=model, + prompt=prompt, + quality=quality, + background=background, + n=n, + seed=seed, + size=size, + moderation="low", + ), + price_extractor=price_extractor, + ) return IO.NodeOutput(await validate_and_cast_response(response)) diff --git a/comfy_api_nodes/util/conversions.py b/comfy_api_nodes/util/conversions.py index c57457580..d64239c86 100644 --- a/comfy_api_nodes/util/conversions.py +++ b/comfy_api_nodes/util/conversions.py @@ -129,7 +129,7 @@ def pil_to_bytesio(img: Image.Image, mime_type: str = "image/png") -> BytesIO: return img_byte_arr -def downscale_image_tensor(image, total_pixels=1536 * 1024) -> torch.Tensor: +def downscale_image_tensor(image: torch.Tensor, total_pixels: int = 1536 * 1024) -> torch.Tensor: """Downscale input image tensor to roughly the specified total pixels.""" samples = image.movedim(-1, 1) total = int(total_pixels) From c08f97f34407a1bc6cc8d1447d6c12893399acba Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 17 Dec 2025 20:24:25 +0200 Subject: [PATCH 184/271] fix regression in V3 nodes processing (#11375) --- comfy_api/latest/_io.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 2b634d172..4b14e5ded 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -1556,12 +1556,12 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): @final @classmethod - def PREPARE_CLASS_CLONE(cls, v3_data: V3Data) -> type[ComfyNode]: + def PREPARE_CLASS_CLONE(cls, v3_data: V3Data | None) -> type[ComfyNode]: """Creates clone of real node class to prevent monkey-patching.""" c_type: type[ComfyNode] = cls if is_class(cls) else type(cls) type_clone: type[ComfyNode] = shallow_clone_class(c_type) # set hidden - type_clone.hidden = HiddenHolder.from_dict(v3_data["hidden_inputs"]) + type_clone.hidden = HiddenHolder.from_dict(v3_data["hidden_inputs"] if v3_data else None) return type_clone @final From 5d9ad0c6bf177095aea5026cd872b1faf873669b Mon Sep 17 00:00:00 2001 From: chaObserv <154517000+chaObserv@users.noreply.github.com> Date: Thu, 18 Dec 2025 02:57:40 +0800 Subject: [PATCH 185/271] Fix the last step with non-zero sigma in sa_solver (#11380) --- comfy/k_diffusion/sampling.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index c004b3b47..1ba9edad7 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -1776,7 +1776,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F # Predictor if sigmas[i + 1] == 0: # Denoising step - x = denoised + x_pred = denoised else: tau_t = tau_func(sigmas[i + 1]) curr_lambdas = lambdas[i - predictor_order_used + 1:i + 1] @@ -1797,7 +1797,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F if tau_t > 0 and s_noise > 0: noise = noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * tau_t ** 2 * h).expm1().neg().sqrt() * s_noise x_pred = x_pred + noise - return x + return x_pred @torch.no_grad() From 16d85ea13342cebc8349a95236c94bde5ac3cb2a Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 17 Dec 2025 16:43:18 -0800 Subject: [PATCH 186/271] Better handle torch being imported by prestartup nodes. (#11383) --- main.py | 66 ++++++++++++++++++++++++++++----------------------------- 1 file changed, 32 insertions(+), 34 deletions(-) diff --git a/main.py b/main.py index 0d02a087b..0e07a95da 100644 --- a/main.py +++ b/main.py @@ -23,6 +23,38 @@ if __name__ == "__main__": setup_logger(log_level=args.verbose, use_stdout=args.log_stdout) +if os.name == "nt": + os.environ['MIMALLOC_PURGE_DELAY'] = '0' + +if __name__ == "__main__": + os.environ['TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL'] = '1' + if args.default_device is not None: + default_dev = args.default_device + devices = list(range(32)) + devices.remove(default_dev) + devices.insert(0, default_dev) + devices = ','.join(map(str, devices)) + os.environ['CUDA_VISIBLE_DEVICES'] = str(devices) + os.environ['HIP_VISIBLE_DEVICES'] = str(devices) + + if args.cuda_device is not None: + os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device) + os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device) + os.environ["ASCEND_RT_VISIBLE_DEVICES"] = str(args.cuda_device) + logging.info("Set cuda device to: {}".format(args.cuda_device)) + + if args.oneapi_device_selector is not None: + os.environ['ONEAPI_DEVICE_SELECTOR'] = args.oneapi_device_selector + logging.info("Set oneapi device selector to: {}".format(args.oneapi_device_selector)) + + if args.deterministic: + if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ: + os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8" + + import cuda_malloc + if "rocm" in cuda_malloc.get_torch_version_noimport(): + os.environ['OCL_SET_SVM_SIZE'] = '262144' # set at the request of AMD + def handle_comfyui_manager_unavailable(): if not args.windows_standalone_build: @@ -137,40 +169,6 @@ import shutil import threading import gc - -if os.name == "nt": - os.environ['MIMALLOC_PURGE_DELAY'] = '0' - -if __name__ == "__main__": - os.environ['TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL'] = '1' - if args.default_device is not None: - default_dev = args.default_device - devices = list(range(32)) - devices.remove(default_dev) - devices.insert(0, default_dev) - devices = ','.join(map(str, devices)) - os.environ['CUDA_VISIBLE_DEVICES'] = str(devices) - os.environ['HIP_VISIBLE_DEVICES'] = str(devices) - - if args.cuda_device is not None: - os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device) - os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device) - os.environ["ASCEND_RT_VISIBLE_DEVICES"] = str(args.cuda_device) - logging.info("Set cuda device to: {}".format(args.cuda_device)) - - if args.oneapi_device_selector is not None: - os.environ['ONEAPI_DEVICE_SELECTOR'] = args.oneapi_device_selector - logging.info("Set oneapi device selector to: {}".format(args.oneapi_device_selector)) - - if args.deterministic: - if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ: - os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8" - - import cuda_malloc - if "rocm" in cuda_malloc.get_torch_version_noimport(): - os.environ['OCL_SET_SVM_SIZE'] = '262144' # set at the request of AMD - - if 'torch' in sys.modules: logging.warning("WARNING: Potential Error in code: Torch already imported, torch should never be imported before this point.") From ba6080bbab070934ea6e870c5fc30dbf702eb445 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 17 Dec 2025 21:04:50 -0500 Subject: [PATCH 187/271] ComfyUI v0.5.1 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 5edf270e7..b45309198 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.5.0" +__version__ = "0.5.1" diff --git a/pyproject.toml b/pyproject.toml index c402f278c..3a6960811 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.5.0" +version = "0.5.1" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 86dbb89fc95f0cb652ae5d6cb923f641a58e295d Mon Sep 17 00:00:00 2001 From: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> Date: Thu, 18 Dec 2025 11:15:27 +0800 Subject: [PATCH 188/271] Resolution bucketing and Trainer implementation refactoring (#11117) --- comfy/sampler_helpers.py | 9 +- comfy_extras/nodes_dataset.py | 96 ++- comfy_extras/nodes_post_processing.py | 11 +- comfy_extras/nodes_train.py | 854 +++++++++++++++++++------- 4 files changed, 738 insertions(+), 232 deletions(-) diff --git a/comfy/sampler_helpers.py b/comfy/sampler_helpers.py index e46971afb..e158e8a84 100644 --- a/comfy/sampler_helpers.py +++ b/comfy/sampler_helpers.py @@ -122,20 +122,21 @@ def estimate_memory(model, noise_shape, conds): minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min) return memory_required, minimum_memory_required -def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None): +def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, skip_load_model=False): executor = comfy.patcher_extension.WrapperExecutor.new_executor( _prepare_sampling, comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True) ) - return executor.execute(model, noise_shape, conds, model_options=model_options) + return executor.execute(model, noise_shape, conds, model_options=model_options, skip_load_model=skip_load_model) -def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None): +def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, skip_load_model=False): real_model: BaseModel = None models, inference_memory = get_additional_models(conds, model.model_dtype()) models += get_additional_models_from_model_options(model_options) models += model.get_nested_additional_models() # TODO: does this require inference_memory update? memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds) - comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory) + models_list = [model] if not skip_load_model else [] + comfy.model_management.load_models_gpu(models_list + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory) real_model = model.model return real_model, conds, models diff --git a/comfy_extras/nodes_dataset.py b/comfy_extras/nodes_dataset.py index 4789d7d53..513aecf3a 100644 --- a/comfy_extras/nodes_dataset.py +++ b/comfy_extras/nodes_dataset.py @@ -1125,6 +1125,99 @@ class MergeTextListsNode(TextProcessingNode): # ========== Training Dataset Nodes ========== +class ResolutionBucket(io.ComfyNode): + """Bucket latents and conditions by resolution for efficient batch training.""" + + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ResolutionBucket", + display_name="Resolution Bucket", + category="dataset", + is_experimental=True, + is_input_list=True, + inputs=[ + io.Latent.Input( + "latents", + tooltip="List of latent dicts to bucket by resolution.", + ), + io.Conditioning.Input( + "conditioning", + tooltip="List of conditioning lists (must match latents length).", + ), + ], + outputs=[ + io.Latent.Output( + display_name="latents", + is_output_list=True, + tooltip="List of batched latent dicts, one per resolution bucket.", + ), + io.Conditioning.Output( + display_name="conditioning", + is_output_list=True, + tooltip="List of condition lists, one per resolution bucket.", + ), + ], + ) + + @classmethod + def execute(cls, latents, conditioning): + # latents: list[{"samples": tensor}] where tensor is (B, C, H, W), typically B=1 + # conditioning: list[list[cond]] + + # Validate lengths match + if len(latents) != len(conditioning): + raise ValueError( + f"Number of latents ({len(latents)}) does not match number of conditions ({len(conditioning)})." + ) + + # Flatten latents and conditions to individual samples + flat_latents = [] # list of (C, H, W) tensors + flat_conditions = [] # list of condition lists + + for latent_dict, cond in zip(latents, conditioning): + samples = latent_dict["samples"] # (B, C, H, W) + batch_size = samples.shape[0] + + # cond is a list of conditions with length == batch_size + for i in range(batch_size): + flat_latents.append(samples[i]) # (C, H, W) + flat_conditions.append(cond[i]) # single condition + + # Group by resolution (H, W) + buckets = {} # (H, W) -> {"latents": list, "conditions": list} + + for latent, cond in zip(flat_latents, flat_conditions): + # latent shape is (..., H, W) (B, C, H, W) or (B, T, C, H ,W) + h, w = latent.shape[-2], latent.shape[-1] + key = (h, w) + + if key not in buckets: + buckets[key] = {"latents": [], "conditions": []} + + buckets[key]["latents"].append(latent) + buckets[key]["conditions"].append(cond) + + # Convert buckets to output format + output_latents = [] # list[{"samples": tensor}] where tensor is (Bi, ..., H, W) + output_conditions = [] # list[list[cond]] where each inner list has Bi conditions + + for (h, w), bucket_data in buckets.items(): + # Stack latents into batch: list of (..., H, W) -> (Bi, ..., H, W) + stacked_latents = torch.stack(bucket_data["latents"], dim=0) + output_latents.append({"samples": stacked_latents}) + + # Conditions stay as list of condition lists + output_conditions.append(bucket_data["conditions"]) + + logging.info( + f"Resolution bucket ({h}x{w}): {len(bucket_data['latents'])} samples" + ) + + logging.info(f"Created {len(buckets)} resolution buckets from {len(flat_latents)} samples") + return io.NodeOutput(output_latents, output_conditions) + + class MakeTrainingDataset(io.ComfyNode): """Encode images with VAE and texts with CLIP to create a training dataset.""" @@ -1373,7 +1466,7 @@ class LoadTrainingDataset(io.ComfyNode): shard_path = os.path.join(dataset_dir, shard_file) with open(shard_path, "rb") as f: - shard_data = torch.load(f, weights_only=True) + shard_data = torch.load(f) all_latents.extend(shard_data["latents"]) all_conditioning.extend(shard_data["conditioning"]) @@ -1425,6 +1518,7 @@ class DatasetExtension(ComfyExtension): MakeTrainingDataset, SaveTrainingDataset, LoadTrainingDataset, + ResolutionBucket, ] diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index 34c388a5a..ca2cdeb50 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -221,6 +221,7 @@ class ImageScaleToTotalPixels(io.ComfyNode): io.Image.Input("image"), io.Combo.Input("upscale_method", options=cls.upscale_methods), io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01), + io.Int.Input("resolution_steps", default=1, min=1, max=256), ], outputs=[ io.Image.Output(), @@ -228,15 +229,15 @@ class ImageScaleToTotalPixels(io.ComfyNode): ) @classmethod - def execute(cls, image, upscale_method, megapixels) -> io.NodeOutput: + def execute(cls, image, upscale_method, megapixels, resolution_steps) -> io.NodeOutput: samples = image.movedim(-1,1) - total = int(megapixels * 1024 * 1024) + total = megapixels * 1024 * 1024 scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) - width = round(samples.shape[3] * scale_by) - height = round(samples.shape[2] * scale_by) + width = round(samples.shape[3] * scale_by / resolution_steps) * resolution_steps + height = round(samples.shape[2] * scale_by / resolution_steps) * resolution_steps - s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") + s = comfy.utils.common_upscale(samples, int(width), int(height), upscale_method, "disabled") s = s.movedim(1,-1) return io.NodeOutput(s) diff --git a/comfy_extras/nodes_train.py b/comfy_extras/nodes_train.py index 19b8baaf4..88bc8c8e8 100644 --- a/comfy_extras/nodes_train.py +++ b/comfy_extras/nodes_train.py @@ -10,6 +10,7 @@ from PIL import Image, ImageDraw, ImageFont from typing_extensions import override import comfy.samplers +import comfy.sampler_helpers import comfy.sd import comfy.utils import comfy.model_management @@ -21,6 +22,68 @@ from comfy_api.latest import ComfyExtension, io, ui from comfy.utils import ProgressBar +class TrainGuider(comfy_extras.nodes_custom_sampler.Guider_Basic): + """ + CFGGuider with modifications for training specific logic + """ + def outer_sample( + self, + noise, + latent_image, + sampler, + sigmas, + denoise_mask=None, + callback=None, + disable_pbar=False, + seed=None, + latent_shapes=None, + ): + self.inner_model, self.conds, self.loaded_models = ( + comfy.sampler_helpers.prepare_sampling( + self.model_patcher, + noise.shape, + self.conds, + self.model_options, + skip_load_model=True, # skip load model as we manage it in TrainLoraNode.execute() + ) + ) + device = self.model_patcher.load_device + + if denoise_mask is not None: + denoise_mask = comfy.sampler_helpers.prepare_mask( + denoise_mask, noise.shape, device + ) + + noise = noise.to(device) + latent_image = latent_image.to(device) + sigmas = sigmas.to(device) + comfy.samplers.cast_to_load_options( + self.model_options, device=device, dtype=self.model_patcher.model_dtype() + ) + + try: + self.model_patcher.pre_run() + output = self.inner_sample( + noise, + latent_image, + device, + sampler, + sigmas, + denoise_mask, + callback, + disable_pbar, + seed, + latent_shapes=latent_shapes, + ) + finally: + self.model_patcher.cleanup() + + comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models) + del self.inner_model + del self.loaded_models + return output + + def make_batch_extra_option_dict(d, indicies, full_size=None): new_dict = {} for k, v in d.items(): @@ -65,6 +128,7 @@ class TrainSampler(comfy.samplers.Sampler): seed=0, training_dtype=torch.bfloat16, real_dataset=None, + bucket_latents=None, ): self.loss_fn = loss_fn self.optimizer = optimizer @@ -75,6 +139,28 @@ class TrainSampler(comfy.samplers.Sampler): self.seed = seed self.training_dtype = training_dtype self.real_dataset: list[torch.Tensor] | None = real_dataset + # Bucket mode data + self.bucket_latents: list[torch.Tensor] | None = ( + bucket_latents # list of (Bi, C, Hi, Wi) + ) + # Precompute bucket offsets and weights for sampling + if bucket_latents is not None: + self._init_bucket_data(bucket_latents) + else: + self.bucket_offsets = None + self.bucket_weights = None + self.num_images = None + + def _init_bucket_data(self, bucket_latents): + """Initialize bucket offsets and weights for sampling.""" + self.bucket_offsets = [0] + bucket_sizes = [] + for lat in bucket_latents: + bucket_sizes.append(lat.shape[0]) + self.bucket_offsets.append(self.bucket_offsets[-1] + lat.shape[0]) + self.num_images = self.bucket_offsets[-1] + # Weights for sampling buckets proportional to their size + self.bucket_weights = torch.tensor(bucket_sizes, dtype=torch.float32) def fwd_bwd( self, @@ -115,6 +201,108 @@ class TrainSampler(comfy.samplers.Sampler): bwd_loss.backward() return loss + def _generate_batch_sigmas(self, model_wrap, batch_size, device): + """Generate random sigma values for a batch.""" + batch_sigmas = [ + model_wrap.inner_model.model_sampling.percent_to_sigma( + torch.rand((1,)).item() + ) + for _ in range(batch_size) + ] + return torch.tensor(batch_sigmas).to(device) + + def _train_step_bucket_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, pbar): + """Execute one training step in bucket mode.""" + # Sample bucket (weighted by size), then sample batch from bucket + bucket_idx = torch.multinomial(self.bucket_weights, 1).item() + bucket_latent = self.bucket_latents[bucket_idx] # (Bi, C, Hi, Wi) + bucket_size = bucket_latent.shape[0] + bucket_offset = self.bucket_offsets[bucket_idx] + + # Sample indices from this bucket (use all if bucket_size < batch_size) + actual_batch_size = min(self.batch_size, bucket_size) + relative_indices = torch.randperm(bucket_size)[:actual_batch_size].tolist() + # Convert to absolute indices for fwd_bwd (cond is flattened, use absolute index) + absolute_indices = [bucket_offset + idx for idx in relative_indices] + + batch_latent = bucket_latent[relative_indices].to(latent_image) # (actual_batch_size, C, H, W) + batch_noise = noisegen.generate_noise({"samples": batch_latent}).to( + batch_latent.device + ) + batch_sigmas = self._generate_batch_sigmas(model_wrap, actual_batch_size, batch_latent.device) + + loss = self.fwd_bwd( + model_wrap, + batch_sigmas, + batch_noise, + batch_latent, + cond, # Use flattened cond with absolute indices + absolute_indices, + extra_args, + self.num_images, + bwd=True, + ) + if self.loss_callback: + self.loss_callback(loss.item()) + pbar.set_postfix({"loss": f"{loss.item():.4f}", "bucket": bucket_idx}) + + def _train_step_standard_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar): + """Execute one training step in standard (non-bucket, non-multi-res) mode.""" + indicies = torch.randperm(dataset_size)[: self.batch_size].tolist() + batch_latent = torch.stack([latent_image[i] for i in indicies]) + batch_noise = noisegen.generate_noise({"samples": batch_latent}).to( + batch_latent.device + ) + batch_sigmas = self._generate_batch_sigmas(model_wrap, min(self.batch_size, dataset_size), batch_latent.device) + + loss = self.fwd_bwd( + model_wrap, + batch_sigmas, + batch_noise, + batch_latent, + cond, + indicies, + extra_args, + dataset_size, + bwd=True, + ) + if self.loss_callback: + self.loss_callback(loss.item()) + pbar.set_postfix({"loss": f"{loss.item():.4f}"}) + + def _train_step_multires_mode(self, model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar): + """Execute one training step in multi-resolution mode (real_dataset is set).""" + indicies = torch.randperm(dataset_size)[: self.batch_size].tolist() + total_loss = 0 + for index in indicies: + single_latent = self.real_dataset[index].to(latent_image) + batch_noise = noisegen.generate_noise( + {"samples": single_latent} + ).to(single_latent.device) + batch_sigmas = ( + model_wrap.inner_model.model_sampling.percent_to_sigma( + torch.rand((1,)).item() + ) + ) + batch_sigmas = torch.tensor([batch_sigmas]).to(single_latent.device) + loss = self.fwd_bwd( + model_wrap, + batch_sigmas, + batch_noise, + single_latent, + cond, + [index], + extra_args, + dataset_size, + bwd=False, + ) + total_loss += loss + total_loss = total_loss / self.grad_acc / len(indicies) + total_loss.backward() + if self.loss_callback: + self.loss_callback(total_loss.item()) + pbar.set_postfix({"loss": f"{total_loss.item():.4f}"}) + def sample( self, model_wrap, @@ -142,70 +330,18 @@ class TrainSampler(comfy.samplers.Sampler): noisegen = comfy_extras.nodes_custom_sampler.Noise_RandomNoise( self.seed + i * 1000 ) - indicies = torch.randperm(dataset_size)[: self.batch_size].tolist() - if self.real_dataset is None: - batch_latent = torch.stack([latent_image[i] for i in indicies]) - batch_noise = noisegen.generate_noise({"samples": batch_latent}).to( - batch_latent.device - ) - batch_sigmas = [ - model_wrap.inner_model.model_sampling.percent_to_sigma( - torch.rand((1,)).item() - ) - for _ in range(min(self.batch_size, dataset_size)) - ] - batch_sigmas = torch.tensor(batch_sigmas).to(batch_latent.device) - - loss = self.fwd_bwd( - model_wrap, - batch_sigmas, - batch_noise, - batch_latent, - cond, - indicies, - extra_args, - dataset_size, - bwd=True, - ) - if self.loss_callback: - self.loss_callback(loss.item()) - pbar.set_postfix({"loss": f"{loss.item():.4f}"}) + if self.bucket_latents is not None: + self._train_step_bucket_mode(model_wrap, cond, extra_args, noisegen, latent_image, pbar) + elif self.real_dataset is None: + self._train_step_standard_mode(model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar) else: - total_loss = 0 - for index in indicies: - single_latent = self.real_dataset[index].to(latent_image) - batch_noise = noisegen.generate_noise( - {"samples": single_latent} - ).to(single_latent.device) - batch_sigmas = ( - model_wrap.inner_model.model_sampling.percent_to_sigma( - torch.rand((1,)).item() - ) - ) - batch_sigmas = torch.tensor([batch_sigmas]).to(single_latent.device) - loss = self.fwd_bwd( - model_wrap, - batch_sigmas, - batch_noise, - single_latent, - cond, - [index], - extra_args, - dataset_size, - bwd=False, - ) - total_loss += loss - total_loss = total_loss / self.grad_acc / len(indicies) - total_loss.backward() - if self.loss_callback: - self.loss_callback(total_loss.item()) - pbar.set_postfix({"loss": f"{total_loss.item():.4f}"}) + self._train_step_multires_mode(model_wrap, cond, extra_args, noisegen, latent_image, dataset_size, pbar) if (i + 1) % self.grad_acc == 0: self.optimizer.step() self.optimizer.zero_grad() - ui_pbar.update(1) + ui_pbar.update(1) torch.cuda.empty_cache() return torch.zeros_like(latent_image) @@ -283,6 +419,364 @@ def unpatch(m): del m.org_forward +def _process_latents_bucket_mode(latents): + """Process latents for bucket mode training. + + Args: + latents: list[{"samples": tensor}] where each tensor is (Bi, C, Hi, Wi) + + Returns: + list of latent tensors + """ + bucket_latents = [] + for latent_dict in latents: + bucket_latents.append(latent_dict["samples"]) # (Bi, C, Hi, Wi) + return bucket_latents + + +def _process_latents_standard_mode(latents): + """Process latents for standard (non-bucket) mode training. + + Args: + latents: list of latent dicts or single latent dict + + Returns: + Processed latents (tensor or list of tensors) + """ + if len(latents) == 1: + return latents[0]["samples"] # Single latent dict + + latent_list = [] + for latent in latents: + latent = latent["samples"] + bs = latent.shape[0] + if bs != 1: + for sub_latent in latent: + latent_list.append(sub_latent[None]) + else: + latent_list.append(latent) + return latent_list + + +def _process_conditioning(positive): + """Process conditioning - either single list or list of lists. + + Args: + positive: list of conditioning + + Returns: + Flattened conditioning list + """ + if len(positive) == 1: + return positive[0] # Single conditioning list + + # Multiple conditioning lists - flatten + flat_positive = [] + for cond in positive: + if isinstance(cond, list): + flat_positive.extend(cond) + else: + flat_positive.append(cond) + return flat_positive + + +def _prepare_latents_and_count(latents, dtype, bucket_mode): + """Convert latents to dtype and compute image counts. + + Args: + latents: Latents (tensor, list of tensors, or bucket list) + dtype: Target dtype + bucket_mode: Whether bucket mode is enabled + + Returns: + tuple: (processed_latents, num_images, multi_res) + """ + if bucket_mode: + # In bucket mode, latents is list of tensors (Bi, C, Hi, Wi) + latents = [t.to(dtype) for t in latents] + num_buckets = len(latents) + num_images = sum(t.shape[0] for t in latents) + multi_res = False # Not using multi_res path in bucket mode + + logging.info(f"Bucket mode: {num_buckets} buckets, {num_images} total samples") + for i, lat in enumerate(latents): + logging.info(f" Bucket {i}: shape {lat.shape}") + return latents, num_images, multi_res + + # Non-bucket mode + if isinstance(latents, list): + all_shapes = set() + latents = [t.to(dtype) for t in latents] + for latent in latents: + all_shapes.add(latent.shape) + logging.info(f"Latent shapes: {all_shapes}") + if len(all_shapes) > 1: + multi_res = True + else: + multi_res = False + latents = torch.cat(latents, dim=0) + num_images = len(latents) + elif isinstance(latents, torch.Tensor): + latents = latents.to(dtype) + num_images = latents.shape[0] + multi_res = False + else: + logging.error(f"Invalid latents type: {type(latents)}") + num_images = 0 + multi_res = False + + return latents, num_images, multi_res + + +def _validate_and_expand_conditioning(positive, num_images, bucket_mode): + """Validate conditioning count matches image count, expand if needed. + + Args: + positive: Conditioning list + num_images: Number of images + bucket_mode: Whether bucket mode is enabled + + Returns: + Validated/expanded conditioning list + + Raises: + ValueError: If conditioning count doesn't match image count + """ + if bucket_mode: + return positive # Skip validation in bucket mode + + logging.info(f"Total Images: {num_images}, Total Captions: {len(positive)}") + if len(positive) == 1 and num_images > 1: + return positive * num_images + elif len(positive) != num_images: + raise ValueError( + f"Number of positive conditions ({len(positive)}) does not match number of images ({num_images})." + ) + return positive + + +def _load_existing_lora(existing_lora): + """Load existing LoRA weights if provided. + + Args: + existing_lora: LoRA filename or "[None]" + + Returns: + tuple: (existing_weights dict, existing_steps int) + """ + if existing_lora == "[None]": + return {}, 0 + + lora_path = folder_paths.get_full_path_or_raise("loras", existing_lora) + # Extract steps from filename like "trained_lora_10_steps_20250225_203716" + existing_steps = int(existing_lora.split("_steps_")[0].split("_")[-1]) + existing_weights = {} + if lora_path: + existing_weights = comfy.utils.load_torch_file(lora_path) + return existing_weights, existing_steps + + +def _create_weight_adapter( + module, module_name, existing_weights, algorithm, lora_dtype, rank +): + """Create a weight adapter for a module with weight. + + Args: + module: The module to create adapter for + module_name: Name of the module + existing_weights: Dict of existing LoRA weights + algorithm: Algorithm name for new adapters + lora_dtype: dtype for LoRA weights + rank: Rank for new LoRA adapters + + Returns: + tuple: (train_adapter, lora_params dict) + """ + key = f"{module_name}.weight" + shape = module.weight.shape + lora_params = {} + + if len(shape) >= 2: + alpha = float(existing_weights.get(f"{key}.alpha", 1.0)) + dora_scale = existing_weights.get(f"{key}.dora_scale", None) + + # Try to load existing adapter + existing_adapter = None + for adapter_cls in adapters: + existing_adapter = adapter_cls.load( + module_name, existing_weights, alpha, dora_scale + ) + if existing_adapter is not None: + break + + if existing_adapter is None: + adapter_cls = adapter_maps[algorithm] + + if existing_adapter is not None: + train_adapter = existing_adapter.to_train().to(lora_dtype) + else: + # Use LoRA with alpha=1.0 by default + train_adapter = adapter_cls.create_train( + module.weight, rank=rank, alpha=1.0 + ).to(lora_dtype) + + for name, parameter in train_adapter.named_parameters(): + lora_params[f"{module_name}.{name}"] = parameter + + return train_adapter.train().requires_grad_(True), lora_params + else: + # 1D weight - use BiasDiff + diff = torch.nn.Parameter( + torch.zeros(module.weight.shape, dtype=lora_dtype, requires_grad=True) + ) + diff_module = BiasDiff(diff).train().requires_grad_(True) + lora_params[f"{module_name}.diff"] = diff + return diff_module, lora_params + + +def _create_bias_adapter(module, module_name, lora_dtype): + """Create a bias adapter for a module with bias. + + Args: + module: The module with bias + module_name: Name of the module + lora_dtype: dtype for LoRA weights + + Returns: + tuple: (bias_module, lora_params dict) + """ + bias = torch.nn.Parameter( + torch.zeros(module.bias.shape, dtype=lora_dtype, requires_grad=True) + ) + bias_module = BiasDiff(bias).train().requires_grad_(True) + lora_params = {f"{module_name}.diff_b": bias} + return bias_module, lora_params + + +def _setup_lora_adapters(mp, existing_weights, algorithm, lora_dtype, rank): + """Setup all LoRA adapters on the model. + + Args: + mp: Model patcher + existing_weights: Dict of existing LoRA weights + algorithm: Algorithm name for new adapters + lora_dtype: dtype for LoRA weights + rank: Rank for new LoRA adapters + + Returns: + tuple: (lora_sd dict, all_weight_adapters list) + """ + lora_sd = {} + all_weight_adapters = [] + + for n, m in mp.model.named_modules(): + if hasattr(m, "weight_function"): + if m.weight is not None: + adapter, params = _create_weight_adapter( + m, n, existing_weights, algorithm, lora_dtype, rank + ) + lora_sd.update(params) + key = f"{n}.weight" + mp.add_weight_wrapper(key, adapter) + all_weight_adapters.append(adapter) + + if hasattr(m, "bias") and m.bias is not None: + bias_adapter, bias_params = _create_bias_adapter(m, n, lora_dtype) + lora_sd.update(bias_params) + key = f"{n}.bias" + mp.add_weight_wrapper(key, bias_adapter) + all_weight_adapters.append(bias_adapter) + + return lora_sd, all_weight_adapters + + +def _create_optimizer(optimizer_name, parameters, learning_rate): + """Create optimizer based on name. + + Args: + optimizer_name: Name of optimizer ("Adam", "AdamW", "SGD", "RMSprop") + parameters: Parameters to optimize + learning_rate: Learning rate + + Returns: + Optimizer instance + """ + if optimizer_name == "Adam": + return torch.optim.Adam(parameters, lr=learning_rate) + elif optimizer_name == "AdamW": + return torch.optim.AdamW(parameters, lr=learning_rate) + elif optimizer_name == "SGD": + return torch.optim.SGD(parameters, lr=learning_rate) + elif optimizer_name == "RMSprop": + return torch.optim.RMSprop(parameters, lr=learning_rate) + + +def _create_loss_function(loss_function_name): + """Create loss function based on name. + + Args: + loss_function_name: Name of loss function ("MSE", "L1", "Huber", "SmoothL1") + + Returns: + Loss function instance + """ + if loss_function_name == "MSE": + return torch.nn.MSELoss() + elif loss_function_name == "L1": + return torch.nn.L1Loss() + elif loss_function_name == "Huber": + return torch.nn.HuberLoss() + elif loss_function_name == "SmoothL1": + return torch.nn.SmoothL1Loss() + + +def _run_training_loop( + guider, train_sampler, latents, num_images, seed, bucket_mode, multi_res +): + """Execute the training loop. + + Args: + guider: The guider object + train_sampler: The training sampler + latents: Latent tensors + num_images: Number of images + seed: Random seed + bucket_mode: Whether bucket mode is enabled + multi_res: Whether multi-resolution mode is enabled + """ + sigmas = torch.tensor(range(num_images)) + noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed) + + if bucket_mode: + # Use first bucket's first latent as dummy for guider + dummy_latent = latents[0][:1].repeat(num_images, 1, 1, 1) + guider.sample( + noise.generate_noise({"samples": dummy_latent}), + dummy_latent, + train_sampler, + sigmas, + seed=noise.seed, + ) + elif multi_res: + # use first latent as dummy latent if multi_res + latents = latents[0].repeat(num_images, 1, 1, 1) + guider.sample( + noise.generate_noise({"samples": latents}), + latents, + train_sampler, + sigmas, + seed=noise.seed, + ) + else: + guider.sample( + noise.generate_noise({"samples": latents}), + latents, + train_sampler, + sigmas, + seed=noise.seed, + ) + + class TrainLoraNode(io.ComfyNode): @classmethod def define_schema(cls): @@ -385,6 +879,11 @@ class TrainLoraNode(io.ComfyNode): default="[None]", tooltip="The existing LoRA to append to. Set to None for new LoRA.", ), + io.Boolean.Input( + "bucket_mode", + default=False, + tooltip="Enable resolution bucket mode. When enabled, expects pre-bucketed latents from ResolutionBucket node.", + ), ], outputs=[ io.Model.Output( @@ -419,6 +918,7 @@ class TrainLoraNode(io.ComfyNode): algorithm, gradient_checkpointing, existing_lora, + bucket_mode, ): # Extract scalars from lists (due to is_input_list=True) model = model[0] @@ -427,215 +927,125 @@ class TrainLoraNode(io.ComfyNode): grad_accumulation_steps = grad_accumulation_steps[0] learning_rate = learning_rate[0] rank = rank[0] - optimizer = optimizer[0] - loss_function = loss_function[0] + optimizer_name = optimizer[0] + loss_function_name = loss_function[0] seed = seed[0] training_dtype = training_dtype[0] lora_dtype = lora_dtype[0] algorithm = algorithm[0] gradient_checkpointing = gradient_checkpointing[0] existing_lora = existing_lora[0] + bucket_mode = bucket_mode[0] - # Handle latents - either single dict or list of dicts - if len(latents) == 1: - latents = latents[0]["samples"] # Single latent dict + # Process latents based on mode + if bucket_mode: + latents = _process_latents_bucket_mode(latents) else: - latent_list = [] - for latent in latents: - latent = latent["samples"] - bs = latent.shape[0] - if bs != 1: - for sub_latent in latent: - latent_list.append(sub_latent[None]) - else: - latent_list.append(latent) - latents = latent_list + latents = _process_latents_standard_mode(latents) - # Handle conditioning - either single list or list of lists - if len(positive) == 1: - positive = positive[0] # Single conditioning list - else: - # Multiple conditioning lists - flatten - flat_positive = [] - for cond in positive: - if isinstance(cond, list): - flat_positive.extend(cond) - else: - flat_positive.append(cond) - positive = flat_positive + # Process conditioning + positive = _process_conditioning(positive) + # Setup model and dtype mp = model.clone() dtype = node_helpers.string_to_torch_dtype(training_dtype) lora_dtype = node_helpers.string_to_torch_dtype(lora_dtype) mp.set_model_compute_dtype(dtype) - # latents here can be list of different size latent or one large batch - if isinstance(latents, list): - all_shapes = set() - latents = [t.to(dtype) for t in latents] - for latent in latents: - all_shapes.add(latent.shape) - logging.info(f"Latent shapes: {all_shapes}") - if len(all_shapes) > 1: - multi_res = True - else: - multi_res = False - latents = torch.cat(latents, dim=0) - num_images = len(latents) - elif isinstance(latents, torch.Tensor): - latents = latents.to(dtype) - num_images = latents.shape[0] - else: - logging.error(f"Invalid latents type: {type(latents)}") + # Prepare latents and compute counts + latents, num_images, multi_res = _prepare_latents_and_count( + latents, dtype, bucket_mode + ) - logging.info(f"Total Images: {num_images}, Total Captions: {len(positive)}") - if len(positive) == 1 and num_images > 1: - positive = positive * num_images - elif len(positive) != num_images: - raise ValueError( - f"Number of positive conditions ({len(positive)}) does not match number of images ({num_images})." - ) + # Validate and expand conditioning + positive = _validate_and_expand_conditioning(positive, num_images, bucket_mode) with torch.inference_mode(False): - lora_sd = {} - generator = torch.Generator() - generator.manual_seed(seed) + # Setup models for training + mp.model.requires_grad_(False) # Load existing LoRA weights if provided - existing_weights = {} - existing_steps = 0 - if existing_lora != "[None]": - lora_path = folder_paths.get_full_path_or_raise("loras", existing_lora) - # Extract steps from filename like "trained_lora_10_steps_20250225_203716" - existing_steps = int(existing_lora.split("_steps_")[0].split("_")[-1]) - if lora_path: - existing_weights = comfy.utils.load_torch_file(lora_path) + existing_weights, existing_steps = _load_existing_lora(existing_lora) - all_weight_adapters = [] - for n, m in mp.model.named_modules(): - if hasattr(m, "weight_function"): - if m.weight is not None: - key = "{}.weight".format(n) - shape = m.weight.shape - if len(shape) >= 2: - alpha = float(existing_weights.get(f"{key}.alpha", 1.0)) - dora_scale = existing_weights.get(f"{key}.dora_scale", None) - for adapter_cls in adapters: - existing_adapter = adapter_cls.load( - n, existing_weights, alpha, dora_scale - ) - if existing_adapter is not None: - break - else: - existing_adapter = None - adapter_cls = adapter_maps[algorithm] + # Setup LoRA adapters + lora_sd, all_weight_adapters = _setup_lora_adapters( + mp, existing_weights, algorithm, lora_dtype, rank + ) - if existing_adapter is not None: - train_adapter = existing_adapter.to_train().to( - lora_dtype - ) - else: - # Use LoRA with alpha=1.0 by default - train_adapter = adapter_cls.create_train( - m.weight, rank=rank, alpha=1.0 - ).to(lora_dtype) - for name, parameter in train_adapter.named_parameters(): - lora_sd[f"{n}.{name}"] = parameter + # Create optimizer and loss function + optimizer = _create_optimizer( + optimizer_name, lora_sd.values(), learning_rate + ) + criterion = _create_loss_function(loss_function_name) - mp.add_weight_wrapper(key, train_adapter) - all_weight_adapters.append(train_adapter) - else: - diff = torch.nn.Parameter( - torch.zeros( - m.weight.shape, dtype=lora_dtype, requires_grad=True - ) - ) - diff_module = BiasDiff(diff) - mp.add_weight_wrapper(key, BiasDiff(diff)) - all_weight_adapters.append(diff_module) - lora_sd["{}.diff".format(n)] = diff - if hasattr(m, "bias") and m.bias is not None: - key = "{}.bias".format(n) - bias = torch.nn.Parameter( - torch.zeros( - m.bias.shape, dtype=lora_dtype, requires_grad=True - ) - ) - bias_module = BiasDiff(bias) - lora_sd["{}.diff_b".format(n)] = bias - mp.add_weight_wrapper(key, BiasDiff(bias)) - all_weight_adapters.append(bias_module) - - if optimizer == "Adam": - optimizer = torch.optim.Adam(lora_sd.values(), lr=learning_rate) - elif optimizer == "AdamW": - optimizer = torch.optim.AdamW(lora_sd.values(), lr=learning_rate) - elif optimizer == "SGD": - optimizer = torch.optim.SGD(lora_sd.values(), lr=learning_rate) - elif optimizer == "RMSprop": - optimizer = torch.optim.RMSprop(lora_sd.values(), lr=learning_rate) - - # Setup loss function based on selection - if loss_function == "MSE": - criterion = torch.nn.MSELoss() - elif loss_function == "L1": - criterion = torch.nn.L1Loss() - elif loss_function == "Huber": - criterion = torch.nn.HuberLoss() - elif loss_function == "SmoothL1": - criterion = torch.nn.SmoothL1Loss() - - # setup models + # Setup gradient checkpointing if gradient_checkpointing: for m in find_all_highest_child_module_with_forward( mp.model.diffusion_model ): patch(m) - mp.model.requires_grad_(False) + + torch.cuda.empty_cache() + # With force_full_load=False we should be able to have offloading + # But for offloading in training we need custom AutoGrad hooks for fwd/bwd comfy.model_management.load_models_gpu( [mp], memory_required=1e20, force_full_load=True ) + torch.cuda.empty_cache() - # Setup sampler and guider like in test script + # Setup loss tracking loss_map = {"loss": []} def loss_callback(loss): loss_map["loss"].append(loss) - train_sampler = TrainSampler( - criterion, - optimizer, - loss_callback=loss_callback, - batch_size=batch_size, - grad_acc=grad_accumulation_steps, - total_steps=steps * grad_accumulation_steps, - seed=seed, - training_dtype=dtype, - real_dataset=latents if multi_res else None, - ) - guider = comfy_extras.nodes_custom_sampler.Guider_Basic(mp) - guider.set_conds(positive) # Set conditioning from input + # Create sampler + if bucket_mode: + train_sampler = TrainSampler( + criterion, + optimizer, + loss_callback=loss_callback, + batch_size=batch_size, + grad_acc=grad_accumulation_steps, + total_steps=steps * grad_accumulation_steps, + seed=seed, + training_dtype=dtype, + bucket_latents=latents, + ) + else: + train_sampler = TrainSampler( + criterion, + optimizer, + loss_callback=loss_callback, + batch_size=batch_size, + grad_acc=grad_accumulation_steps, + total_steps=steps * grad_accumulation_steps, + seed=seed, + training_dtype=dtype, + real_dataset=latents if multi_res else None, + ) - # Training loop + # Setup guider + guider = TrainGuider(mp) + guider.set_conds(positive) + + # Run training loop try: - # Generate dummy sigmas and noise - sigmas = torch.tensor(range(num_images)) - noise = comfy_extras.nodes_custom_sampler.Noise_RandomNoise(seed) - if multi_res: - # use first latent as dummy latent if multi_res - latents = latents[0].repeat((num_images,) + ((1,) * (latents[0].ndim - 1))) - guider.sample( - noise.generate_noise({"samples": latents}), - latents, + _run_training_loop( + guider, train_sampler, - sigmas, - seed=noise.seed, + latents, + num_images, + seed, + bucket_mode, + multi_res, ) finally: for m in mp.model.modules(): unpatch(m) del train_sampler, optimizer + # Finalize adapters for adapter in all_weight_adapters: adapter.requires_grad_(False) @@ -645,7 +1055,7 @@ class TrainLoraNode(io.ComfyNode): return io.NodeOutput(mp, lora_sd, loss_map, steps + existing_steps) -class LoraModelLoader(io.ComfyNode): +class LoraModelLoader(io.ComfyNode):# @classmethod def define_schema(cls): return io.Schema( From bf7dc63bd6acdedca67598856e05080d90eeec90 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 17 Dec 2025 20:29:32 -0800 Subject: [PATCH 189/271] skip_load_model -> force_full_load (#11390) This should be a bit more clear and less prone to potential breakage if the logic of the load models changes a bit. --- comfy/sampler_helpers.py | 9 ++++----- comfy_extras/nodes_train.py | 2 +- 2 files changed, 5 insertions(+), 6 deletions(-) diff --git a/comfy/sampler_helpers.py b/comfy/sampler_helpers.py index e158e8a84..9134e6d71 100644 --- a/comfy/sampler_helpers.py +++ b/comfy/sampler_helpers.py @@ -122,21 +122,20 @@ def estimate_memory(model, noise_shape, conds): minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min) return memory_required, minimum_memory_required -def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, skip_load_model=False): +def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False): executor = comfy.patcher_extension.WrapperExecutor.new_executor( _prepare_sampling, comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True) ) - return executor.execute(model, noise_shape, conds, model_options=model_options, skip_load_model=skip_load_model) + return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load) -def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, skip_load_model=False): +def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False): real_model: BaseModel = None models, inference_memory = get_additional_models(conds, model.model_dtype()) models += get_additional_models_from_model_options(model_options) models += model.get_nested_additional_models() # TODO: does this require inference_memory update? memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds) - models_list = [model] if not skip_load_model else [] - comfy.model_management.load_models_gpu(models_list + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory) + comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory, force_full_load=force_full_load) real_model = model.model return real_model, conds, models diff --git a/comfy_extras/nodes_train.py b/comfy_extras/nodes_train.py index 88bc8c8e8..364804205 100644 --- a/comfy_extras/nodes_train.py +++ b/comfy_extras/nodes_train.py @@ -44,7 +44,7 @@ class TrainGuider(comfy_extras.nodes_custom_sampler.Guider_Basic): noise.shape, self.conds, self.model_options, - skip_load_model=True, # skip load model as we manage it in TrainLoraNode.execute() + force_full_load=True, # mirror behavior in TrainLoraNode.execute() to keep model loaded ) ) device = self.model_patcher.load_device From 1ca89b810e921efce95fb4d254a8c6c93180450b Mon Sep 17 00:00:00 2001 From: ric-yu Date: Wed, 17 Dec 2025 21:44:31 -0800 Subject: [PATCH 190/271] Add unified jobs API with /api/jobs endpoints (#11054) * feat: create a /jobs api to return queue and history jobs * update unused vars * include priority * create jobs helper file * fix ruff * update how we set error message * include execution error in both responses * rename error -> failed, fix output shape * re-use queue and history functions * set workflow id * allow srot by exec duration * fix tests * send priority and remove error msg * use ws messages to get start and end times * revert main.py fully * refactor: move all /jobs business logic to jobs.py * fix failing test * remove some tests * fix non dict nodes * address comments * filter by workflow id and remove null fields * add clearer typing - remove get("..") or .. * refactor query params to top get_job(s) doc, add remove_sensitive_from_queue * add brief comment explaining why we skip animated * comment that format field is for frontend backward compatibility * fix whitespace --------- Co-authored-by: Jedrzej Kosinski Co-authored-by: guill --- comfy_execution/jobs.py | 291 ++++++++++++++++++++++++ server.py | 135 ++++++++++- tests/execution/test_execution.py | 134 +++++++++++ tests/execution/test_jobs.py | 361 ++++++++++++++++++++++++++++++ 4 files changed, 918 insertions(+), 3 deletions(-) create mode 100644 comfy_execution/jobs.py create mode 100644 tests/execution/test_jobs.py diff --git a/comfy_execution/jobs.py b/comfy_execution/jobs.py new file mode 100644 index 000000000..59fb49357 --- /dev/null +++ b/comfy_execution/jobs.py @@ -0,0 +1,291 @@ +""" +Job utilities for the /api/jobs endpoint. +Provides normalization and helper functions for job status tracking. +""" + +from typing import Optional + +from comfy_api.internal import prune_dict + + +class JobStatus: + """Job status constants.""" + PENDING = 'pending' + IN_PROGRESS = 'in_progress' + COMPLETED = 'completed' + FAILED = 'failed' + + ALL = [PENDING, IN_PROGRESS, COMPLETED, FAILED] + + +# Media types that can be previewed in the frontend +PREVIEWABLE_MEDIA_TYPES = frozenset({'images', 'video', 'audio'}) + +# 3D file extensions for preview fallback (no dedicated media_type exists) +THREE_D_EXTENSIONS = frozenset({'.obj', '.fbx', '.gltf', '.glb'}) + + +def _extract_job_metadata(extra_data: dict) -> tuple[Optional[int], Optional[str]]: + """Extract create_time and workflow_id from extra_data. + + Returns: + tuple: (create_time, workflow_id) + """ + create_time = extra_data.get('create_time') + extra_pnginfo = extra_data.get('extra_pnginfo', {}) + workflow_id = extra_pnginfo.get('workflow', {}).get('id') + return create_time, workflow_id + + +def is_previewable(media_type: str, item: dict) -> bool: + """ + Check if an output item is previewable. + Matches frontend logic in ComfyUI_frontend/src/stores/queueStore.ts + Maintains backwards compatibility with existing logic. + + Priority: + 1. media_type is 'images', 'video', or 'audio' + 2. format field starts with 'video/' or 'audio/' + 3. filename has a 3D extension (.obj, .fbx, .gltf, .glb) + """ + if media_type in PREVIEWABLE_MEDIA_TYPES: + return True + + # Check format field (MIME type). + # Maintains backwards compatibility with how custom node outputs are handled in the frontend. + fmt = item.get('format', '') + if fmt and (fmt.startswith('video/') or fmt.startswith('audio/')): + return True + + # Check for 3D files by extension + filename = item.get('filename', '').lower() + if any(filename.endswith(ext) for ext in THREE_D_EXTENSIONS): + return True + + return False + + +def normalize_queue_item(item: tuple, status: str) -> dict: + """Convert queue item tuple to unified job dict. + + Expects item with sensitive data already removed (5 elements). + """ + priority, prompt_id, _, extra_data, _ = item + create_time, workflow_id = _extract_job_metadata(extra_data) + + return prune_dict({ + 'id': prompt_id, + 'status': status, + 'priority': priority, + 'create_time': create_time, + 'outputs_count': 0, + 'workflow_id': workflow_id, + }) + + +def normalize_history_item(prompt_id: str, history_item: dict, include_outputs: bool = False) -> dict: + """Convert history item dict to unified job dict. + + History items have sensitive data already removed (prompt tuple has 5 elements). + """ + prompt_tuple = history_item['prompt'] + priority, _, prompt, extra_data, _ = prompt_tuple + create_time, workflow_id = _extract_job_metadata(extra_data) + + status_info = history_item.get('status', {}) + status_str = status_info.get('status_str') if status_info else None + if status_str == 'success': + status = JobStatus.COMPLETED + elif status_str == 'error': + status = JobStatus.FAILED + else: + status = JobStatus.COMPLETED + + outputs = history_item.get('outputs', {}) + outputs_count, preview_output = get_outputs_summary(outputs) + + execution_error = None + execution_start_time = None + execution_end_time = None + if status_info: + messages = status_info.get('messages', []) + for entry in messages: + if isinstance(entry, (list, tuple)) and len(entry) >= 2: + event_name, event_data = entry[0], entry[1] + if isinstance(event_data, dict): + if event_name == 'execution_start': + execution_start_time = event_data.get('timestamp') + elif event_name in ('execution_success', 'execution_error', 'execution_interrupted'): + execution_end_time = event_data.get('timestamp') + if event_name == 'execution_error': + execution_error = event_data + + job = prune_dict({ + 'id': prompt_id, + 'status': status, + 'priority': priority, + 'create_time': create_time, + 'execution_start_time': execution_start_time, + 'execution_end_time': execution_end_time, + 'execution_error': execution_error, + 'outputs_count': outputs_count, + 'preview_output': preview_output, + 'workflow_id': workflow_id, + }) + + if include_outputs: + job['outputs'] = outputs + job['execution_status'] = status_info + job['workflow'] = { + 'prompt': prompt, + 'extra_data': extra_data, + } + + return job + + +def get_outputs_summary(outputs: dict) -> tuple[int, Optional[dict]]: + """ + Count outputs and find preview in a single pass. + Returns (outputs_count, preview_output). + + Preview priority (matching frontend): + 1. type="output" with previewable media + 2. Any previewable media + """ + count = 0 + preview_output = None + fallback_preview = None + + for node_id, node_outputs in outputs.items(): + if not isinstance(node_outputs, dict): + continue + for media_type, items in node_outputs.items(): + # 'animated' is a boolean flag, not actual output items + if media_type == 'animated' or not isinstance(items, list): + continue + + for item in items: + if not isinstance(item, dict): + continue + count += 1 + + if preview_output is None and is_previewable(media_type, item): + enriched = { + **item, + 'nodeId': node_id, + 'mediaType': media_type + } + if item.get('type') == 'output': + preview_output = enriched + elif fallback_preview is None: + fallback_preview = enriched + + return count, preview_output or fallback_preview + + +def apply_sorting(jobs: list[dict], sort_by: str, sort_order: str) -> list[dict]: + """Sort jobs list by specified field and order.""" + reverse = (sort_order == 'desc') + + if sort_by == 'execution_duration': + def get_sort_key(job): + start = job.get('execution_start_time', 0) + end = job.get('execution_end_time', 0) + return end - start if end and start else 0 + else: + def get_sort_key(job): + return job.get('create_time', 0) + + return sorted(jobs, key=get_sort_key, reverse=reverse) + + +def get_job(prompt_id: str, running: list, queued: list, history: dict) -> Optional[dict]: + """ + Get a single job by prompt_id from history or queue. + + Args: + prompt_id: The prompt ID to look up + running: List of currently running queue items + queued: List of pending queue items + history: Dict of history items keyed by prompt_id + + Returns: + Job dict with full details, or None if not found + """ + if prompt_id in history: + return normalize_history_item(prompt_id, history[prompt_id], include_outputs=True) + + for item in running: + if item[1] == prompt_id: + return normalize_queue_item(item, JobStatus.IN_PROGRESS) + + for item in queued: + if item[1] == prompt_id: + return normalize_queue_item(item, JobStatus.PENDING) + + return None + + +def get_all_jobs( + running: list, + queued: list, + history: dict, + status_filter: Optional[list[str]] = None, + workflow_id: Optional[str] = None, + sort_by: str = "created_at", + sort_order: str = "desc", + limit: Optional[int] = None, + offset: int = 0 +) -> tuple[list[dict], int]: + """ + Get all jobs (running, pending, completed) with filtering and sorting. + + Args: + running: List of currently running queue items + queued: List of pending queue items + history: Dict of history items keyed by prompt_id + status_filter: List of statuses to include (from JobStatus.ALL) + workflow_id: Filter by workflow ID + sort_by: Field to sort by ('created_at', 'execution_duration') + sort_order: 'asc' or 'desc' + limit: Maximum number of items to return + offset: Number of items to skip + + Returns: + tuple: (jobs_list, total_count) + """ + jobs = [] + + if status_filter is None: + status_filter = JobStatus.ALL + + if JobStatus.IN_PROGRESS in status_filter: + for item in running: + jobs.append(normalize_queue_item(item, JobStatus.IN_PROGRESS)) + + if JobStatus.PENDING in status_filter: + for item in queued: + jobs.append(normalize_queue_item(item, JobStatus.PENDING)) + + include_completed = JobStatus.COMPLETED in status_filter + include_failed = JobStatus.FAILED in status_filter + if include_completed or include_failed: + for prompt_id, history_item in history.items(): + is_failed = history_item.get('status', {}).get('status_str') == 'error' + if (is_failed and include_failed) or (not is_failed and include_completed): + jobs.append(normalize_history_item(prompt_id, history_item)) + + if workflow_id: + jobs = [j for j in jobs if j.get('workflow_id') == workflow_id] + + jobs = apply_sorting(jobs, sort_by, sort_order) + + total_count = len(jobs) + + if offset > 0: + jobs = jobs[offset:] + if limit is not None: + jobs = jobs[:limit] + + return (jobs, total_count) diff --git a/server.py b/server.py index ac4f42222..c27f8be7d 100644 --- a/server.py +++ b/server.py @@ -7,6 +7,7 @@ import time import nodes import folder_paths import execution +from comfy_execution.jobs import JobStatus, get_job, get_all_jobs import uuid import urllib import json @@ -47,6 +48,12 @@ from middleware.cache_middleware import cache_control if args.enable_manager: import comfyui_manager + +def _remove_sensitive_from_queue(queue: list) -> list: + """Remove sensitive data (index 5) from queue item tuples.""" + return [item[:5] for item in queue] + + async def send_socket_catch_exception(function, message): try: await function(message) @@ -694,6 +701,129 @@ class PromptServer(): out[node_class] = node_info(node_class) return web.json_response(out) + @routes.get("/api/jobs") + async def get_jobs(request): + """List all jobs with filtering, sorting, and pagination. + + Query parameters: + status: Filter by status (comma-separated): pending, in_progress, completed, failed + workflow_id: Filter by workflow ID + sort_by: Sort field: created_at (default), execution_duration + sort_order: Sort direction: asc, desc (default) + limit: Max items to return (positive integer) + offset: Items to skip (non-negative integer, default 0) + """ + query = request.rel_url.query + + status_param = query.get('status') + workflow_id = query.get('workflow_id') + sort_by = query.get('sort_by', 'created_at').lower() + sort_order = query.get('sort_order', 'desc').lower() + + status_filter = None + if status_param: + status_filter = [s.strip().lower() for s in status_param.split(',') if s.strip()] + invalid_statuses = [s for s in status_filter if s not in JobStatus.ALL] + if invalid_statuses: + return web.json_response( + {"error": f"Invalid status value(s): {', '.join(invalid_statuses)}. Valid values: {', '.join(JobStatus.ALL)}"}, + status=400 + ) + + if sort_by not in {'created_at', 'execution_duration'}: + return web.json_response( + {"error": "sort_by must be 'created_at' or 'execution_duration'"}, + status=400 + ) + + if sort_order not in {'asc', 'desc'}: + return web.json_response( + {"error": "sort_order must be 'asc' or 'desc'"}, + status=400 + ) + + limit = None + + # If limit is provided, validate that it is a positive integer, else continue without a limit + if 'limit' in query: + try: + limit = int(query.get('limit')) + if limit <= 0: + return web.json_response( + {"error": "limit must be a positive integer"}, + status=400 + ) + except (ValueError, TypeError): + return web.json_response( + {"error": "limit must be an integer"}, + status=400 + ) + + offset = 0 + if 'offset' in query: + try: + offset = int(query.get('offset')) + if offset < 0: + offset = 0 + except (ValueError, TypeError): + return web.json_response( + {"error": "offset must be an integer"}, + status=400 + ) + + running, queued = self.prompt_queue.get_current_queue_volatile() + history = self.prompt_queue.get_history() + + running = _remove_sensitive_from_queue(running) + queued = _remove_sensitive_from_queue(queued) + + jobs, total = get_all_jobs( + running, queued, history, + status_filter=status_filter, + workflow_id=workflow_id, + sort_by=sort_by, + sort_order=sort_order, + limit=limit, + offset=offset + ) + + has_more = (offset + len(jobs)) < total + + return web.json_response({ + 'jobs': jobs, + 'pagination': { + 'offset': offset, + 'limit': limit, + 'total': total, + 'has_more': has_more + } + }) + + @routes.get("/api/jobs/{job_id}") + async def get_job_by_id(request): + """Get a single job by ID.""" + job_id = request.match_info.get("job_id", None) + if not job_id: + return web.json_response( + {"error": "job_id is required"}, + status=400 + ) + + running, queued = self.prompt_queue.get_current_queue_volatile() + history = self.prompt_queue.get_history(prompt_id=job_id) + + running = _remove_sensitive_from_queue(running) + queued = _remove_sensitive_from_queue(queued) + + job = get_job(job_id, running, queued, history) + if job is None: + return web.json_response( + {"error": "Job not found"}, + status=404 + ) + + return web.json_response(job) + @routes.get("/history") async def get_history(request): max_items = request.rel_url.query.get("max_items", None) @@ -717,9 +847,8 @@ class PromptServer(): async def get_queue(request): queue_info = {} current_queue = self.prompt_queue.get_current_queue_volatile() - remove_sensitive = lambda queue: [x[:5] for x in queue] - queue_info['queue_running'] = remove_sensitive(current_queue[0]) - queue_info['queue_pending'] = remove_sensitive(current_queue[1]) + queue_info['queue_running'] = _remove_sensitive_from_queue(current_queue[0]) + queue_info['queue_pending'] = _remove_sensitive_from_queue(current_queue[1]) return web.json_response(queue_info) @routes.post("/prompt") diff --git a/tests/execution/test_execution.py b/tests/execution/test_execution.py index ace0d2279..f73ca7e3c 100644 --- a/tests/execution/test_execution.py +++ b/tests/execution/test_execution.py @@ -99,6 +99,37 @@ class ComfyClient: with urllib.request.urlopen(url) as response: return json.loads(response.read()) + def get_jobs(self, status=None, limit=None, offset=None, sort_by=None, sort_order=None): + url = "http://{}/api/jobs".format(self.server_address) + params = {} + if status is not None: + params["status"] = status + if limit is not None: + params["limit"] = limit + if offset is not None: + params["offset"] = offset + if sort_by is not None: + params["sort_by"] = sort_by + if sort_order is not None: + params["sort_order"] = sort_order + + if params: + url_values = urllib.parse.urlencode(params) + url = "{}?{}".format(url, url_values) + + with urllib.request.urlopen(url) as response: + return json.loads(response.read()) + + def get_job(self, job_id): + url = "http://{}/api/jobs/{}".format(self.server_address, job_id) + try: + with urllib.request.urlopen(url) as response: + return json.loads(response.read()) + except urllib.error.HTTPError as e: + if e.code == 404: + return None + raise + def set_test_name(self, name): self.test_name = name @@ -877,3 +908,106 @@ class TestExecution: result = client.get_all_history(max_items=5, offset=len(all_history) - 1) assert len(result) <= 1, "Should return at most 1 item when offset is near end" + + # Jobs API tests + def test_jobs_api_job_structure( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test that job objects have required fields""" + self._create_history_item(client, builder) + + jobs_response = client.get_jobs(status="completed", limit=1) + assert len(jobs_response["jobs"]) > 0, "Should have at least one job" + + job = jobs_response["jobs"][0] + assert "id" in job, "Job should have id" + assert "status" in job, "Job should have status" + assert "create_time" in job, "Job should have create_time" + assert "outputs_count" in job, "Job should have outputs_count" + assert "preview_output" in job, "Job should have preview_output" + + def test_jobs_api_preview_output_structure( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test that preview_output has correct structure""" + self._create_history_item(client, builder) + + jobs_response = client.get_jobs(status="completed", limit=1) + job = jobs_response["jobs"][0] + + if job["preview_output"] is not None: + preview = job["preview_output"] + assert "filename" in preview, "Preview should have filename" + assert "nodeId" in preview, "Preview should have nodeId" + assert "mediaType" in preview, "Preview should have mediaType" + + def test_jobs_api_pagination( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test jobs API pagination""" + for _ in range(5): + self._create_history_item(client, builder) + + first_page = client.get_jobs(limit=2, offset=0) + second_page = client.get_jobs(limit=2, offset=2) + + assert len(first_page["jobs"]) <= 2, "First page should have at most 2 jobs" + assert len(second_page["jobs"]) <= 2, "Second page should have at most 2 jobs" + + first_ids = {j["id"] for j in first_page["jobs"]} + second_ids = {j["id"] for j in second_page["jobs"]} + assert first_ids.isdisjoint(second_ids), "Pages should have different jobs" + + def test_jobs_api_sorting( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test jobs API sorting""" + for _ in range(3): + self._create_history_item(client, builder) + + desc_jobs = client.get_jobs(sort_order="desc") + asc_jobs = client.get_jobs(sort_order="asc") + + if len(desc_jobs["jobs"]) >= 2: + desc_times = [j["create_time"] for j in desc_jobs["jobs"] if j["create_time"]] + asc_times = [j["create_time"] for j in asc_jobs["jobs"] if j["create_time"]] + if len(desc_times) >= 2: + assert desc_times == sorted(desc_times, reverse=True), "Desc should be newest first" + if len(asc_times) >= 2: + assert asc_times == sorted(asc_times), "Asc should be oldest first" + + def test_jobs_api_status_filter( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test jobs API status filtering""" + self._create_history_item(client, builder) + + completed_jobs = client.get_jobs(status="completed") + assert len(completed_jobs["jobs"]) > 0, "Should have completed jobs from history" + + for job in completed_jobs["jobs"]: + assert job["status"] == "completed", "Should only return completed jobs" + + # Pending jobs are transient - just verify filter doesn't error + pending_jobs = client.get_jobs(status="pending") + for job in pending_jobs["jobs"]: + assert job["status"] == "pending", "Should only return pending jobs" + + def test_get_job_by_id( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test getting a single job by ID""" + result = self._create_history_item(client, builder) + prompt_id = result.get_prompt_id() + + job = client.get_job(prompt_id) + assert job is not None, "Should find the job" + assert job["id"] == prompt_id, "Job ID should match" + assert "outputs" in job, "Single job should include outputs" + + def test_get_job_not_found( + self, client: ComfyClient, builder: GraphBuilder + ): + """Test getting a non-existent job returns 404""" + job = client.get_job("nonexistent-job-id") + assert job is None, "Non-existent job should return None" diff --git a/tests/execution/test_jobs.py b/tests/execution/test_jobs.py new file mode 100644 index 000000000..918c8080a --- /dev/null +++ b/tests/execution/test_jobs.py @@ -0,0 +1,361 @@ +"""Unit tests for comfy_execution/jobs.py""" + +from comfy_execution.jobs import ( + JobStatus, + is_previewable, + normalize_queue_item, + normalize_history_item, + get_outputs_summary, + apply_sorting, +) + + +class TestJobStatus: + """Test JobStatus constants.""" + + def test_status_values(self): + """Status constants should have expected string values.""" + assert JobStatus.PENDING == 'pending' + assert JobStatus.IN_PROGRESS == 'in_progress' + assert JobStatus.COMPLETED == 'completed' + assert JobStatus.FAILED == 'failed' + + def test_all_contains_all_statuses(self): + """ALL should contain all status values.""" + assert JobStatus.PENDING in JobStatus.ALL + assert JobStatus.IN_PROGRESS in JobStatus.ALL + assert JobStatus.COMPLETED in JobStatus.ALL + assert JobStatus.FAILED in JobStatus.ALL + assert len(JobStatus.ALL) == 4 + + +class TestIsPreviewable: + """Unit tests for is_previewable()""" + + def test_previewable_media_types(self): + """Images, video, audio media types should be previewable.""" + for media_type in ['images', 'video', 'audio']: + assert is_previewable(media_type, {}) is True + + def test_non_previewable_media_types(self): + """Other media types should not be previewable.""" + for media_type in ['latents', 'text', 'metadata', 'files']: + assert is_previewable(media_type, {}) is False + + def test_3d_extensions_previewable(self): + """3D file extensions should be previewable regardless of media_type.""" + for ext in ['.obj', '.fbx', '.gltf', '.glb']: + item = {'filename': f'model{ext}'} + assert is_previewable('files', item) is True + + def test_3d_extensions_case_insensitive(self): + """3D extension check should be case insensitive.""" + item = {'filename': 'MODEL.GLB'} + assert is_previewable('files', item) is True + + def test_video_format_previewable(self): + """Items with video/ format should be previewable.""" + item = {'format': 'video/mp4'} + assert is_previewable('files', item) is True + + def test_audio_format_previewable(self): + """Items with audio/ format should be previewable.""" + item = {'format': 'audio/wav'} + assert is_previewable('files', item) is True + + def test_other_format_not_previewable(self): + """Items with other format should not be previewable.""" + item = {'format': 'application/json'} + assert is_previewable('files', item) is False + + +class TestGetOutputsSummary: + """Unit tests for get_outputs_summary()""" + + def test_empty_outputs(self): + """Empty outputs should return 0 count and None preview.""" + count, preview = get_outputs_summary({}) + assert count == 0 + assert preview is None + + def test_counts_across_multiple_nodes(self): + """Outputs from multiple nodes should all be counted.""" + outputs = { + 'node1': {'images': [{'filename': 'a.png', 'type': 'output'}]}, + 'node2': {'images': [{'filename': 'b.png', 'type': 'output'}]}, + 'node3': {'images': [ + {'filename': 'c.png', 'type': 'output'}, + {'filename': 'd.png', 'type': 'output'} + ]} + } + count, preview = get_outputs_summary(outputs) + assert count == 4 + + def test_skips_animated_key_and_non_list_values(self): + """The 'animated' key and non-list values should be skipped.""" + outputs = { + 'node1': { + 'images': [{'filename': 'test.png', 'type': 'output'}], + 'animated': [True], # Should skip due to key name + 'metadata': 'string', # Should skip due to non-list + 'count': 42 # Should skip due to non-list + } + } + count, preview = get_outputs_summary(outputs) + assert count == 1 + + def test_preview_prefers_type_output(self): + """Items with type='output' should be preferred for preview.""" + outputs = { + 'node1': { + 'images': [ + {'filename': 'temp.png', 'type': 'temp'}, + {'filename': 'output.png', 'type': 'output'} + ] + } + } + count, preview = get_outputs_summary(outputs) + assert count == 2 + assert preview['filename'] == 'output.png' + + def test_preview_fallback_when_no_output_type(self): + """If no type='output', should use first previewable.""" + outputs = { + 'node1': { + 'images': [ + {'filename': 'temp1.png', 'type': 'temp'}, + {'filename': 'temp2.png', 'type': 'temp'} + ] + } + } + count, preview = get_outputs_summary(outputs) + assert preview['filename'] == 'temp1.png' + + def test_non_previewable_media_types_counted_but_no_preview(self): + """Non-previewable media types should be counted but not used as preview.""" + outputs = { + 'node1': { + 'latents': [ + {'filename': 'latent1.safetensors'}, + {'filename': 'latent2.safetensors'} + ] + } + } + count, preview = get_outputs_summary(outputs) + assert count == 2 + assert preview is None + + def test_previewable_media_types(self): + """Images, video, and audio media types should be previewable.""" + for media_type in ['images', 'video', 'audio']: + outputs = { + 'node1': { + media_type: [{'filename': 'test.file', 'type': 'output'}] + } + } + count, preview = get_outputs_summary(outputs) + assert preview is not None, f"{media_type} should be previewable" + + def test_3d_files_previewable(self): + """3D file extensions should be previewable.""" + for ext in ['.obj', '.fbx', '.gltf', '.glb']: + outputs = { + 'node1': { + 'files': [{'filename': f'model{ext}', 'type': 'output'}] + } + } + count, preview = get_outputs_summary(outputs) + assert preview is not None, f"3D file {ext} should be previewable" + + def test_format_mime_type_previewable(self): + """Files with video/ or audio/ format should be previewable.""" + for fmt in ['video/x-custom', 'audio/x-custom']: + outputs = { + 'node1': { + 'files': [{'filename': 'file.custom', 'format': fmt, 'type': 'output'}] + } + } + count, preview = get_outputs_summary(outputs) + assert preview is not None, f"Format {fmt} should be previewable" + + def test_preview_enriched_with_node_metadata(self): + """Preview should include nodeId, mediaType, and original fields.""" + outputs = { + 'node123': { + 'images': [{'filename': 'test.png', 'type': 'output', 'subfolder': 'outputs'}] + } + } + count, preview = get_outputs_summary(outputs) + assert preview['nodeId'] == 'node123' + assert preview['mediaType'] == 'images' + assert preview['subfolder'] == 'outputs' + + +class TestApplySorting: + """Unit tests for apply_sorting()""" + + def test_sort_by_create_time_desc(self): + """Default sort by create_time descending.""" + jobs = [ + {'id': 'a', 'create_time': 100}, + {'id': 'b', 'create_time': 300}, + {'id': 'c', 'create_time': 200}, + ] + result = apply_sorting(jobs, 'created_at', 'desc') + assert [j['id'] for j in result] == ['b', 'c', 'a'] + + def test_sort_by_create_time_asc(self): + """Sort by create_time ascending.""" + jobs = [ + {'id': 'a', 'create_time': 100}, + {'id': 'b', 'create_time': 300}, + {'id': 'c', 'create_time': 200}, + ] + result = apply_sorting(jobs, 'created_at', 'asc') + assert [j['id'] for j in result] == ['a', 'c', 'b'] + + def test_sort_by_execution_duration(self): + """Sort by execution_duration should order by duration.""" + jobs = [ + {'id': 'a', 'create_time': 100, 'execution_start_time': 100, 'execution_end_time': 5100}, # 5s + {'id': 'b', 'create_time': 300, 'execution_start_time': 300, 'execution_end_time': 1300}, # 1s + {'id': 'c', 'create_time': 200, 'execution_start_time': 200, 'execution_end_time': 3200}, # 3s + ] + result = apply_sorting(jobs, 'execution_duration', 'desc') + assert [j['id'] for j in result] == ['a', 'c', 'b'] + + def test_sort_with_none_values(self): + """Jobs with None values should sort as 0.""" + jobs = [ + {'id': 'a', 'create_time': 100, 'execution_start_time': 100, 'execution_end_time': 5100}, + {'id': 'b', 'create_time': 300, 'execution_start_time': None, 'execution_end_time': None}, + {'id': 'c', 'create_time': 200, 'execution_start_time': 200, 'execution_end_time': 3200}, + ] + result = apply_sorting(jobs, 'execution_duration', 'asc') + assert result[0]['id'] == 'b' # None treated as 0, comes first + + +class TestNormalizeQueueItem: + """Unit tests for normalize_queue_item()""" + + def test_basic_normalization(self): + """Queue item should be normalized to job dict.""" + item = ( + 10, # priority/number + 'prompt-123', # prompt_id + {'nodes': {}}, # prompt + { + 'create_time': 1234567890, + 'extra_pnginfo': {'workflow': {'id': 'workflow-abc'}} + }, # extra_data + ['node1'], # outputs_to_execute + ) + job = normalize_queue_item(item, JobStatus.PENDING) + + assert job['id'] == 'prompt-123' + assert job['status'] == 'pending' + assert job['priority'] == 10 + assert job['create_time'] == 1234567890 + assert 'execution_start_time' not in job + assert 'execution_end_time' not in job + assert 'execution_error' not in job + assert 'preview_output' not in job + assert job['outputs_count'] == 0 + assert job['workflow_id'] == 'workflow-abc' + + +class TestNormalizeHistoryItem: + """Unit tests for normalize_history_item()""" + + def test_completed_job(self): + """Completed history item should have correct status and times from messages.""" + history_item = { + 'prompt': ( + 5, # priority + 'prompt-456', + {'nodes': {}}, + { + 'create_time': 1234567890000, + 'extra_pnginfo': {'workflow': {'id': 'workflow-xyz'}} + }, + ['node1'], + ), + 'status': { + 'status_str': 'success', + 'completed': True, + 'messages': [ + ('execution_start', {'prompt_id': 'prompt-456', 'timestamp': 1234567890500}), + ('execution_success', {'prompt_id': 'prompt-456', 'timestamp': 1234567893000}), + ] + }, + 'outputs': {}, + } + job = normalize_history_item('prompt-456', history_item) + + assert job['id'] == 'prompt-456' + assert job['status'] == 'completed' + assert job['priority'] == 5 + assert job['execution_start_time'] == 1234567890500 + assert job['execution_end_time'] == 1234567893000 + assert job['workflow_id'] == 'workflow-xyz' + + def test_failed_job(self): + """Failed history item should have failed status and error from messages.""" + history_item = { + 'prompt': ( + 5, + 'prompt-789', + {'nodes': {}}, + {'create_time': 1234567890000}, + ['node1'], + ), + 'status': { + 'status_str': 'error', + 'completed': False, + 'messages': [ + ('execution_start', {'prompt_id': 'prompt-789', 'timestamp': 1234567890500}), + ('execution_error', { + 'prompt_id': 'prompt-789', + 'node_id': '5', + 'node_type': 'KSampler', + 'exception_message': 'CUDA out of memory', + 'exception_type': 'RuntimeError', + 'traceback': ['Traceback...', 'RuntimeError: CUDA out of memory'], + 'timestamp': 1234567891000, + }) + ] + }, + 'outputs': {}, + } + + job = normalize_history_item('prompt-789', history_item) + assert job['status'] == 'failed' + assert job['execution_start_time'] == 1234567890500 + assert job['execution_end_time'] == 1234567891000 + assert job['execution_error']['node_id'] == '5' + assert job['execution_error']['node_type'] == 'KSampler' + assert job['execution_error']['exception_message'] == 'CUDA out of memory' + + def test_include_outputs(self): + """When include_outputs=True, should include full output data.""" + history_item = { + 'prompt': ( + 5, + 'prompt-123', + {'nodes': {'1': {}}}, + {'create_time': 1234567890, 'client_id': 'abc'}, + ['node1'], + ), + 'status': {'status_str': 'success', 'completed': True, 'messages': []}, + 'outputs': {'node1': {'images': [{'filename': 'test.png'}]}}, + } + job = normalize_history_item('prompt-123', history_item, include_outputs=True) + + assert 'outputs' in job + assert 'workflow' in job + assert 'execution_status' in job + assert job['outputs'] == {'node1': {'images': [{'filename': 'test.png'}]}} + assert job['workflow'] == { + 'prompt': {'nodes': {'1': {}}}, + 'extra_data': {'create_time': 1234567890, 'client_id': 'abc'}, + } From e8ebbe668e82ab0f3c0842afa79d255329eb76ac Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Fri, 19 Dec 2025 06:09:29 +0800 Subject: [PATCH 191/271] chore: update workflow templates to v0.7.60 (#11403) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 9b9e61683..54696395f 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.34.9 -comfyui-workflow-templates==0.7.59 +comfyui-workflow-templates==0.7.60 comfyui-embedded-docs==0.3.1 torch torchsde From e4fb3a3572c94d8f2ef73ddd18d2a6966ed5a1e5 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 18 Dec 2025 14:45:33 -0800 Subject: [PATCH 192/271] Support loading Wan/Qwen VAEs with different in/out channels. (#11405) --- comfy/ldm/wan/vae.py | 11 +++++++---- comfy/sd.py | 3 ++- 2 files changed, 9 insertions(+), 5 deletions(-) diff --git a/comfy/ldm/wan/vae.py b/comfy/ldm/wan/vae.py index ccbb25822..08315f1a8 100644 --- a/comfy/ldm/wan/vae.py +++ b/comfy/ldm/wan/vae.py @@ -227,6 +227,7 @@ class Encoder3d(nn.Module): def __init__(self, dim=128, z_dim=4, + input_channels=3, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], @@ -245,7 +246,7 @@ class Encoder3d(nn.Module): scale = 1.0 # init block - self.conv1 = CausalConv3d(3, dims[0], 3, padding=1) + self.conv1 = CausalConv3d(input_channels, dims[0], 3, padding=1) # downsample blocks downsamples = [] @@ -331,6 +332,7 @@ class Decoder3d(nn.Module): def __init__(self, dim=128, z_dim=4, + output_channels=3, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], @@ -378,7 +380,7 @@ class Decoder3d(nn.Module): # output blocks self.head = nn.Sequential( RMS_norm(out_dim, images=False), nn.SiLU(), - CausalConv3d(out_dim, 3, 3, padding=1)) + CausalConv3d(out_dim, output_channels, 3, padding=1)) def forward(self, x, feat_cache=None, feat_idx=[0]): ## conv1 @@ -449,6 +451,7 @@ class WanVAE(nn.Module): num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], + image_channels=3, dropout=0.0): super().__init__() self.dim = dim @@ -460,11 +463,11 @@ class WanVAE(nn.Module): self.temperal_upsample = temperal_downsample[::-1] # modules - self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, + self.encoder = Encoder3d(dim, z_dim * 2, image_channels, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout) self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1) self.conv2 = CausalConv3d(z_dim, z_dim, 1) - self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, + self.decoder = Decoder3d(dim, z_dim, image_channels, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout) def encode(self, x): diff --git a/comfy/sd.py b/comfy/sd.py index 1cad98aef..f95c78892 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -546,7 +546,8 @@ class VAE: self.downscale_index_formula = (4, 8, 8) self.latent_dim = 3 self.latent_channels = 16 - ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0} + self.output_channels = sd["encoder.conv1.weight"].shape[1] + ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "image_channels": self.output_channels, "dropout": 0.0} self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig) self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] self.memory_used_encode = lambda shape, dtype: (1500 if shape[2]<=4 else 6000) * shape[3] * shape[4] * model_management.dtype_size(dtype) From 6a2678ac65ff690e24771a4c64ce96f7a9824fa4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 18 Dec 2025 15:22:38 -0800 Subject: [PATCH 193/271] Trim/pad channels in VAE code. (#11406) --- comfy/sd.py | 33 ++++++++++++++++++++++++--------- nodes.py | 4 ++-- 2 files changed, 26 insertions(+), 11 deletions(-) diff --git a/comfy/sd.py b/comfy/sd.py index f95c78892..c2a9728f3 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -321,6 +321,7 @@ class VAE: self.latent_channels = 4 self.latent_dim = 2 self.output_channels = 3 + self.pad_channel_value = None self.process_input = lambda image: image * 2.0 - 1.0 self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0) self.working_dtypes = [torch.bfloat16, torch.float32] @@ -435,6 +436,7 @@ class VAE: self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype) self.latent_channels = 64 self.output_channels = 2 + self.pad_channel_value = "replicate" self.upscale_ratio = 2048 self.downscale_ratio = 2048 self.latent_dim = 1 @@ -547,6 +549,7 @@ class VAE: self.latent_dim = 3 self.latent_channels = 16 self.output_channels = sd["encoder.conv1.weight"].shape[1] + self.pad_channel_value = 1.0 ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "image_channels": self.output_channels, "dropout": 0.0} self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig) self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] @@ -583,6 +586,7 @@ class VAE: self.memory_used_decode = lambda shape, dtype: (shape[2] * shape[3] * 87000) * model_management.dtype_size(dtype) self.latent_channels = 8 self.output_channels = 2 + self.pad_channel_value = "replicate" self.upscale_ratio = 4096 self.downscale_ratio = 4096 self.latent_dim = 2 @@ -691,17 +695,28 @@ class VAE: raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.") def vae_encode_crop_pixels(self, pixels): - if not self.crop_input: - return pixels + if self.crop_input: + downscale_ratio = self.spacial_compression_encode() - downscale_ratio = self.spacial_compression_encode() + dims = pixels.shape[1:-1] + for d in range(len(dims)): + x = (dims[d] // downscale_ratio) * downscale_ratio + x_offset = (dims[d] % downscale_ratio) // 2 + if x != dims[d]: + pixels = pixels.narrow(d + 1, x_offset, x) - dims = pixels.shape[1:-1] - for d in range(len(dims)): - x = (dims[d] // downscale_ratio) * downscale_ratio - x_offset = (dims[d] % downscale_ratio) // 2 - if x != dims[d]: - pixels = pixels.narrow(d + 1, x_offset, x) + if pixels.shape[-1] > self.output_channels: + pixels = pixels[..., :self.output_channels] + elif pixels.shape[-1] < self.output_channels: + if self.pad_channel_value is not None: + if isinstance(self.pad_channel_value, str): + mode = self.pad_channel_value + value = None + else: + mode = "constant" + value = self.pad_channel_value + + pixels = torch.nn.functional.pad(pixels, (0, self.output_channels - pixels.shape[-1]), mode=mode, value=value) return pixels def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): diff --git a/nodes.py b/nodes.py index 3fa543294..b13ceb578 100644 --- a/nodes.py +++ b/nodes.py @@ -343,7 +343,7 @@ class VAEEncode: CATEGORY = "latent" def encode(self, vae, pixels): - t = vae.encode(pixels[:,:,:,:3]) + t = vae.encode(pixels) return ({"samples":t}, ) class VAEEncodeTiled: @@ -361,7 +361,7 @@ class VAEEncodeTiled: CATEGORY = "_for_testing" def encode(self, vae, pixels, tile_size, overlap, temporal_size=64, temporal_overlap=8): - t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, overlap=overlap, tile_t=temporal_size, overlap_t=temporal_overlap) + t = vae.encode_tiled(pixels, tile_x=tile_size, tile_y=tile_size, overlap=overlap, tile_t=temporal_size, overlap_t=temporal_overlap) return ({"samples": t}, ) class VAEEncodeForInpaint: From 28eaab608bc34c4e3b1886b1bddbb429453249d8 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 18 Dec 2025 17:21:14 -0800 Subject: [PATCH 194/271] Diffusion model part of Qwen Image Layered. (#11408) Only thing missing after this is some nodes to make using it easier. --- comfy/ldm/qwen_image/model.py | 63 ++++++++++++++++++++++------------- comfy/model_detection.py | 3 ++ 2 files changed, 42 insertions(+), 24 deletions(-) diff --git a/comfy/ldm/qwen_image/model.py b/comfy/ldm/qwen_image/model.py index 902af30ed..00c597535 100644 --- a/comfy/ldm/qwen_image/model.py +++ b/comfy/ldm/qwen_image/model.py @@ -61,7 +61,7 @@ def apply_rotary_emb(x, freqs_cis): class QwenTimestepProjEmbeddings(nn.Module): - def __init__(self, embedding_dim, pooled_projection_dim, dtype=None, device=None, operations=None): + def __init__(self, embedding_dim, pooled_projection_dim, use_additional_t_cond=False, dtype=None, device=None, operations=None): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000) self.timestep_embedder = TimestepEmbedding( @@ -72,9 +72,19 @@ class QwenTimestepProjEmbeddings(nn.Module): operations=operations ) - def forward(self, timestep, hidden_states): + self.use_additional_t_cond = use_additional_t_cond + if self.use_additional_t_cond: + self.addition_t_embedding = operations.Embedding(2, embedding_dim, device=device, dtype=dtype) + + def forward(self, timestep, hidden_states, addition_t_cond=None): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) + + if self.use_additional_t_cond: + if addition_t_cond is None: + addition_t_cond = torch.zeros((timesteps_emb.shape[0]), device=timesteps_emb.device, dtype=torch.long) + timesteps_emb += self.addition_t_embedding(addition_t_cond, out_dtype=timesteps_emb.dtype) + return timesteps_emb @@ -320,11 +330,11 @@ class QwenImageTransformer2DModel(nn.Module): num_attention_heads: int = 24, joint_attention_dim: int = 3584, pooled_projection_dim: int = 768, - guidance_embeds: bool = False, axes_dims_rope: Tuple[int, int, int] = (16, 56, 56), default_ref_method="index", image_model=None, final_layer=True, + use_additional_t_cond=False, dtype=None, device=None, operations=None, @@ -342,6 +352,7 @@ class QwenImageTransformer2DModel(nn.Module): self.time_text_embed = QwenTimestepProjEmbeddings( embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim, + use_additional_t_cond=use_additional_t_cond, dtype=dtype, device=device, operations=operations @@ -375,27 +386,33 @@ class QwenImageTransformer2DModel(nn.Module): patch_size = self.patch_size hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (1, self.patch_size, self.patch_size)) orig_shape = hidden_states.shape - hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2) - hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5) - hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4) + hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-3], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2) + hidden_states = hidden_states.permute(0, 2, 3, 5, 1, 4, 6) + hidden_states = hidden_states.reshape(orig_shape[0], orig_shape[-3] * (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4) + t_len = t h_len = ((h + (patch_size // 2)) // patch_size) w_len = ((w + (patch_size // 2)) // patch_size) h_offset = ((h_offset + (patch_size // 2)) // patch_size) w_offset = ((w_offset + (patch_size // 2)) // patch_size) - img_ids = torch.zeros((h_len, w_len, 3), device=x.device) - img_ids[:, :, 0] = img_ids[:, :, 1] + index - img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) - (h_len // 2) - img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) - (w_len // 2) - return hidden_states, repeat(img_ids, "h w c -> b (h w) c", b=bs), orig_shape + img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device) - def forward(self, x, timestep, context, attention_mask=None, guidance=None, ref_latents=None, transformer_options={}, **kwargs): + if t_len > 1: + img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).unsqueeze(1).unsqueeze(1) + else: + img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + index + + img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1).unsqueeze(0) - (h_len // 2) + img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0).unsqueeze(0) - (w_len // 2) + return hidden_states, repeat(img_ids, "t h w c -> b (t h w) c", b=bs), orig_shape + + def forward(self, x, timestep, context, attention_mask=None, ref_latents=None, additional_t_cond=None, transformer_options={}, **kwargs): return comfy.patcher_extension.WrapperExecutor.new_class_executor( self._forward, self, comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) - ).execute(x, timestep, context, attention_mask, guidance, ref_latents, transformer_options, **kwargs) + ).execute(x, timestep, context, attention_mask, ref_latents, additional_t_cond, transformer_options, **kwargs) def _forward( self, @@ -403,8 +420,8 @@ class QwenImageTransformer2DModel(nn.Module): timesteps, context, attention_mask=None, - guidance: torch.Tensor = None, ref_latents=None, + additional_t_cond=None, transformer_options={}, control=None, **kwargs @@ -423,12 +440,17 @@ class QwenImageTransformer2DModel(nn.Module): index = 0 ref_method = kwargs.get("ref_latents_method", self.default_ref_method) index_ref_method = (ref_method == "index") or (ref_method == "index_timestep_zero") + negative_ref_method = ref_method == "negative_index" timestep_zero = ref_method == "index_timestep_zero" for ref in ref_latents: if index_ref_method: index += 1 h_offset = 0 w_offset = 0 + elif negative_ref_method: + index -= 1 + h_offset = 0 + w_offset = 0 else: index = 1 h_offset = 0 @@ -458,14 +480,7 @@ class QwenImageTransformer2DModel(nn.Module): encoder_hidden_states = self.txt_norm(encoder_hidden_states) encoder_hidden_states = self.txt_in(encoder_hidden_states) - if guidance is not None: - guidance = guidance * 1000 - - temb = ( - self.time_text_embed(timestep, hidden_states) - if guidance is None - else self.time_text_embed(timestep, guidance, hidden_states) - ) + temb = self.time_text_embed(timestep, hidden_states, additional_t_cond) patches_replace = transformer_options.get("patches_replace", {}) patches = transformer_options.get("patches", {}) @@ -513,6 +528,6 @@ class QwenImageTransformer2DModel(nn.Module): hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) - hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2) - hidden_states = hidden_states.permute(0, 3, 1, 4, 2, 5) + hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-3], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2) + hidden_states = hidden_states.permute(0, 4, 1, 2, 5, 3, 6) return hidden_states.reshape(orig_shape)[:, :, :, :x.shape[-2], :x.shape[-1]] diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 7148c77fd..84fd409fd 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -620,6 +620,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.') if "{}__index_timestep_zero__".format(key_prefix) in state_dict_keys: # 2511 dit_config["default_ref_method"] = "index_timestep_zero" + if "{}time_text_embed.addition_t_embedding.weight".format(key_prefix) in state_dict_keys: # Layered + dit_config["use_additional_t_cond"] = True + dit_config["default_ref_method"] = "negative_index" return dit_config if '{}visual_transformer_blocks.0.cross_attention.key_norm.weight'.format(key_prefix) in state_dict_keys: # Kandinsky 5 From 894802b0f9c3a247f5609db89ec3be24eac7fd2b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 18 Dec 2025 19:21:40 -0800 Subject: [PATCH 195/271] Add LatentCutToBatch node. (#11411) --- comfy_extras/nodes_latent.py | 43 ++++++++++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py index e439b18ef..2815c5ffc 100644 --- a/comfy_extras/nodes_latent.py +++ b/comfy_extras/nodes_latent.py @@ -5,6 +5,7 @@ import nodes from typing_extensions import override from comfy_api.latest import ComfyExtension, io import logging +import math def reshape_latent_to(target_shape, latent, repeat_batch=True): if latent.shape[1:] != target_shape[1:]: @@ -207,6 +208,47 @@ class LatentCut(io.ComfyNode): samples_out["samples"] = torch.narrow(s1, dim, index, amount) return io.NodeOutput(samples_out) +class LatentCutToBatch(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LatentCutToBatch", + category="latent/advanced", + inputs=[ + io.Latent.Input("samples"), + io.Combo.Input("dim", options=["t", "x", "y"]), + io.Int.Input("slice_size", default=1, min=1, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, samples, dim, slice_size) -> io.NodeOutput: + samples_out = samples.copy() + + s1 = samples["samples"] + + if "x" in dim: + dim = s1.ndim - 1 + elif "y" in dim: + dim = s1.ndim - 2 + elif "t" in dim: + dim = s1.ndim - 3 + + if dim < 2: + return io.NodeOutput(samples) + + s = s1.movedim(dim, 1) + if s.shape[1] < slice_size: + slice_size = s.shape[1] + elif s.shape[1] % slice_size != 0: + s = s[:, :math.floor(s.shape[1] / slice_size) * slice_size] + new_shape = [-1, slice_size] + list(s.shape[2:]) + samples_out["samples"] = s.reshape(new_shape).movedim(1, dim) + return io.NodeOutput(samples_out) + class LatentBatch(io.ComfyNode): @classmethod def define_schema(cls): @@ -435,6 +477,7 @@ class LatentExtension(ComfyExtension): LatentInterpolate, LatentConcat, LatentCut, + LatentCutToBatch, LatentBatch, LatentBatchSeedBehavior, LatentApplyOperation, From 5b4d0664c87dc62a8361fe292b0bdac42681aef8 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 19 Dec 2025 20:02:49 +0200 Subject: [PATCH 196/271] add Flux2MaxImage API Node (#11420) --- comfy_api_nodes/nodes_bfl.py | 68 ++++++++++++++++-------------------- 1 file changed, 31 insertions(+), 37 deletions(-) diff --git a/comfy_api_nodes/nodes_bfl.py b/comfy_api_nodes/nodes_bfl.py index 8826dea0c..ce077d6b3 100644 --- a/comfy_api_nodes/nodes_bfl.py +++ b/comfy_api_nodes/nodes_bfl.py @@ -1,10 +1,8 @@ -from inspect import cleandoc - import torch from pydantic import BaseModel from typing_extensions import override -from comfy_api.latest import IO, ComfyExtension +from comfy_api.latest import IO, ComfyExtension, Input from comfy_api_nodes.apis.bfl_api import ( BFLFluxExpandImageRequest, BFLFluxFillImageRequest, @@ -28,7 +26,7 @@ from comfy_api_nodes.util import ( ) -def convert_mask_to_image(mask: torch.Tensor): +def convert_mask_to_image(mask: Input.Image): """ Make mask have the expected amount of dims (4) and channels (3) to be recognized as an image. """ @@ -38,9 +36,6 @@ def convert_mask_to_image(mask: torch.Tensor): class FluxProUltraImageNode(IO.ComfyNode): - """ - Generates images using Flux Pro 1.1 Ultra via api based on prompt and resolution. - """ @classmethod def define_schema(cls) -> IO.Schema: @@ -48,7 +43,7 @@ class FluxProUltraImageNode(IO.ComfyNode): node_id="FluxProUltraImageNode", display_name="Flux 1.1 [pro] Ultra Image", category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), + description="Generates images using Flux Pro 1.1 Ultra via api based on prompt and resolution.", inputs=[ IO.String.Input( "prompt", @@ -117,7 +112,7 @@ class FluxProUltraImageNode(IO.ComfyNode): prompt_upsampling: bool = False, raw: bool = False, seed: int = 0, - image_prompt: torch.Tensor | None = None, + image_prompt: Input.Image | None = None, image_prompt_strength: float = 0.1, ) -> IO.NodeOutput: if image_prompt is None: @@ -155,9 +150,6 @@ class FluxProUltraImageNode(IO.ComfyNode): class FluxKontextProImageNode(IO.ComfyNode): - """ - Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio. - """ @classmethod def define_schema(cls) -> IO.Schema: @@ -165,7 +157,7 @@ class FluxKontextProImageNode(IO.ComfyNode): node_id=cls.NODE_ID, display_name=cls.DISPLAY_NAME, category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), + description="Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio.", inputs=[ IO.String.Input( "prompt", @@ -231,7 +223,7 @@ class FluxKontextProImageNode(IO.ComfyNode): aspect_ratio: str, guidance: float, steps: int, - input_image: torch.Tensor | None = None, + input_image: Input.Image | None = None, seed=0, prompt_upsampling=False, ) -> IO.NodeOutput: @@ -271,20 +263,14 @@ class FluxKontextProImageNode(IO.ComfyNode): class FluxKontextMaxImageNode(FluxKontextProImageNode): - """ - Edits images using Flux.1 Kontext [max] via api based on prompt and aspect ratio. - """ - DESCRIPTION = cleandoc(__doc__ or "") + DESCRIPTION = "Edits images using Flux.1 Kontext [max] via api based on prompt and aspect ratio." BFL_PATH = "/proxy/bfl/flux-kontext-max/generate" NODE_ID = "FluxKontextMaxImageNode" DISPLAY_NAME = "Flux.1 Kontext [max] Image" class FluxProExpandNode(IO.ComfyNode): - """ - Outpaints image based on prompt. - """ @classmethod def define_schema(cls) -> IO.Schema: @@ -292,7 +278,7 @@ class FluxProExpandNode(IO.ComfyNode): node_id="FluxProExpandNode", display_name="Flux.1 Expand Image", category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), + description="Outpaints image based on prompt.", inputs=[ IO.Image.Input("image"), IO.String.Input( @@ -371,7 +357,7 @@ class FluxProExpandNode(IO.ComfyNode): @classmethod async def execute( cls, - image: torch.Tensor, + image: Input.Image, prompt: str, prompt_upsampling: bool, top: int, @@ -418,9 +404,6 @@ class FluxProExpandNode(IO.ComfyNode): class FluxProFillNode(IO.ComfyNode): - """ - Inpaints image based on mask and prompt. - """ @classmethod def define_schema(cls) -> IO.Schema: @@ -428,7 +411,7 @@ class FluxProFillNode(IO.ComfyNode): node_id="FluxProFillNode", display_name="Flux.1 Fill Image", category="api node/image/BFL", - description=cleandoc(cls.__doc__ or ""), + description="Inpaints image based on mask and prompt.", inputs=[ IO.Image.Input("image"), IO.Mask.Input("mask"), @@ -480,8 +463,8 @@ class FluxProFillNode(IO.ComfyNode): @classmethod async def execute( cls, - image: torch.Tensor, - mask: torch.Tensor, + image: Input.Image, + mask: Input.Image, prompt: str, prompt_upsampling: bool, steps: int, @@ -525,11 +508,15 @@ class FluxProFillNode(IO.ComfyNode): class Flux2ProImageNode(IO.ComfyNode): + NODE_ID = "Flux2ProImageNode" + DISPLAY_NAME = "Flux.2 [pro] Image" + API_ENDPOINT = "/proxy/bfl/flux-2-pro/generate" + @classmethod def define_schema(cls) -> IO.Schema: return IO.Schema( - node_id="Flux2ProImageNode", - display_name="Flux.2 [pro] Image", + node_id=cls.NODE_ID, + display_name=cls.DISPLAY_NAME, category="api node/image/BFL", description="Generates images synchronously based on prompt and resolution.", inputs=[ @@ -563,12 +550,11 @@ class Flux2ProImageNode(IO.ComfyNode): ), IO.Boolean.Input( "prompt_upsampling", - default=False, + default=True, tooltip="Whether to perform upsampling on the prompt. " - "If active, automatically modifies the prompt for more creative generation, " - "but results are nondeterministic (same seed will not produce exactly the same result).", + "If active, automatically modifies the prompt for more creative generation.", ), - IO.Image.Input("images", optional=True, tooltip="Up to 4 images to be used as references."), + IO.Image.Input("images", optional=True, tooltip="Up to 9 images to be used as references."), ], outputs=[IO.Image.Output()], hidden=[ @@ -587,7 +573,7 @@ class Flux2ProImageNode(IO.ComfyNode): height: int, seed: int, prompt_upsampling: bool, - images: torch.Tensor | None = None, + images: Input.Image | None = None, ) -> IO.NodeOutput: reference_images = {} if images is not None: @@ -598,7 +584,7 @@ class Flux2ProImageNode(IO.ComfyNode): reference_images[key_name] = tensor_to_base64_string(images[image_index], total_pixels=2048 * 2048) initial_response = await sync_op( cls, - ApiEndpoint(path="/proxy/bfl/flux-2-pro/generate", method="POST"), + ApiEndpoint(path=cls.API_ENDPOINT, method="POST"), response_model=BFLFluxProGenerateResponse, data=Flux2ProGenerateRequest( prompt=prompt, @@ -632,6 +618,13 @@ class Flux2ProImageNode(IO.ComfyNode): return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) +class Flux2MaxImageNode(Flux2ProImageNode): + + NODE_ID = "Flux2MaxImageNode" + DISPLAY_NAME = "Flux.2 [max] Image" + API_ENDPOINT = "/proxy/bfl/flux-2-max/generate" + + class BFLExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: @@ -642,6 +635,7 @@ class BFLExtension(ComfyExtension): FluxProExpandNode, FluxProFillNode, Flux2ProImageNode, + Flux2MaxImageNode, ] From 8376ff6831b145eadc3339e1901ffe02386ab86a Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Sat, 20 Dec 2025 03:41:56 +0900 Subject: [PATCH 197/271] bump comfyui_manager version to the 4.0.3b7 (#11422) --- manager_requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/manager_requirements.txt b/manager_requirements.txt index 5ef0d3a1d..2300f0c70 100644 --- a/manager_requirements.txt +++ b/manager_requirements.txt @@ -1 +1 @@ -comfyui_manager==4.0.3b5 +comfyui_manager==4.0.3b7 From cc4ddba1b68abdc64ef5a701fd0571fcf2faf98d Mon Sep 17 00:00:00 2001 From: BradPepersAMD Date: Fri, 19 Dec 2025 15:01:50 -0700 Subject: [PATCH 198/271] Allow enabling use of MIOpen by setting COMFYUI_ENABLE_MIOPEN=1 as an env var (#11366) --- comfy/model_management.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index 40717b1e4..1889ab0ac 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -26,6 +26,7 @@ import importlib import platform import weakref import gc +import os class VRAMState(Enum): DISABLED = 0 #No vram present: no need to move models to vram @@ -333,13 +334,15 @@ except: SUPPORT_FP8_OPS = args.supports_fp8_compute AMD_RDNA2_AND_OLDER_ARCH = ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"] +AMD_ENABLE_MIOPEN_ENV = 'COMFYUI_ENABLE_MIOPEN' try: if is_amd(): arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName if not (any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH)): - torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD - logging.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.") + if os.getenv(AMD_ENABLE_MIOPEN_ENV) != '1': + torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD + logging.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.") try: rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2])) From 809ce687493db84f6743639adf9b600753b6188e Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 19 Dec 2025 16:59:25 -0800 Subject: [PATCH 199/271] Support nested tensor denoise masks. (#11431) --- comfy/samplers.py | 21 ++++++++++++++++++--- 1 file changed, 18 insertions(+), 3 deletions(-) diff --git a/comfy/samplers.py b/comfy/samplers.py index 8340d376c..1989ef107 100755 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -984,9 +984,6 @@ class CFGGuider: self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options) device = self.model_patcher.load_device - if denoise_mask is not None: - denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device) - noise = noise.to(device) latent_image = latent_image.to(device) sigmas = sigmas.to(device) @@ -1013,6 +1010,24 @@ class CFGGuider: else: latent_shapes = [latent_image.shape] + if denoise_mask is not None: + if denoise_mask.is_nested: + denoise_masks = denoise_mask.unbind() + denoise_masks = denoise_masks[:len(latent_shapes)] + else: + denoise_masks = [denoise_mask] + + for i in range(len(denoise_masks), len(latent_shapes)): + denoise_masks.append(torch.ones(latent_shapes[i])) + + for i in range(len(denoise_masks)): + denoise_masks[i] = comfy.sampler_helpers.prepare_mask(denoise_masks[i], latent_shapes[i], self.model_patcher.load_device) + + if len(denoise_masks) > 1: + denoise_mask, _ = comfy.utils.pack_latents(denoise_masks) + else: + denoise_mask = denoise_masks[0] + self.conds = {} for k in self.original_conds: self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k])) From 514c24d756997c3131c57aa21578a09429096eca Mon Sep 17 00:00:00 2001 From: drozbay <17261091+drozbay@users.noreply.github.com> Date: Fri, 19 Dec 2025 21:22:45 -0700 Subject: [PATCH 200/271] Fix error from logging line (#11423) Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com> --- comfy/context_windows.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/context_windows.py b/comfy/context_windows.py index 2979b3ca1..1e0f86026 100644 --- a/comfy/context_windows.py +++ b/comfy/context_windows.py @@ -143,7 +143,7 @@ class IndexListContextHandler(ContextHandlerABC): # if multiple conds, split based on primary region if self.split_conds_to_windows and len(cond_in) > 1: region = window.get_region_index(len(cond_in)) - logging.info(f"Splitting conds to windows; using region {region} for window {window[0]}-{window[-1]} with center ratio {window.center_ratio:.3f}") + logging.info(f"Splitting conds to windows; using region {region} for window {window.index_list[0]}-{window.index_list[-1]} with center ratio {window.center_ratio:.3f}") cond_in = [cond_in[region]] # cond object is a list containing a dict - outer list is irrelevant, so just loop through it for actual_cond in cond_in: From 0aa7fa464efc4ecc35a145048c06d325c75fbf2b Mon Sep 17 00:00:00 2001 From: woctordho Date: Sat, 20 Dec 2025 13:16:46 +0800 Subject: [PATCH 201/271] Implement sliding attention in Gemma3 (#11409) --- comfy/text_encoders/llama.py | 16 ++++++++++------ 1 file changed, 10 insertions(+), 6 deletions(-) diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index 0d07ac8c6..ed29e014d 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -3,7 +3,6 @@ import torch.nn as nn from dataclasses import dataclass from typing import Optional, Any import math -import logging from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.model_management @@ -177,7 +176,7 @@ class Gemma3_4B_Config: num_key_value_heads: int = 4 max_position_embeddings: int = 131072 rms_norm_eps: float = 1e-6 - rope_theta = [10000.0, 1000000.0] + rope_theta = [1000000.0, 10000.0] transformer_type: str = "gemma3" head_dim = 256 rms_norm_add = True @@ -186,8 +185,8 @@ class Gemma3_4B_Config: rope_dims = None q_norm = "gemma3" k_norm = "gemma3" - sliding_attention = [False, False, False, False, False, 1024] - rope_scale = [1.0, 8.0] + sliding_attention = [1024, 1024, 1024, 1024, 1024, False] + rope_scale = [8.0, 1.0] final_norm: bool = True class RMSNorm(nn.Module): @@ -370,7 +369,7 @@ class TransformerBlockGemma2(nn.Module): self.pre_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) self.post_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) - if config.sliding_attention is not None: # TODO: implement. (Not that necessary since models are trained on less than 1024 tokens) + if config.sliding_attention is not None: self.sliding_attention = config.sliding_attention[index % len(config.sliding_attention)] else: self.sliding_attention = False @@ -387,7 +386,12 @@ class TransformerBlockGemma2(nn.Module): if self.transformer_type == 'gemma3': if self.sliding_attention: if x.shape[1] > self.sliding_attention: - logging.warning("Warning: sliding attention not implemented, results may be incorrect") + sliding_mask = torch.full((x.shape[1], x.shape[1]), float("-inf"), device=x.device, dtype=x.dtype) + sliding_mask.tril_(diagonal=-self.sliding_attention) + if attention_mask is not None: + attention_mask = attention_mask + sliding_mask + else: + attention_mask = sliding_mask freqs_cis = freqs_cis[1] else: freqs_cis = freqs_cis[0] From 3ab9748903a8ee51f62ae8d3eeebc1f98847f4bd Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 19 Dec 2025 21:19:47 -0800 Subject: [PATCH 202/271] Disable prompt weights on newbie te. (#11434) --- comfy/sd1_clip.py | 6 ++++-- comfy/text_encoders/lumina2.py | 2 +- 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/comfy/sd1_clip.py b/comfy/sd1_clip.py index 962948dae..c512ca5d0 100644 --- a/comfy/sd1_clip.py +++ b/comfy/sd1_clip.py @@ -466,7 +466,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No return embed_out class SDTokenizer: - def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, tokenizer_data={}, tokenizer_args={}): + def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, disable_weights=False, tokenizer_data={}, tokenizer_args={}): if tokenizer_path is None: tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args) @@ -513,6 +513,8 @@ class SDTokenizer: self.embedding_size = embedding_size self.embedding_key = embedding_key + self.disable_weights = disable_weights + def _try_get_embedding(self, embedding_name:str): ''' Takes a potential embedding name and tries to retrieve it. @@ -547,7 +549,7 @@ class SDTokenizer: min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding) text = escape_important(text) - if kwargs.get("disable_weights", False): + if kwargs.get("disable_weights", self.disable_weights): parsed_weights = [(text, 1.0)] else: parsed_weights = token_weights(text, 1.0) diff --git a/comfy/text_encoders/lumina2.py b/comfy/text_encoders/lumina2.py index 7a6cfdab2..f82883ba1 100644 --- a/comfy/text_encoders/lumina2.py +++ b/comfy/text_encoders/lumina2.py @@ -14,7 +14,7 @@ class Gemma2BTokenizer(sd1_clip.SDTokenizer): class Gemma3_4BTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer = tokenizer_data.get("spiece_model", None) - super().__init__(tokenizer, pad_with_end=False, embedding_size=2560, embedding_key='gemma3_4b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data) + super().__init__(tokenizer, pad_with_end=False, embedding_size=2560, embedding_key='gemma3_4b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, disable_weights=True, tokenizer_data=tokenizer_data) def state_dict(self): return {"spiece_model": self.tokenizer.serialize_model()} From 767ee30f217e72797df6b018417234bf8b3f7b69 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Fri, 19 Dec 2025 21:22:17 -0800 Subject: [PATCH 203/271] ZImageFunControlNet: Fix mask concatenation in --gpu-only (#11421) This operation trades in latents which in --gpu-only may be out of the GPU The two VAE results will follow the --gpu-only defined behaviour so follow the inpaint image device when calculating the mask in this path. --- comfy_extras/nodes_model_patch.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_model_patch.py b/comfy_extras/nodes_model_patch.py index 2a0cfcf18..1355b3c93 100644 --- a/comfy_extras/nodes_model_patch.py +++ b/comfy_extras/nodes_model_patch.py @@ -348,7 +348,7 @@ class ZImageControlPatch: if self.mask is None: mask_ = torch.zeros_like(inpaint_image_latent)[:, :1] else: - mask_ = comfy.utils.common_upscale(self.mask.view(self.mask.shape[0], -1, self.mask.shape[-2], self.mask.shape[-1]).mean(dim=1, keepdim=True), inpaint_image_latent.shape[-1], inpaint_image_latent.shape[-2], "nearest", "center") + mask_ = comfy.utils.common_upscale(self.mask.view(self.mask.shape[0], -1, self.mask.shape[-2], self.mask.shape[-1]).mean(dim=1, keepdim=True).to(device=inpaint_image_latent.device), inpaint_image_latent.shape[-1], inpaint_image_latent.shape[-2], "nearest", "center") if latent_image is None: latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(torch.ones_like(inpaint_image) * 0.5)) From 31e961736a476851e2579d5d9202ed4177a71720 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 19 Dec 2025 21:23:51 -0800 Subject: [PATCH 204/271] Fix issue with batches and newbie. (#11435) --- comfy/ldm/lumina/model.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index 5628e2ba3..e80b1c138 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -625,7 +625,7 @@ class NextDiT(nn.Module): if pooled is not None: pooled = self.clip_text_pooled_proj(pooled) else: - pooled = torch.zeros((1, self.clip_text_dim), device=x.device, dtype=x.dtype) + pooled = torch.zeros((x.shape[0], self.clip_text_dim), device=x.device, dtype=x.dtype) adaln_input = self.time_text_embed(torch.cat((t, pooled), dim=-1)) From 4c432c11ed6f83466b8ff02569872925753a3c44 Mon Sep 17 00:00:00 2001 From: woctordho Date: Sat, 20 Dec 2025 13:57:22 +0800 Subject: [PATCH 205/271] Implement Jina CLIP v2 and NewBie dual CLIP (#11415) * Implement Jina CLIP v2 * Support quantized Gemma in NewBie dual CLIP --- comfy/model_base.py | 2 +- comfy/model_detection.py | 3 +- comfy/sd.py | 20 +++ comfy/text_encoders/jina_clip_2.py | 219 +++++++++++++++++++++++++++++ comfy/text_encoders/newbie.py | 62 ++++++++ nodes.py | 4 +- 6 files changed, 306 insertions(+), 4 deletions(-) create mode 100644 comfy/text_encoders/jina_clip_2.py create mode 100644 comfy/text_encoders/newbie.py diff --git a/comfy/model_base.py b/comfy/model_base.py index 6b8a8454d..c4f3c0639 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -1110,7 +1110,7 @@ class Lumina2(BaseModel): if 'num_tokens' not in out: out['num_tokens'] = comfy.conds.CONDConstant(cross_attn.shape[1]) - clip_text_pooled = kwargs["pooled_output"] # Newbie + clip_text_pooled = kwargs.get("pooled_output", None) # NewBie if clip_text_pooled is not None: out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 84fd409fd..539e296ed 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -430,8 +430,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): dit_config["rope_theta"] = 10000.0 dit_config["ffn_dim_multiplier"] = 4.0 ctd_weight = state_dict.get('{}clip_text_pooled_proj.0.weight'.format(key_prefix), None) - if ctd_weight is not None: + if ctd_weight is not None: # NewBie dit_config["clip_text_dim"] = ctd_weight.shape[0] + # NewBie also sets axes_lens = [1024, 512, 512] but it's not used in ComfyUI elif dit_config["dim"] == 3840: # Z image dit_config["n_heads"] = 30 dit_config["n_kv_heads"] = 30 diff --git a/comfy/sd.py b/comfy/sd.py index c2a9728f3..7de7dd9c6 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -55,6 +55,8 @@ import comfy.text_encoders.hunyuan_image import comfy.text_encoders.z_image import comfy.text_encoders.ovis import comfy.text_encoders.kandinsky5 +import comfy.text_encoders.jina_clip_2 +import comfy.text_encoders.newbie import comfy.model_patcher import comfy.lora @@ -1008,6 +1010,7 @@ class CLIPType(Enum): OVIS = 21 KANDINSKY5 = 22 KANDINSKY5_IMAGE = 23 + NEWBIE = 24 def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): @@ -1038,6 +1041,7 @@ class TEModel(Enum): MISTRAL3_24B_PRUNED_FLUX2 = 15 QWEN3_4B = 16 QWEN3_2B = 17 + JINA_CLIP_2 = 18 def detect_te_model(sd): @@ -1047,6 +1051,8 @@ def detect_te_model(sd): return TEModel.CLIP_H if "text_model.encoder.layers.0.mlp.fc1.weight" in sd: return TEModel.CLIP_L + if "model.encoder.layers.0.mixer.Wqkv.weight" in sd: + return TEModel.JINA_CLIP_2 if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd: weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"] if weight.shape[-1] == 4096: @@ -1207,6 +1213,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif te_model == TEModel.QWEN3_2B: clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer + elif te_model == TEModel.JINA_CLIP_2: + clip_target.clip = comfy.text_encoders.jina_clip_2.JinaClip2TextModelWrapper + clip_target.tokenizer = comfy.text_encoders.jina_clip_2.JinaClip2TokenizerWrapper else: # clip_l if clip_type == CLIPType.SD3: @@ -1262,6 +1271,17 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif clip_type == CLIPType.KANDINSKY5_IMAGE: clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage + elif clip_type == CLIPType.NEWBIE: + clip_target.clip = comfy.text_encoders.newbie.te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.newbie.NewBieTokenizer + if "model.layers.0.self_attn.q_norm.weight" in clip_data[0]: + clip_data_gemma = clip_data[0] + clip_data_jina = clip_data[1] + else: + clip_data_gemma = clip_data[1] + clip_data_jina = clip_data[0] + tokenizer_data["gemma_spiece_model"] = clip_data_gemma.get("spiece_model", None) + tokenizer_data["jina_spiece_model"] = clip_data_jina.get("spiece_model", None) else: clip_target.clip = sdxl_clip.SDXLClipModel clip_target.tokenizer = sdxl_clip.SDXLTokenizer diff --git a/comfy/text_encoders/jina_clip_2.py b/comfy/text_encoders/jina_clip_2.py new file mode 100644 index 000000000..0cffb6d16 --- /dev/null +++ b/comfy/text_encoders/jina_clip_2.py @@ -0,0 +1,219 @@ +# Jina CLIP v2 and Jina Embeddings v3 both use their modified XLM-RoBERTa architecture. Reference implementation: +# Jina CLIP v2 (both text and vision): https://huggingface.co/jinaai/jina-clip-implementation/blob/39e6a55ae971b59bea6e44675d237c99762e7ee2/modeling_clip.py +# Jina XLM-RoBERTa (text only): http://huggingface.co/jinaai/xlm-roberta-flash-implementation/blob/2b6bc3f30750b3a9648fe9b63448c09920efe9be/modeling_xlm_roberta.py + +from dataclasses import dataclass + +import torch +from torch import nn as nn +from torch.nn import functional as F + +import comfy.model_management +import comfy.ops +from comfy import sd1_clip +from .spiece_tokenizer import SPieceTokenizer + +class JinaClip2Tokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer = tokenizer_data.get("spiece_model", None) + # The official NewBie uses max_length=8000, but Jina Embeddings v3 actually supports 8192 + super().__init__(tokenizer, pad_with_end=False, embedding_size=1024, embedding_key='jina_clip_2', tokenizer_class=SPieceTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=False, max_length=8192, min_length=1, pad_token=1, end_token=2, tokenizer_args={"add_bos": True, "add_eos": True}, tokenizer_data=tokenizer_data) + + def state_dict(self): + return {"spiece_model": self.tokenizer.serialize_model()} + +class JinaClip2TokenizerWrapper(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=JinaClip2Tokenizer, name="jina_clip_2") + +# https://huggingface.co/jinaai/jina-embeddings-v3/blob/343dbf534c76fe845f304fa5c2d1fd87e1e78918/config.json +@dataclass +class XLMRobertaConfig: + vocab_size: int = 250002 + type_vocab_size: int = 1 + hidden_size: int = 1024 + num_hidden_layers: int = 24 + num_attention_heads: int = 16 + rotary_emb_base: float = 20000.0 + intermediate_size: int = 4096 + hidden_act: str = "gelu" + hidden_dropout_prob: float = 0.1 + attention_probs_dropout_prob: float = 0.1 + layer_norm_eps: float = 1e-05 + bos_token_id: int = 0 + eos_token_id: int = 2 + pad_token_id: int = 1 + +class XLMRobertaEmbeddings(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + embed_dim = config.hidden_size + self.word_embeddings = ops.Embedding(config.vocab_size, embed_dim, padding_idx=config.pad_token_id, device=device, dtype=dtype) + self.token_type_embeddings = ops.Embedding(config.type_vocab_size, embed_dim, device=device, dtype=dtype) + + def forward(self, input_ids=None, embeddings=None): + if input_ids is not None and embeddings is None: + embeddings = self.word_embeddings(input_ids) + + if embeddings is not None: + token_type_ids = torch.zeros(embeddings.shape[1], device=embeddings.device, dtype=torch.int32) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + embeddings = embeddings + token_type_embeddings + return embeddings + +class RotaryEmbedding(nn.Module): + def __init__(self, dim, base, device=None): + super().__init__() + inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + self._seq_len_cached = 0 + self._cos_cached = None + self._sin_cached = None + + def _update_cos_sin_cache(self, seqlen, device=None, dtype=None): + if seqlen > self._seq_len_cached or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype: + self._seq_len_cached = seqlen + t = torch.arange(seqlen, device=device, dtype=torch.float32) + freqs = torch.outer(t, self.inv_freq.to(device=t.device)) + emb = torch.cat((freqs, freqs), dim=-1) + self._cos_cached = emb.cos().to(dtype) + self._sin_cached = emb.sin().to(dtype) + + def forward(self, q, k): + batch, seqlen, heads, head_dim = q.shape + self._update_cos_sin_cache(seqlen, device=q.device, dtype=q.dtype) + + cos = self._cos_cached[:seqlen].view(1, seqlen, 1, head_dim) + sin = self._sin_cached[:seqlen].view(1, seqlen, 1, head_dim) + + def rotate_half(x): + size = x.shape[-1] // 2 + x1, x2 = x[..., :size], x[..., size:] + return torch.cat((-x2, x1), dim=-1) + + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + +class MHA(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = embed_dim // config.num_attention_heads + + self.rotary_emb = RotaryEmbedding(self.head_dim, config.rotary_emb_base, device=device) + self.Wqkv = ops.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype) + self.out_proj = ops.Linear(embed_dim, embed_dim, device=device, dtype=dtype) + + def forward(self, x, mask=None, optimized_attention=None): + qkv = self.Wqkv(x) + batch_size, seq_len, _ = qkv.shape + qkv = qkv.view(batch_size, seq_len, 3, self.num_heads, self.head_dim) + q, k, v = qkv.unbind(2) + + q, k = self.rotary_emb(q, k) + + # NHD -> HND + q = q.transpose(1, 2) + k = k.transpose(1, 2) + v = v.transpose(1, 2) + + out = optimized_attention(q, k, v, heads=self.num_heads, mask=mask, skip_reshape=True) + return self.out_proj(out) + +class MLP(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.fc1 = ops.Linear(config.hidden_size, config.intermediate_size, device=device, dtype=dtype) + self.activation = F.gelu + self.fc2 = ops.Linear(config.intermediate_size, config.hidden_size, device=device, dtype=dtype) + + def forward(self, x): + x = self.fc1(x) + x = self.activation(x) + x = self.fc2(x) + return x + +class Block(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.mixer = MHA(config, device=device, dtype=dtype, ops=ops) + self.dropout1 = nn.Dropout(config.hidden_dropout_prob) + self.norm1 = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype) + self.mlp = MLP(config, device=device, dtype=dtype, ops=ops) + self.dropout2 = nn.Dropout(config.hidden_dropout_prob) + self.norm2 = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype) + + def forward(self, hidden_states, mask=None, optimized_attention=None): + mixer_out = self.mixer(hidden_states, mask=mask, optimized_attention=optimized_attention) + hidden_states = self.norm1(self.dropout1(mixer_out) + hidden_states) + mlp_out = self.mlp(hidden_states) + hidden_states = self.norm2(self.dropout2(mlp_out) + hidden_states) + return hidden_states + +class XLMRobertaEncoder(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.layers = nn.ModuleList([Block(config, device=device, dtype=dtype, ops=ops) for _ in range(config.num_hidden_layers)]) + + def forward(self, hidden_states, attention_mask=None): + optimized_attention = comfy.ldm.modules.attention.optimized_attention_for_device(hidden_states.device, mask=attention_mask is not None, small_input=True) + for layer in self.layers: + hidden_states = layer(hidden_states, mask=attention_mask, optimized_attention=optimized_attention) + return hidden_states + +class XLMRobertaModel_(nn.Module): + def __init__(self, config, device=None, dtype=None, ops=None): + super().__init__() + self.embeddings = XLMRobertaEmbeddings(config, device=device, dtype=dtype, ops=ops) + self.emb_ln = ops.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device, dtype=dtype) + self.emb_drop = nn.Dropout(config.hidden_dropout_prob) + self.encoder = XLMRobertaEncoder(config, device=device, dtype=dtype, ops=ops) + + def forward(self, input_ids, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]): + x = self.embeddings(input_ids=input_ids, embeddings=embeds) + x = self.emb_ln(x) + x = self.emb_drop(x) + + mask = None + if attention_mask is not None: + mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, 1, attention_mask.shape[-1])) + mask = mask.masked_fill(mask.to(torch.bool), -torch.finfo(x.dtype).max) + + sequence_output = self.encoder(x, attention_mask=mask) + + # Mean pool, see https://huggingface.co/jinaai/jina-clip-implementation/blob/39e6a55ae971b59bea6e44675d237c99762e7ee2/hf_model.py + pooled_output = None + if attention_mask is None: + pooled_output = sequence_output.mean(dim=1) + else: + attention_mask = attention_mask.to(sequence_output.dtype) + pooled_output = (sequence_output * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=-1, keepdim=True) + + # Intermediate output is not yet implemented, use None for placeholder + return sequence_output, None, pooled_output + +class XLMRobertaModel(nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + self.config = XLMRobertaConfig(**config_dict) + self.model = XLMRobertaModel_(self.config, device=device, dtype=dtype, ops=operations) + self.num_layers = self.config.num_hidden_layers + + def get_input_embeddings(self): + return self.model.embeddings.word_embeddings + + def set_input_embeddings(self, embeddings): + self.model.embeddings.word_embeddings = embeddings + + def forward(self, *args, **kwargs): + return self.model(*args, **kwargs) + +class JinaClip2TextModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, textmodel_json_config={}, model_class=XLMRobertaModel, special_tokens={"start": 0, "end": 2, "pad": 1}, enable_attention_masks=True, return_attention_masks=True, model_options=model_options) + +class JinaClip2TextModelWrapper(sd1_clip.SD1ClipModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + super().__init__(device=device, dtype=dtype, clip_model=JinaClip2TextModel, name="jina_clip_2", model_options=model_options) diff --git a/comfy/text_encoders/newbie.py b/comfy/text_encoders/newbie.py new file mode 100644 index 000000000..31904462b --- /dev/null +++ b/comfy/text_encoders/newbie.py @@ -0,0 +1,62 @@ +import torch + +import comfy.model_management +import comfy.text_encoders.jina_clip_2 +import comfy.text_encoders.lumina2 + +class NewBieTokenizer: + def __init__(self, embedding_directory=None, tokenizer_data={}): + self.gemma = comfy.text_encoders.lumina2.Gemma3_4BTokenizer(embedding_directory=embedding_directory, tokenizer_data={"spiece_model": tokenizer_data["gemma_spiece_model"]}) + self.jina = comfy.text_encoders.jina_clip_2.JinaClip2Tokenizer(embedding_directory=embedding_directory, tokenizer_data={"spiece_model": tokenizer_data["jina_spiece_model"]}) + + def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): + out = {} + out["gemma"] = self.gemma.tokenize_with_weights(text, return_word_ids, **kwargs) + out["jina"] = self.jina.tokenize_with_weights(text, return_word_ids, **kwargs) + return out + + def untokenize(self, token_weight_pair): + raise NotImplementedError + + def state_dict(self): + return {} + +class NewBieTEModel(torch.nn.Module): + def __init__(self, dtype_gemma=None, device="cpu", dtype=None, model_options={}): + super().__init__() + dtype_gemma = comfy.model_management.pick_weight_dtype(dtype_gemma, dtype, device) + self.gemma = comfy.text_encoders.lumina2.Gemma3_4BModel(device=device, dtype=dtype_gemma, model_options=model_options) + self.jina = comfy.text_encoders.jina_clip_2.JinaClip2TextModel(device=device, dtype=dtype, model_options=model_options) + self.dtypes = {dtype, dtype_gemma} + + def set_clip_options(self, options): + self.gemma.set_clip_options(options) + self.jina.set_clip_options(options) + + def reset_clip_options(self): + self.gemma.reset_clip_options() + self.jina.reset_clip_options() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs_gemma = token_weight_pairs["gemma"] + token_weight_pairs_jina = token_weight_pairs["jina"] + + gemma_out, gemma_pooled, gemma_extra = self.gemma.encode_token_weights(token_weight_pairs_gemma) + jina_out, jina_pooled, jina_extra = self.jina.encode_token_weights(token_weight_pairs_jina) + + return gemma_out, jina_pooled, gemma_extra + + def load_sd(self, sd): + if "model.layers.0.self_attn.q_norm.weight" in sd: + return self.gemma.load_sd(sd) + else: + return self.jina.load_sd(sd) + +def te(dtype_llama=None, llama_quantization_metadata=None): + class NewBieTEModel_(NewBieTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_quantization_metadata is not None: + model_options = model_options.copy() + model_options["quantization_metadata"] = llama_quantization_metadata + super().__init__(dtype_gemma=dtype_llama, device=device, dtype=dtype, model_options=model_options) + return NewBieTEModel_ diff --git a/nodes.py b/nodes.py index b13ceb578..7d83ecb21 100644 --- a/nodes.py +++ b/nodes.py @@ -970,7 +970,7 @@ class DualCLIPLoader: def INPUT_TYPES(s): return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image"], ), + "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "newbie"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), @@ -980,7 +980,7 @@ class DualCLIPLoader: CATEGORY = "advanced/loaders" - DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5\nhidream: at least one of t5 or llama, recommended t5 and llama\nhunyuan_image: qwen2.5vl 7b and byt5 small" + DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5\nhidream: at least one of t5 or llama, recommended t5 and llama\nhunyuan_image: qwen2.5vl 7b and byt5 small\nnewbie: gemma-3-4b-it, jina clip v2" def load_clip(self, clip_name1, clip_name2, type, device="default"): clip_type = getattr(comfy.sd.CLIPType, type.upper(), comfy.sd.CLIPType.STABLE_DIFFUSION) From fb478f679a2998c4f2e955bcb895cc4c55f119a4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 19 Dec 2025 22:02:43 -0800 Subject: [PATCH 206/271] Only apply gemma quant config to gemma model for newbie. (#11436) --- comfy/text_encoders/lumina2.py | 5 +++++ comfy/text_encoders/newbie.py | 2 +- 2 files changed, 6 insertions(+), 1 deletion(-) diff --git a/comfy/text_encoders/lumina2.py b/comfy/text_encoders/lumina2.py index f82883ba1..b29a7cc87 100644 --- a/comfy/text_encoders/lumina2.py +++ b/comfy/text_encoders/lumina2.py @@ -33,6 +33,11 @@ class Gemma2_2BModel(sd1_clip.SDClipModel): class Gemma3_4BModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}): + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: + model_options = model_options.copy() + model_options["quantization_metadata"] = llama_quantization_metadata + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_4B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) class LuminaModel(sd1_clip.SD1ClipModel): diff --git a/comfy/text_encoders/newbie.py b/comfy/text_encoders/newbie.py index 31904462b..db2324576 100644 --- a/comfy/text_encoders/newbie.py +++ b/comfy/text_encoders/newbie.py @@ -57,6 +57,6 @@ def te(dtype_llama=None, llama_quantization_metadata=None): def __init__(self, device="cpu", dtype=None, model_options={}): if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["quantization_metadata"] = llama_quantization_metadata + model_options["llama_quantization_metadata"] = llama_quantization_metadata super().__init__(dtype_gemma=dtype_llama, device=device, dtype=dtype, model_options=model_options) return NewBieTEModel_ From 0899012ad60db23cbc5990d164fbd22195bafcb2 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 20 Dec 2025 08:24:37 +0200 Subject: [PATCH 207/271] chore(api-nodes): by default set Watermark generation to False (#11437) --- comfy_api_nodes/apis/bytedance_api.py | 6 +++--- comfy_api_nodes/nodes_bytedance.py | 16 ++++++++-------- comfy_api_nodes/nodes_wan.py | 24 ++++++++++++------------ 3 files changed, 23 insertions(+), 23 deletions(-) diff --git a/comfy_api_nodes/apis/bytedance_api.py b/comfy_api_nodes/apis/bytedance_api.py index 77cd76f9b..b8c2f618b 100644 --- a/comfy_api_nodes/apis/bytedance_api.py +++ b/comfy_api_nodes/apis/bytedance_api.py @@ -10,7 +10,7 @@ class Text2ImageTaskCreationRequest(BaseModel): size: str | None = Field(None) seed: int | None = Field(0, ge=0, le=2147483647) guidance_scale: float | None = Field(..., ge=1.0, le=10.0) - watermark: bool | None = Field(True) + watermark: bool | None = Field(False) class Image2ImageTaskCreationRequest(BaseModel): @@ -21,7 +21,7 @@ class Image2ImageTaskCreationRequest(BaseModel): size: str | None = Field("adaptive") seed: int | None = Field(..., ge=0, le=2147483647) guidance_scale: float | None = Field(..., ge=1.0, le=10.0) - watermark: bool | None = Field(True) + watermark: bool | None = Field(False) class Seedream4Options(BaseModel): @@ -37,7 +37,7 @@ class Seedream4TaskCreationRequest(BaseModel): seed: int = Field(..., ge=0, le=2147483647) sequential_image_generation: str = Field("disabled") sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15)) - watermark: bool = Field(True) + watermark: bool = Field(False) class ImageTaskCreationResponse(BaseModel): diff --git a/comfy_api_nodes/nodes_bytedance.py b/comfy_api_nodes/nodes_bytedance.py index 57c0218d0..636cc1265 100644 --- a/comfy_api_nodes/nodes_bytedance.py +++ b/comfy_api_nodes/nodes_bytedance.py @@ -112,7 +112,7 @@ class ByteDanceImageNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the image', optional=True, ), @@ -215,7 +215,7 @@ class ByteDanceImageEditNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the image', optional=True, ), @@ -346,7 +346,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the image.', optional=True, ), @@ -380,7 +380,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): sequential_image_generation: str = "disabled", max_images: int = 1, seed: int = 0, - watermark: bool = True, + watermark: bool = False, fail_on_partial: bool = True, ) -> IO.NodeOutput: validate_string(prompt, strip_whitespace=True, min_length=1) @@ -507,7 +507,7 @@ class ByteDanceTextToVideoNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), @@ -617,7 +617,7 @@ class ByteDanceImageToVideoNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), @@ -739,7 +739,7 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), @@ -862,7 +862,7 @@ class ByteDanceImageReferenceNode(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip='Whether to add an "AI generated" watermark to the video.', optional=True, ), diff --git a/comfy_api_nodes/nodes_wan.py b/comfy_api_nodes/nodes_wan.py index 17b680e13..1675fd863 100644 --- a/comfy_api_nodes/nodes_wan.py +++ b/comfy_api_nodes/nodes_wan.py @@ -46,14 +46,14 @@ class Txt2ImageParametersField(BaseModel): n: int = Field(1, description="Number of images to generate.") # we support only value=1 seed: int = Field(..., ge=0, le=2147483647) prompt_extend: bool = Field(True) - watermark: bool = Field(True) + watermark: bool = Field(False) class Image2ImageParametersField(BaseModel): size: str | None = Field(None) n: int = Field(1, description="Number of images to generate.") # we support only value=1 seed: int = Field(..., ge=0, le=2147483647) - watermark: bool = Field(True) + watermark: bool = Field(False) class Text2VideoParametersField(BaseModel): @@ -61,7 +61,7 @@ class Text2VideoParametersField(BaseModel): seed: int = Field(..., ge=0, le=2147483647) duration: int = Field(5, ge=5, le=15) prompt_extend: bool = Field(True) - watermark: bool = Field(True) + watermark: bool = Field(False) audio: bool = Field(False, description="Whether to generate audio automatically.") shot_type: str = Field("single") @@ -71,7 +71,7 @@ class Image2VideoParametersField(BaseModel): seed: int = Field(..., ge=0, le=2147483647) duration: int = Field(5, ge=5, le=15) prompt_extend: bool = Field(True) - watermark: bool = Field(True) + watermark: bool = Field(False) audio: bool = Field(False, description="Whether to generate audio automatically.") shot_type: str = Field("single") @@ -208,7 +208,7 @@ class WanTextToImageApi(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), @@ -234,7 +234,7 @@ class WanTextToImageApi(IO.ComfyNode): height: int = 1024, seed: int = 0, prompt_extend: bool = True, - watermark: bool = True, + watermark: bool = False, ): initial_response = await sync_op( cls, @@ -327,7 +327,7 @@ class WanImageToImageApi(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), @@ -353,7 +353,7 @@ class WanImageToImageApi(IO.ComfyNode): # width: int = 1024, # height: int = 1024, seed: int = 0, - watermark: bool = True, + watermark: bool = False, ): n_images = get_number_of_images(image) if n_images not in (1, 2): @@ -476,7 +476,7 @@ class WanTextToVideoApi(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), @@ -512,7 +512,7 @@ class WanTextToVideoApi(IO.ComfyNode): seed: int = 0, generate_audio: bool = False, prompt_extend: bool = True, - watermark: bool = True, + watermark: bool = False, shot_type: str = "single", ): if "480p" in size and model == "wan2.6-t2v": @@ -637,7 +637,7 @@ class WanImageToVideoApi(IO.ComfyNode): ), IO.Boolean.Input( "watermark", - default=True, + default=False, tooltip="Whether to add an AI-generated watermark to the result.", optional=True, ), @@ -674,7 +674,7 @@ class WanImageToVideoApi(IO.ComfyNode): seed: int = 0, generate_audio: bool = False, prompt_extend: bool = True, - watermark: bool = True, + watermark: bool = False, shot_type: str = "single", ): if get_number_of_images(image) != 1: From bbb11e26081977474eec72ce36d12ec778b5a9ea Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 20 Dec 2025 18:48:28 +0200 Subject: [PATCH 208/271] fix(api-nodes): Topaz 4k video upscaling (#11438) --- comfy_api_nodes/nodes_topaz.py | 35 +++++++++++++++++++++++++++------- 1 file changed, 28 insertions(+), 7 deletions(-) diff --git a/comfy_api_nodes/nodes_topaz.py b/comfy_api_nodes/nodes_topaz.py index f522756e5..b04575ad8 100644 --- a/comfy_api_nodes/nodes_topaz.py +++ b/comfy_api_nodes/nodes_topaz.py @@ -23,10 +23,6 @@ UPSCALER_MODELS_MAP = { "Starlight (Astra) Fast": "slf-1", "Starlight (Astra) Creative": "slc-1", } -UPSCALER_VALUES_MAP = { - "FullHD (1080p)": 1920, - "4K (2160p)": 3840, -} class TopazImageEnhance(IO.ComfyNode): @@ -214,7 +210,7 @@ class TopazVideoEnhance(IO.ComfyNode): IO.Video.Input("video"), IO.Boolean.Input("upscaler_enabled", default=True), IO.Combo.Input("upscaler_model", options=list(UPSCALER_MODELS_MAP.keys())), - IO.Combo.Input("upscaler_resolution", options=list(UPSCALER_VALUES_MAP.keys())), + IO.Combo.Input("upscaler_resolution", options=["FullHD (1080p)", "4K (2160p)"]), IO.Combo.Input( "upscaler_creativity", options=["low", "middle", "high"], @@ -306,8 +302,33 @@ class TopazVideoEnhance(IO.ComfyNode): target_frame_rate = src_frame_rate filters = [] if upscaler_enabled: - target_width = UPSCALER_VALUES_MAP[upscaler_resolution] - target_height = UPSCALER_VALUES_MAP[upscaler_resolution] + if "1080p" in upscaler_resolution: + target_pixel_p = 1080 + max_long_side = 1920 + else: + target_pixel_p = 2160 + max_long_side = 3840 + ar = src_width / src_height + if src_width >= src_height: + # Landscape or Square; Attempt to set height to target (e.g., 2160), calculate width + target_height = target_pixel_p + target_width = int(target_height * ar) + # Check if width exceeds standard bounds (for ultra-wide e.g., 21:9 ARs) + if target_width > max_long_side: + target_width = max_long_side + target_height = int(target_width / ar) + else: + # Portrait; Attempt to set width to target (e.g., 2160), calculate height + target_width = target_pixel_p + target_height = int(target_width / ar) + # Check if height exceeds standard bounds + if target_height > max_long_side: + target_height = max_long_side + target_width = int(target_height * ar) + if target_width % 2 != 0: + target_width += 1 + if target_height % 2 != 0: + target_height += 1 filters.append( topaz_api.VideoEnhancementFilter( model=UPSCALER_MODELS_MAP[upscaler_model], From 807538fe6c66bca8c91edbad14414fb4e109cbde Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 20 Dec 2025 17:02:02 -0800 Subject: [PATCH 209/271] Core release process. (#11447) --- README.md | 3 +++ 1 file changed, 3 insertions(+) diff --git a/README.md b/README.md index bae955b1b..b0f62695b 100644 --- a/README.md +++ b/README.md @@ -119,6 +119,9 @@ ComfyUI follows a weekly release cycle targeting Monday but this regularly chang 1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)** - Releases a new stable version (e.g., v0.7.0) roughly every week. + - Starting from v0.4.0 patch versions will be used for fixes backported onto the current stable release. + - Minor versions will be used for releases off the master branch. + - Patch versions may still be used for releases on the master branch in cases where a backport would not make sense. - Commits outside of the stable release tags may be very unstable and break many custom nodes. - Serves as the foundation for the desktop release From 91bf6b6aa3d5134c1569375a34ff483d3e32e03f Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 21 Dec 2025 16:59:40 -0800 Subject: [PATCH 210/271] Add node to create empty latents for qwen image layered model. (#11460) --- comfy_extras/nodes_qwen.py | 29 ++++++++++++++++++++++++++++- 1 file changed, 28 insertions(+), 1 deletion(-) diff --git a/comfy_extras/nodes_qwen.py b/comfy_extras/nodes_qwen.py index 525239ae5..fde8fac9a 100644 --- a/comfy_extras/nodes_qwen.py +++ b/comfy_extras/nodes_qwen.py @@ -3,7 +3,9 @@ import comfy.utils import math from typing_extensions import override from comfy_api.latest import ComfyExtension, io - +import comfy.model_management +import torch +import nodes class TextEncodeQwenImageEdit(io.ComfyNode): @classmethod @@ -104,12 +106,37 @@ class TextEncodeQwenImageEditPlus(io.ComfyNode): return io.NodeOutput(conditioning) +class EmptyQwenImageLayeredLatentImage(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="EmptyQwenImageLayeredLatentImage", + display_name="Empty Qwen Image Layered Latent", + category="latent/qwen", + inputs=[ + io.Int.Input("width", default=640, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("height", default=640, min=16, max=nodes.MAX_RESOLUTION, step=16), + io.Int.Input("layers", default=3, min=0, max=nodes.MAX_RESOLUTION, step=1), + io.Int.Input("batch_size", default=1, min=1, max=4096), + ], + outputs=[ + io.Latent.Output(), + ], + ) + + @classmethod + def execute(cls, width, height, layers, batch_size=1) -> io.NodeOutput: + latent = torch.zeros([batch_size, 16, layers + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) + return io.NodeOutput({"samples": latent}) + + class QwenExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ TextEncodeQwenImageEdit, TextEncodeQwenImageEditPlus, + EmptyQwenImageLayeredLatentImage, ] From c176b214cc768d41892add4d4f51c5c5627cbf7b Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Mon, 22 Dec 2025 08:44:49 +0200 Subject: [PATCH 211/271] extend possible duration range for Kling O1 StartEndFrame node (#11451) --- comfy_api_nodes/nodes_kling.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 1a6364fa0..5294b10d4 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -858,7 +858,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): tooltip="A text prompt describing the video content. " "This can include both positive and negative descriptions.", ), - IO.Combo.Input("duration", options=["5", "10"]), + IO.Int.Input("duration", default=5, min=3, max=10, display_mode=IO.NumberDisplay.slider), IO.Image.Input("first_frame"), IO.Image.Input( "end_frame", @@ -897,6 +897,10 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): validate_string(prompt, min_length=1, max_length=2500) if end_frame is not None and reference_images is not None: raise ValueError("The 'end_frame' input cannot be used simultaneously with 'reference_images'.") + if duration not in (5, 10) and end_frame is None and reference_images is None: + raise ValueError( + "Duration is only supported for 5 or 10 seconds if there is no end frame or reference images." + ) validate_image_dimensions(first_frame, min_width=300, min_height=300) validate_image_aspect_ratio(first_frame, (1, 2.5), (2.5, 1)) image_list: list[OmniParamImage] = [ From eb0e10aec449eed2bbcda82ae5b56070e61ed86f Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Tue, 23 Dec 2025 05:02:41 +0800 Subject: [PATCH 212/271] Update workflow templates to v0.7.62 (#11467) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 54696395f..b41dbe1d7 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.34.9 -comfyui-workflow-templates==0.7.60 +comfyui-workflow-templates==0.7.62 comfyui-embedded-docs==0.3.1 torch torchsde From 33aa808713f7c36cd9476c53b8b67c745e9bc107 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 22 Dec 2025 13:43:24 -0800 Subject: [PATCH 213/271] Make denoised output on custom sampler nodes work with nested tensors. (#11471) --- comfy_extras/nodes_custom_sampler.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index 7ee4caac1..993889d9d 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -760,8 +760,12 @@ class SamplerCustom(io.ComfyNode): out = latent.copy() out["samples"] = samples if "x0" in x0_output: + x0_out = model.model.process_latent_out(x0_output["x0"].cpu()) + if samples.is_nested: + latent_shapes = [x.shape for x in samples.unbind()] + x0_out = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(x0_out, latent_shapes)) out_denoised = latent.copy() - out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu()) + out_denoised["samples"] = x0_out else: out_denoised = out return io.NodeOutput(out, out_denoised) @@ -948,8 +952,12 @@ class SamplerCustomAdvanced(io.ComfyNode): out = latent.copy() out["samples"] = samples if "x0" in x0_output: + x0_out = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu()) + if samples.is_nested: + latent_shapes = [x.shape for x in samples.unbind()] + x0_out = comfy.nested_tensor.NestedTensor(comfy.utils.unpack_latents(x0_out, latent_shapes)) out_denoised = latent.copy() - out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu()) + out_denoised["samples"] = x0_out else: out_denoised = out return io.NodeOutput(out, out_denoised) From f4f44bb8073d02597aca61193fec6143292a0b88 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 23 Dec 2025 22:10:27 +0200 Subject: [PATCH 214/271] api-nodes: use new custom endpoint for Nano Banana (#11311) --- comfy_api_nodes/apis/gemini_api.py | 1 + comfy_api_nodes/nodes_gemini.py | 24 +++++++++++++++--------- 2 files changed, 16 insertions(+), 9 deletions(-) diff --git a/comfy_api_nodes/apis/gemini_api.py b/comfy_api_nodes/apis/gemini_api.py index f8edc38c9..d81337dae 100644 --- a/comfy_api_nodes/apis/gemini_api.py +++ b/comfy_api_nodes/apis/gemini_api.py @@ -133,6 +133,7 @@ class GeminiImageGenerateContentRequest(BaseModel): systemInstruction: GeminiSystemInstructionContent | None = Field(None) tools: list[GeminiTool] | None = Field(None) videoMetadata: GeminiVideoMetadata | None = Field(None) + uploadImagesToStorage: bool = Field(True) class GeminiGenerateContentRequest(BaseModel): diff --git a/comfy_api_nodes/nodes_gemini.py b/comfy_api_nodes/nodes_gemini.py index ad0f4b4d1..e8ed7e797 100644 --- a/comfy_api_nodes/nodes_gemini.py +++ b/comfy_api_nodes/nodes_gemini.py @@ -34,6 +34,7 @@ from comfy_api_nodes.util import ( ApiEndpoint, audio_to_base64_string, bytesio_to_image_tensor, + download_url_to_image_tensor, get_number_of_images, sync_op, tensor_to_base64_string, @@ -141,9 +142,11 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera ) parts = [] for part in response.candidates[0].content.parts: - if part_type == "text" and hasattr(part, "text") and part.text: + if part_type == "text" and part.text: parts.append(part) - elif hasattr(part, "inlineData") and part.inlineData and part.inlineData.mimeType == part_type: + elif part.inlineData and part.inlineData.mimeType == part_type: + parts.append(part) + elif part.fileData and part.fileData.mimeType == part_type: parts.append(part) # Skip parts that don't match the requested type return parts @@ -163,12 +166,15 @@ def get_text_from_response(response: GeminiGenerateContentResponse) -> str: return "\n".join([part.text for part in parts]) -def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image: +async def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image: image_tensors: list[Input.Image] = [] parts = get_parts_by_type(response, "image/png") for part in parts: - image_data = base64.b64decode(part.inlineData.data) - returned_image = bytesio_to_image_tensor(BytesIO(image_data)) + if part.inlineData: + image_data = base64.b64decode(part.inlineData.data) + returned_image = bytesio_to_image_tensor(BytesIO(image_data)) + else: + returned_image = await download_url_to_image_tensor(part.fileData.fileUri) image_tensors.append(returned_image) if len(image_tensors) == 0: return torch.zeros((1, 1024, 1024, 4)) @@ -596,7 +602,7 @@ class GeminiImage(IO.ComfyNode): response = await sync_op( cls, - endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"), + ApiEndpoint(path=f"/proxy/vertexai/gemini/{model}", method="POST"), data=GeminiImageGenerateContentRequest( contents=[ GeminiContent(role=GeminiRole.user, parts=parts), @@ -610,7 +616,7 @@ class GeminiImage(IO.ComfyNode): response_model=GeminiGenerateContentResponse, price_extractor=calculate_tokens_price, ) - return IO.NodeOutput(get_image_from_response(response), get_text_from_response(response)) + return IO.NodeOutput(await get_image_from_response(response), get_text_from_response(response)) class GeminiImage2(IO.ComfyNode): @@ -729,7 +735,7 @@ class GeminiImage2(IO.ComfyNode): response = await sync_op( cls, - ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"), + ApiEndpoint(path=f"/proxy/vertexai/gemini/{model}", method="POST"), data=GeminiImageGenerateContentRequest( contents=[ GeminiContent(role=GeminiRole.user, parts=parts), @@ -743,7 +749,7 @@ class GeminiImage2(IO.ComfyNode): response_model=GeminiGenerateContentResponse, price_extractor=calculate_tokens_price, ) - return IO.NodeOutput(get_image_from_response(response), get_text_from_response(response)) + return IO.NodeOutput(await get_image_from_response(response), get_text_from_response(response)) class GeminiExtension(ComfyExtension): From 22ff1bbfcb532a294b200a90270b772a339d334e Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Wed, 24 Dec 2025 09:48:45 +0800 Subject: [PATCH 215/271] chore: update workflow templates to v0.7.63 (#11482) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index b41dbe1d7..59ac599c1 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.34.9 -comfyui-workflow-templates==0.7.62 +comfyui-workflow-templates==0.7.63 comfyui-embedded-docs==0.3.1 torch torchsde From e4c61d75555036fa28b6bb34e5fd67b007c9f391 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 23 Dec 2025 20:50:02 -0500 Subject: [PATCH 216/271] ComfyUI v0.6.0 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index b45309198..1f28e2407 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.5.1" +__version__ = "0.6.0" diff --git a/pyproject.toml b/pyproject.toml index 3a6960811..35a268bd1 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.5.1" +version = "0.6.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 650e716dda0a966a083f0efe299f3e83336f920e Mon Sep 17 00:00:00 2001 From: Comfy Org PR Bot Date: Wed, 24 Dec 2025 14:29:41 +0900 Subject: [PATCH 217/271] Bump comfyui-frontend-package to 1.35.9 (#11470) Co-authored-by: github-actions[bot] --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 59ac599c1..84b1882aa 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -comfyui-frontend-package==1.34.9 +comfyui-frontend-package==1.35.9 comfyui-workflow-templates==0.7.63 comfyui-embedded-docs==0.3.1 torch From 4f067b07fb33cc1b61d91aec73ca968ba7d9c29a Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Thu, 25 Dec 2025 07:54:21 +0800 Subject: [PATCH 218/271] chore: update workflow templates to v0.7.64 (#11496) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 84b1882aa..8b670b813 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.63 +comfyui-workflow-templates==0.7.64 comfyui-embedded-docs==0.3.1 torch torchsde From 532e2850794c7b497174a0a42ac0cb1fe5b62499 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 24 Dec 2025 16:09:37 -0800 Subject: [PATCH 219/271] Add a ManualSigmas node. (#11499) Can be used to manually set the sigmas for a model. This node accepts a list of integer and floating point numbers separated with any non numeric character. --- comfy_extras/nodes_custom_sampler.py | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index 993889d9d..f19adf4b9 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -9,6 +9,7 @@ import comfy.utils import node_helpers from typing_extensions import override from comfy_api.latest import ComfyExtension, io +import re class BasicScheduler(io.ComfyNode): @@ -1013,6 +1014,25 @@ class AddNoise(io.ComfyNode): add_noise = execute +class ManualSigmas(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ManualSigmas", + category="_for_testing/custom_sampling", + is_experimental=True, + inputs=[ + io.String.Input("sigmas", default="1, 0.5", multiline=False) + ], + outputs=[io.Sigmas.Output()] + ) + + @classmethod + def execute(cls, sigmas) -> io.NodeOutput: + sigmas = re.findall(r"[-+]?(?:\d*\.*\d+)", sigmas) + sigmas = [float(i) for i in sigmas] + sigmas = torch.FloatTensor(sigmas) + return io.NodeOutput(sigmas) class CustomSamplersExtension(ComfyExtension): @override @@ -1052,6 +1072,7 @@ class CustomSamplersExtension(ComfyExtension): DisableNoise, AddNoise, SamplerCustomAdvanced, + ManualSigmas, ] From d9a76cf66e3fc6b0047692a07bc1d24f20e16e20 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 25 Dec 2025 20:46:51 -0800 Subject: [PATCH 220/271] Specify in readme that we only support pytorch 2.4 and up. (#11512) --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index b0f62695b..6d09758c0 100644 --- a/README.md +++ b/README.md @@ -212,6 +212,8 @@ Python 3.14 works but you may encounter issues with the torch compile node. The Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12 +torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch unless it is less than 2 weeks old. + ### Instructions: Git clone this repo. From 16fb6849d296259fd2bf106a6f894650d9a12072 Mon Sep 17 00:00:00 2001 From: "Dr.Lt.Data" <128333288+ltdrdata@users.noreply.github.com> Date: Sat, 27 Dec 2025 08:55:59 +0900 Subject: [PATCH 221/271] bump comfyui_manager version to the 4.0.4 (#11521) --- manager_requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/manager_requirements.txt b/manager_requirements.txt index 2300f0c70..6585b0c19 100644 --- a/manager_requirements.txt +++ b/manager_requirements.txt @@ -1 +1 @@ -comfyui_manager==4.0.3b7 +comfyui_manager==4.0.4 From 1e4e342f54386ea4179b273c24b37bd8cbde8f37 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 26 Dec 2025 19:03:01 -0800 Subject: [PATCH 222/271] Fix noise with ancestral samplers when inferencing on cpu. (#11528) --- comfy/k_diffusion/sampling.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index 1ba9edad7..0949dee44 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -74,6 +74,9 @@ def get_ancestral_step(sigma_from, sigma_to, eta=1.): def default_noise_sampler(x, seed=None): if seed is not None: + if x.device == torch.device("cpu"): + seed += 1 + generator = torch.Generator(device=x.device) generator.manual_seed(seed) else: From 865568b7fc5fd2a5f626b22a40c363b0a5f0b399 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 27 Dec 2025 05:16:21 +0200 Subject: [PATCH 223/271] feat(api-nodes): add Kling Motion Control node (#11493) --- comfy_api_nodes/apis/kling_api.py | 9 ++++ comfy_api_nodes/nodes_kling.py | 87 +++++++++++++++++++++++++++++++ 2 files changed, 96 insertions(+) diff --git a/comfy_api_nodes/apis/kling_api.py b/comfy_api_nodes/apis/kling_api.py index 80a758466..bf54ede3e 100644 --- a/comfy_api_nodes/apis/kling_api.py +++ b/comfy_api_nodes/apis/kling_api.py @@ -102,3 +102,12 @@ class ImageToVideoWithAudioRequest(BaseModel): prompt: str = Field(...) mode: str = Field("pro") sound: str = Field(..., description="'on' or 'off'") + + +class MotionControlRequest(BaseModel): + prompt: str = Field(...) + image_url: str = Field(...) + video_url: str = Field(...) + keep_original_sound: str = Field(...) + character_orientation: str = Field(...) + mode: str = Field(..., description="'pro' or 'std'") diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 5294b10d4..58259e029 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -51,6 +51,7 @@ from comfy_api_nodes.apis import ( ) from comfy_api_nodes.apis.kling_api import ( ImageToVideoWithAudioRequest, + MotionControlRequest, OmniImageParamImage, OmniParamImage, OmniParamVideo, @@ -2163,6 +2164,91 @@ class ImageToVideoWithAudio(IO.ComfyNode): return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) +class MotionControl(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingMotionControl", + display_name="Kling Motion Control", + category="api node/video/Kling", + inputs=[ + IO.String.Input("prompt", multiline=True), + IO.Image.Input("reference_image"), + IO.Video.Input( + "reference_video", + tooltip="Motion reference video used to drive movement/expression.\n" + "Duration limits depend on character_orientation:\n" + " - image: 3–10s (max 10s)\n" + " - video: 3–30s (max 30s)", + ), + IO.Boolean.Input("keep_original_sound", default=True), + IO.Combo.Input( + "character_orientation", + options=["video", "image"], + tooltip="Controls where the character's facing/orientation comes from.\n" + "video: movements, expressions, camera moves, and orientation " + "follow the motion reference video (other details via prompt).\n" + "image: movements and expressions still follow the motion reference video, " + "but the character orientation matches the reference image (camera/other details via prompt).", + ), + IO.Combo.Input("mode", options=["pro", "std"]), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + prompt: str, + reference_image: Input.Image, + reference_video: Input.Video, + keep_original_sound: bool, + character_orientation: str, + mode: str, + ) -> IO.NodeOutput: + validate_string(prompt, max_length=2500) + validate_image_dimensions(reference_image, min_width=340, min_height=340) + validate_image_aspect_ratio(reference_image, (1, 2.5), (2.5, 1)) + if character_orientation == "image": + validate_video_duration(reference_video, min_duration=3, max_duration=10) + else: + validate_video_duration(reference_video, min_duration=3, max_duration=30) + validate_video_dimensions(reference_video, min_width=340, min_height=340, max_width=3850, max_height=3850) + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/motion-control", method="POST"), + response_model=TaskStatusResponse, + data=MotionControlRequest( + prompt=prompt, + image_url=(await upload_images_to_comfyapi(cls, reference_image))[0], + video_url=await upload_video_to_comfyapi(cls, reference_video), + keep_original_sound="yes" if keep_original_sound else "no", + character_orientation=character_orientation, + mode=mode, + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/motion-control/{response.data.task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + class KlingExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: @@ -2188,6 +2274,7 @@ class KlingExtension(ComfyExtension): OmniProImageNode, TextToVideoWithAudio, ImageToVideoWithAudio, + MotionControl, ] From eff4ea0b625e851d641b8f6532ff7afe2df16b9d Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 27 Dec 2025 05:39:02 +0200 Subject: [PATCH 224/271] [V3] converted nodes_images.py to V3 schema (#11206) * converted nodes_images.py to V3 schema * fix test --- comfy_api/latest/_io.py | 5 +- comfy_api/latest/_util/__init__.py | 2 + comfy_api/latest/_util/image_types.py | 18 + comfy_extras/nodes_images.py | 683 +++++++++--------- .../comfy_extras_test/image_stitch_test.py | 2 +- 5 files changed, 351 insertions(+), 359 deletions(-) create mode 100644 comfy_api/latest/_util/image_types.py diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index 4b14e5ded..ba0b95498 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -28,9 +28,8 @@ from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classpr prune_dict, shallow_clone_class) from ._resources import Resources, ResourcesLocal from comfy_execution.graph_utils import ExecutionBlocker -from ._util import MESH, VOXEL +from ._util import MESH, VOXEL, SVG as _SVG -# from comfy_extras.nodes_images import SVG as SVG_ # NOTE: needs to be moved before can be imported due to circular reference class FolderType(str, Enum): input = "input" @@ -656,7 +655,7 @@ class Video(ComfyTypeIO): @comfytype(io_type="SVG") class SVG(ComfyTypeIO): - Type = Any # TODO: SVG class is defined in comfy_extras/nodes_images.py, causing circular reference; should be moved to somewhere else before referenced directly in v3 + Type = _SVG @comfytype(io_type="LORA_MODEL") class LoraModel(ComfyTypeIO): diff --git a/comfy_api/latest/_util/__init__.py b/comfy_api/latest/_util/__init__.py index fc5431dda..6313eb01b 100644 --- a/comfy_api/latest/_util/__init__.py +++ b/comfy_api/latest/_util/__init__.py @@ -1,5 +1,6 @@ from .video_types import VideoContainer, VideoCodec, VideoComponents from .geometry_types import VOXEL, MESH +from .image_types import SVG __all__ = [ # Utility Types @@ -8,4 +9,5 @@ __all__ = [ "VideoComponents", "VOXEL", "MESH", + "SVG", ] diff --git a/comfy_api/latest/_util/image_types.py b/comfy_api/latest/_util/image_types.py new file mode 100644 index 000000000..f031ed426 --- /dev/null +++ b/comfy_api/latest/_util/image_types.py @@ -0,0 +1,18 @@ +from io import BytesIO + + +class SVG: + """Stores SVG representations via a list of BytesIO objects.""" + + def __init__(self, data: list[BytesIO]): + self.data = data + + def combine(self, other: 'SVG') -> 'SVG': + return SVG(self.data + other.data) + + @staticmethod + def combine_all(svgs: list['SVG']) -> 'SVG': + all_svgs_list: list[BytesIO] = [] + for svg_item in svgs: + all_svgs_list.extend(svg_item.data) + return SVG(all_svgs_list) diff --git a/comfy_extras/nodes_images.py b/comfy_extras/nodes_images.py index 392aea32c..ce21caade 100644 --- a/comfy_extras/nodes_images.py +++ b/comfy_extras/nodes_images.py @@ -2,280 +2,231 @@ from __future__ import annotations import nodes import folder_paths -from comfy.cli_args import args -from PIL import Image -from PIL.PngImagePlugin import PngInfo - -import numpy as np import json import os import re -from io import BytesIO -from inspect import cleandoc import torch import comfy.utils -from comfy.comfy_types import FileLocator, IO from server import PromptServer +from comfy_api.latest import ComfyExtension, IO, UI +from typing_extensions import override + +SVG = IO.SVG.Type # TODO: temporary solution for backward compatibility, will be removed later. MAX_RESOLUTION = nodes.MAX_RESOLUTION -class ImageCrop: +class ImageCrop(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), - "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "crop" + def define_schema(cls): + return IO.Schema( + node_id="ImageCrop", + display_name="Image Crop", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/transform" - - def crop(self, image, width, height, x, y): + @classmethod + def execute(cls, image, width, height, x, y) -> IO.NodeOutput: x = min(x, image.shape[2] - 1) y = min(y, image.shape[1] - 1) to_x = width + x to_y = height + y img = image[:,y:to_y, x:to_x, :] - return (img,) + return IO.NodeOutput(img) -class RepeatImageBatch: + crop = execute # TODO: remove + + +class RepeatImageBatch(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "amount": ("INT", {"default": 1, "min": 1, "max": 4096}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "repeat" + def define_schema(cls): + return IO.Schema( + node_id="RepeatImageBatch", + category="image/batch", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("amount", default=1, min=1, max=4096), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/batch" - - def repeat(self, image, amount): + @classmethod + def execute(cls, image, amount) -> IO.NodeOutput: s = image.repeat((amount, 1,1,1)) - return (s,) + return IO.NodeOutput(s) -class ImageFromBatch: + repeat = execute # TODO: remove + + +class ImageFromBatch(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "batch_index": ("INT", {"default": 0, "min": 0, "max": 4095}), - "length": ("INT", {"default": 1, "min": 1, "max": 4096}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "frombatch" + def define_schema(cls): + return IO.Schema( + node_id="ImageFromBatch", + category="image/batch", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("batch_index", default=0, min=0, max=4095), + IO.Int.Input("length", default=1, min=1, max=4096), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/batch" - - def frombatch(self, image, batch_index, length): + @classmethod + def execute(cls, image, batch_index, length) -> IO.NodeOutput: s_in = image batch_index = min(s_in.shape[0] - 1, batch_index) length = min(s_in.shape[0] - batch_index, length) s = s_in[batch_index:batch_index + length].clone() - return (s,) + return IO.NodeOutput(s) + + frombatch = execute # TODO: remove -class ImageAddNoise: +class ImageAddNoise(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": { "image": ("IMAGE",), - "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}), - "strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), - }} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "repeat" + def define_schema(cls): + return IO.Schema( + node_id="ImageAddNoise", + category="image", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input( + "seed", + default=0, + min=0, + max=0xFFFFFFFFFFFFFFFF, + control_after_generate=True, + tooltip="The random seed used for creating the noise.", + ), + IO.Float.Input("strength", default=0.5, min=0.0, max=1.0, step=0.01), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image" - - def repeat(self, image, seed, strength): + @classmethod + def execute(cls, image, seed, strength) -> IO.NodeOutput: generator = torch.manual_seed(seed) s = torch.clip((image + strength * torch.randn(image.size(), generator=generator, device="cpu").to(image)), min=0.0, max=1.0) - return (s,) + return IO.NodeOutput(s) -class SaveAnimatedWEBP: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" + repeat = execute # TODO: remove - methods = {"default": 4, "fastest": 0, "slowest": 6} - @classmethod - def INPUT_TYPES(s): - return {"required": - {"images": ("IMAGE", ), - "filename_prefix": ("STRING", {"default": "ComfyUI"}), - "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), - "lossless": ("BOOLEAN", {"default": True}), - "quality": ("INT", {"default": 80, "min": 0, "max": 100}), - "method": (list(s.methods.keys()),), - # "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}), - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } - RETURN_TYPES = () - FUNCTION = "save_images" - - OUTPUT_NODE = True - - CATEGORY = "image/animation" - - def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None): - method = self.methods.get(method) - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) - results: list[FileLocator] = [] - pil_images = [] - for image in images: - i = 255. * image.cpu().numpy() - img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) - pil_images.append(img) - - metadata = pil_images[0].getexif() - if not args.disable_metadata: - if prompt is not None: - metadata[0x0110] = "prompt:{}".format(json.dumps(prompt)) - if extra_pnginfo is not None: - inital_exif = 0x010f - for x in extra_pnginfo: - metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x])) - inital_exif -= 1 - - if num_frames == 0: - num_frames = len(pil_images) - - c = len(pil_images) - for i in range(0, c, num_frames): - file = f"{filename}_{counter:05}_.webp" - pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method) - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) - counter += 1 - - animated = num_frames != 1 - return { "ui": { "images": results, "animated": (animated,) } } - -class SaveAnimatedPNG: - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" +class SaveAnimatedWEBP(IO.ComfyNode): + COMPRESS_METHODS = {"default": 4, "fastest": 0, "slowest": 6} @classmethod - def INPUT_TYPES(s): - return {"required": - {"images": ("IMAGE", ), - "filename_prefix": ("STRING", {"default": "ComfyUI"}), - "fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}), - "compress_level": ("INT", {"default": 4, "min": 0, "max": 9}) - }, - "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, - } + def define_schema(cls): + return IO.Schema( + node_id="SaveAnimatedWEBP", + category="image/animation", + inputs=[ + IO.Image.Input("images"), + IO.String.Input("filename_prefix", default="ComfyUI"), + IO.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01), + IO.Boolean.Input("lossless", default=True), + IO.Int.Input("quality", default=80, min=0, max=100), + IO.Combo.Input("method", options=list(cls.COMPRESS_METHODS.keys())), + # "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) - RETURN_TYPES = () - FUNCTION = "save_images" + @classmethod + def execute(cls, images, fps, filename_prefix, lossless, quality, method, num_frames=0) -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.ImageSaveHelper.get_save_animated_webp_ui( + images=images, + filename_prefix=filename_prefix, + cls=cls, + fps=fps, + lossless=lossless, + quality=quality, + method=cls.COMPRESS_METHODS.get(method) + ) + ) - OUTPUT_NODE = True - - CATEGORY = "image/animation" - - def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) - results = list() - pil_images = [] - for image in images: - i = 255. * image.cpu().numpy() - img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) - pil_images.append(img) - - metadata = None - if not args.disable_metadata: - metadata = PngInfo() - if prompt is not None: - metadata.add(b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True) - if extra_pnginfo is not None: - for x in extra_pnginfo: - metadata.add(b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True) - - file = f"{filename}_{counter:05}_.png" - pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:]) - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) - - return { "ui": { "images": results, "animated": (True,)} } - -class SVG: - """ - Stores SVG representations via a list of BytesIO objects. - """ - def __init__(self, data: list[BytesIO]): - self.data = data - - def combine(self, other: 'SVG') -> 'SVG': - return SVG(self.data + other.data) - - @staticmethod - def combine_all(svgs: list['SVG']) -> 'SVG': - all_svgs_list: list[BytesIO] = [] - for svg_item in svgs: - all_svgs_list.extend(svg_item.data) - return SVG(all_svgs_list) + save_images = execute # TODO: remove -class ImageStitch: +class SaveAnimatedPNG(IO.ComfyNode): + + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="SaveAnimatedPNG", + category="image/animation", + inputs=[ + IO.Image.Input("images"), + IO.String.Input("filename_prefix", default="ComfyUI"), + IO.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01), + IO.Int.Input("compress_level", default=4, min=0, max=9), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) + + @classmethod + def execute(cls, images, fps, compress_level, filename_prefix="ComfyUI") -> IO.NodeOutput: + return IO.NodeOutput( + ui=UI.ImageSaveHelper.get_save_animated_png_ui( + images=images, + filename_prefix=filename_prefix, + cls=cls, + fps=fps, + compress_level=compress_level, + ) + ) + + save_images = execute # TODO: remove + + +class ImageStitch(IO.ComfyNode): """Upstreamed from https://github.com/kijai/ComfyUI-KJNodes""" @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image1": ("IMAGE",), - "direction": (["right", "down", "left", "up"], {"default": "right"}), - "match_image_size": ("BOOLEAN", {"default": True}), - "spacing_width": ( - "INT", - {"default": 0, "min": 0, "max": 1024, "step": 2}, - ), - "spacing_color": ( - ["white", "black", "red", "green", "blue"], - {"default": "white"}, - ), - }, - "optional": { - "image2": ("IMAGE",), - }, - } + def define_schema(cls): + return IO.Schema( + node_id="ImageStitch", + display_name="Image Stitch", + description="Stitches image2 to image1 in the specified direction.\n" + "If image2 is not provided, returns image1 unchanged.\n" + "Optional spacing can be added between images.", + category="image/transform", + inputs=[ + IO.Image.Input("image1"), + IO.Combo.Input("direction", options=["right", "down", "left", "up"], default="right"), + IO.Boolean.Input("match_image_size", default=True), + IO.Int.Input("spacing_width", default=0, min=0, max=1024, step=2), + IO.Combo.Input("spacing_color", options=["white", "black", "red", "green", "blue"], default="white"), + IO.Image.Input("image2", optional=True), + ], + outputs=[IO.Image.Output()], + ) - RETURN_TYPES = ("IMAGE",) - FUNCTION = "stitch" - CATEGORY = "image/transform" - DESCRIPTION = """ -Stitches image2 to image1 in the specified direction. -If image2 is not provided, returns image1 unchanged. -Optional spacing can be added between images. -""" - - def stitch( - self, + @classmethod + def execute( + cls, image1, direction, match_image_size, spacing_width, spacing_color, image2=None, - ): + ) -> IO.NodeOutput: if image2 is None: - return (image1,) + return IO.NodeOutput(image1) # Handle batch size differences if image1.shape[0] != image2.shape[0]: @@ -412,36 +363,30 @@ Optional spacing can be added between images. images.insert(1, spacing) concat_dim = 2 if direction in ["left", "right"] else 1 - return (torch.cat(images, dim=concat_dim),) + return IO.NodeOutput(torch.cat(images, dim=concat_dim)) + + stitch = execute # TODO: remove + + +class ResizeAndPadImage(IO.ComfyNode): -class ResizeAndPadImage: @classmethod - def INPUT_TYPES(cls): - return { - "required": { - "image": ("IMAGE",), - "target_width": ("INT", { - "default": 512, - "min": 1, - "max": MAX_RESOLUTION, - "step": 1 - }), - "target_height": ("INT", { - "default": 512, - "min": 1, - "max": MAX_RESOLUTION, - "step": 1 - }), - "padding_color": (["white", "black"],), - "interpolation": (["area", "bicubic", "nearest-exact", "bilinear", "lanczos"],), - } - } + def define_schema(cls): + return IO.Schema( + node_id="ResizeAndPadImage", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Int.Input("target_width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Int.Input("target_height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), + IO.Combo.Input("padding_color", options=["white", "black"]), + IO.Combo.Input("interpolation", options=["area", "bicubic", "nearest-exact", "bilinear", "lanczos"]), + ], + outputs=[IO.Image.Output()], + ) - RETURN_TYPES = ("IMAGE",) - FUNCTION = "resize_and_pad" - CATEGORY = "image/transform" - - def resize_and_pad(self, image, target_width, target_height, padding_color, interpolation): + @classmethod + def execute(cls, image, target_width, target_height, padding_color, interpolation) -> IO.NodeOutput: batch_size, orig_height, orig_width, channels = image.shape scale_w = target_width / orig_width @@ -469,52 +414,47 @@ class ResizeAndPadImage: padded[:, :, y_offset:y_offset + new_height, x_offset:x_offset + new_width] = resized output = padded.permute(0, 2, 3, 1) - return (output,) + return IO.NodeOutput(output) -class SaveSVGNode: - """ - Save SVG files on disk. - """ + resize_and_pad = execute # TODO: remove - def __init__(self): - self.output_dir = folder_paths.get_output_directory() - self.type = "output" - self.prefix_append = "" - RETURN_TYPES = () - DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value - FUNCTION = "save_svg" - CATEGORY = "image/save" # Changed - OUTPUT_NODE = True +class SaveSVGNode(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "svg": ("SVG",), # Changed - "filename_prefix": ("STRING", {"default": "svg/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}) - }, - "hidden": { - "prompt": "PROMPT", - "extra_pnginfo": "EXTRA_PNGINFO" - } - } + def define_schema(cls): + return IO.Schema( + node_id="SaveSVGNode", + description="Save SVG files on disk.", + category="image/save", + inputs=[ + IO.SVG.Input("svg"), + IO.String.Input( + "filename_prefix", + default="svg/ComfyUI", + tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.", + ), + ], + hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], + is_output_node=True, + ) - def save_svg(self, svg: SVG, filename_prefix="svg/ComfyUI", prompt=None, extra_pnginfo=None): - filename_prefix += self.prefix_append - full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) - results = list() + @classmethod + def execute(cls, svg: IO.SVG.Type, filename_prefix="svg/ComfyUI") -> IO.NodeOutput: + full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory()) + results: list[UI.SavedResult] = [] # Prepare metadata JSON metadata_dict = {} - if prompt is not None: - metadata_dict["prompt"] = prompt - if extra_pnginfo is not None: - metadata_dict.update(extra_pnginfo) + if cls.hidden.prompt is not None: + metadata_dict["prompt"] = cls.hidden.prompt + if cls.hidden.extra_pnginfo is not None: + metadata_dict.update(cls.hidden.extra_pnginfo) # Convert metadata to JSON string metadata_json = json.dumps(metadata_dict, indent=2) if metadata_dict else None + for batch_number, svg_bytes in enumerate(svg.data): filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) file = f"{filename_with_batch_num}_{counter:05}_.svg" @@ -544,57 +484,64 @@ class SaveSVGNode: with open(os.path.join(full_output_folder, file), 'wb') as svg_file: svg_file.write(svg_content.encode('utf-8')) - results.append({ - "filename": file, - "subfolder": subfolder, - "type": self.type - }) + results.append(UI.SavedResult(filename=file, subfolder=subfolder, type=IO.FolderType.output)) counter += 1 - return { "ui": { "images": results } } + return IO.NodeOutput(ui={"images": results}) -class GetImageSize: + save_svg = execute # TODO: remove + + +class GetImageSize(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return { - "required": { - "image": (IO.IMAGE,), - }, - "hidden": { - "unique_id": "UNIQUE_ID", - } - } + def define_schema(cls): + return IO.Schema( + node_id="GetImageSize", + display_name="Get Image Size", + description="Returns width and height of the image, and passes it through unchanged.", + category="image", + inputs=[ + IO.Image.Input("image"), + ], + outputs=[ + IO.Int.Output(display_name="width"), + IO.Int.Output(display_name="height"), + IO.Int.Output(display_name="batch_size"), + ], + hidden=[IO.Hidden.unique_id], + ) - RETURN_TYPES = (IO.INT, IO.INT, IO.INT) - RETURN_NAMES = ("width", "height", "batch_size") - FUNCTION = "get_size" - - CATEGORY = "image" - DESCRIPTION = """Returns width and height of the image, and passes it through unchanged.""" - - def get_size(self, image, unique_id=None) -> tuple[int, int]: + @classmethod + def execute(cls, image) -> IO.NodeOutput: height = image.shape[1] width = image.shape[2] batch_size = image.shape[0] # Send progress text to display size on the node - if unique_id: - PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", unique_id) + if cls.hidden.unique_id: + PromptServer.instance.send_progress_text(f"width: {width}, height: {height}\n batch size: {batch_size}", cls.hidden.unique_id) - return width, height, batch_size + return IO.NodeOutput(width, height, batch_size) + + get_size = execute # TODO: remove + + +class ImageRotate(IO.ComfyNode): -class ImageRotate: @classmethod - def INPUT_TYPES(s): - return {"required": { "image": (IO.IMAGE,), - "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],), - }} - RETURN_TYPES = (IO.IMAGE,) - FUNCTION = "rotate" + def define_schema(cls): + return IO.Schema( + node_id="ImageRotate", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input("rotation", options=["none", "90 degrees", "180 degrees", "270 degrees"]), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/transform" - - def rotate(self, image, rotation): + @classmethod + def execute(cls, image, rotation) -> IO.NodeOutput: rotate_by = 0 if rotation.startswith("90"): rotate_by = 1 @@ -604,41 +551,57 @@ class ImageRotate: rotate_by = 3 image = torch.rot90(image, k=rotate_by, dims=[2, 1]) - return (image,) + return IO.NodeOutput(image) + + rotate = execute # TODO: remove + + +class ImageFlip(IO.ComfyNode): -class ImageFlip: @classmethod - def INPUT_TYPES(s): - return {"required": { "image": (IO.IMAGE,), - "flip_method": (["x-axis: vertically", "y-axis: horizontally"],), - }} - RETURN_TYPES = (IO.IMAGE,) - FUNCTION = "flip" + def define_schema(cls): + return IO.Schema( + node_id="ImageFlip", + category="image/transform", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input("flip_method", options=["x-axis: vertically", "y-axis: horizontally"]), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/transform" - - def flip(self, image, flip_method): + @classmethod + def execute(cls, image, flip_method) -> IO.NodeOutput: if flip_method.startswith("x"): image = torch.flip(image, dims=[1]) elif flip_method.startswith("y"): image = torch.flip(image, dims=[2]) - return (image,) + return IO.NodeOutput(image) -class ImageScaleToMaxDimension: - upscale_methods = ["area", "lanczos", "bilinear", "nearest-exact", "bilinear", "bicubic"] + flip = execute # TODO: remove + + +class ImageScaleToMaxDimension(IO.ComfyNode): @classmethod - def INPUT_TYPES(s): - return {"required": {"image": ("IMAGE",), - "upscale_method": (s.upscale_methods,), - "largest_size": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1})}} - RETURN_TYPES = ("IMAGE",) - FUNCTION = "upscale" + def define_schema(cls): + return IO.Schema( + node_id="ImageScaleToMaxDimension", + category="image/upscaling", + inputs=[ + IO.Image.Input("image"), + IO.Combo.Input( + "upscale_method", + options=["area", "lanczos", "bilinear", "nearest-exact", "bilinear", "bicubic"], + ), + IO.Int.Input("largest_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ], + outputs=[IO.Image.Output()], + ) - CATEGORY = "image/upscaling" - - def upscale(self, image, upscale_method, largest_size): + @classmethod + def execute(cls, image, upscale_method, largest_size) -> IO.NodeOutput: height = image.shape[1] width = image.shape[2] @@ -655,20 +618,30 @@ class ImageScaleToMaxDimension: samples = image.movedim(-1, 1) s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") s = s.movedim(1, -1) - return (s,) + return IO.NodeOutput(s) -NODE_CLASS_MAPPINGS = { - "ImageCrop": ImageCrop, - "RepeatImageBatch": RepeatImageBatch, - "ImageFromBatch": ImageFromBatch, - "ImageAddNoise": ImageAddNoise, - "SaveAnimatedWEBP": SaveAnimatedWEBP, - "SaveAnimatedPNG": SaveAnimatedPNG, - "SaveSVGNode": SaveSVGNode, - "ImageStitch": ImageStitch, - "ResizeAndPadImage": ResizeAndPadImage, - "GetImageSize": GetImageSize, - "ImageRotate": ImageRotate, - "ImageFlip": ImageFlip, - "ImageScaleToMaxDimension": ImageScaleToMaxDimension, -} + upscale = execute # TODO: remove + + +class ImagesExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[IO.ComfyNode]]: + return [ + ImageCrop, + RepeatImageBatch, + ImageFromBatch, + ImageAddNoise, + SaveAnimatedWEBP, + SaveAnimatedPNG, + SaveSVGNode, + ImageStitch, + ResizeAndPadImage, + GetImageSize, + ImageRotate, + ImageFlip, + ImageScaleToMaxDimension, + ] + + +async def comfy_entrypoint() -> ImagesExtension: + return ImagesExtension() diff --git a/tests-unit/comfy_extras_test/image_stitch_test.py b/tests-unit/comfy_extras_test/image_stitch_test.py index b5a0f022c..5c6a15ac4 100644 --- a/tests-unit/comfy_extras_test/image_stitch_test.py +++ b/tests-unit/comfy_extras_test/image_stitch_test.py @@ -25,7 +25,7 @@ class TestImageStitch: result = node.stitch(image1, "right", True, 0, "white", image2=None) - assert len(result) == 1 + assert len(result.result) == 1 assert torch.equal(result[0], image1) def test_basic_horizontal_stitch_right(self): From 0d2e4bdd44f61b198588c5db99bebfd5cdec286b Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 27 Dec 2025 05:55:30 +0200 Subject: [PATCH 225/271] fix(api-nodes-gemini): always force enhance_prompt to be True (#11503) --- comfy_api_nodes/nodes_veo2.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_veo2.py b/comfy_api_nodes/nodes_veo2.py index e165b8380..13a6bfd91 100644 --- a/comfy_api_nodes/nodes_veo2.py +++ b/comfy_api_nodes/nodes_veo2.py @@ -168,6 +168,8 @@ class VeoVideoGenerationNode(IO.ComfyNode): # Only add generateAudio for Veo 3 models if model.find("veo-2.0") == -1: parameters["generateAudio"] = generate_audio + # force "enhance_prompt" to True for Veo3 models + parameters["enhancePrompt"] = True initial_response = await sync_op( cls, @@ -291,7 +293,7 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode): IO.Boolean.Input( "enhance_prompt", default=True, - tooltip="Whether to enhance the prompt with AI assistance", + tooltip="This parameter is deprecated and ignored.", optional=True, ), IO.Combo.Input( From 36deef2c57eacb5d847bd709c5f3068190630612 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sat, 27 Dec 2025 05:56:52 +0200 Subject: [PATCH 226/271] chore(api-nodes): switch to credits instead of $ (#11489) --- comfy_api_nodes/util/client.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy_api_nodes/util/client.py b/comfy_api_nodes/util/client.py index bf37cba5f..f372ec7b5 100644 --- a/comfy_api_nodes/util/client.py +++ b/comfy_api_nodes/util/client.py @@ -430,9 +430,9 @@ def _display_text( if status: display_lines.append(f"Status: {status.capitalize() if isinstance(status, str) else status}") if price is not None: - p = f"{float(price):,.4f}".rstrip("0").rstrip(".") + p = f"{float(price) * 211:,.1f}".rstrip("0").rstrip(".") if p != "0": - display_lines.append(f"Price: ${p}") + display_lines.append(f"Price: {p} credits") if text is not None: display_lines.append(text) if display_lines: From 2943093a5310fc96aa010a3c68c04f7c16f58a9e Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 27 Dec 2025 15:54:15 -0800 Subject: [PATCH 227/271] Enable async offload by default for AMD. (#11534) --- comfy/model_management.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index 1889ab0ac..e5554e225 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1019,8 +1019,8 @@ NUM_STREAMS = 0 if args.async_offload is not None: NUM_STREAMS = args.async_offload else: - # Enable by default on Nvidia - if is_nvidia(): + # Enable by default on Nvidia and AMD + if is_nvidia() or is_amd(): NUM_STREAMS = 2 if args.disable_async_offload: From 8fd07170f1b0a7eaaf5a62020cd1926dd3b5092c Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 28 Dec 2025 19:07:25 -0800 Subject: [PATCH 228/271] Comment out unused norm_final in lumina/z image model. (#11545) --- comfy/ldm/lumina/model.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy/ldm/lumina/model.py b/comfy/ldm/lumina/model.py index e80b1c138..afbab2ac7 100644 --- a/comfy/ldm/lumina/model.py +++ b/comfy/ldm/lumina/model.py @@ -491,7 +491,8 @@ class NextDiT(nn.Module): for layer_id in range(n_layers) ] ) - self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) + # This norm final is in the lumina 2.0 code but isn't actually used for anything. + # self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) self.final_layer = FinalLayer(dim, patch_size, self.out_channels, z_image_modulation=z_image_modulation, operation_settings=operation_settings) if self.pad_tokens_multiple is not None: From 9ca7e143afe6f09734c9aefcc85f491c5c0dc6e0 Mon Sep 17 00:00:00 2001 From: rattus <46076784+rattus128@users.noreply.github.com> Date: Mon, 29 Dec 2025 15:19:34 -0800 Subject: [PATCH 229/271] mm: discard async errors from pinning failures (#10738) Pretty much every error cudaHostRegister can throw also queues the same error on the async GPU queue. This was fixed for repinning error case, but there is the bad mmap and just enomem cases that are harder to detect. Do some dummy GPU work to clean the error state. --- comfy/model_management.py | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index e5554e225..9fcb699bc 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1126,6 +1126,16 @@ if not args.disable_pinned_memory: PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"]) +def discard_cuda_async_error(): + try: + a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device()) + b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device()) + _ = a + b + torch.cuda.synchronize() + except torch.AcceleratorError: + #Dump it! We already know about it from the synchronous return + pass + def pin_memory(tensor): global TOTAL_PINNED_MEMORY if MAX_PINNED_MEMORY <= 0: @@ -1158,6 +1168,8 @@ def pin_memory(tensor): PINNED_MEMORY[ptr] = size TOTAL_PINNED_MEMORY += size return True + else: + discard_cuda_async_error() return False @@ -1186,6 +1198,8 @@ def unpin_memory(tensor): if len(PINNED_MEMORY) == 0: TOTAL_PINNED_MEMORY = 0 return True + else: + discard_cuda_async_error() return False From 0e6221cc79a3f3cbf0e15a8321bfe75fcffbe667 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 29 Dec 2025 15:26:42 -0800 Subject: [PATCH 230/271] Add some warnings for pin and unpin errors. (#11561) --- comfy/model_management.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index 9fcb699bc..87baedd73 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1169,6 +1169,7 @@ def pin_memory(tensor): TOTAL_PINNED_MEMORY += size return True else: + logging.warning("Pin error.") discard_cuda_async_error() return False @@ -1199,6 +1200,7 @@ def unpin_memory(tensor): TOTAL_PINNED_MEMORY = 0 return True else: + logging.warning("Unpin error.") discard_cuda_async_error() return False From d7111e426a48127a97922227b03d31391eb4eba2 Mon Sep 17 00:00:00 2001 From: Tavi Halperin Date: Tue, 30 Dec 2025 03:07:29 +0200 Subject: [PATCH 231/271] ResizeByLongerSide: support video (#11555) (cherry picked from commit 98c6840aa4e5fd5407ba9ab113d209011e474bf6) --- comfy_extras/nodes_dataset.py | 23 +++++++++++++---------- 1 file changed, 13 insertions(+), 10 deletions(-) diff --git a/comfy_extras/nodes_dataset.py b/comfy_extras/nodes_dataset.py index 513aecf3a..5ef851bd0 100644 --- a/comfy_extras/nodes_dataset.py +++ b/comfy_extras/nodes_dataset.py @@ -667,16 +667,19 @@ class ResizeImagesByLongerEdgeNode(ImageProcessingNode): @classmethod def _process(cls, image, longer_edge): - img = tensor_to_pil(image) - w, h = img.size - if w > h: - new_w = longer_edge - new_h = int(h * (longer_edge / w)) - else: - new_h = longer_edge - new_w = int(w * (longer_edge / h)) - img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) - return pil_to_tensor(img) + resized_images = [] + for image_i in image: + img = tensor_to_pil(image_i) + w, h = img.size + if w > h: + new_w = longer_edge + new_h = int(h * (longer_edge / w)) + else: + new_h = longer_edge + new_w = int(w * (longer_edge / h)) + img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) + resized_images.append(pil_to_tensor(img)) + return torch.cat(resized_images, dim=0) class CenterCropImagesNode(ImageProcessingNode): From 25a1bfab4e19b541c2bd6f253a3b83886fb660a1 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Tue, 30 Dec 2025 18:33:34 +0200 Subject: [PATCH 232/271] chore(api-nodes-bytedance): mark "seededit" as deprecated, adjust display name of Seedream (#11490) --- comfy_api_nodes/nodes_bytedance.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_bytedance.py b/comfy_api_nodes/nodes_bytedance.py index 636cc1265..d4a2cfae6 100644 --- a/comfy_api_nodes/nodes_bytedance.py +++ b/comfy_api_nodes/nodes_bytedance.py @@ -229,6 +229,7 @@ class ByteDanceImageEditNode(IO.ComfyNode): IO.Hidden.unique_id, ], is_api_node=True, + is_deprecated=True, ) @classmethod @@ -269,7 +270,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode): def define_schema(cls): return IO.Schema( node_id="ByteDanceSeedreamNode", - display_name="ByteDance Seedream 4", + display_name="ByteDance Seedream 4.5", category="api node/image/ByteDance", description="Unified text-to-image generation and precise single-sentence editing at up to 4K resolution.", inputs=[ From 178bdc5e14ec0a55e401c509719e33773cc9b565 Mon Sep 17 00:00:00 2001 From: drozbay <17261091+drozbay@users.noreply.github.com> Date: Tue, 30 Dec 2025 15:40:42 -0700 Subject: [PATCH 233/271] Add handling for vace_context in context windows (#11386) Co-authored-by: ozbayb <17261091+ozbayb@users.noreply.github.com> --- comfy/context_windows.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/comfy/context_windows.py b/comfy/context_windows.py index 1e0f86026..2f82d51da 100644 --- a/comfy/context_windows.py +++ b/comfy/context_windows.py @@ -188,6 +188,12 @@ class IndexListContextHandler(ContextHandlerABC): audio_cond = cond_value.cond if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim): new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1)) + # Handle vace_context (temporal dim is 3) + elif cond_key == "vace_context" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): + vace_cond = cond_value.cond + if vace_cond.ndim >= 4 and vace_cond.size(3) == x_in.size(self.dim): + sliced_vace = window.get_tensor(vace_cond, device, dim=3, retain_index_list=self.cond_retain_index_list) + new_cond_item[cond_key] = cond_value._copy_with(sliced_vace) # if has cond that is a Tensor, check if needs to be subset elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor): if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \ From f59f71cf34067d46713f6243312f7f0b360d061f Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 30 Dec 2025 22:41:22 -0500 Subject: [PATCH 234/271] ComfyUI version v0.7.0 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 1f28e2407..1ed60fe5c 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.6.0" +__version__ = "0.7.0" diff --git a/pyproject.toml b/pyproject.toml index 35a268bd1..bc1467941 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.6.0" +version = "0.7.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.9" From 0357ed7ec4a1bbfe3832874ad6cfc1ca3db1bc0d Mon Sep 17 00:00:00 2001 From: mengqin Date: Tue, 30 Dec 2025 17:53:52 -1000 Subject: [PATCH 235/271] Add support for sage attention 3 in comfyui, enable via new cli arg (#11026) * Add support for sage attention 3 in comfyui, enable via new cli arg --use-sage-attiention3 * Fix some bugs found in PR review. The N dimension at which Sage Attention 3 takes effect is reduced to 1024 (although the improvement is not significant at this scale). * Remove the Sage Attention3 switch, but retain the attention function registration. * Fix a ruff check issue in attention.py --- comfy/ldm/modules/attention.py | 96 ++++++++++++++++++++++++++++++++++ 1 file changed, 96 insertions(+) diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index a8800ded0..ccf690945 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -30,6 +30,13 @@ except ImportError as e: raise e exit(-1) +SAGE_ATTENTION3_IS_AVAILABLE = False +try: + from sageattn3 import sageattn3_blackwell + SAGE_ATTENTION3_IS_AVAILABLE = True +except ImportError: + pass + FLASH_ATTENTION_IS_AVAILABLE = False try: from flash_attn import flash_attn_func @@ -563,6 +570,93 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape= out = out.reshape(b, -1, heads * dim_head) return out +@wrap_attn +def attention3_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs): + exception_fallback = False + if (q.device.type != "cuda" or + q.dtype not in (torch.float16, torch.bfloat16) or + mask is not None): + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=skip_reshape, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if skip_reshape: + B, H, L, D = q.shape + if H != heads: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=True, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + q_s, k_s, v_s = q, k, v + N = q.shape[2] + dim_head = D + else: + B, N, inner_dim = q.shape + if inner_dim % heads != 0: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=False, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + dim_head = inner_dim // heads + + if dim_head >= 256 or N <= 1024: + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=skip_reshape, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if not skip_reshape: + q_s, k_s, v_s = map( + lambda t: t.view(B, -1, heads, dim_head).permute(0, 2, 1, 3).contiguous(), + (q, k, v), + ) + B, H, L, D = q_s.shape + + try: + out = sageattn3_blackwell(q_s, k_s, v_s, is_causal=False) + except Exception as e: + exception_fallback = True + logging.error("Error running SageAttention3: %s, falling back to pytorch attention.", e) + + if exception_fallback: + if not skip_reshape: + del q_s, k_s, v_s + return attention_pytorch( + q, k, v, heads, + mask=mask, + attn_precision=attn_precision, + skip_reshape=False, + skip_output_reshape=skip_output_reshape, + **kwargs + ) + + if skip_reshape: + if not skip_output_reshape: + out = out.permute(0, 2, 1, 3).reshape(B, L, H * D) + else: + if skip_output_reshape: + pass + else: + out = out.permute(0, 2, 1, 3).reshape(B, L, H * D) + + return out try: @torch.library.custom_op("flash_attention::flash_attn", mutates_args=()) @@ -650,6 +744,8 @@ optimized_attention_masked = optimized_attention # register core-supported attention functions if SAGE_ATTENTION_IS_AVAILABLE: register_attention_function("sage", attention_sage) +if SAGE_ATTENTION3_IS_AVAILABLE: + register_attention_function("sage3", attention3_sage) if FLASH_ATTENTION_IS_AVAILABLE: register_attention_function("flash", attention_flash) if model_management.xformers_enabled(): From 0be8a76c933026011098d41e61cc6e544739e427 Mon Sep 17 00:00:00 2001 From: Jedrzej Kosinski Date: Tue, 30 Dec 2025 20:09:55 -0800 Subject: [PATCH 236/271] V3 Improvements + DynamicCombo + Autogrow exposed in public API (#11345) * Support Combo outputs in a more sane way * Remove test validate_inputs function on test node * Make curr_prefix be a list of strings instead of string for easier parsing as keys get added to dynamic types * Start to account for id prefixes from frontend, need to fix bug with nested dynamics * Ensure inputs/outputs/hidden are lists in schema finalize function, remove no longer needed 'is not None' checks * Add raw_link and extra_dict to all relevant Inputs * Make nested DynamicCombos work properly with prefixed keys on latest frontend; breaks old Autogrow, but is pretty much ready for upcoming Autogrow keys * Replace ... usage with a MISSING sentinel for clarity in nodes_logic.py * Added CustomCombo node in backend to reflect frontend node * Prepare Autogrow's expand_schema_for_dynamic to work with upcoming frontend changes * Prepare for look up table for dynamic input stuff * More progress towards dynamic input lookup function stuff * Finished converting _expand_schema_for_dynamic to be done via lookup instead of OOP to guarantee working with process isolation, did refactoring to remove old implementation + cleaning INPUT_TYPES definition including v3 hidden definition * Change order of functions * Removed some unneeded functions after dynamic refactor * Make MatchType's output default displayname "MATCHTYPE" * Fix DynamicSlot get_all * Removed redundant code - dynamic stuff no longer happens in OOP way * Natively support AnyType (*) without __ne__ hacks * Remove stray code that made it in * Remove expand_schema_for_dynamic left over on DynamicInput class * get_dynamic() on DynamicInput/Output was not doing anything anymore, so removed it * Make validate_inputs validate combo input correctly * Temporarily comment out conversion to 'new' (9 month old) COMBO format in get_input_info * Remove refrences to resources feature scrapped from V3 * Expose DynamicCombo in public API * satisfy ruff after some code got commented out * Make missing input error prettier for dynamic types * Created a Switch2 node as a side-by-side test, will likely go with Switch2 as the initial switch node * Figured out Switch situation * Pass in v3_data in IsChangedCache.get function's fingerprint_inputs, add a from_v3_data helper method to HiddenHolder * Switch order of Switch and Soft Switch nodes in file * Temp test node for MatchType * Fix missing v3_data for v1 nodes in validation * For now, remove chacking duplicate id's for dynamic types * Add Resize Image/Mask node that thanks to MatchType+DynamicCombo is 16-nodes-in-1 * Made DynamicCombo references in DCTestNode use public interface * Add an AnyTypeTestNode * Make lazy status for specific inputs on DynamicInputs work by having the values of the dictionary for check_lazy_status be a tuple, where the second element is the key of the input that can be returned * Comment out test logic nodes * Make primitive float's step make more sense * Add (and leave commented out) some potential logic nodes * Change default crop option to "center" on Resize Image/Mask node * Changed copy.copy(d) to d.copy() * Autogrow is available in stable frontend, so exposing it in public API * Use outputs id as display_name if no display_name present, remove v3 outputs id restriction that made them have to have unique IDs from the inputs * Enable Custom Combo node as stable frontend now supports it * Make id properly act like display_name on outputs * Add Batch Images/Masks/Latents node * Comment out Batch Images/Masks/Latents node for now, as Autogrow has a bug with MatchType where top connection is disconnected upon refresh * Removed code for a couple test nodes in nodes_logic.py * Add Batch Images, Batch Masks, and Batch Latents nodes with Autogrow, deprecate old Batch Images + LatentBatch nodes --- comfy_api/latest/__init__.py | 1 - comfy_api/latest/_io.py | 370 ++++++++++++++------------ comfy_api/latest/_resources.py | 72 ----- comfy_execution/graph.py | 5 + comfy_execution/validation.py | 14 + comfy_extras/nodes_latent.py | 1 + comfy_extras/nodes_logic.py | 149 +++++++++-- comfy_extras/nodes_post_processing.py | 356 +++++++++++++++++++++++++ comfy_extras/nodes_primitive.py | 2 +- execution.py | 45 ++-- nodes.py | 1 + 11 files changed, 742 insertions(+), 274 deletions(-) delete mode 100644 comfy_api/latest/_resources.py diff --git a/comfy_api/latest/__init__.py b/comfy_api/latest/__init__.py index fab63c7df..b0fa14ff6 100644 --- a/comfy_api/latest/__init__.py +++ b/comfy_api/latest/__init__.py @@ -10,7 +10,6 @@ from ._input_impl import VideoFromFile, VideoFromComponents from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL from . import _io_public as io from . import _ui_public as ui -# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401 from comfy_execution.utils import get_executing_context from comfy_execution.progress import get_progress_state, PreviewImageTuple from PIL import Image diff --git a/comfy_api/latest/_io.py b/comfy_api/latest/_io.py index ba0b95498..764fa8b2b 100644 --- a/comfy_api/latest/_io.py +++ b/comfy_api/latest/_io.py @@ -26,7 +26,6 @@ if TYPE_CHECKING: from comfy_api.input import VideoInput from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class, prune_dict, shallow_clone_class) -from ._resources import Resources, ResourcesLocal from comfy_execution.graph_utils import ExecutionBlocker from ._util import MESH, VOXEL, SVG as _SVG @@ -76,16 +75,6 @@ class NumberDisplay(str, Enum): slider = "slider" -class _StringIOType(str): - def __ne__(self, value: object) -> bool: - if self == "*" or value == "*": - return False - if not isinstance(value, str): - return True - a = frozenset(self.split(",")) - b = frozenset(value.split(",")) - return not (b.issubset(a) or a.issubset(b)) - class _ComfyType(ABC): Type = Any io_type: str = None @@ -125,8 +114,7 @@ def comfytype(io_type: str, **kwargs): new_cls.__module__ = cls.__module__ new_cls.__doc__ = cls.__doc__ # assign ComfyType attributes, if needed - # NOTE: use __ne__ trick for io_type (see node_typing.IO.__ne__ for details) - new_cls.io_type = _StringIOType(io_type) + new_cls.io_type = io_type if hasattr(new_cls, "Input") and new_cls.Input is not None: new_cls.Input.Parent = new_cls if hasattr(new_cls, "Output") and new_cls.Output is not None: @@ -165,7 +153,7 @@ class Input(_IO_V3): ''' Base class for a V3 Input. ''' - def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): super().__init__() self.id = id self.display_name = display_name @@ -173,6 +161,7 @@ class Input(_IO_V3): self.tooltip = tooltip self.lazy = lazy self.extra_dict = extra_dict if extra_dict is not None else {} + self.rawLink = raw_link def as_dict(self): return prune_dict({ @@ -180,10 +169,11 @@ class Input(_IO_V3): "optional": self.optional, "tooltip": self.tooltip, "lazy": self.lazy, + "rawLink": self.rawLink, }) | prune_dict(self.extra_dict) def get_io_type(self): - return _StringIOType(self.io_type) + return self.io_type def get_all(self) -> list[Input]: return [self] @@ -194,8 +184,8 @@ class WidgetInput(Input): ''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: Any=None, - socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None): - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self.default = default self.socketless = socketless self.widget_type = widget_type @@ -217,13 +207,14 @@ class Output(_IO_V3): def __init__(self, id: str=None, display_name: str=None, tooltip: str=None, is_output_list=False): self.id = id - self.display_name = display_name + self.display_name = display_name if display_name else id self.tooltip = tooltip self.is_output_list = is_output_list def as_dict(self): + display_name = self.display_name if self.display_name else self.id return prune_dict({ - "display_name": self.display_name, + "display_name": display_name, "tooltip": self.tooltip, "is_output_list": self.is_output_list, }) @@ -251,8 +242,8 @@ class Boolean(ComfyTypeIO): '''Boolean input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: bool=None, label_on: str=None, label_off: str=None, - socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.label_on = label_on self.label_off = label_off self.default: bool @@ -271,8 +262,8 @@ class Int(ComfyTypeIO): '''Integer input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None, - display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.min = min self.max = max self.step = step @@ -297,8 +288,8 @@ class Float(ComfyTypeIO): '''Float input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: float=None, min: float=None, max: float=None, step: float=None, round: float=None, - display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.min = min self.max = max self.step = step @@ -323,8 +314,8 @@ class String(ComfyTypeIO): '''String input.''' def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, multiline=False, placeholder: str=None, default: str=None, dynamic_prompts: bool=None, - socketless: bool=None, force_input: bool=None): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input) + socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link) self.multiline = multiline self.placeholder = placeholder self.dynamic_prompts = dynamic_prompts @@ -357,12 +348,14 @@ class Combo(ComfyTypeIO): image_folder: FolderType=None, remote: RemoteOptions=None, socketless: bool=None, + extra_dict=None, + raw_link: bool=None, ): if isinstance(options, type) and issubclass(options, Enum): options = [v.value for v in options] if isinstance(default, Enum): default = default.value - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless) + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, None, extra_dict, raw_link) self.multiselect = False self.options = options self.control_after_generate = control_after_generate @@ -386,10 +379,6 @@ class Combo(ComfyTypeIO): super().__init__(id, display_name, tooltip, is_output_list) self.options = options if options is not None else [] - @property - def io_type(self): - return self.options - @comfytype(io_type="COMBO") class MultiCombo(ComfyTypeI): '''Multiselect Combo input (dropdown for selecting potentially more than one value).''' @@ -398,8 +387,8 @@ class MultiCombo(ComfyTypeI): class Input(Combo.Input): def __init__(self, id: str, options: list[str], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None, - socketless: bool=None): - super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless) + socketless: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless, extra_dict=extra_dict, raw_link=raw_link) self.multiselect = True self.placeholder = placeholder self.chip = chip @@ -432,9 +421,9 @@ class Webcam(ComfyTypeIO): Type = str def __init__( self, id: str, display_name: str=None, optional=False, - tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None + tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None, extra_dict=None, raw_link: bool=None ): - super().__init__(id, display_name, optional, tooltip, lazy, default, socketless) + super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, None, extra_dict, raw_link) @comfytype(io_type="MASK") @@ -787,7 +776,7 @@ class MultiType: ''' Input that permits more than one input type; if `id` is an instance of `ComfyType.Input`, then that input will be used to create a widget (if applicable) with overridden values. ''' - def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): + def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): # if id is an Input, then use that Input with overridden values self.input_override = None if isinstance(id, Input): @@ -800,7 +789,7 @@ class MultiType: # if is a widget input, make sure widget_type is set appropriately if isinstance(self.input_override, WidgetInput): self.input_override.widget_type = self.input_override.get_io_type() - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self._io_types = types @property @@ -854,8 +843,8 @@ class MatchType(ComfyTypeIO): class Input(Input): def __init__(self, id: str, template: MatchType.Template, - display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None): - super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) + display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None, raw_link: bool=None): + super().__init__(id, display_name, optional, tooltip, lazy, extra_dict, raw_link) self.template = template def as_dict(self): @@ -866,6 +855,8 @@ class MatchType(ComfyTypeIO): class Output(Output): def __init__(self, template: MatchType.Template, id: str=None, display_name: str=None, tooltip: str=None, is_output_list=False): + if not id and not display_name: + display_name = "MATCHTYPE" super().__init__(id, display_name, tooltip, is_output_list) self.template = template @@ -878,24 +869,30 @@ class DynamicInput(Input, ABC): ''' Abstract class for dynamic input registration. ''' - def get_dynamic(self) -> list[Input]: - return [] - - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - pass + pass class DynamicOutput(Output, ABC): ''' Abstract class for dynamic output registration. ''' - def __init__(self, id: str=None, display_name: str=None, tooltip: str=None, - is_output_list=False): - super().__init__(id, display_name, tooltip, is_output_list) + pass - def get_dynamic(self) -> list[Output]: - return [] +def handle_prefix(prefix_list: list[str] | None, id: str | None = None) -> list[str]: + if prefix_list is None: + prefix_list = [] + if id is not None: + prefix_list = prefix_list + [id] + return prefix_list + +def finalize_prefix(prefix_list: list[str] | None, id: str | None = None) -> str: + assert not (prefix_list is None and id is None) + if prefix_list is None: + return id + elif id is not None: + prefix_list = prefix_list + [id] + return ".".join(prefix_list) @comfytype(io_type="COMFY_AUTOGROW_V3") class Autogrow(ComfyTypeI): @@ -932,14 +929,6 @@ class Autogrow(ComfyTypeI): def validate(self): self.input.validate() - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - real_inputs = [] - for name, input in self.cached_inputs.items(): - if name in live_inputs: - real_inputs.append(input) - add_to_input_dict_v1(d, real_inputs, live_inputs, curr_prefix) - add_dynamic_id_mapping(d, real_inputs, curr_prefix) - class TemplatePrefix(_AutogrowTemplate): def __init__(self, input: Input, prefix: str, min: int=1, max: int=10): super().__init__(input) @@ -984,22 +973,45 @@ class Autogrow(ComfyTypeI): "template": self.template.as_dict(), }) - def get_dynamic(self) -> list[Input]: - return self.template.get_all() - def get_all(self) -> list[Input]: return [self] + self.template.get_all() def validate(self): self.template.validate() - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - curr_prefix = f"{curr_prefix}{self.id}." - # need to remove self from expected inputs dictionary; replaced by template inputs in frontend - for inner_dict in d.values(): - if self.id in inner_dict: - del inner_dict[self.id] - self.template.expand_schema_for_dynamic(d, live_inputs, curr_prefix) + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + # NOTE: purposely do not include self in out_dict; instead use only the template inputs + # need to figure out names based on template type + is_names = ("names" in value[1]["template"]) + is_prefix = ("prefix" in value[1]["template"]) + input = value[1]["template"]["input"] + if is_names: + min = value[1]["template"]["min"] + names = value[1]["template"]["names"] + max = len(names) + elif is_prefix: + prefix = value[1]["template"]["prefix"] + min = value[1]["template"]["min"] + max = value[1]["template"]["max"] + names = [f"{prefix}{i}" for i in range(max)] + # need to create a new input based on the contents of input + template_input = None + for _, dict_input in input.items(): + # for now, get just the first value from dict_input + template_input = list(dict_input.values())[0] + new_dict = {} + for i, name in enumerate(names): + expected_id = finalize_prefix(curr_prefix, name) + if expected_id in live_inputs: + # required + if i < min: + type_dict = new_dict.setdefault("required", {}) + # optional + else: + type_dict = new_dict.setdefault("optional", {}) + type_dict[name] = template_input + parse_class_inputs(out_dict, live_inputs, new_dict, curr_prefix) @comfytype(io_type="COMFY_DYNAMICCOMBO_V3") class DynamicCombo(ComfyTypeI): @@ -1022,23 +1034,6 @@ class DynamicCombo(ComfyTypeI): super().__init__(id, display_name, optional, tooltip, lazy, extra_dict) self.options = options - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - # check if dynamic input's id is in live_inputs - if self.id in live_inputs: - curr_prefix = f"{curr_prefix}{self.id}." - key = live_inputs[self.id] - selected_option = None - for option in self.options: - if option.key == key: - selected_option = option - break - if selected_option is not None: - add_to_input_dict_v1(d, selected_option.inputs, live_inputs, curr_prefix) - add_dynamic_id_mapping(d, selected_option.inputs, curr_prefix, self) - - def get_dynamic(self) -> list[Input]: - return [input for option in self.options for input in option.inputs] - def get_all(self) -> list[Input]: return [self] + [input for option in self.options for input in option.inputs] @@ -1053,6 +1048,24 @@ class DynamicCombo(ComfyTypeI): for input in option.inputs: input.validate() + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + finalized_id = finalize_prefix(curr_prefix) + if finalized_id in live_inputs: + key = live_inputs[finalized_id] + selected_option = None + # get options from dict + options: list[dict[str, str | dict[str, Any]]] = value[1]["options"] + for option in options: + if option["key"] == key: + selected_option = option + break + if selected_option is not None: + parse_class_inputs(out_dict, live_inputs, selected_option["inputs"], curr_prefix) + # add self to inputs + out_dict[input_type][finalized_id] = value + out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1]) + @comfytype(io_type="COMFY_DYNAMICSLOT_V3") class DynamicSlot(ComfyTypeI): Type = dict[str, Any] @@ -1075,17 +1088,8 @@ class DynamicSlot(ComfyTypeI): self.force_input = True self.slot.force_input = True - def expand_schema_for_dynamic(self, d: dict[str, Any], live_inputs: dict[str, Any], curr_prefix=''): - if self.id in live_inputs: - curr_prefix = f"{curr_prefix}{self.id}." - add_to_input_dict_v1(d, self.inputs, live_inputs, curr_prefix) - add_dynamic_id_mapping(d, [self.slot] + self.inputs, curr_prefix) - - def get_dynamic(self) -> list[Input]: - return [self.slot] + self.inputs - def get_all(self) -> list[Input]: - return [self] + [self.slot] + self.inputs + return [self.slot] + self.inputs def as_dict(self): return super().as_dict() | prune_dict({ @@ -1099,17 +1103,41 @@ class DynamicSlot(ComfyTypeI): for input in self.inputs: input.validate() -def add_dynamic_id_mapping(d: dict[str, Any], inputs: list[Input], curr_prefix: str, self: DynamicInput=None): - dynamic = d.setdefault("dynamic_paths", {}) - if self is not None: - dynamic[self.id] = f"{curr_prefix}{self.id}" - for i in inputs: - if not isinstance(i, DynamicInput): - dynamic[f"{i.id}"] = f"{curr_prefix}{i.id}" + @staticmethod + def _expand_schema_for_dynamic(out_dict: dict[str, Any], live_inputs: dict[str, Any], value: tuple[str, dict[str, Any]], input_type: str, curr_prefix: list[str] | None): + finalized_id = finalize_prefix(curr_prefix) + if finalized_id in live_inputs: + inputs = value[1]["inputs"] + parse_class_inputs(out_dict, live_inputs, inputs, curr_prefix) + # add self to inputs + out_dict[input_type][finalized_id] = value + out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1]) + +DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {} +def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]): + DYNAMIC_INPUT_LOOKUP[io_type] = func + +def get_dynamic_input_func(io_type: str) -> Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]: + return DYNAMIC_INPUT_LOOKUP[io_type] + +def setup_dynamic_input_funcs(): + # Autogrow.Input + register_dynamic_input_func(Autogrow.io_type, Autogrow._expand_schema_for_dynamic) + # DynamicCombo.Input + register_dynamic_input_func(DynamicCombo.io_type, DynamicCombo._expand_schema_for_dynamic) + # DynamicSlot.Input + register_dynamic_input_func(DynamicSlot.io_type, DynamicSlot._expand_schema_for_dynamic) + +if len(DYNAMIC_INPUT_LOOKUP) == 0: + setup_dynamic_input_funcs() class V3Data(TypedDict): hidden_inputs: dict[str, Any] + 'Dictionary where the keys are the hidden input ids and the values are the values of the hidden inputs.' dynamic_paths: dict[str, Any] + 'Dictionary where the keys are the input ids and the values dictate how to turn the inputs into a nested dictionary.' + create_dynamic_tuple: bool + 'When True, the value of the dynamic input will be in the format (value, path_key).' class HiddenHolder: def __init__(self, unique_id: str, prompt: Any, @@ -1145,6 +1173,10 @@ class HiddenHolder: api_key_comfy_org=d.get(Hidden.api_key_comfy_org, None), ) + @classmethod + def from_v3_data(cls, v3_data: V3Data | None) -> HiddenHolder: + return cls.from_dict(v3_data["hidden_inputs"] if v3_data else None) + class Hidden(str, Enum): ''' Enumerator for requesting hidden variables in nodes. @@ -1250,61 +1282,56 @@ class Schema: - verify ids on inputs and outputs are unique - both internally and in relation to each other ''' nested_inputs: list[Input] = [] - if self.inputs is not None: - for input in self.inputs: + for input in self.inputs: + if not isinstance(input, DynamicInput): nested_inputs.extend(input.get_all()) - input_ids = [i.id for i in nested_inputs] if nested_inputs is not None else [] - output_ids = [o.id for o in self.outputs] if self.outputs is not None else [] + input_ids = [i.id for i in nested_inputs] + output_ids = [o.id for o in self.outputs] input_set = set(input_ids) output_set = set(output_ids) - issues = [] + issues: list[str] = [] # verify ids are unique per list if len(input_set) != len(input_ids): issues.append(f"Input ids must be unique, but {[item for item, count in Counter(input_ids).items() if count > 1]} are not.") if len(output_set) != len(output_ids): issues.append(f"Output ids must be unique, but {[item for item, count in Counter(output_ids).items() if count > 1]} are not.") - # verify ids are unique between lists - intersection = input_set & output_set - if len(intersection) > 0: - issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.") if len(issues) > 0: raise ValueError("\n".join(issues)) # validate inputs and outputs - if self.inputs is not None: - for input in self.inputs: - input.validate() - if self.outputs is not None: - for output in self.outputs: - output.validate() + for input in self.inputs: + input.validate() + for output in self.outputs: + output.validate() def finalize(self): """Add hidden based on selected schema options, and give outputs without ids default ids.""" + # ensure inputs, outputs, and hidden are lists + if self.inputs is None: + self.inputs = [] + if self.outputs is None: + self.outputs = [] + if self.hidden is None: + self.hidden = [] # if is an api_node, will need key-related hidden if self.is_api_node: - if self.hidden is None: - self.hidden = [] if Hidden.auth_token_comfy_org not in self.hidden: self.hidden.append(Hidden.auth_token_comfy_org) if Hidden.api_key_comfy_org not in self.hidden: self.hidden.append(Hidden.api_key_comfy_org) # if is an output_node, will need prompt and extra_pnginfo if self.is_output_node: - if self.hidden is None: - self.hidden = [] if Hidden.prompt not in self.hidden: self.hidden.append(Hidden.prompt) if Hidden.extra_pnginfo not in self.hidden: self.hidden.append(Hidden.extra_pnginfo) # give outputs without ids default ids - if self.outputs is not None: - for i, output in enumerate(self.outputs): - if output.id is None: - output.id = f"_{i}_{output.io_type}_" + for i, output in enumerate(self.outputs): + if output.id is None: + output.id = f"_{i}_{output.io_type}_" - def get_v1_info(self, cls, live_inputs: dict[str, Any]=None) -> NodeInfoV1: - # NOTE: live_inputs will not be used anymore very soon and this will be done another way + def get_v1_info(self, cls) -> NodeInfoV1: # get V1 inputs - input = create_input_dict_v1(self.inputs, live_inputs) + input = create_input_dict_v1(self.inputs) if self.hidden: for hidden in self.hidden: input.setdefault("hidden", {})[hidden.name] = (hidden.value,) @@ -1384,33 +1411,54 @@ class Schema: ) return info +def get_finalized_class_inputs(d: dict[str, Any], live_inputs: dict[str, Any], include_hidden=False) -> tuple[dict[str, Any], V3Data]: + out_dict = { + "required": {}, + "optional": {}, + "dynamic_paths": {}, + } + d = d.copy() + # ignore hidden for parsing + hidden = d.pop("hidden", None) + parse_class_inputs(out_dict, live_inputs, d) + if hidden is not None and include_hidden: + out_dict["hidden"] = hidden + v3_data = {} + dynamic_paths = out_dict.pop("dynamic_paths", None) + if dynamic_paths is not None: + v3_data["dynamic_paths"] = dynamic_paths + return out_dict, hidden, v3_data -def create_input_dict_v1(inputs: list[Input], live_inputs: dict[str, Any]=None) -> dict: +def parse_class_inputs(out_dict: dict[str, Any], live_inputs: dict[str, Any], curr_dict: dict[str, Any], curr_prefix: list[str] | None=None) -> None: + for input_type, inner_d in curr_dict.items(): + for id, value in inner_d.items(): + io_type = value[0] + if io_type in DYNAMIC_INPUT_LOOKUP: + # dynamic inputs need to be handled with lookup functions + dynamic_input_func = get_dynamic_input_func(io_type) + new_prefix = handle_prefix(curr_prefix, id) + dynamic_input_func(out_dict, live_inputs, value, input_type, new_prefix) + else: + # non-dynamic inputs get directly transferred + finalized_id = finalize_prefix(curr_prefix, id) + out_dict[input_type][finalized_id] = value + if curr_prefix: + out_dict["dynamic_paths"][finalized_id] = finalized_id + +def create_input_dict_v1(inputs: list[Input]) -> dict: input = { "required": {} } - add_to_input_dict_v1(input, inputs, live_inputs) + for i in inputs: + add_to_dict_v1(i, input) return input -def add_to_input_dict_v1(d: dict[str, Any], inputs: list[Input], live_inputs: dict[str, Any]=None, curr_prefix=''): - for i in inputs: - if isinstance(i, DynamicInput): - add_to_dict_v1(i, d) - if live_inputs is not None: - i.expand_schema_for_dynamic(d, live_inputs, curr_prefix) - else: - add_to_dict_v1(i, d) - -def add_to_dict_v1(i: Input, d: dict, dynamic_dict: dict=None): +def add_to_dict_v1(i: Input, d: dict): key = "optional" if i.optional else "required" as_dict = i.as_dict() # for v1, we don't want to include the optional key as_dict.pop("optional", None) - if dynamic_dict is None: - value = (i.get_io_type(), as_dict) - else: - value = (i.get_io_type(), as_dict, dynamic_dict) - d.setdefault(key, {})[i.id] = value + d.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict) def add_to_dict_v3(io: Input | Output, d: dict): d[io.id] = (io.get_io_type(), io.as_dict()) @@ -1422,6 +1470,8 @@ def build_nested_inputs(values: dict[str, Any], v3_data: V3Data): values = values.copy() result = {} + create_tuple = v3_data.get("create_dynamic_tuple", False) + for key, path in paths.items(): parts = path.split(".") current = result @@ -1430,7 +1480,10 @@ def build_nested_inputs(values: dict[str, Any], v3_data: V3Data): is_last = (i == len(parts) - 1) if is_last: - current[p] = values.pop(key, None) + value = values.pop(key, None) + if create_tuple: + value = (value, key) + current[p] = value else: current = current.setdefault(p, {}) @@ -1445,7 +1498,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): SCHEMA = None # filled in during execution - resources: Resources = None hidden: HiddenHolder = None @classmethod @@ -1492,7 +1544,6 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): return [name for name in kwargs if kwargs[name] is None] def __init__(self): - self.local_resources: ResourcesLocal = None self.__class__.VALIDATE_CLASS() @classmethod @@ -1560,7 +1611,7 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): c_type: type[ComfyNode] = cls if is_class(cls) else type(cls) type_clone: type[ComfyNode] = shallow_clone_class(c_type) # set hidden - type_clone.hidden = HiddenHolder.from_dict(v3_data["hidden_inputs"] if v3_data else None) + type_clone.hidden = HiddenHolder.from_v3_data(v3_data) return type_clone @final @@ -1677,19 +1728,10 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal): @final @classmethod - def INPUT_TYPES(cls, include_hidden=True, return_schema=False, live_inputs=None) -> dict[str, dict] | tuple[dict[str, dict], Schema, V3Data]: + def INPUT_TYPES(cls) -> dict[str, dict]: schema = cls.FINALIZE_SCHEMA() - info = schema.get_v1_info(cls, live_inputs) - input = info.input - if not include_hidden: - input.pop("hidden", None) - if return_schema: - v3_data: V3Data = {} - dynamic = input.pop("dynamic_paths", None) - if dynamic is not None: - v3_data["dynamic_paths"] = dynamic - return input, schema, v3_data - return input + info = schema.get_v1_info(cls) + return info.input @final @classmethod @@ -1808,7 +1850,7 @@ class NodeOutput(_NodeOutputInternal): return self.args if len(self.args) > 0 else None @classmethod - def from_dict(cls, data: dict[str, Any]) -> "NodeOutput": + def from_dict(cls, data: dict[str, Any]) -> NodeOutput: args = () ui = None expand = None @@ -1903,8 +1945,8 @@ __all__ = [ "Tracks", # Dynamic Types "MatchType", - # "DynamicCombo", - # "Autogrow", + "DynamicCombo", + "Autogrow", # Other classes "HiddenHolder", "Hidden", diff --git a/comfy_api/latest/_resources.py b/comfy_api/latest/_resources.py deleted file mode 100644 index a6bdda972..000000000 --- a/comfy_api/latest/_resources.py +++ /dev/null @@ -1,72 +0,0 @@ -from __future__ import annotations -import comfy.utils -import folder_paths -import logging -from abc import ABC, abstractmethod -from typing import Any -import torch - -class ResourceKey(ABC): - Type = Any - def __init__(self): - ... - -class TorchDictFolderFilename(ResourceKey): - '''Key for requesting a torch file via file_name from a folder category.''' - Type = dict[str, torch.Tensor] - def __init__(self, folder_name: str, file_name: str): - self.folder_name = folder_name - self.file_name = file_name - - def __hash__(self): - return hash((self.folder_name, self.file_name)) - - def __eq__(self, other: object) -> bool: - if not isinstance(other, TorchDictFolderFilename): - return False - return self.folder_name == other.folder_name and self.file_name == other.file_name - - def __str__(self): - return f"{self.folder_name} -> {self.file_name}" - -class Resources(ABC): - def __init__(self): - ... - - @abstractmethod - def get(self, key: ResourceKey, default: Any=...) -> Any: - pass - -class ResourcesLocal(Resources): - def __init__(self): - super().__init__() - self.local_resources: dict[ResourceKey, Any] = {} - - def get(self, key: ResourceKey, default: Any=...) -> Any: - cached = self.local_resources.get(key, None) - if cached is not None: - logging.info(f"Using cached resource '{key}'") - return cached - logging.info(f"Loading resource '{key}'") - to_return = None - if isinstance(key, TorchDictFolderFilename): - if default is ...: - to_return = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise(key.folder_name, key.file_name), safe_load=True) - else: - full_path = folder_paths.get_full_path(key.folder_name, key.file_name) - if full_path is not None: - to_return = comfy.utils.load_torch_file(full_path, safe_load=True) - - if to_return is not None: - self.local_resources[key] = to_return - return to_return - if default is not ...: - return default - raise Exception(f"Unsupported resource key type: {type(key)}") - - -class _RESOURCES: - ResourceKey = ResourceKey - TorchDictFolderFilename = TorchDictFolderFilename - Resources = Resources - ResourcesLocal = ResourcesLocal diff --git a/comfy_execution/graph.py b/comfy_execution/graph.py index 0d811e354..8fc5846b7 100644 --- a/comfy_execution/graph.py +++ b/comfy_execution/graph.py @@ -97,6 +97,11 @@ def get_input_info( extra_info = input_info[1] else: extra_info = {} + # if input_type is a list, it is a Combo defined in outdated format; convert it. + # NOTE: uncomment this when we are confident old format going away won't cause too much trouble. + # if isinstance(input_type, list): + # extra_info["options"] = input_type + # input_type = IO.Combo.io_type return input_type, input_category, extra_info class TopologicalSort: diff --git a/comfy_execution/validation.py b/comfy_execution/validation.py index 24c0b4ed7..e73624bd1 100644 --- a/comfy_execution/validation.py +++ b/comfy_execution/validation.py @@ -21,14 +21,24 @@ def validate_node_input( """ # If the types are exactly the same, we can return immediately # Use pre-union behaviour: inverse of `__ne__` + # NOTE: this lets legacy '*' Any types work that override the __ne__ method of the str class. if not received_type != input_type: return True + # If one of the types is '*', we can return True immediately; this is the 'Any' type. + if received_type == IO.AnyType.io_type or input_type == IO.AnyType.io_type: + return True + # If the received type or input_type is a MatchType, we can return True immediately; # validation for this is handled by the frontend if received_type == IO.MatchType.io_type or input_type == IO.MatchType.io_type: return True + # This accounts for some custom nodes that output lists of options as the type; + # if we ever want to break them on purpose, this can be removed + if isinstance(received_type, list) and input_type == IO.Combo.io_type: + return True + # Not equal, and not strings if not isinstance(received_type, str) or not isinstance(input_type, str): return False @@ -37,6 +47,10 @@ def validate_node_input( received_types = set(t.strip() for t in received_type.split(",")) input_types = set(t.strip() for t in input_type.split(",")) + # If any of the types is '*', we can return True immediately; this is the 'Any' type. + if IO.AnyType.io_type in received_types or IO.AnyType.io_type in input_types: + return True + if strict: # In strict mode, all received types must be in the input types return received_types.issubset(input_types) diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py index 2815c5ffc..9ba1c4ba8 100644 --- a/comfy_extras/nodes_latent.py +++ b/comfy_extras/nodes_latent.py @@ -255,6 +255,7 @@ class LatentBatch(io.ComfyNode): return io.Schema( node_id="LatentBatch", category="latent/batch", + is_deprecated=True, inputs=[ io.Latent.Input("samples1"), io.Latent.Input("samples2"), diff --git a/comfy_extras/nodes_logic.py b/comfy_extras/nodes_logic.py index 95a6ba788..eb888316a 100644 --- a/comfy_extras/nodes_logic.py +++ b/comfy_extras/nodes_logic.py @@ -1,8 +1,11 @@ +from __future__ import annotations from typing import TypedDict from typing_extensions import override from comfy_api.latest import ComfyExtension, io from comfy_api.latest import _io +# sentinel for missing inputs +MISSING = object() class SwitchNode(io.ComfyNode): @@ -14,6 +17,37 @@ class SwitchNode(io.ComfyNode): display_name="Switch", category="logic", is_experimental=True, + inputs=[ + io.Boolean.Input("switch"), + io.MatchType.Input("on_false", template=template, lazy=True), + io.MatchType.Input("on_true", template=template, lazy=True), + ], + outputs=[ + io.MatchType.Output(template=template, display_name="output"), + ], + ) + + @classmethod + def check_lazy_status(cls, switch, on_false=None, on_true=None): + if switch and on_true is None: + return ["on_true"] + if not switch and on_false is None: + return ["on_false"] + + @classmethod + def execute(cls, switch, on_true, on_false) -> io.NodeOutput: + return io.NodeOutput(on_true if switch else on_false) + + +class SoftSwitchNode(io.ComfyNode): + @classmethod + def define_schema(cls): + template = io.MatchType.Template("switch") + return io.Schema( + node_id="ComfySoftSwitchNode", + display_name="Soft Switch", + category="logic", + is_experimental=True, inputs=[ io.Boolean.Input("switch"), io.MatchType.Input("on_false", template=template, lazy=True, optional=True), @@ -25,14 +59,14 @@ class SwitchNode(io.ComfyNode): ) @classmethod - def check_lazy_status(cls, switch, on_false=..., on_true=...): - # We use ... instead of None, as None is passed for connected-but-unevaluated inputs. + def check_lazy_status(cls, switch, on_false=MISSING, on_true=MISSING): + # We use MISSING instead of None, as None is passed for connected-but-unevaluated inputs. # This trick allows us to ignore the value of the switch and still be able to run execute(). # One of the inputs may be missing, in which case we need to evaluate the other input - if on_false is ...: + if on_false is MISSING: return ["on_true"] - if on_true is ...: + if on_true is MISSING: return ["on_false"] # Normal lazy switch operation if switch and on_true is None: @@ -41,22 +75,50 @@ class SwitchNode(io.ComfyNode): return ["on_false"] @classmethod - def validate_inputs(cls, switch, on_false=..., on_true=...): + def validate_inputs(cls, switch, on_false=MISSING, on_true=MISSING): # This check happens before check_lazy_status(), so we can eliminate the case where # both inputs are missing. - if on_false is ... and on_true is ...: + if on_false is MISSING and on_true is MISSING: return "At least one of on_false or on_true must be connected to Switch node" return True @classmethod - def execute(cls, switch, on_true=..., on_false=...) -> io.NodeOutput: - if on_true is ...: + def execute(cls, switch, on_true=MISSING, on_false=MISSING) -> io.NodeOutput: + if on_true is MISSING: return io.NodeOutput(on_false) - if on_false is ...: + if on_false is MISSING: return io.NodeOutput(on_true) return io.NodeOutput(on_true if switch else on_false) +class CustomComboNode(io.ComfyNode): + """ + Frontend node that allows user to write their own options for a combo. + This is here to make sure the node has a backend-representation to avoid some annoyances. + """ + @classmethod + def define_schema(cls): + return io.Schema( + node_id="CustomCombo", + display_name="Custom Combo", + category="utils", + is_experimental=True, + inputs=[io.Combo.Input("choice", options=[])], + outputs=[io.String.Output()] + ) + + @classmethod + def validate_inputs(cls, choice: io.Combo.Type) -> bool: + # NOTE: DO NOT DO THIS unless you want to skip validation entirely on the node's inputs. + # I am doing that here because the widgets (besides the combo dropdown) on this node are fully frontend defined. + # I need to skip checking that the chosen combo option is in the options list, since those are defined by the user. + return True + + @classmethod + def execute(cls, choice: io.Combo.Type) -> io.NodeOutput: + return io.NodeOutput(choice) + + class DCTestNode(io.ComfyNode): class DCValues(TypedDict): combo: str @@ -72,14 +134,14 @@ class DCTestNode(io.ComfyNode): display_name="DCTest", category="logic", is_output_node=True, - inputs=[_io.DynamicCombo.Input("combo", options=[ - _io.DynamicCombo.Option("option1", [io.String.Input("string")]), - _io.DynamicCombo.Option("option2", [io.Int.Input("integer")]), - _io.DynamicCombo.Option("option3", [io.Image.Input("image")]), - _io.DynamicCombo.Option("option4", [ - _io.DynamicCombo.Input("subcombo", options=[ - _io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]), - _io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]), + inputs=[io.DynamicCombo.Input("combo", options=[ + io.DynamicCombo.Option("option1", [io.String.Input("string")]), + io.DynamicCombo.Option("option2", [io.Int.Input("integer")]), + io.DynamicCombo.Option("option3", [io.Image.Input("image")]), + io.DynamicCombo.Option("option4", [ + io.DynamicCombo.Input("subcombo", options=[ + io.DynamicCombo.Option("opt1", [io.Float.Input("float_x"), io.Float.Input("float_y")]), + io.DynamicCombo.Option("opt2", [io.Mask.Input("mask1", optional=True)]), ]) ])] )], @@ -141,14 +203,65 @@ class AutogrowPrefixTestNode(io.ComfyNode): combined = ",".join([str(x) for x in vals]) return io.NodeOutput(combined) +class ComboOutputTestNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ComboOptionTestNode", + display_name="ComboOptionTest", + category="logic", + inputs=[io.Combo.Input("combo", options=["option1", "option2", "option3"]), + io.Combo.Input("combo2", options=["option4", "option5", "option6"])], + outputs=[io.Combo.Output(), io.Combo.Output()], + ) + + @classmethod + def execute(cls, combo: io.Combo.Type, combo2: io.Combo.Type) -> io.NodeOutput: + return io.NodeOutput(combo, combo2) + +class ConvertStringToComboNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="ConvertStringToComboNode", + display_name="Convert String to Combo", + category="logic", + inputs=[io.String.Input("string")], + outputs=[io.Combo.Output()], + ) + + @classmethod + def execute(cls, string: str) -> io.NodeOutput: + return io.NodeOutput(string) + +class InvertBooleanNode(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="InvertBooleanNode", + display_name="Invert Boolean", + category="logic", + inputs=[io.Boolean.Input("boolean")], + outputs=[io.Boolean.Output()], + ) + + @classmethod + def execute(cls, boolean: bool) -> io.NodeOutput: + return io.NodeOutput(not boolean) + class LogicExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ - # SwitchNode, + SwitchNode, + CustomComboNode, + # SoftSwitchNode, + # ConvertStringToComboNode, # DCTestNode, # AutogrowNamesTestNode, # AutogrowPrefixTestNode, + # ComboOutputTestNode, + # InvertBooleanNode, ] async def comfy_entrypoint() -> LogicExtension: diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py index ca2cdeb50..01afa13a1 100644 --- a/comfy_extras/nodes_post_processing.py +++ b/comfy_extras/nodes_post_processing.py @@ -4,11 +4,15 @@ import torch import torch.nn.functional as F from PIL import Image import math +from enum import Enum +from typing import TypedDict, Literal import comfy.utils import comfy.model_management +from comfy_extras.nodes_latent import reshape_latent_to import node_helpers from comfy_api.latest import ComfyExtension, io +from nodes import MAX_RESOLUTION class Blend(io.ComfyNode): @classmethod @@ -241,6 +245,353 @@ class ImageScaleToTotalPixels(io.ComfyNode): s = s.movedim(1,-1) return io.NodeOutput(s) +class ResizeType(str, Enum): + SCALE_BY = "scale by multiplier" + SCALE_DIMENSIONS = "scale dimensions" + SCALE_LONGER_DIMENSION = "scale longer dimension" + SCALE_SHORTER_DIMENSION = "scale shorter dimension" + SCALE_WIDTH = "scale width" + SCALE_HEIGHT = "scale height" + SCALE_TOTAL_PIXELS = "scale total pixels" + MATCH_SIZE = "match size" + +def is_image(input: torch.Tensor) -> bool: + # images have 4 dimensions: [batch, height, width, channels] + # masks have 3 dimensions: [batch, height, width] + return len(input.shape) == 4 + +def init_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor: + if is_type_image: + input = input.movedim(-1, 1) + else: + input = input.unsqueeze(1) + return input + +def finalize_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor: + if is_type_image: + input = input.movedim(1, -1) + else: + input = input.squeeze(1) + return input + +def scale_by(input: torch.Tensor, multiplier: float, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = round(input.shape[-1] * multiplier) + height = round(input.shape[-2] * multiplier) + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_dimensions(input: torch.Tensor, width: int, height: int, scale_method: str, crop: str="disabled") -> torch.Tensor: + if width == 0 and height == 0: + return input + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + + if width == 0: + width = max(1, round(input.shape[-1] * height / input.shape[-2])) + elif height == 0: + height = max(1, round(input.shape[-2] * width / input.shape[-1])) + + input = comfy.utils.common_upscale(input, width, height, scale_method, crop) + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_longer_dimension(input: torch.Tensor, longer_size: int, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = input.shape[-1] + height = input.shape[-2] + + if height > width: + width = round((width / height) * longer_size) + height = longer_size + elif width > height: + height = round((height / width) * longer_size) + width = longer_size + else: + height = longer_size + width = longer_size + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_shorter_dimension(input: torch.Tensor, shorter_size: int, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + width = input.shape[-1] + height = input.shape[-2] + + if height < width: + width = round((width / height) * shorter_size) + height = shorter_size + elif width > height: + height = round((height / width) * shorter_size) + width = shorter_size + else: + height = shorter_size + width = shorter_size + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_total_pixels(input: torch.Tensor, megapixels: float, scale_method: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + total = int(megapixels * 1024 * 1024) + + scale_by = math.sqrt(total / (input.shape[-1] * input.shape[-2])) + width = round(input.shape[-1] * scale_by) + height = round(input.shape[-2] * scale_by) + + input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled") + input = finalize_image_mask_input(input, is_type_image) + return input + +def scale_match_size(input: torch.Tensor, match: torch.Tensor, scale_method: str, crop: str) -> torch.Tensor: + is_type_image = is_image(input) + input = init_image_mask_input(input, is_type_image) + match = init_image_mask_input(match, is_image(match)) + + width = match.shape[-1] + height = match.shape[-2] + input = comfy.utils.common_upscale(input, width, height, scale_method, crop) + input = finalize_image_mask_input(input, is_type_image) + return input + +class ResizeImageMaskNode(io.ComfyNode): + + scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + crop_methods = ["disabled", "center"] + + class ResizeTypedDict(TypedDict): + resize_type: ResizeType + scale_method: Literal["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] + crop: Literal["disabled", "center"] + multiplier: float + width: int + height: int + longer_size: int + shorter_size: int + megapixels: float + + @classmethod + def define_schema(cls): + template = io.MatchType.Template("input_type", [io.Image, io.Mask]) + crop_combo = io.Combo.Input("crop", options=cls.crop_methods, default="center") + return io.Schema( + node_id="ResizeImageMaskNode", + display_name="Resize Image/Mask", + category="transform", + inputs=[ + io.MatchType.Input("input", template=template), + io.DynamicCombo.Input("resize_type", options=[ + io.DynamicCombo.Option(ResizeType.SCALE_BY, [ + io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + crop_combo, + ]), + io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [ + io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [ + io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [ + io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [ + io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1), + ]), + io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [ + io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01), + ]), + io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [ + io.MultiType.Input("match", [io.Image, io.Mask]), + crop_combo, + ]), + ]), + io.Combo.Input("scale_method", options=cls.scale_methods, default="area"), + ], + outputs=[io.MatchType.Output(template=template, display_name="resized")] + ) + + @classmethod + def execute(cls, input: io.Image.Type | io.Mask.Type, scale_method: io.Combo.Type, resize_type: ResizeTypedDict) -> io.NodeOutput: + selected_type = resize_type["resize_type"] + if selected_type == ResizeType.SCALE_BY: + return io.NodeOutput(scale_by(input, resize_type["multiplier"], scale_method)) + elif selected_type == ResizeType.SCALE_DIMENSIONS: + return io.NodeOutput(scale_dimensions(input, resize_type["width"], resize_type["height"], scale_method, resize_type["crop"])) + elif selected_type == ResizeType.SCALE_LONGER_DIMENSION: + return io.NodeOutput(scale_longer_dimension(input, resize_type["longer_size"], scale_method)) + elif selected_type == ResizeType.SCALE_SHORTER_DIMENSION: + return io.NodeOutput(scale_shorter_dimension(input, resize_type["shorter_size"], scale_method)) + elif selected_type == ResizeType.SCALE_WIDTH: + return io.NodeOutput(scale_dimensions(input, resize_type["width"], 0, scale_method)) + elif selected_type == ResizeType.SCALE_HEIGHT: + return io.NodeOutput(scale_dimensions(input, 0, resize_type["height"], scale_method)) + elif selected_type == ResizeType.SCALE_TOTAL_PIXELS: + return io.NodeOutput(scale_total_pixels(input, resize_type["megapixels"], scale_method)) + elif selected_type == ResizeType.MATCH_SIZE: + return io.NodeOutput(scale_match_size(input, resize_type["match"], scale_method, resize_type["crop"])) + raise ValueError(f"Unsupported resize type: {selected_type}") + +def batch_images(images: list[torch.Tensor]) -> torch.Tensor | None: + if len(images) == 0: + return None + # first, get the max channels count + max_channels = max(image.shape[-1] for image in images) + # then, pad all images to have the same channels count + padded_images: list[torch.Tensor] = [] + for image in images: + if image.shape[-1] < max_channels: + padded_images.append(torch.nn.functional.pad(image, (0,1), mode='constant', value=1.0)) + else: + padded_images.append(image) + # resize all images to be the same size as the first image + resized_images: list[torch.Tensor] = [] + first_image_shape = padded_images[0].shape + for image in padded_images: + if image.shape[1:] != first_image_shape[1:]: + resized_images.append(comfy.utils.common_upscale(image.movedim(-1,1), first_image_shape[2], first_image_shape[1], "bilinear", "center").movedim(1,-1)) + else: + resized_images.append(image) + # batch the images in the format [b, h, w, c] + return torch.cat(resized_images, dim=0) + +def batch_masks(masks: list[torch.Tensor]) -> torch.Tensor | None: + if len(masks) == 0: + return None + # resize all masks to be the same size as the first mask + resized_masks: list[torch.Tensor] = [] + first_mask_shape = masks[0].shape + for mask in masks: + if mask.shape[1:] != first_mask_shape[1:]: + mask = init_image_mask_input(mask, is_type_image=False) + mask = comfy.utils.common_upscale(mask, first_mask_shape[2], first_mask_shape[1], "bilinear", "center") + resized_masks.append(finalize_image_mask_input(mask, is_type_image=False)) + else: + resized_masks.append(mask) + # batch the masks in the format [b, h, w] + return torch.cat(resized_masks, dim=0) + +def batch_latents(latents: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor] | None: + if len(latents) == 0: + return None + samples_out = latents[0].copy() + samples_out["batch_index"] = [] + first_samples = latents[0]["samples"] + tensors: list[torch.Tensor] = [] + for latent in latents: + # first, deal with latent tensors + tensors.append(reshape_latent_to(first_samples.shape, latent["samples"], repeat_batch=False)) + # next, deal with batch_index + samples_out["batch_index"].extend(latent.get("batch_index", [x for x in range(0, latent["samples"].shape[0])])) + samples_out["samples"] = torch.cat(tensors, dim=0) + return samples_out + +class BatchImagesNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Image.Input("image"), prefix="image", min=2, max=50) + return io.Schema( + node_id="BatchImagesNode", + display_name="Batch Images", + category="image", + inputs=[ + io.Autogrow.Input("images", template=autogrow_template) + ], + outputs=[ + io.Image.Output() + ] + ) + + @classmethod + def execute(cls, images: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_images(list(images.values()))) + +class BatchMasksNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Mask.Input("mask"), prefix="mask", min=2, max=50) + return io.Schema( + node_id="BatchMasksNode", + display_name="Batch Masks", + category="mask", + inputs=[ + io.Autogrow.Input("masks", template=autogrow_template) + ], + outputs=[ + io.Mask.Output() + ] + ) + + @classmethod + def execute(cls, masks: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_masks(list(masks.values()))) + +class BatchLatentsNode(io.ComfyNode): + @classmethod + def define_schema(cls): + autogrow_template = io.Autogrow.TemplatePrefix(io.Latent.Input("latent"), prefix="latent", min=2, max=50) + return io.Schema( + node_id="BatchLatentsNode", + display_name="Batch Latents", + category="latent", + inputs=[ + io.Autogrow.Input("latents", template=autogrow_template) + ], + outputs=[ + io.Latent.Output() + ] + ) + + @classmethod + def execute(cls, latents: io.Autogrow.Type) -> io.NodeOutput: + return io.NodeOutput(batch_latents(list(latents.values()))) + +class BatchImagesMasksLatentsNode(io.ComfyNode): + @classmethod + def define_schema(cls): + matchtype_template = io.MatchType.Template("input", allowed_types=[io.Image, io.Mask, io.Latent]) + autogrow_template = io.Autogrow.TemplatePrefix( + io.MatchType.Input("input", matchtype_template), + prefix="input", min=1, max=50) + return io.Schema( + node_id="BatchImagesMasksLatentsNode", + display_name="Batch Images/Masks/Latents", + category="util", + inputs=[ + io.Autogrow.Input("inputs", template=autogrow_template) + ], + outputs=[ + io.MatchType.Output(id=None, template=matchtype_template) + ] + ) + + @classmethod + def execute(cls, inputs: io.Autogrow.Type) -> io.NodeOutput: + batched = None + values = list(inputs.values()) + # latents + if isinstance(values[0], dict): + batched = batch_latents(values) + # images + elif is_image(values[0]): + batched = batch_images(values) + # masks + else: + batched = batch_masks(values) + return io.NodeOutput(batched) + class PostProcessingExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: @@ -250,6 +601,11 @@ class PostProcessingExtension(ComfyExtension): Quantize, Sharpen, ImageScaleToTotalPixels, + ResizeImageMaskNode, + BatchImagesNode, + BatchMasksNode, + BatchLatentsNode, + # BatchImagesMasksLatentsNode, ] async def comfy_entrypoint() -> PostProcessingExtension: diff --git a/comfy_extras/nodes_primitive.py b/comfy_extras/nodes_primitive.py index 5a1aeba80..937321800 100644 --- a/comfy_extras/nodes_primitive.py +++ b/comfy_extras/nodes_primitive.py @@ -66,7 +66,7 @@ class Float(io.ComfyNode): display_name="Float", category="utils/primitive", inputs=[ - io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize), + io.Float.Input("value", min=-sys.maxsize, max=sys.maxsize, step=0.1), ], outputs=[io.Float.Output()], ) diff --git a/execution.py b/execution.py index 0c239efd7..38159b1f4 100644 --- a/execution.py +++ b/execution.py @@ -79,7 +79,7 @@ class IsChangedCache: # Intentionally do not use cached outputs here. We only want constants in IS_CHANGED input_data_all, _, v3_data = get_input_data(node["inputs"], class_def, node_id, None) try: - is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name) + is_changed = await _async_map_node_over_list(self.prompt_id, node_id, class_def, input_data_all, is_changed_name, v3_data=v3_data) is_changed = await resolve_map_node_over_list_results(is_changed) node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed] except Exception as e: @@ -148,13 +148,12 @@ SENSITIVE_EXTRA_DATA_KEYS = ("auth_token_comfy_org", "api_key_comfy_org") def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt=None, extra_data={}): is_v3 = issubclass(class_def, _ComfyNodeInternal) v3_data: io.V3Data = {} + hidden_inputs_v3 = {} + valid_inputs = class_def.INPUT_TYPES() if is_v3: - valid_inputs, schema, v3_data = class_def.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) - else: - valid_inputs = class_def.INPUT_TYPES() + valid_inputs, hidden, v3_data = _io.get_finalized_class_inputs(valid_inputs, inputs) input_data_all = {} missing_keys = {} - hidden_inputs_v3 = {} for x in inputs: input_data = inputs[x] _, input_category, input_info = get_input_info(class_def, x, valid_inputs) @@ -180,18 +179,18 @@ def get_input_data(inputs, class_def, unique_id, execution_list=None, dynprompt= input_data_all[x] = [input_data] if is_v3: - if schema.hidden: - if io.Hidden.prompt in schema.hidden: + if hidden is not None: + if io.Hidden.prompt.name in hidden: hidden_inputs_v3[io.Hidden.prompt] = dynprompt.get_original_prompt() if dynprompt is not None else {} - if io.Hidden.dynprompt in schema.hidden: + if io.Hidden.dynprompt.name in hidden: hidden_inputs_v3[io.Hidden.dynprompt] = dynprompt - if io.Hidden.extra_pnginfo in schema.hidden: + if io.Hidden.extra_pnginfo.name in hidden: hidden_inputs_v3[io.Hidden.extra_pnginfo] = extra_data.get('extra_pnginfo', None) - if io.Hidden.unique_id in schema.hidden: + if io.Hidden.unique_id.name in hidden: hidden_inputs_v3[io.Hidden.unique_id] = unique_id - if io.Hidden.auth_token_comfy_org in schema.hidden: + if io.Hidden.auth_token_comfy_org.name in hidden: hidden_inputs_v3[io.Hidden.auth_token_comfy_org] = extra_data.get("auth_token_comfy_org", None) - if io.Hidden.api_key_comfy_org in schema.hidden: + if io.Hidden.api_key_comfy_org.name in hidden: hidden_inputs_v3[io.Hidden.api_key_comfy_org] = extra_data.get("api_key_comfy_org", None) else: if "hidden" in valid_inputs: @@ -258,7 +257,7 @@ async def _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, f pre_execute_cb(index) # V3 if isinstance(obj, _ComfyNodeInternal) or (is_class(obj) and issubclass(obj, _ComfyNodeInternal)): - # if is just a class, then assign no resources or state, just create clone + # if is just a class, then assign no state, just create clone if is_class(obj): type_obj = obj obj.VALIDATE_CLASS() @@ -481,7 +480,10 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, else: lazy_status_present = getattr(obj, "check_lazy_status", None) is not None if lazy_status_present: - required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data) + # for check_lazy_status, the returned data should include the original key of the input + v3_data_lazy = v3_data.copy() + v3_data_lazy["create_dynamic_tuple"] = True + required_inputs = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, "check_lazy_status", allow_interrupt=True, v3_data=v3_data_lazy) required_inputs = await resolve_map_node_over_list_results(required_inputs) required_inputs = set(sum([r for r in required_inputs if isinstance(r,list)], [])) required_inputs = [x for x in required_inputs if isinstance(x,str) and ( @@ -756,10 +758,13 @@ async def validate_inputs(prompt_id, prompt, item, validated): errors = [] valid = True + v3_data = None validate_function_inputs = [] validate_has_kwargs = False if issubclass(obj_class, _ComfyNodeInternal): - class_inputs, _, _ = obj_class.INPUT_TYPES(include_hidden=False, return_schema=True, live_inputs=inputs) + obj_class: _io._ComfyNodeBaseInternal + class_inputs = obj_class.INPUT_TYPES() + class_inputs, _, v3_data = _io.get_finalized_class_inputs(class_inputs, inputs) validate_function_name = "validate_inputs" validate_function = first_real_override(obj_class, validate_function_name) else: @@ -779,10 +784,11 @@ async def validate_inputs(prompt_id, prompt, item, validated): assert extra_info is not None if x not in inputs: if input_category == "required": + details = f"{x}" if not v3_data else x.split(".")[-1] error = { "type": "required_input_missing", "message": "Required input is missing", - "details": f"{x}", + "details": details, "extra_info": { "input_name": x } @@ -916,8 +922,11 @@ async def validate_inputs(prompt_id, prompt, item, validated): errors.append(error) continue - if isinstance(input_type, list): - combo_options = input_type + if isinstance(input_type, list) or input_type == io.Combo.io_type: + if input_type == io.Combo.io_type: + combo_options = extra_info.get("options", []) + else: + combo_options = input_type if val not in combo_options: input_config = info list_info = "" diff --git a/nodes.py b/nodes.py index 7d83ecb21..d9e4ebd91 100644 --- a/nodes.py +++ b/nodes.py @@ -1863,6 +1863,7 @@ class ImageBatch: FUNCTION = "batch" CATEGORY = "image" + DEPRECATED = True def batch(self, image1, image2): if image1.shape[-1] != image2.shape[-1]: From 6ca3d5c011bc15737131eb665939ae0a39a74254 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 31 Dec 2025 06:12:38 +0200 Subject: [PATCH 237/271] fix(api-nodes-vidu): preserve percent-encoding for signed URLs (#11564) --- comfy_api_nodes/util/_helpers.py | 20 ++++++++++++++++++++ comfy_api_nodes/util/download_helpers.py | 3 ++- 2 files changed, 22 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/util/_helpers.py b/comfy_api_nodes/util/_helpers.py index 491e6b6a8..648defe3d 100644 --- a/comfy_api_nodes/util/_helpers.py +++ b/comfy_api_nodes/util/_helpers.py @@ -1,16 +1,22 @@ import asyncio import contextlib import os +import re import time from collections.abc import Callable from io import BytesIO +from yarl import URL + from comfy.cli_args import args from comfy.model_management import processing_interrupted from comfy_api.latest import IO from .common_exceptions import ProcessingInterrupted +_HAS_PCT_ESC = re.compile(r"%[0-9A-Fa-f]{2}") # any % followed by 2 hex digits +_HAS_BAD_PCT = re.compile(r"%(?![0-9A-Fa-f]{2})") # any % not followed by 2 hex digits + def is_processing_interrupted() -> bool: """Return True if user/runtime requested interruption.""" @@ -69,3 +75,17 @@ def get_fs_object_size(path_or_object: str | BytesIO) -> int: if isinstance(path_or_object, str): return os.path.getsize(path_or_object) return len(path_or_object.getvalue()) + + +def to_aiohttp_url(url: str) -> URL: + """If `url` appears to be already percent-encoded (contains at least one valid %HH + escape and no malformed '%' sequences) and contains no raw whitespace/control + characters preserve the original encoding byte-for-byte (important for signed/presigned URLs). + Otherwise, return `URL(url)` and allow yarl to normalize/quote as needed.""" + if any(c.isspace() for c in url) or any(ord(c) < 0x20 for c in url): + # Avoid encoded=True if URL contains raw whitespace/control chars + return URL(url) + if _HAS_PCT_ESC.search(url) and not _HAS_BAD_PCT.search(url): + # Preserve encoding only if it appears pre-encoded AND has no invalid % sequences + return URL(url, encoded=True) + return URL(url) diff --git a/comfy_api_nodes/util/download_helpers.py b/comfy_api_nodes/util/download_helpers.py index 3e0d0352d..4668d14a9 100644 --- a/comfy_api_nodes/util/download_helpers.py +++ b/comfy_api_nodes/util/download_helpers.py @@ -19,6 +19,7 @@ from ._helpers import ( get_auth_header, is_processing_interrupted, sleep_with_interrupt, + to_aiohttp_url, ) from .client import _diagnose_connectivity from .common_exceptions import ApiServerError, LocalNetworkError, ProcessingInterrupted @@ -94,7 +95,7 @@ async def download_url_to_bytesio( monitor_task = asyncio.create_task(_monitor()) - req_task = asyncio.create_task(session.get(url, headers=headers)) + req_task = asyncio.create_task(session.get(to_aiohttp_url(url), headers=headers)) done, pending = await asyncio.wait({req_task, monitor_task}, return_when=asyncio.FIRST_COMPLETED) if monitor_task in done and req_task in pending: From 236b9e211d5093b33acbe1918f56a6bfb4a5cf17 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Thu, 1 Jan 2026 05:38:39 +0800 Subject: [PATCH 238/271] chore: update workflow templates to v0.7.65 (#11579) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 8b670b813..3a05799eb 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.64 +comfyui-workflow-templates==0.7.65 comfyui-embedded-docs==0.3.1 torch torchsde From d622a618749b603531b753cef286a6051dd85565 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 31 Dec 2025 14:38:36 -0800 Subject: [PATCH 239/271] Refactor: move clip_preprocess to comfy.clip_model (#11586) --- comfy/clip_model.py | 19 +++++++++++++++++++ comfy/clip_vision.py | 22 ++-------------------- 2 files changed, 21 insertions(+), 20 deletions(-) diff --git a/comfy/clip_model.py b/comfy/clip_model.py index 7c0cadab5..e88872728 100644 --- a/comfy/clip_model.py +++ b/comfy/clip_model.py @@ -2,6 +2,25 @@ import torch from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.ops +def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): + image = image[:, :, :, :3] if image.shape[3] > 3 else image + mean = torch.tensor(mean, device=image.device, dtype=image.dtype) + std = torch.tensor(std, device=image.device, dtype=image.dtype) + image = image.movedim(-1, 1) + if not (image.shape[2] == size and image.shape[3] == size): + if crop: + scale = (size / min(image.shape[2], image.shape[3])) + scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3])) + else: + scale_size = (size, size) + + image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True) + h = (image.shape[2] - size)//2 + w = (image.shape[3] - size)//2 + image = image[:,:,h:h+size,w:w+size] + image = torch.clip((255. * image), 0, 255).round() / 255.0 + return (image - mean.view([3,1,1])) / std.view([3,1,1]) + class CLIPAttention(torch.nn.Module): def __init__(self, embed_dim, heads, dtype, device, operations): super().__init__() diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py index 447b1ce4a..d5fc53497 100644 --- a/comfy/clip_vision.py +++ b/comfy/clip_vision.py @@ -1,6 +1,5 @@ from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace import os -import torch import json import logging @@ -17,24 +16,7 @@ class Output: def __setitem__(self, key, item): setattr(self, key, item) -def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): - image = image[:, :, :, :3] if image.shape[3] > 3 else image - mean = torch.tensor(mean, device=image.device, dtype=image.dtype) - std = torch.tensor(std, device=image.device, dtype=image.dtype) - image = image.movedim(-1, 1) - if not (image.shape[2] == size and image.shape[3] == size): - if crop: - scale = (size / min(image.shape[2], image.shape[3])) - scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3])) - else: - scale_size = (size, size) - - image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True) - h = (image.shape[2] - size)//2 - w = (image.shape[3] - size)//2 - image = image[:,:,h:h+size,w:w+size] - image = torch.clip((255. * image), 0, 255).round() / 255.0 - return (image - mean.view([3,1,1])) / std.view([3,1,1]) +clip_preprocess = comfy.clip_model.clip_preprocess # Prevent some stuff from breaking, TODO: remove eventually IMAGE_ENCODERS = { "clip_vision_model": comfy.clip_model.CLIPVisionModelProjection, @@ -73,7 +55,7 @@ class ClipVisionModel(): def encode_image(self, image, crop=True): comfy.model_management.load_model_gpu(self.patcher) - pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() + pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2) outputs = Output() From 1bdc9a947f578733f81c9ae894a5acd5809c7a66 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 31 Dec 2025 16:29:55 -0800 Subject: [PATCH 240/271] Remove duplicate import of model_management (#11587) --- comfy/text_encoders/llama.py | 1 - 1 file changed, 1 deletion(-) diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index ed29e014d..faa4e1de8 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -8,7 +8,6 @@ from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.model_management import comfy.ldm.common_dit -import comfy.model_management from . import qwen_vl @dataclass From 65cfcf5b1bb0d0618fef7bee08ee64397be5c434 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Thu, 1 Jan 2026 19:06:14 -0800 Subject: [PATCH 241/271] New Year ruff cleanup. (#11595) --- app/model_manager.py | 4 ++-- comfy/hooks.py | 3 ++- comfy/ldm/chroma_radiance/model.py | 2 +- comfy/ldm/hunyuan_video/upsampler.py | 3 ++- comfy/ldm/modules/diffusionmodules/model.py | 6 ++++-- comfy/ldm/modules/ema.py | 4 ++-- comfy/ldm/util.py | 2 +- comfy/taesd/taehv.py | 6 ++++-- comfy_execution/graph.py | 6 +++--- comfy_extras/nodes_apg.py | 3 ++- comfy_extras/nodes_wan.py | 2 +- nodes.py | 6 ++++-- pyproject.toml | 4 ++++ server.py | 6 +++--- 14 files changed, 35 insertions(+), 22 deletions(-) diff --git a/app/model_manager.py b/app/model_manager.py index ab36bca74..f124d1117 100644 --- a/app/model_manager.py +++ b/app/model_manager.py @@ -44,7 +44,7 @@ class ModelFileManager: @routes.get("/experiment/models/{folder}") async def get_all_models(request): folder = request.match_info.get("folder", None) - if not folder in folder_paths.folder_names_and_paths: + if folder not in folder_paths.folder_names_and_paths: return web.Response(status=404) files = self.get_model_file_list(folder) return web.json_response(files) @@ -55,7 +55,7 @@ class ModelFileManager: path_index = int(request.match_info.get("path_index", None)) filename = request.match_info.get("filename", None) - if not folder_name in folder_paths.folder_names_and_paths: + if folder_name not in folder_paths.folder_names_and_paths: return web.Response(status=404) folders = folder_paths.folder_names_and_paths[folder_name] diff --git a/comfy/hooks.py b/comfy/hooks.py index 9d0731072..1a76c7ba4 100644 --- a/comfy/hooks.py +++ b/comfy/hooks.py @@ -527,7 +527,8 @@ class HookKeyframeGroup: if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0: break # if eval_c is outside the percent range, stop looking further - else: break + else: + break # update steps current context is used self._current_used_steps += 1 # update current timestep this was performed on diff --git a/comfy/ldm/chroma_radiance/model.py b/comfy/ldm/chroma_radiance/model.py index 70d173889..4fb56165e 100644 --- a/comfy/ldm/chroma_radiance/model.py +++ b/comfy/ldm/chroma_radiance/model.py @@ -270,7 +270,7 @@ class ChromaRadiance(Chroma): bad_keys = tuple( k for k, v in overrides.items() - if type(v) != type(getattr(params, k)) and (v is not None or k not in nullable_keys) + if not isinstance(v, type(getattr(params, k))) and (v is not None or k not in nullable_keys) ) if bad_keys: e = f"Invalid value(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}" diff --git a/comfy/ldm/hunyuan_video/upsampler.py b/comfy/ldm/hunyuan_video/upsampler.py index 85f515f67..d9e76922f 100644 --- a/comfy/ldm/hunyuan_video/upsampler.py +++ b/comfy/ldm/hunyuan_video/upsampler.py @@ -3,7 +3,8 @@ import torch.nn as nn import torch.nn.functional as F from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm -import model_management, model_patcher +import model_management +import model_patcher class SRResidualCausalBlock3D(nn.Module): def __init__(self, channels: int): diff --git a/comfy/ldm/modules/diffusionmodules/model.py b/comfy/ldm/modules/diffusionmodules/model.py index 681a55db5..1ae3ef034 100644 --- a/comfy/ldm/modules/diffusionmodules/model.py +++ b/comfy/ldm/modules/diffusionmodules/model.py @@ -394,7 +394,8 @@ class Model(nn.Module): attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): super().__init__() - if use_linear_attn: attn_type = "linear" + if use_linear_attn: + attn_type = "linear" self.ch = ch self.temb_ch = self.ch*4 self.num_resolutions = len(ch_mult) @@ -548,7 +549,8 @@ class Encoder(nn.Module): conv3d=False, time_compress=None, **ignore_kwargs): super().__init__() - if use_linear_attn: attn_type = "linear" + if use_linear_attn: + attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) diff --git a/comfy/ldm/modules/ema.py b/comfy/ldm/modules/ema.py index bded25019..96ee6e895 100644 --- a/comfy/ldm/modules/ema.py +++ b/comfy/ldm/modules/ema.py @@ -45,7 +45,7 @@ class LitEma(nn.Module): shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) else: - assert not key in self.m_name2s_name + assert key not in self.m_name2s_name def copy_to(self, model): m_param = dict(model.named_parameters()) @@ -54,7 +54,7 @@ class LitEma(nn.Module): if m_param[key].requires_grad: m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) else: - assert not key in self.m_name2s_name + assert key not in self.m_name2s_name def store(self, parameters): """ diff --git a/comfy/ldm/util.py b/comfy/ldm/util.py index 30b4b4721..304936ff4 100644 --- a/comfy/ldm/util.py +++ b/comfy/ldm/util.py @@ -71,7 +71,7 @@ def count_params(model, verbose=False): def instantiate_from_config(config): - if not "target" in config: + if "target" not in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": diff --git a/comfy/taesd/taehv.py b/comfy/taesd/taehv.py index 3dfe1e4d4..0e5f9a378 100644 --- a/comfy/taesd/taehv.py +++ b/comfy/taesd/taehv.py @@ -154,7 +154,8 @@ class TAEHV(nn.Module): self._show_progress_bar = value def encode(self, x, **kwargs): - if self.patch_size > 1: x = F.pixel_unshuffle(x, self.patch_size) + if self.patch_size > 1: + x = F.pixel_unshuffle(x, self.patch_size) x = x.movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] if x.shape[1] % 4 != 0: # pad at end to multiple of 4 @@ -167,5 +168,6 @@ class TAEHV(nn.Module): def decode(self, x, **kwargs): x = self.process_in(x).movedim(2, 1) # [B, C, T, H, W] -> [B, T, C, H, W] x = apply_model_with_memblocks(self.decoder, x, self.parallel, self.show_progress_bar) - if self.patch_size > 1: x = F.pixel_shuffle(x, self.patch_size) + if self.patch_size > 1: + x = F.pixel_shuffle(x, self.patch_size) return x[:, self.frames_to_trim:].movedim(2, 1) diff --git a/comfy_execution/graph.py b/comfy_execution/graph.py index 8fc5846b7..9d170b16e 100644 --- a/comfy_execution/graph.py +++ b/comfy_execution/graph.py @@ -207,15 +207,15 @@ class ExecutionList(TopologicalSort): return self.output_cache.get(node_id) is not None def cache_link(self, from_node_id, to_node_id): - if not to_node_id in self.execution_cache: + if to_node_id not in self.execution_cache: self.execution_cache[to_node_id] = {} self.execution_cache[to_node_id][from_node_id] = self.output_cache.get(from_node_id) - if not from_node_id in self.execution_cache_listeners: + if from_node_id not in self.execution_cache_listeners: self.execution_cache_listeners[from_node_id] = set() self.execution_cache_listeners[from_node_id].add(to_node_id) def get_cache(self, from_node_id, to_node_id): - if not to_node_id in self.execution_cache: + if to_node_id not in self.execution_cache: return None value = self.execution_cache[to_node_id].get(from_node_id) if value is None: diff --git a/comfy_extras/nodes_apg.py b/comfy_extras/nodes_apg.py index f27ae7da8..b9df2dcc9 100644 --- a/comfy_extras/nodes_apg.py +++ b/comfy_extras/nodes_apg.py @@ -55,7 +55,8 @@ class APG(io.ComfyNode): def pre_cfg_function(args): nonlocal running_avg, prev_sigma - if len(args["conds_out"]) == 1: return args["conds_out"] + if len(args["conds_out"]) == 1: + return args["conds_out"] cond = args["conds_out"][0] uncond = args["conds_out"][1] diff --git a/comfy_extras/nodes_wan.py b/comfy_extras/nodes_wan.py index b0bd471bf..d32aad98e 100644 --- a/comfy_extras/nodes_wan.py +++ b/comfy_extras/nodes_wan.py @@ -817,7 +817,7 @@ def get_sample_indices(original_fps, if required_duration > total_frames / original_fps: raise ValueError("required_duration must be less than video length") - if not fixed_start is None and fixed_start >= 0: + if fixed_start is not None and fixed_start >= 0: start_frame = fixed_start else: max_start = total_frames - required_origin_frames diff --git a/nodes.py b/nodes.py index d9e4ebd91..eae2f0086 100644 --- a/nodes.py +++ b/nodes.py @@ -2242,8 +2242,10 @@ async def init_external_custom_nodes(): for possible_module in possible_modules: module_path = os.path.join(custom_node_path, possible_module) - if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue - if module_path.endswith(".disabled"): continue + if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": + continue + if module_path.endswith(".disabled"): + continue if args.disable_all_custom_nodes and possible_module not in args.whitelist_custom_nodes: logging.info(f"Skipping {possible_module} due to disable_all_custom_nodes and whitelist_custom_nodes") continue diff --git a/pyproject.toml b/pyproject.toml index bc1467941..60378de1e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -15,12 +15,16 @@ lint.select = [ "N805", # invalid-first-argument-name-for-method "S307", # suspicious-eval-usage "S102", # exec + "E", "T", # print-usage "W", # The "F" series in Ruff stands for "Pyflakes" rules, which catch various Python syntax errors and undefined names. # See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f "F", ] + +lint.ignore = ["E501", "E722", "E731", "E712", "E402", "E741"] + exclude = ["*.ipynb", "**/generated/*.pyi"] [tool.pylint] diff --git a/server.py b/server.py index c27f8be7d..70c8b5e3b 100644 --- a/server.py +++ b/server.py @@ -324,7 +324,7 @@ class PromptServer(): @routes.get("/models/{folder}") async def get_models(request): folder = request.match_info.get("folder", None) - if not folder in folder_paths.folder_names_and_paths: + if folder not in folder_paths.folder_names_and_paths: return web.Response(status=404) files = folder_paths.get_filename_list(folder) return web.json_response(files) @@ -579,7 +579,7 @@ class PromptServer(): folder_name = request.match_info.get("folder_name", None) if folder_name is None: return web.Response(status=404) - if not "filename" in request.rel_url.query: + if "filename" not in request.rel_url.query: return web.Response(status=404) filename = request.rel_url.query["filename"] @@ -593,7 +593,7 @@ class PromptServer(): if out is None: return web.Response(status=404) dt = json.loads(out) - if not "__metadata__" in dt: + if "__metadata__" not in dt: return web.Response(status=404) return web.json_response(dt["__metadata__"]) From 9e5f677746463228e35ac6a08f308d758ed620d5 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 2 Jan 2026 10:35:34 +0200 Subject: [PATCH 242/271] Ignore all frames except the first one for MPO format. (#11569) --- nodes.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/nodes.py b/nodes.py index eae2f0086..662907ae6 100644 --- a/nodes.py +++ b/nodes.py @@ -1663,8 +1663,6 @@ class LoadImage: output_masks = [] w, h = None, None - excluded_formats = ['MPO'] - for i in ImageSequence.Iterator(img): i = node_helpers.pillow(ImageOps.exif_transpose, i) @@ -1692,7 +1690,10 @@ class LoadImage: output_images.append(image) output_masks.append(mask.unsqueeze(0)) - if len(output_images) > 1 and img.format not in excluded_formats: + if img.format == "MPO": + break # ignore all frames except the first one for MPO format + + if len(output_images) > 1: output_image = torch.cat(output_images, dim=0) output_mask = torch.cat(output_masks, dim=0) else: From 303b1735f8785c0d1f947af965567850ca413f61 Mon Sep 17 00:00:00 2001 From: throttlekitty Date: Fri, 2 Jan 2026 01:37:37 -0700 Subject: [PATCH 243/271] Give Mahiro CFG a more appropriate display name (#11580) --- comfy_extras/nodes_mahiro.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_mahiro.py b/comfy_extras/nodes_mahiro.py index 07b3353f4..6459ca8c1 100644 --- a/comfy_extras/nodes_mahiro.py +++ b/comfy_extras/nodes_mahiro.py @@ -10,7 +10,7 @@ class Mahiro(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="Mahiro", - display_name="Mahiro is so cute that she deserves a better guidance function!! (。・ω・。)", + display_name="Mahiro CFG", category="_for_testing", description="Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt.", inputs=[ From f2fda021ab179ba31d9175698b82474a5dd14359 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Fri, 2 Jan 2026 13:18:43 +0200 Subject: [PATCH 244/271] Tripo3D: pass face_limit parameter only when it differs from default (#11601) --- comfy_api_nodes/nodes_tripo.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/comfy_api_nodes/nodes_tripo.py b/comfy_api_nodes/nodes_tripo.py index bd3c24fb3..e72f8e96a 100644 --- a/comfy_api_nodes/nodes_tripo.py +++ b/comfy_api_nodes/nodes_tripo.py @@ -155,7 +155,7 @@ class TripoTextToModelNode(IO.ComfyNode): model_seed=model_seed, texture_seed=texture_seed, texture_quality=texture_quality, - face_limit=face_limit, + face_limit=face_limit if face_limit != -1 else None, geometry_quality=geometry_quality, auto_size=True, quad=quad, @@ -255,7 +255,7 @@ class TripoImageToModelNode(IO.ComfyNode): texture_alignment=texture_alignment, texture_seed=texture_seed, texture_quality=texture_quality, - face_limit=face_limit, + face_limit=face_limit if face_limit != -1 else None, auto_size=True, quad=quad, ), @@ -369,7 +369,7 @@ class TripoMultiviewToModelNode(IO.ComfyNode): texture_quality=texture_quality, geometry_quality=geometry_quality, texture_alignment=texture_alignment, - face_limit=face_limit, + face_limit=face_limit if face_limit != -1 else None, quad=quad, ), ) From 9a552df898ec57f066784cc1f7c475644099b3c1 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Fri, 2 Jan 2026 17:28:10 -0800 Subject: [PATCH 245/271] Remove leftover scaled_fp8 key. (#11603) --- comfy/utils.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/comfy/utils.py b/comfy/utils.py index 8d4e2b445..e4162d7ac 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -1230,6 +1230,8 @@ def convert_old_quants(state_dict, model_prefix="", metadata={}): out_sd = {} layers = {} for k in list(state_dict.keys()): + if k == scaled_fp8_key: + continue if not k.startswith(model_prefix): out_sd[k] = state_dict[k] continue From 53e762a3af9502ebe61a60eb2d39d783fe8d012b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sat, 3 Jan 2026 19:28:38 -0800 Subject: [PATCH 246/271] Print memory summary on OOM to help with debugging. (#11613) --- comfy/model_management.py | 4 ++++ execution.py | 1 + 2 files changed, 5 insertions(+) diff --git a/comfy/model_management.py b/comfy/model_management.py index 87baedd73..2501cecb7 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1542,6 +1542,10 @@ def soft_empty_cache(force=False): def unload_all_models(): free_memory(1e30, get_torch_device()) +def debug_memory_summary(): + if is_amd() or is_nvidia(): + return torch.cuda.memory.memory_summary() + return "" #TODO: might be cleaner to put this somewhere else import threading diff --git a/execution.py b/execution.py index 38159b1f4..648f204ec 100644 --- a/execution.py +++ b/execution.py @@ -601,6 +601,7 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, if isinstance(ex, comfy.model_management.OOM_EXCEPTION): tips = "This error means you ran out of memory on your GPU.\n\nTIPS: If the workflow worked before you might have accidentally set the batch_size to a large number." + logging.info("Memory summary: {}".format(comfy.model_management.debug_memory_summary())) logging.error("Got an OOM, unloading all loaded models.") comfy.model_management.unload_all_models() From acbf08cd60fade74b2e9e5009fa0dcad9538356b Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Sun, 4 Jan 2026 09:05:02 +0200 Subject: [PATCH 247/271] feat(api-nodes): add support for 720p resolution for Kling Omni nodes (#11604) --- comfy_api_nodes/nodes_kling.py | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 58259e029..9c707a339 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -807,6 +807,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): ), IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), IO.Combo.Input("duration", options=[5, 10]), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -826,6 +827,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): prompt: str, aspect_ratio: str, duration: int, + resolution: str = "1080p", ) -> IO.NodeOutput: validate_string(prompt, min_length=1, max_length=2500) response = await sync_op( @@ -837,6 +839,7 @@ class OmniProTextToVideoNode(IO.ComfyNode): prompt=prompt, aspect_ratio=aspect_ratio, duration=str(duration), + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -872,6 +875,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): optional=True, tooltip="Up to 6 additional reference images.", ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -893,6 +897,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): first_frame: Input.Image, end_frame: Input.Image | None = None, reference_images: Input.Image | None = None, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -936,6 +941,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): prompt=prompt, duration=str(duration), image_list=image_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -964,6 +970,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): "reference_images", tooltip="Up to 7 reference images.", ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -984,6 +991,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): aspect_ratio: str, duration: int, reference_images: Input.Image, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -1005,6 +1013,7 @@ class OmniProImageToVideoNode(IO.ComfyNode): aspect_ratio=aspect_ratio, duration=str(duration), image_list=image_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -1036,6 +1045,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): tooltip="Up to 4 additional reference images.", optional=True, ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -1058,6 +1068,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): reference_video: Input.Video, keep_original_sound: bool, reference_images: Input.Image | None = None, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -1090,6 +1101,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode): duration=str(duration), image_list=image_list if image_list else None, video_list=video_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) @@ -1119,6 +1131,7 @@ class OmniProEditVideoNode(IO.ComfyNode): tooltip="Up to 4 additional reference images.", optional=True, ), + IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), ], outputs=[ IO.Video.Output(), @@ -1139,6 +1152,7 @@ class OmniProEditVideoNode(IO.ComfyNode): video: Input.Video, keep_original_sound: bool, reference_images: Input.Image | None = None, + resolution: str = "1080p", ) -> IO.NodeOutput: prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) @@ -1171,6 +1185,7 @@ class OmniProEditVideoNode(IO.ComfyNode): duration=None, image_list=image_list if image_list else None, video_list=video_list, + mode="pro" if resolution == "1080p" else "std", ), ) return await finish_omni_video_task(cls, response) From 38d049382533c6662d815b08ca3395e96cca9f57 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 4 Jan 2026 16:13:50 -0800 Subject: [PATCH 248/271] Fix case where upscale model wouldn't be moved to cpu. (#11633) --- comfy_extras/nodes_upscale_model.py | 24 +++++++++++++----------- 1 file changed, 13 insertions(+), 11 deletions(-) diff --git a/comfy_extras/nodes_upscale_model.py b/comfy_extras/nodes_upscale_model.py index 4d62b87be..ed587851c 100644 --- a/comfy_extras/nodes_upscale_model.py +++ b/comfy_extras/nodes_upscale_model.py @@ -78,18 +78,20 @@ class ImageUpscaleWithModel(io.ComfyNode): overlap = 32 oom = True - while oom: - try: - steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) - pbar = comfy.utils.ProgressBar(steps) - s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) - oom = False - except model_management.OOM_EXCEPTION as e: - tile //= 2 - if tile < 128: - raise e + try: + while oom: + try: + steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) + pbar = comfy.utils.ProgressBar(steps) + s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) + oom = False + except model_management.OOM_EXCEPTION as e: + tile //= 2 + if tile < 128: + raise e + finally: + upscale_model.to("cpu") - upscale_model.to("cpu") s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) return io.NodeOutput(s) From f2b002372b71cf0671a4cf1fa539e1c386d727e4 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 4 Jan 2026 22:58:59 -0800 Subject: [PATCH 249/271] Support the LTXV 2 model. (#11632) --- comfy/latent_formats.py | 3 + comfy/ldm/lightricks/av_model.py | 837 ++++++++++++++++ comfy/ldm/lightricks/embeddings_connector.py | 305 ++++++ comfy/ldm/lightricks/latent_upsampler.py | 292 ++++++ comfy/ldm/lightricks/model.py | 715 +++++++++++--- comfy/ldm/lightricks/symmetric_patchifier.py | 87 +- comfy/ldm/lightricks/vae/audio_vae.py | 286 ++++++ .../vae/causal_audio_autoencoder.py | 909 ++++++++++++++++++ comfy/ldm/lightricks/vocoders/vocoder.py | 213 ++++ comfy/model_base.py | 57 +- comfy/model_detection.py | 2 +- comfy/sd.py | 9 +- comfy/supported_models.py | 17 +- comfy/text_encoders/llama.py | 79 ++ comfy/text_encoders/lt.py | 111 +++ comfy/utils.py | 2 +- comfy_extras/nodes_audio.py | 2 +- comfy_extras/nodes_hunyuan.py | 15 +- comfy_extras/nodes_lt.py | 188 +++- comfy_extras/nodes_lt_audio.py | 183 ++++ comfy_extras/nodes_lt_upsampler.py | 75 ++ nodes.py | 10 +- pyproject.toml | 2 +- 23 files changed, 4214 insertions(+), 185 deletions(-) create mode 100644 comfy/ldm/lightricks/av_model.py create mode 100644 comfy/ldm/lightricks/embeddings_connector.py create mode 100644 comfy/ldm/lightricks/latent_upsampler.py create mode 100644 comfy/ldm/lightricks/vae/audio_vae.py create mode 100644 comfy/ldm/lightricks/vae/causal_audio_autoencoder.py create mode 100644 comfy/ldm/lightricks/vocoders/vocoder.py create mode 100644 comfy_extras/nodes_lt_audio.py create mode 100644 comfy_extras/nodes_lt_upsampler.py diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index f1ca0151e..9bbe30b53 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -407,6 +407,9 @@ class LTXV(LatentFormat): self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512] +class LTXAV(LTXV): + pass + class HunyuanVideo(LatentFormat): latent_channels = 16 latent_dimensions = 3 diff --git a/comfy/ldm/lightricks/av_model.py b/comfy/ldm/lightricks/av_model.py new file mode 100644 index 000000000..759535501 --- /dev/null +++ b/comfy/ldm/lightricks/av_model.py @@ -0,0 +1,837 @@ +from typing import Tuple +import torch +import torch.nn as nn +from comfy.ldm.lightricks.model import ( + CrossAttention, + FeedForward, + AdaLayerNormSingle, + PixArtAlphaTextProjection, + LTXVModel, +) +from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier +import comfy.ldm.common_dit + +class BasicAVTransformerBlock(nn.Module): + def __init__( + self, + v_dim, + a_dim, + v_heads, + a_heads, + vd_head, + ad_head, + v_context_dim=None, + a_context_dim=None, + attn_precision=None, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + + self.attn_precision = attn_precision + + self.attn1 = CrossAttention( + query_dim=v_dim, + heads=v_heads, + dim_head=vd_head, + context_dim=None, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + self.audio_attn1 = CrossAttention( + query_dim=a_dim, + heads=a_heads, + dim_head=ad_head, + context_dim=None, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + + self.attn2 = CrossAttention( + query_dim=v_dim, + context_dim=v_context_dim, + heads=v_heads, + dim_head=vd_head, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + self.audio_attn2 = CrossAttention( + query_dim=a_dim, + context_dim=a_context_dim, + heads=a_heads, + dim_head=ad_head, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + + # Q: Video, K,V: Audio + self.audio_to_video_attn = CrossAttention( + query_dim=v_dim, + context_dim=a_dim, + heads=a_heads, + dim_head=ad_head, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + + # Q: Audio, K,V: Video + self.video_to_audio_attn = CrossAttention( + query_dim=a_dim, + context_dim=v_dim, + heads=a_heads, + dim_head=ad_head, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) + + self.ff = FeedForward( + v_dim, dim_out=v_dim, glu=True, dtype=dtype, device=device, operations=operations + ) + self.audio_ff = FeedForward( + a_dim, dim_out=a_dim, glu=True, dtype=dtype, device=device, operations=operations + ) + + self.scale_shift_table = nn.Parameter(torch.empty(6, v_dim, device=device, dtype=dtype)) + self.audio_scale_shift_table = nn.Parameter( + torch.empty(6, a_dim, device=device, dtype=dtype) + ) + + self.scale_shift_table_a2v_ca_audio = nn.Parameter( + torch.empty(5, a_dim, device=device, dtype=dtype) + ) + self.scale_shift_table_a2v_ca_video = nn.Parameter( + torch.empty(5, v_dim, device=device, dtype=dtype) + ) + + def get_ada_values( + self, scale_shift_table: torch.Tensor, batch_size: int, timestep: torch.Tensor, indices: slice = slice(None, None) + ): + num_ada_params = scale_shift_table.shape[0] + + ada_values = ( + scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(device=timestep.device, dtype=timestep.dtype) + + timestep.reshape(batch_size, timestep.shape[1], num_ada_params, -1)[:, :, indices, :] + ).unbind(dim=2) + return ada_values + + def get_av_ca_ada_values( + self, + scale_shift_table: torch.Tensor, + batch_size: int, + scale_shift_timestep: torch.Tensor, + gate_timestep: torch.Tensor, + num_scale_shift_values: int = 4, + ): + scale_shift_ada_values = self.get_ada_values( + scale_shift_table[:num_scale_shift_values, :], + batch_size, + scale_shift_timestep, + ) + gate_ada_values = self.get_ada_values( + scale_shift_table[num_scale_shift_values:, :], + batch_size, + gate_timestep, + ) + + scale_shift_chunks = [t.squeeze(2) for t in scale_shift_ada_values] + gate_ada_values = [t.squeeze(2) for t in gate_ada_values] + + return (*scale_shift_chunks, *gate_ada_values) + + def forward( + self, + x: Tuple[torch.Tensor, torch.Tensor], + v_context=None, + a_context=None, + attention_mask=None, + v_timestep=None, + a_timestep=None, + v_pe=None, + a_pe=None, + v_cross_pe=None, + a_cross_pe=None, + v_cross_scale_shift_timestep=None, + a_cross_scale_shift_timestep=None, + v_cross_gate_timestep=None, + a_cross_gate_timestep=None, + transformer_options=None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + run_vx = transformer_options.get("run_vx", True) + run_ax = transformer_options.get("run_ax", True) + + vx, ax = x + run_ax = run_ax and ax.numel() > 0 + run_a2v = run_vx and transformer_options.get("a2v_cross_attn", True) and ax.numel() > 0 + run_v2a = run_ax and transformer_options.get("v2a_cross_attn", True) + + if run_vx: + vshift_msa, vscale_msa, vgate_msa = ( + self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(0, 3)) + ) + + norm_vx = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_msa) + vshift_msa + vx += self.attn1(norm_vx, pe=v_pe, transformer_options=transformer_options) * vgate_msa + vx += self.attn2( + comfy.ldm.common_dit.rms_norm(vx), + context=v_context, + mask=attention_mask, + transformer_options=transformer_options, + ) + + del vshift_msa, vscale_msa, vgate_msa + + if run_ax: + ashift_msa, ascale_msa, agate_msa = ( + self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(0, 3)) + ) + + norm_ax = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_msa) + ashift_msa + ax += ( + self.audio_attn1(norm_ax, pe=a_pe, transformer_options=transformer_options) + * agate_msa + ) + ax += self.audio_attn2( + comfy.ldm.common_dit.rms_norm(ax), + context=a_context, + mask=attention_mask, + transformer_options=transformer_options, + ) + + del ashift_msa, ascale_msa, agate_msa + + # Audio - Video cross attention. + if run_a2v or run_v2a: + # norm3 + vx_norm3 = comfy.ldm.common_dit.rms_norm(vx) + ax_norm3 = comfy.ldm.common_dit.rms_norm(ax) + + ( + scale_ca_audio_hidden_states_a2v, + shift_ca_audio_hidden_states_a2v, + scale_ca_audio_hidden_states_v2a, + shift_ca_audio_hidden_states_v2a, + gate_out_v2a, + ) = self.get_av_ca_ada_values( + self.scale_shift_table_a2v_ca_audio, + ax.shape[0], + a_cross_scale_shift_timestep, + a_cross_gate_timestep, + ) + + ( + scale_ca_video_hidden_states_a2v, + shift_ca_video_hidden_states_a2v, + scale_ca_video_hidden_states_v2a, + shift_ca_video_hidden_states_v2a, + gate_out_a2v, + ) = self.get_av_ca_ada_values( + self.scale_shift_table_a2v_ca_video, + vx.shape[0], + v_cross_scale_shift_timestep, + v_cross_gate_timestep, + ) + + if run_a2v: + vx_scaled = ( + vx_norm3 * (1 + scale_ca_video_hidden_states_a2v) + + shift_ca_video_hidden_states_a2v + ) + ax_scaled = ( + ax_norm3 * (1 + scale_ca_audio_hidden_states_a2v) + + shift_ca_audio_hidden_states_a2v + ) + vx += ( + self.audio_to_video_attn( + vx_scaled, + context=ax_scaled, + pe=v_cross_pe, + k_pe=a_cross_pe, + transformer_options=transformer_options, + ) + * gate_out_a2v + ) + + del gate_out_a2v + del scale_ca_video_hidden_states_a2v,\ + shift_ca_video_hidden_states_a2v,\ + scale_ca_audio_hidden_states_a2v,\ + shift_ca_audio_hidden_states_a2v,\ + + if run_v2a: + ax_scaled = ( + ax_norm3 * (1 + scale_ca_audio_hidden_states_v2a) + + shift_ca_audio_hidden_states_v2a + ) + vx_scaled = ( + vx_norm3 * (1 + scale_ca_video_hidden_states_v2a) + + shift_ca_video_hidden_states_v2a + ) + ax += ( + self.video_to_audio_attn( + ax_scaled, + context=vx_scaled, + pe=a_cross_pe, + k_pe=v_cross_pe, + transformer_options=transformer_options, + ) + * gate_out_v2a + ) + + del gate_out_v2a + del scale_ca_video_hidden_states_v2a,\ + shift_ca_video_hidden_states_v2a,\ + scale_ca_audio_hidden_states_v2a,\ + shift_ca_audio_hidden_states_v2a + + if run_vx: + vshift_mlp, vscale_mlp, vgate_mlp = ( + self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(3, None)) + ) + + vx_scaled = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_mlp) + vshift_mlp + vx += self.ff(vx_scaled) * vgate_mlp + del vshift_mlp, vscale_mlp, vgate_mlp + + if run_ax: + ashift_mlp, ascale_mlp, agate_mlp = ( + self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(3, None)) + ) + + ax_scaled = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_mlp) + ashift_mlp + ax += self.audio_ff(ax_scaled) * agate_mlp + + del ashift_mlp, ascale_mlp, agate_mlp + + + return vx, ax + + +class LTXAVModel(LTXVModel): + """LTXAV model for audio-video generation.""" + + def __init__( + self, + in_channels=128, + audio_in_channels=128, + cross_attention_dim=4096, + audio_cross_attention_dim=2048, + attention_head_dim=128, + audio_attention_head_dim=64, + num_attention_heads=32, + audio_num_attention_heads=32, + caption_channels=3840, + num_layers=48, + positional_embedding_theta=10000.0, + positional_embedding_max_pos=[20, 2048, 2048], + audio_positional_embedding_max_pos=[20], + causal_temporal_positioning=False, + vae_scale_factors=(8, 32, 32), + use_middle_indices_grid=False, + timestep_scale_multiplier=1000.0, + av_ca_timestep_scale_multiplier=1.0, + dtype=None, + device=None, + operations=None, + **kwargs, + ): + # Store audio-specific parameters + self.audio_in_channels = audio_in_channels + self.audio_cross_attention_dim = audio_cross_attention_dim + self.audio_attention_head_dim = audio_attention_head_dim + self.audio_num_attention_heads = audio_num_attention_heads + self.audio_positional_embedding_max_pos = audio_positional_embedding_max_pos + + # Calculate audio dimensions + self.audio_inner_dim = audio_num_attention_heads * audio_attention_head_dim + self.audio_out_channels = audio_in_channels + + # Audio-specific constants + self.num_audio_channels = 8 + self.audio_frequency_bins = 16 + + self.av_ca_timestep_scale_multiplier = av_ca_timestep_scale_multiplier + + super().__init__( + in_channels=in_channels, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + num_attention_heads=num_attention_heads, + caption_channels=caption_channels, + num_layers=num_layers, + positional_embedding_theta=positional_embedding_theta, + positional_embedding_max_pos=positional_embedding_max_pos, + causal_temporal_positioning=causal_temporal_positioning, + vae_scale_factors=vae_scale_factors, + use_middle_indices_grid=use_middle_indices_grid, + timestep_scale_multiplier=timestep_scale_multiplier, + dtype=dtype, + device=device, + operations=operations, + **kwargs, + ) + + def _init_model_components(self, device, dtype, **kwargs): + """Initialize LTXAV-specific components.""" + # Audio-specific projections + self.audio_patchify_proj = self.operations.Linear( + self.audio_in_channels, self.audio_inner_dim, bias=True, dtype=dtype, device=device + ) + + # Audio-specific AdaLN + self.audio_adaln_single = AdaLayerNormSingle( + self.audio_inner_dim, + use_additional_conditions=False, + dtype=dtype, + device=device, + operations=self.operations, + ) + + num_scale_shift_values = 4 + self.av_ca_video_scale_shift_adaln_single = AdaLayerNormSingle( + self.inner_dim, + use_additional_conditions=False, + embedding_coefficient=num_scale_shift_values, + dtype=dtype, + device=device, + operations=self.operations, + ) + self.av_ca_a2v_gate_adaln_single = AdaLayerNormSingle( + self.inner_dim, + use_additional_conditions=False, + embedding_coefficient=1, + dtype=dtype, + device=device, + operations=self.operations, + ) + self.av_ca_audio_scale_shift_adaln_single = AdaLayerNormSingle( + self.audio_inner_dim, + use_additional_conditions=False, + embedding_coefficient=num_scale_shift_values, + dtype=dtype, + device=device, + operations=self.operations, + ) + self.av_ca_v2a_gate_adaln_single = AdaLayerNormSingle( + self.audio_inner_dim, + use_additional_conditions=False, + embedding_coefficient=1, + dtype=dtype, + device=device, + operations=self.operations, + ) + + # Audio caption projection + self.audio_caption_projection = PixArtAlphaTextProjection( + in_features=self.caption_channels, + hidden_size=self.audio_inner_dim, + dtype=dtype, + device=device, + operations=self.operations, + ) + + def _init_transformer_blocks(self, device, dtype, **kwargs): + """Initialize transformer blocks for LTXAV.""" + self.transformer_blocks = nn.ModuleList( + [ + BasicAVTransformerBlock( + v_dim=self.inner_dim, + a_dim=self.audio_inner_dim, + v_heads=self.num_attention_heads, + a_heads=self.audio_num_attention_heads, + vd_head=self.attention_head_dim, + ad_head=self.audio_attention_head_dim, + v_context_dim=self.cross_attention_dim, + a_context_dim=self.audio_cross_attention_dim, + dtype=dtype, + device=device, + operations=self.operations, + ) + for _ in range(self.num_layers) + ] + ) + + def _init_output_components(self, device, dtype): + """Initialize output components for LTXAV.""" + # Video output components + super()._init_output_components(device, dtype) + # Audio output components + self.audio_scale_shift_table = nn.Parameter( + torch.empty(2, self.audio_inner_dim, dtype=dtype, device=device) + ) + self.audio_norm_out = self.operations.LayerNorm( + self.audio_inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device + ) + self.audio_proj_out = self.operations.Linear( + self.audio_inner_dim, self.audio_out_channels, dtype=dtype, device=device + ) + self.a_patchifier = AudioPatchifier(1, start_end=True) + + def separate_audio_and_video_latents(self, x, audio_length): + """Separate audio and video latents from combined input.""" + # vx = x[:, : self.in_channels] + # ax = x[:, self.in_channels :] + # + # ax = ax.reshape(ax.shape[0], -1) + # ax = ax[:, : audio_length * self.num_audio_channels * self.audio_frequency_bins] + # + # ax = ax.reshape( + # ax.shape[0], self.num_audio_channels, audio_length, self.audio_frequency_bins + # ) + + vx = x[0] + ax = x[1] if len(x) > 1 else torch.zeros( + (vx.shape[0], self.num_audio_channels, 0, self.audio_frequency_bins), + device=vx.device, dtype=vx.dtype + ) + return vx, ax + + def recombine_audio_and_video_latents(self, vx, ax, target_shape=None): + if ax.numel() == 0: + return vx + else: + return [vx, ax] + """Recombine audio and video latents for output.""" + # if ax.device != vx.device or ax.dtype != vx.dtype: + # logging.warning("Audio and video latents are on different devices or dtypes.") + # ax = ax.to(device=vx.device, dtype=vx.dtype) + # logging.warning(f"Audio audio latent moved to device: {ax.device}, dtype: {ax.dtype}") + # + # ax = ax.reshape(ax.shape[0], -1) + # # pad to f x h x w of the video latents + # divisor = vx.shape[-1] * vx.shape[-2] * vx.shape[-3] + # if target_shape is None: + # repetitions = math.ceil(ax.shape[-1] / divisor) + # else: + # repetitions = target_shape[1] - vx.shape[1] + # padded_len = repetitions * divisor + # ax = F.pad(ax, (0, padded_len - ax.shape[-1])) + # ax = ax.reshape(ax.shape[0], -1, vx.shape[-3], vx.shape[-2], vx.shape[-1]) + # return torch.cat([vx, ax], dim=1) + + def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs): + """Process input for LTXAV - separate audio and video, then patchify.""" + audio_length = kwargs.get("audio_length", 0) + # Separate audio and video latents + vx, ax = self.separate_audio_and_video_latents(x, audio_length) + [vx, v_pixel_coords, additional_args] = super()._process_input( + vx, keyframe_idxs, denoise_mask, **kwargs + ) + + ax, a_latent_coords = self.a_patchifier.patchify(ax) + ax = self.audio_patchify_proj(ax) + + # additional_args.update({"av_orig_shape": list(x.shape)}) + return [vx, ax], [v_pixel_coords, a_latent_coords], additional_args + + def _prepare_timestep(self, timestep, batch_size, hidden_dtype, **kwargs): + """Prepare timestep embeddings.""" + # TODO: some code reuse is needed here. + grid_mask = kwargs.get("grid_mask", None) + if grid_mask is not None: + timestep = timestep[:, grid_mask] + + timestep = timestep * self.timestep_scale_multiplier + v_timestep, v_embedded_timestep = self.adaln_single( + timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + + # Second dimension is 1 or number of tokens (if timestep_per_token) + v_timestep = v_timestep.view(batch_size, -1, v_timestep.shape[-1]) + v_embedded_timestep = v_embedded_timestep.view( + batch_size, -1, v_embedded_timestep.shape[-1] + ) + + # Prepare audio timestep + a_timestep = kwargs.get("a_timestep") + if a_timestep is not None: + a_timestep = a_timestep * self.timestep_scale_multiplier + av_ca_factor = self.av_ca_timestep_scale_multiplier / self.timestep_scale_multiplier + + av_ca_audio_scale_shift_timestep, _ = self.av_ca_audio_scale_shift_adaln_single( + a_timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + av_ca_video_scale_shift_timestep, _ = self.av_ca_video_scale_shift_adaln_single( + timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + av_ca_a2v_gate_noise_timestep, _ = self.av_ca_a2v_gate_adaln_single( + timestep.flatten() * av_ca_factor, + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + av_ca_v2a_gate_noise_timestep, _ = self.av_ca_v2a_gate_adaln_single( + a_timestep.flatten() * av_ca_factor, + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + + a_timestep, a_embedded_timestep = self.audio_adaln_single( + a_timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + a_timestep = a_timestep.view(batch_size, -1, a_timestep.shape[-1]) + a_embedded_timestep = a_embedded_timestep.view( + batch_size, -1, a_embedded_timestep.shape[-1] + ) + cross_av_timestep_ss = [ + av_ca_audio_scale_shift_timestep, + av_ca_video_scale_shift_timestep, + av_ca_a2v_gate_noise_timestep, + av_ca_v2a_gate_noise_timestep, + ] + cross_av_timestep_ss = list( + [t.view(batch_size, -1, t.shape[-1]) for t in cross_av_timestep_ss] + ) + else: + a_timestep = timestep + a_embedded_timestep = kwargs.get("embedded_timestep") + cross_av_timestep_ss = [] + + return [v_timestep, a_timestep, cross_av_timestep_ss], [ + v_embedded_timestep, + a_embedded_timestep, + ] + + def _prepare_context(self, context, batch_size, x, attention_mask=None): + vx = x[0] + ax = x[1] + v_context, a_context = torch.split( + context, int(context.shape[-1] / 2), len(context.shape) - 1 + ) + + v_context, attention_mask = super()._prepare_context( + v_context, batch_size, vx, attention_mask + ) + if self.audio_caption_projection is not None: + a_context = self.audio_caption_projection(a_context) + a_context = a_context.view(batch_size, -1, ax.shape[-1]) + + return [v_context, a_context], attention_mask + + def _prepare_positional_embeddings(self, pixel_coords, frame_rate, x_dtype): + v_pixel_coords = pixel_coords[0] + v_pe = super()._prepare_positional_embeddings(v_pixel_coords, frame_rate, x_dtype) + + a_latent_coords = pixel_coords[1] + a_pe = self._precompute_freqs_cis( + a_latent_coords, + dim=self.audio_inner_dim, + out_dtype=x_dtype, + max_pos=self.audio_positional_embedding_max_pos, + use_middle_indices_grid=self.use_middle_indices_grid, + num_attention_heads=self.audio_num_attention_heads, + ) + + # calculate positional embeddings for the middle of the token duration, to use in av cross attention layers. + max_pos = max( + self.positional_embedding_max_pos[0], self.audio_positional_embedding_max_pos[0] + ) + v_pixel_coords = v_pixel_coords.to(torch.float32) + v_pixel_coords[:, 0] = v_pixel_coords[:, 0] * (1.0 / frame_rate) + av_cross_video_freq_cis = self._precompute_freqs_cis( + v_pixel_coords[:, 0:1, :], + dim=self.audio_cross_attention_dim, + out_dtype=x_dtype, + max_pos=[max_pos], + use_middle_indices_grid=True, + num_attention_heads=self.audio_num_attention_heads, + ) + av_cross_audio_freq_cis = self._precompute_freqs_cis( + a_latent_coords[:, 0:1, :], + dim=self.audio_cross_attention_dim, + out_dtype=x_dtype, + max_pos=[max_pos], + use_middle_indices_grid=True, + num_attention_heads=self.audio_num_attention_heads, + ) + + return [(v_pe, av_cross_video_freq_cis), (a_pe, av_cross_audio_freq_cis)] + + def _process_transformer_blocks( + self, x, context, attention_mask, timestep, pe, transformer_options={}, **kwargs + ): + vx = x[0] + ax = x[1] + v_context = context[0] + a_context = context[1] + v_timestep = timestep[0] + a_timestep = timestep[1] + v_pe, av_cross_video_freq_cis = pe[0] + a_pe, av_cross_audio_freq_cis = pe[1] + + ( + av_ca_audio_scale_shift_timestep, + av_ca_video_scale_shift_timestep, + av_ca_a2v_gate_noise_timestep, + av_ca_v2a_gate_noise_timestep, + ) = timestep[2] + + """Process transformer blocks for LTXAV.""" + patches_replace = transformer_options.get("patches_replace", {}) + blocks_replace = patches_replace.get("dit", {}) + + # Process transformer blocks + for i, block in enumerate(self.transformer_blocks): + if ("double_block", i) in blocks_replace: + + def block_wrap(args): + out = {} + out["img"] = block( + args["img"], + v_context=args["v_context"], + a_context=args["a_context"], + attention_mask=args["attention_mask"], + v_timestep=args["v_timestep"], + a_timestep=args["a_timestep"], + v_pe=args["v_pe"], + a_pe=args["a_pe"], + v_cross_pe=args["v_cross_pe"], + a_cross_pe=args["a_cross_pe"], + v_cross_scale_shift_timestep=args["v_cross_scale_shift_timestep"], + a_cross_scale_shift_timestep=args["a_cross_scale_shift_timestep"], + v_cross_gate_timestep=args["v_cross_gate_timestep"], + a_cross_gate_timestep=args["a_cross_gate_timestep"], + transformer_options=args["transformer_options"], + ) + return out + + out = blocks_replace[("double_block", i)]( + { + "img": (vx, ax), + "v_context": v_context, + "a_context": a_context, + "attention_mask": attention_mask, + "v_timestep": v_timestep, + "a_timestep": a_timestep, + "v_pe": v_pe, + "a_pe": a_pe, + "v_cross_pe": av_cross_video_freq_cis, + "a_cross_pe": av_cross_audio_freq_cis, + "v_cross_scale_shift_timestep": av_ca_video_scale_shift_timestep, + "a_cross_scale_shift_timestep": av_ca_audio_scale_shift_timestep, + "v_cross_gate_timestep": av_ca_a2v_gate_noise_timestep, + "a_cross_gate_timestep": av_ca_v2a_gate_noise_timestep, + "transformer_options": transformer_options, + }, + {"original_block": block_wrap}, + ) + vx, ax = out["img"] + else: + vx, ax = block( + (vx, ax), + v_context=v_context, + a_context=a_context, + attention_mask=attention_mask, + v_timestep=v_timestep, + a_timestep=a_timestep, + v_pe=v_pe, + a_pe=a_pe, + v_cross_pe=av_cross_video_freq_cis, + a_cross_pe=av_cross_audio_freq_cis, + v_cross_scale_shift_timestep=av_ca_video_scale_shift_timestep, + a_cross_scale_shift_timestep=av_ca_audio_scale_shift_timestep, + v_cross_gate_timestep=av_ca_a2v_gate_noise_timestep, + a_cross_gate_timestep=av_ca_v2a_gate_noise_timestep, + transformer_options=transformer_options, + ) + + return [vx, ax] + + def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs): + vx = x[0] + ax = x[1] + v_embedded_timestep = embedded_timestep[0] + a_embedded_timestep = embedded_timestep[1] + vx = super()._process_output(vx, v_embedded_timestep, keyframe_idxs, **kwargs) + + # Process audio output + a_scale_shift_values = ( + self.audio_scale_shift_table[None, None].to(device=a_embedded_timestep.device, dtype=a_embedded_timestep.dtype) + + a_embedded_timestep[:, :, None] + ) + a_shift, a_scale = a_scale_shift_values[:, :, 0], a_scale_shift_values[:, :, 1] + + ax = self.audio_norm_out(ax) + ax = ax * (1 + a_scale) + a_shift + ax = self.audio_proj_out(ax) + + # Unpatchify audio + ax = self.a_patchifier.unpatchify( + ax, channels=self.num_audio_channels, freq=self.audio_frequency_bins + ) + + # Recombine audio and video + original_shape = kwargs.get("av_orig_shape") + return self.recombine_audio_and_video_latents(vx, ax, original_shape) + + def forward( + self, + x, + timestep, + context, + attention_mask=None, + frame_rate=25, + transformer_options={}, + keyframe_idxs=None, + **kwargs, + ): + """ + Forward pass for LTXAV model. + + Args: + x: Combined audio-video input tensor + timestep: Tuple of (video_timestep, audio_timestep) or single timestep + context: Context tensor (e.g., text embeddings) + attention_mask: Attention mask tensor + frame_rate: Frame rate for temporal processing + transformer_options: Additional options for transformer blocks + keyframe_idxs: Keyframe indices for temporal processing + **kwargs: Additional keyword arguments including audio_length + + Returns: + Combined audio-video output tensor + """ + # Handle timestep format + if isinstance(timestep, (tuple, list)) and len(timestep) == 2: + v_timestep, a_timestep = timestep + kwargs["a_timestep"] = a_timestep + timestep = v_timestep + else: + kwargs["a_timestep"] = timestep + + # Call parent forward method + return super().forward( + x, + timestep, + context, + attention_mask, + frame_rate, + transformer_options, + keyframe_idxs, + **kwargs, + ) diff --git a/comfy/ldm/lightricks/embeddings_connector.py b/comfy/ldm/lightricks/embeddings_connector.py new file mode 100644 index 000000000..f7a43f3c3 --- /dev/null +++ b/comfy/ldm/lightricks/embeddings_connector.py @@ -0,0 +1,305 @@ +import math +from typing import Optional + +import comfy.ldm.common_dit +import torch +from comfy.ldm.lightricks.model import ( + CrossAttention, + FeedForward, + generate_freq_grid_np, + interleaved_freqs_cis, + split_freqs_cis, +) +from torch import nn + + +class BasicTransformerBlock1D(nn.Module): + r""" + A basic Transformer block. + + Parameters: + + dim (`int`): The number of channels in the input and output. + num_attention_heads (`int`): The number of heads to use for multi-head attention. + attention_head_dim (`int`): The number of channels in each head. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. + attention_bias (: + obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. + upcast_attention (`bool`, *optional*): + Whether to upcast the attention computation to float32. This is useful for mixed precision training. + norm_elementwise_affine (`bool`, *optional*, defaults to `True`): + Whether to use learnable elementwise affine parameters for normalization. + standardization_norm (`str`, *optional*, defaults to `"layer_norm"`): The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`. + norm_eps (`float`, *optional*, defaults to 1e-5): Epsilon value for normalization layers. + qk_norm (`str`, *optional*, defaults to None): + Set to 'layer_norm' or `rms_norm` to perform query and key normalization. + final_dropout (`bool` *optional*, defaults to False): + Whether to apply a final dropout after the last feed-forward layer. + ff_inner_dim (`int`, *optional*): Dimension of the inner feed-forward layer. If not provided, defaults to `dim * 4`. + ff_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the feed-forward layer. + attention_out_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the attention output layer. + use_rope (`bool`, *optional*, defaults to `False`): Whether to use Rotary Position Embeddings (RoPE). + ffn_dim_mult (`int`, *optional*, defaults to 4): Multiplier for the inner dimension of the feed-forward layer. + """ + + def __init__( + self, + dim, + n_heads, + d_head, + context_dim=None, + attn_precision=None, + dtype=None, + device=None, + operations=None, + ): + super().__init__() + + # Define 3 blocks. Each block has its own normalization layer. + # 1. Self-Attn + self.attn1 = CrossAttention( + query_dim=dim, + heads=n_heads, + dim_head=d_head, + context_dim=None, + dtype=dtype, + device=device, + operations=operations, + ) + + # 3. Feed-forward + self.ff = FeedForward( + dim, + dim_out=dim, + glu=True, + dtype=dtype, + device=device, + operations=operations, + ) + + def forward(self, hidden_states, attention_mask=None, pe=None) -> torch.FloatTensor: + + # Notice that normalization is always applied before the real computation in the following blocks. + + # 1. Normalization Before Self-Attention + norm_hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states) + + norm_hidden_states = norm_hidden_states.squeeze(1) + + # 2. Self-Attention + attn_output = self.attn1(norm_hidden_states, mask=attention_mask, pe=pe) + + hidden_states = attn_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + + # 3. Normalization before Feed-Forward + norm_hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states) + + # 4. Feed-forward + ff_output = self.ff(norm_hidden_states) + + hidden_states = ff_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + + return hidden_states + + +class Embeddings1DConnector(nn.Module): + _supports_gradient_checkpointing = True + + def __init__( + self, + in_channels=128, + cross_attention_dim=2048, + attention_head_dim=128, + num_attention_heads=30, + num_layers=2, + positional_embedding_theta=10000.0, + positional_embedding_max_pos=[4096], + causal_temporal_positioning=False, + num_learnable_registers: Optional[int] = 128, + dtype=None, + device=None, + operations=None, + split_rope=False, + double_precision_rope=False, + **kwargs, + ): + super().__init__() + self.dtype = dtype + self.out_channels = in_channels + self.num_attention_heads = num_attention_heads + self.inner_dim = num_attention_heads * attention_head_dim + self.causal_temporal_positioning = causal_temporal_positioning + self.positional_embedding_theta = positional_embedding_theta + self.positional_embedding_max_pos = positional_embedding_max_pos + self.split_rope = split_rope + self.double_precision_rope = double_precision_rope + self.transformer_1d_blocks = nn.ModuleList( + [ + BasicTransformerBlock1D( + self.inner_dim, + num_attention_heads, + attention_head_dim, + context_dim=cross_attention_dim, + dtype=dtype, + device=device, + operations=operations, + ) + for _ in range(num_layers) + ] + ) + + inner_dim = num_attention_heads * attention_head_dim + self.num_learnable_registers = num_learnable_registers + if self.num_learnable_registers: + self.learnable_registers = nn.Parameter( + torch.rand( + self.num_learnable_registers, inner_dim, dtype=dtype, device=device + ) + * 2.0 + - 1.0 + ) + + def get_fractional_positions(self, indices_grid): + fractional_positions = torch.stack( + [ + indices_grid[:, i] / self.positional_embedding_max_pos[i] + for i in range(1) + ], + dim=-1, + ) + return fractional_positions + + def precompute_freqs(self, indices_grid, spacing): + source_dtype = indices_grid.dtype + dtype = ( + torch.float32 + if source_dtype in (torch.bfloat16, torch.float16) + else source_dtype + ) + + fractional_positions = self.get_fractional_positions(indices_grid) + indices = ( + generate_freq_grid_np( + self.positional_embedding_theta, + indices_grid.shape[1], + self.inner_dim, + ) + if self.double_precision_rope + else self.generate_freq_grid(spacing, dtype, fractional_positions.device) + ).to(device=fractional_positions.device) + + if spacing == "exp_2": + freqs = ( + (indices * fractional_positions.unsqueeze(-1)) + .transpose(-1, -2) + .flatten(2) + ) + else: + freqs = ( + (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)) + .transpose(-1, -2) + .flatten(2) + ) + return freqs + + def generate_freq_grid(self, spacing, dtype, device): + dim = self.inner_dim + theta = self.positional_embedding_theta + n_pos_dims = 1 + n_elem = 2 * n_pos_dims # 2 for cos and sin e.g. x 3 = 6 + start = 1 + end = theta + + if spacing == "exp": + indices = theta ** (torch.arange(0, dim, n_elem, device="cpu", dtype=torch.float32) / (dim - n_elem)) + indices = indices.to(dtype=dtype, device=device) + elif spacing == "exp_2": + indices = 1.0 / theta ** (torch.arange(0, dim, n_elem, device=device) / dim) + indices = indices.to(dtype=dtype) + elif spacing == "linear": + indices = torch.linspace( + start, end, dim // n_elem, device=device, dtype=dtype + ) + elif spacing == "sqrt": + indices = torch.linspace( + start**2, end**2, dim // n_elem, device=device, dtype=dtype + ).sqrt() + + indices = indices * math.pi / 2 + + return indices + + def precompute_freqs_cis(self, indices_grid, spacing="exp"): + dim = self.inner_dim + n_elem = 2 # 2 because of cos and sin + freqs = self.precompute_freqs(indices_grid, spacing) + if self.split_rope: + expected_freqs = dim // 2 + current_freqs = freqs.shape[-1] + pad_size = expected_freqs - current_freqs + cos_freq, sin_freq = split_freqs_cis( + freqs, pad_size, self.num_attention_heads + ) + else: + cos_freq, sin_freq = interleaved_freqs_cis(freqs, dim % n_elem) + return cos_freq.to(self.dtype), sin_freq.to(self.dtype), self.split_rope + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ): + """ + The [`Transformer2DModel`] forward method. + + Args: + hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): + Input `hidden_states`. + indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`): + attention_mask ( `torch.Tensor`, *optional*): + An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask + is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large + negative values to the attention scores corresponding to "discard" tokens. + Returns: + If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a + `tuple` where the first element is the sample tensor. + """ + # 1. Input + + if self.num_learnable_registers: + num_registers_duplications = math.ceil( + max(1024, hidden_states.shape[1]) / self.num_learnable_registers + ) + learnable_registers = torch.tile( + self.learnable_registers, (num_registers_duplications, 1) + ) + + hidden_states = torch.cat((hidden_states, learnable_registers[hidden_states.shape[1]:].unsqueeze(0).repeat(hidden_states.shape[0], 1, 1)), dim=1) + + if attention_mask is not None: + attention_mask = torch.zeros([1, 1, 1, hidden_states.shape[1]], dtype=attention_mask.dtype, device=attention_mask.device) + + indices_grid = torch.arange( + hidden_states.shape[1], dtype=torch.float32, device=hidden_states.device + ) + indices_grid = indices_grid[None, None, :] + freqs_cis = self.precompute_freqs_cis(indices_grid) + + # 2. Blocks + for block_idx, block in enumerate(self.transformer_1d_blocks): + hidden_states = block( + hidden_states, attention_mask=attention_mask, pe=freqs_cis + ) + + # 3. Output + # if self.output_scale is not None: + # hidden_states = hidden_states / self.output_scale + + hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states) + + return hidden_states, attention_mask diff --git a/comfy/ldm/lightricks/latent_upsampler.py b/comfy/ldm/lightricks/latent_upsampler.py new file mode 100644 index 000000000..78ed7653f --- /dev/null +++ b/comfy/ldm/lightricks/latent_upsampler.py @@ -0,0 +1,292 @@ +from typing import Optional, Tuple +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange + + +def _rational_for_scale(scale: float) -> Tuple[int, int]: + mapping = {0.75: (3, 4), 1.5: (3, 2), 2.0: (2, 1), 4.0: (4, 1)} + if float(scale) not in mapping: + raise ValueError( + f"Unsupported spatial_scale {scale}. Choose from {list(mapping.keys())}" + ) + return mapping[float(scale)] + + +class PixelShuffleND(nn.Module): + def __init__(self, dims, upscale_factors=(2, 2, 2)): + super().__init__() + assert dims in [1, 2, 3], "dims must be 1, 2, or 3" + self.dims = dims + self.upscale_factors = upscale_factors + + def forward(self, x): + if self.dims == 3: + return rearrange( + x, + "b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)", + p1=self.upscale_factors[0], + p2=self.upscale_factors[1], + p3=self.upscale_factors[2], + ) + elif self.dims == 2: + return rearrange( + x, + "b (c p1 p2) h w -> b c (h p1) (w p2)", + p1=self.upscale_factors[0], + p2=self.upscale_factors[1], + ) + elif self.dims == 1: + return rearrange( + x, + "b (c p1) f h w -> b c (f p1) h w", + p1=self.upscale_factors[0], + ) + + +class BlurDownsample(nn.Module): + """ + Anti-aliased spatial downsampling by integer stride using a fixed separable binomial kernel. + Applies only on H,W. Works for dims=2 or dims=3 (per-frame). + """ + + def __init__(self, dims: int, stride: int): + super().__init__() + assert dims in (2, 3) + assert stride >= 1 and isinstance(stride, int) + self.dims = dims + self.stride = stride + + # 5x5 separable binomial kernel [1,4,6,4,1] (outer product), normalized + k = torch.tensor([1.0, 4.0, 6.0, 4.0, 1.0]) + k2d = k[:, None] @ k[None, :] + k2d = (k2d / k2d.sum()).float() # shape (5,5) + self.register_buffer("kernel", k2d[None, None, :, :]) # (1,1,5,5) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.stride == 1: + return x + + def _apply_2d(x2d: torch.Tensor) -> torch.Tensor: + # x2d: (B, C, H, W) + B, C, H, W = x2d.shape + weight = self.kernel.expand(C, 1, 5, 5) # depthwise + x2d = F.conv2d( + x2d, weight=weight, bias=None, stride=self.stride, padding=2, groups=C + ) + return x2d + + if self.dims == 2: + return _apply_2d(x) + else: + # dims == 3: apply per-frame on H,W + b, c, f, h, w = x.shape + x = rearrange(x, "b c f h w -> (b f) c h w") + x = _apply_2d(x) + h2, w2 = x.shape[-2:] + x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f, h=h2, w=w2) + return x + + +class SpatialRationalResampler(nn.Module): + """ + Fully-learned rational spatial scaling: up by 'num' via PixelShuffle, then anti-aliased + downsample by 'den' using fixed blur + stride. Operates on H,W only. + + For dims==3, work per-frame for spatial scaling (temporal axis untouched). + """ + + def __init__(self, mid_channels: int, scale: float): + super().__init__() + self.scale = float(scale) + self.num, self.den = _rational_for_scale(self.scale) + self.conv = nn.Conv2d( + mid_channels, (self.num**2) * mid_channels, kernel_size=3, padding=1 + ) + self.pixel_shuffle = PixelShuffleND(2, upscale_factors=(self.num, self.num)) + self.blur_down = BlurDownsample(dims=2, stride=self.den) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + b, c, f, h, w = x.shape + x = rearrange(x, "b c f h w -> (b f) c h w") + x = self.conv(x) + x = self.pixel_shuffle(x) + x = self.blur_down(x) + x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f) + return x + + +class ResBlock(nn.Module): + def __init__( + self, channels: int, mid_channels: Optional[int] = None, dims: int = 3 + ): + super().__init__() + if mid_channels is None: + mid_channels = channels + + Conv = nn.Conv2d if dims == 2 else nn.Conv3d + + self.conv1 = Conv(channels, mid_channels, kernel_size=3, padding=1) + self.norm1 = nn.GroupNorm(32, mid_channels) + self.conv2 = Conv(mid_channels, channels, kernel_size=3, padding=1) + self.norm2 = nn.GroupNorm(32, channels) + self.activation = nn.SiLU() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + residual = x + x = self.conv1(x) + x = self.norm1(x) + x = self.activation(x) + x = self.conv2(x) + x = self.norm2(x) + x = self.activation(x + residual) + return x + + +class LatentUpsampler(nn.Module): + """ + Model to spatially upsample VAE latents. + + Args: + in_channels (`int`): Number of channels in the input latent + mid_channels (`int`): Number of channels in the middle layers + num_blocks_per_stage (`int`): Number of ResBlocks to use in each stage (pre/post upsampling) + dims (`int`): Number of dimensions for convolutions (2 or 3) + spatial_upsample (`bool`): Whether to spatially upsample the latent + temporal_upsample (`bool`): Whether to temporally upsample the latent + """ + + def __init__( + self, + in_channels: int = 128, + mid_channels: int = 512, + num_blocks_per_stage: int = 4, + dims: int = 3, + spatial_upsample: bool = True, + temporal_upsample: bool = False, + spatial_scale: float = 2.0, + rational_resampler: bool = False, + ): + super().__init__() + + self.in_channels = in_channels + self.mid_channels = mid_channels + self.num_blocks_per_stage = num_blocks_per_stage + self.dims = dims + self.spatial_upsample = spatial_upsample + self.temporal_upsample = temporal_upsample + self.spatial_scale = float(spatial_scale) + self.rational_resampler = rational_resampler + + Conv = nn.Conv2d if dims == 2 else nn.Conv3d + + self.initial_conv = Conv(in_channels, mid_channels, kernel_size=3, padding=1) + self.initial_norm = nn.GroupNorm(32, mid_channels) + self.initial_activation = nn.SiLU() + + self.res_blocks = nn.ModuleList( + [ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)] + ) + + if spatial_upsample and temporal_upsample: + self.upsampler = nn.Sequential( + nn.Conv3d(mid_channels, 8 * mid_channels, kernel_size=3, padding=1), + PixelShuffleND(3), + ) + elif spatial_upsample: + if rational_resampler: + self.upsampler = SpatialRationalResampler( + mid_channels=mid_channels, scale=self.spatial_scale + ) + else: + self.upsampler = nn.Sequential( + nn.Conv2d(mid_channels, 4 * mid_channels, kernel_size=3, padding=1), + PixelShuffleND(2), + ) + elif temporal_upsample: + self.upsampler = nn.Sequential( + nn.Conv3d(mid_channels, 2 * mid_channels, kernel_size=3, padding=1), + PixelShuffleND(1), + ) + else: + raise ValueError( + "Either spatial_upsample or temporal_upsample must be True" + ) + + self.post_upsample_res_blocks = nn.ModuleList( + [ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)] + ) + + self.final_conv = Conv(mid_channels, in_channels, kernel_size=3, padding=1) + + def forward(self, latent: torch.Tensor) -> torch.Tensor: + b, c, f, h, w = latent.shape + + if self.dims == 2: + x = rearrange(latent, "b c f h w -> (b f) c h w") + x = self.initial_conv(x) + x = self.initial_norm(x) + x = self.initial_activation(x) + + for block in self.res_blocks: + x = block(x) + + x = self.upsampler(x) + + for block in self.post_upsample_res_blocks: + x = block(x) + + x = self.final_conv(x) + x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f) + else: + x = self.initial_conv(latent) + x = self.initial_norm(x) + x = self.initial_activation(x) + + for block in self.res_blocks: + x = block(x) + + if self.temporal_upsample: + x = self.upsampler(x) + x = x[:, :, 1:, :, :] + else: + if isinstance(self.upsampler, SpatialRationalResampler): + x = self.upsampler(x) + else: + x = rearrange(x, "b c f h w -> (b f) c h w") + x = self.upsampler(x) + x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f) + + for block in self.post_upsample_res_blocks: + x = block(x) + + x = self.final_conv(x) + + return x + + @classmethod + def from_config(cls, config): + return cls( + in_channels=config.get("in_channels", 4), + mid_channels=config.get("mid_channels", 128), + num_blocks_per_stage=config.get("num_blocks_per_stage", 4), + dims=config.get("dims", 2), + spatial_upsample=config.get("spatial_upsample", True), + temporal_upsample=config.get("temporal_upsample", False), + spatial_scale=config.get("spatial_scale", 2.0), + rational_resampler=config.get("rational_resampler", False), + ) + + def config(self): + return { + "_class_name": "LatentUpsampler", + "in_channels": self.in_channels, + "mid_channels": self.mid_channels, + "num_blocks_per_stage": self.num_blocks_per_stage, + "dims": self.dims, + "spatial_upsample": self.spatial_upsample, + "temporal_upsample": self.temporal_upsample, + "spatial_scale": self.spatial_scale, + "rational_resampler": self.rational_resampler, + } diff --git a/comfy/ldm/lightricks/model.py b/comfy/ldm/lightricks/model.py index 593f7940f..d61e19d6e 100644 --- a/comfy/ldm/lightricks/model.py +++ b/comfy/ldm/lightricks/model.py @@ -1,13 +1,47 @@ +from abc import ABC, abstractmethod +from enum import Enum +import functools +import math +from typing import Dict, Optional, Tuple + +from einops import rearrange +import numpy as np import torch from torch import nn import comfy.patcher_extension import comfy.ldm.modules.attention import comfy.ldm.common_dit -import math -from typing import Dict, Optional, Tuple from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords -from comfy.ldm.flux.math import apply_rope1 + +def _log_base(x, base): + return np.log(x) / np.log(base) + +class LTXRopeType(str, Enum): + INTERLEAVED = "interleaved" + SPLIT = "split" + + KEY = "rope_type" + + @classmethod + def from_dict(cls, kwargs, default=None): + if default is None: + default = cls.INTERLEAVED + return cls(kwargs.get(cls.KEY, default)) + + +class LTXFrequenciesPrecision(str, Enum): + FLOAT32 = "float32" + FLOAT64 = "float64" + + KEY = "frequencies_precision" + + @classmethod + def from_dict(cls, kwargs, default=None): + if default is None: + default = cls.FLOAT32 + return cls(kwargs.get(cls.KEY, default)) + def get_timestep_embedding( timesteps: torch.Tensor, @@ -39,9 +73,7 @@ def get_timestep_embedding( assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" half_dim = embedding_dim // 2 - exponent = -math.log(max_period) * torch.arange( - start=0, end=half_dim, dtype=torch.float32, device=timesteps.device - ) + exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) @@ -73,7 +105,9 @@ class TimestepEmbedding(nn.Module): post_act_fn: Optional[str] = None, cond_proj_dim=None, sample_proj_bias=True, - dtype=None, device=None, operations=None, + dtype=None, + device=None, + operations=None, ): super().__init__() @@ -90,7 +124,9 @@ class TimestepEmbedding(nn.Module): time_embed_dim_out = out_dim else: time_embed_dim_out = time_embed_dim - self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device) + self.linear_2 = operations.Linear( + time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device + ) if post_act_fn is None: self.post_act = None @@ -139,12 +175,22 @@ class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 """ - def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None): + def __init__( + self, + embedding_dim, + size_emb_dim, + use_additional_conditions: bool = False, + dtype=None, + device=None, + operations=None, + ): super().__init__() self.outdim = size_emb_dim self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) - self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations) + self.timestep_embedder = TimestepEmbedding( + in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations + ) def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): timesteps_proj = self.time_proj(timestep) @@ -163,15 +209,22 @@ class AdaLayerNormSingle(nn.Module): use_additional_conditions (`bool`): To use additional conditions for normalization or not. """ - def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None): + def __init__( + self, embedding_dim: int, embedding_coefficient: int = 6, use_additional_conditions: bool = False, dtype=None, device=None, operations=None + ): super().__init__() self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings( - embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations + embedding_dim, + size_emb_dim=embedding_dim // 3, + use_additional_conditions=use_additional_conditions, + dtype=dtype, + device=device, + operations=operations, ) self.silu = nn.SiLU() - self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device) + self.linear = operations.Linear(embedding_dim, embedding_coefficient * embedding_dim, bias=True, dtype=dtype, device=device) def forward( self, @@ -185,6 +238,7 @@ class AdaLayerNormSingle(nn.Module): embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype) return self.linear(self.silu(embedded_timestep)), embedded_timestep + class PixArtAlphaTextProjection(nn.Module): """ Projects caption embeddings. Also handles dropout for classifier-free guidance. @@ -192,18 +246,24 @@ class PixArtAlphaTextProjection(nn.Module): Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py """ - def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None): + def __init__( + self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None + ): super().__init__() if out_features is None: out_features = hidden_size - self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device) + self.linear_1 = operations.Linear( + in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device + ) if act_fn == "gelu_tanh": self.act_1 = nn.GELU(approximate="tanh") elif act_fn == "silu": self.act_1 = nn.SiLU() else: raise ValueError(f"Unknown activation function: {act_fn}") - self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device) + self.linear_2 = operations.Linear( + in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device + ) def forward(self, caption): hidden_states = self.linear_1(caption) @@ -222,23 +282,68 @@ class GELU_approx(nn.Module): class FeedForward(nn.Module): - def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None): + def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0.0, dtype=None, device=None, operations=None): super().__init__() inner_dim = int(dim * mult) project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations) self.net = nn.Sequential( - project_in, - nn.Dropout(dropout), - operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) + project_in, nn.Dropout(dropout), operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) ) def forward(self, x): return self.net(x) +def apply_rotary_emb(input_tensor, freqs_cis): + cos_freqs, sin_freqs = freqs_cis[0], freqs_cis[1] + split_pe = freqs_cis[2] if len(freqs_cis) > 2 else False + return ( + apply_split_rotary_emb(input_tensor, cos_freqs, sin_freqs) + if split_pe else + apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs) + ) + +def apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs): # TODO: remove duplicate funcs and pick the best/fastest one + t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2) + t1, t2 = t_dup.unbind(dim=-1) + t_dup = torch.stack((-t2, t1), dim=-1) + input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)") + + out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs + + return out + +def apply_split_rotary_emb(input_tensor, cos, sin): + needs_reshape = False + if input_tensor.ndim != 4 and cos.ndim == 4: + B, H, T, _ = cos.shape + input_tensor = input_tensor.reshape(B, T, H, -1).swapaxes(1, 2) + needs_reshape = True + split_input = rearrange(input_tensor, "... (d r) -> ... d r", d=2) + first_half_input = split_input[..., :1, :] + second_half_input = split_input[..., 1:, :] + output = split_input * cos.unsqueeze(-2) + first_half_output = output[..., :1, :] + second_half_output = output[..., 1:, :] + first_half_output.addcmul_(-sin.unsqueeze(-2), second_half_input) + second_half_output.addcmul_(sin.unsqueeze(-2), first_half_input) + output = rearrange(output, "... d r -> ... (d r)") + return output.swapaxes(1, 2).reshape(B, T, -1) if needs_reshape else output + class CrossAttention(nn.Module): - def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None): + def __init__( + self, + query_dim, + context_dim=None, + heads=8, + dim_head=64, + dropout=0.0, + attn_precision=None, + dtype=None, + device=None, + operations=None, + ): super().__init__() inner_dim = dim_head * heads context_dim = query_dim if context_dim is None else context_dim @@ -254,9 +359,11 @@ class CrossAttention(nn.Module): self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device) self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device) - self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) + self.to_out = nn.Sequential( + operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout) + ) - def forward(self, x, context=None, mask=None, pe=None, transformer_options={}): + def forward(self, x, context=None, mask=None, pe=None, k_pe=None, transformer_options={}): q = self.to_q(x) context = x if context is None else context k = self.to_k(context) @@ -266,8 +373,8 @@ class CrossAttention(nn.Module): k = self.k_norm(k) if pe is not None: - q = apply_rope1(q.unsqueeze(1), pe).squeeze(1) - k = apply_rope1(k.unsqueeze(1), pe).squeeze(1) + q = apply_rotary_emb(q, pe) + k = apply_rotary_emb(k, pe if k_pe is None else k_pe) if mask is None: out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options) @@ -277,14 +384,34 @@ class CrossAttention(nn.Module): class BasicTransformerBlock(nn.Module): - def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None): + def __init__( + self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None + ): super().__init__() self.attn_precision = attn_precision - self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) + self.attn1 = CrossAttention( + query_dim=dim, + heads=n_heads, + dim_head=d_head, + context_dim=None, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations) - self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) + self.attn2 = CrossAttention( + query_dim=dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + attn_precision=self.attn_precision, + dtype=dtype, + device=device, + operations=operations, + ) self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype)) @@ -306,116 +433,446 @@ class BasicTransformerBlock(nn.Module): return x def get_fractional_positions(indices_grid, max_pos): + n_pos_dims = indices_grid.shape[1] + assert n_pos_dims == len(max_pos), f'Number of position dimensions ({n_pos_dims}) must match max_pos length ({len(max_pos)})' fractional_positions = torch.stack( - [ - indices_grid[:, i] / max_pos[i] - for i in range(3) - ], - dim=-1, + [indices_grid[:, i] / max_pos[i] for i in range(n_pos_dims)], + axis=-1, ) return fractional_positions -def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]): - dtype = torch.float32 - device = indices_grid.device +@functools.lru_cache(maxsize=5) +def generate_freq_grid_np(positional_embedding_theta, positional_embedding_max_pos_count, inner_dim, _ = None): + theta = positional_embedding_theta + start = 1 + end = theta + + n_elem = 2 * positional_embedding_max_pos_count + pow_indices = np.power( + theta, + np.linspace( + _log_base(start, theta), + _log_base(end, theta), + inner_dim // n_elem, + dtype=np.float64, + ), + ) + return torch.tensor(pow_indices * math.pi / 2, dtype=torch.float32) + +def generate_freq_grid_pytorch(positional_embedding_theta, positional_embedding_max_pos_count, inner_dim, device): + theta = positional_embedding_theta + start = 1 + end = theta + n_elem = 2 * positional_embedding_max_pos_count + + indices = theta ** ( + torch.linspace( + math.log(start, theta), + math.log(end, theta), + inner_dim // n_elem, + device=device, + dtype=torch.float32, + ) + ) + indices = indices.to(dtype=torch.float32) + + indices = indices * math.pi / 2 + + return indices + +def generate_freqs(indices, indices_grid, max_pos, use_middle_indices_grid): + if use_middle_indices_grid: + assert(len(indices_grid.shape) == 4 and indices_grid.shape[-1] ==2) + indices_grid_start, indices_grid_end = indices_grid[..., 0], indices_grid[..., 1] + indices_grid = (indices_grid_start + indices_grid_end) / 2.0 + elif len(indices_grid.shape) == 4: + indices_grid = indices_grid[..., 0] # Get fractional positions and compute frequency indices fractional_positions = get_fractional_positions(indices_grid, max_pos) - indices = theta ** torch.linspace(0, 1, dim // 6, device=device, dtype=dtype) * math.pi / 2 + indices = indices.to(device=fractional_positions.device) - # Compute frequencies and apply cos/sin - freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2) - cos_vals = freqs.cos().repeat_interleave(2, dim=-1) - sin_vals = freqs.sin().repeat_interleave(2, dim=-1) + freqs = ( + (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)) + .transpose(-1, -2) + .flatten(2) + ) + return freqs - # Pad if dim is not divisible by 6 - if dim % 6 != 0: - padding_size = dim % 6 - cos_vals = torch.cat([torch.ones_like(cos_vals[:, :, :padding_size]), cos_vals], dim=-1) - sin_vals = torch.cat([torch.zeros_like(sin_vals[:, :, :padding_size]), sin_vals], dim=-1) +def interleaved_freqs_cis(freqs, pad_size): + cos_freq = freqs.cos().repeat_interleave(2, dim=-1) + sin_freq = freqs.sin().repeat_interleave(2, dim=-1) + if pad_size != 0: + cos_padding = torch.ones_like(cos_freq[:, :, : pad_size]) + sin_padding = torch.zeros_like(cos_freq[:, :, : pad_size]) + cos_freq = torch.cat([cos_padding, cos_freq], dim=-1) + sin_freq = torch.cat([sin_padding, sin_freq], dim=-1) + return cos_freq, sin_freq - # Reshape and extract one value per pair (since repeat_interleave duplicates each value) - cos_vals = cos_vals.reshape(*cos_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2] - sin_vals = sin_vals.reshape(*sin_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2] +def split_freqs_cis(freqs, pad_size, num_attention_heads): + cos_freq = freqs.cos() + sin_freq = freqs.sin() - # Build rotation matrix [[cos, -sin], [sin, cos]] and add heads dimension - freqs_cis = torch.stack([ - torch.stack([cos_vals, -sin_vals], dim=-1), - torch.stack([sin_vals, cos_vals], dim=-1) - ], dim=-2).unsqueeze(1) # [B, 1, N, dim//2, 2, 2] + if pad_size != 0: + cos_padding = torch.ones_like(cos_freq[:, :, :pad_size]) + sin_padding = torch.zeros_like(sin_freq[:, :, :pad_size]) - return freqs_cis + cos_freq = torch.concatenate([cos_padding, cos_freq], axis=-1) + sin_freq = torch.concatenate([sin_padding, sin_freq], axis=-1) + # Reshape freqs to be compatible with multi-head attention + B , T, half_HD = cos_freq.shape -class LTXVModel(torch.nn.Module): - def __init__(self, - in_channels=128, - cross_attention_dim=2048, - attention_head_dim=64, - num_attention_heads=32, + cos_freq = cos_freq.reshape(B, T, num_attention_heads, half_HD // num_attention_heads) + sin_freq = sin_freq.reshape(B, T, num_attention_heads, half_HD // num_attention_heads) - caption_channels=4096, - num_layers=28, + cos_freq = torch.swapaxes(cos_freq, 1, 2) # (B,H,T,D//2) + sin_freq = torch.swapaxes(sin_freq, 1, 2) # (B,H,T,D//2) + return cos_freq, sin_freq +class LTXBaseModel(torch.nn.Module, ABC): + """ + Abstract base class for LTX models (Lightricks Transformer models). - positional_embedding_theta=10000.0, - positional_embedding_max_pos=[20, 2048, 2048], - causal_temporal_positioning=False, - vae_scale_factors=(8, 32, 32), - dtype=None, device=None, operations=None, **kwargs): + This class defines the common interface and shared functionality for all LTX models, + including LTXV (video) and LTXAV (audio-video) variants. + """ + + def __init__( + self, + in_channels: int, + cross_attention_dim: int, + attention_head_dim: int, + num_attention_heads: int, + caption_channels: int, + num_layers: int, + positional_embedding_theta: float = 10000.0, + positional_embedding_max_pos: list = [20, 2048, 2048], + causal_temporal_positioning: bool = False, + vae_scale_factors: tuple = (8, 32, 32), + use_middle_indices_grid=False, + timestep_scale_multiplier = 1000.0, + dtype=None, + device=None, + operations=None, + **kwargs, + ): super().__init__() self.generator = None self.vae_scale_factors = vae_scale_factors + self.use_middle_indices_grid = use_middle_indices_grid self.dtype = dtype - self.out_channels = in_channels - self.inner_dim = num_attention_heads * attention_head_dim + self.in_channels = in_channels + self.cross_attention_dim = cross_attention_dim + self.attention_head_dim = attention_head_dim + self.num_attention_heads = num_attention_heads + self.caption_channels = caption_channels + self.num_layers = num_layers + self.positional_embedding_theta = positional_embedding_theta + self.positional_embedding_max_pos = positional_embedding_max_pos + self.split_positional_embedding = LTXRopeType.from_dict(kwargs) + self.freq_grid_generator = ( + generate_freq_grid_np if LTXFrequenciesPrecision.from_dict(kwargs) == LTXFrequenciesPrecision.FLOAT64 + else generate_freq_grid_pytorch + ) self.causal_temporal_positioning = causal_temporal_positioning + self.operations = operations + self.timestep_scale_multiplier = timestep_scale_multiplier - self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device) + # Common dimensions + self.inner_dim = num_attention_heads * attention_head_dim + self.out_channels = in_channels + + # Initialize common components + self._init_common_components(device, dtype) + + # Initialize model-specific components + self._init_model_components(device, dtype, **kwargs) + + # Initialize transformer blocks + self._init_transformer_blocks(device, dtype, **kwargs) + + # Initialize output components + self._init_output_components(device, dtype) + + def _init_common_components(self, device, dtype): + """Initialize components common to all LTX models + - patchify_proj: Linear projection for patchifying input + - adaln_single: AdaLN layer for timestep embedding + - caption_projection: Linear projection for caption embedding + """ + self.patchify_proj = self.operations.Linear( + self.in_channels, self.inner_dim, bias=True, dtype=dtype, device=device + ) self.adaln_single = AdaLayerNormSingle( - self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations + self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=self.operations ) - # self.adaln_single.linear = operations.Linear(self.inner_dim, 4 * self.inner_dim, bias=True, dtype=dtype, device=device) - self.caption_projection = PixArtAlphaTextProjection( - in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations + in_features=self.caption_channels, + hidden_size=self.inner_dim, + dtype=dtype, + device=device, + operations=self.operations, ) + @abstractmethod + def _init_model_components(self, device, dtype, **kwargs): + """Initialize model-specific components. Must be implemented by subclasses.""" + pass + + @abstractmethod + def _init_transformer_blocks(self, device, dtype, **kwargs): + """Initialize transformer blocks. Must be implemented by subclasses.""" + pass + + @abstractmethod + def _init_output_components(self, device, dtype): + """Initialize output components. Must be implemented by subclasses.""" + pass + + @abstractmethod + def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs): + """Process input data. Must be implemented by subclasses.""" + pass + + @abstractmethod + def _process_transformer_blocks(self, x, context, attention_mask, timestep, pe, **kwargs): + """Process transformer blocks. Must be implemented by subclasses.""" + pass + + @abstractmethod + def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs): + """Process output data. Must be implemented by subclasses.""" + pass + + def _prepare_timestep(self, timestep, batch_size, hidden_dtype, **kwargs): + """Prepare timestep embeddings.""" + grid_mask = kwargs.get("grid_mask", None) + if grid_mask is not None: + timestep = timestep[:, grid_mask] + + timestep = timestep * self.timestep_scale_multiplier + timestep, embedded_timestep = self.adaln_single( + timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_dtype, + ) + + # Second dimension is 1 or number of tokens (if timestep_per_token) + timestep = timestep.view(batch_size, -1, timestep.shape[-1]) + embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1]) + + return timestep, embedded_timestep + + def _prepare_context(self, context, batch_size, x, attention_mask=None): + """Prepare context for transformer blocks.""" + if self.caption_projection is not None: + context = self.caption_projection(context) + context = context.view(batch_size, -1, x.shape[-1]) + + return context, attention_mask + + def _precompute_freqs_cis( + self, + indices_grid, + dim, + out_dtype, + theta=10000.0, + max_pos=[20, 2048, 2048], + use_middle_indices_grid=False, + num_attention_heads=32, + ): + split_mode = self.split_positional_embedding == LTXRopeType.SPLIT + indices = self.freq_grid_generator(theta, indices_grid.shape[1], dim, indices_grid.device) + freqs = generate_freqs(indices, indices_grid, max_pos, use_middle_indices_grid) + + if split_mode: + expected_freqs = dim // 2 + current_freqs = freqs.shape[-1] + pad_size = expected_freqs - current_freqs + cos_freq, sin_freq = split_freqs_cis(freqs, pad_size, num_attention_heads) + else: + # 2 because of cos and sin by 3 for (t, x, y), 1 for temporal only + n_elem = 2 * indices_grid.shape[1] + cos_freq, sin_freq = interleaved_freqs_cis(freqs, dim % n_elem) + return cos_freq.to(out_dtype), sin_freq.to(out_dtype), split_mode + + def _prepare_positional_embeddings(self, pixel_coords, frame_rate, x_dtype): + """Prepare positional embeddings.""" + fractional_coords = pixel_coords.to(torch.float32) + fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate) + pe = self._precompute_freqs_cis( + fractional_coords, + dim=self.inner_dim, + out_dtype=x_dtype, + max_pos=self.positional_embedding_max_pos, + use_middle_indices_grid=self.use_middle_indices_grid, + num_attention_heads=self.num_attention_heads, + ) + return pe + + def _prepare_attention_mask(self, attention_mask, x_dtype): + """Prepare attention mask.""" + if attention_mask is not None and not torch.is_floating_point(attention_mask): + attention_mask = (attention_mask - 1).to(x_dtype).reshape( + (attention_mask.shape[0], 1, -1, attention_mask.shape[-1]) + ) * torch.finfo(x_dtype).max + return attention_mask + + def forward( + self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, denoise_mask=None, **kwargs + ): + """ + Forward pass for LTX models. + + Args: + x: Input tensor + timestep: Timestep tensor + context: Context tensor (e.g., text embeddings) + attention_mask: Attention mask tensor + frame_rate: Frame rate for temporal processing + transformer_options: Additional options for transformer blocks + keyframe_idxs: Keyframe indices for temporal processing + **kwargs: Additional keyword arguments + + Returns: + Processed output tensor + """ + return comfy.patcher_extension.WrapperExecutor.new_class_executor( + self._forward, + self, + comfy.patcher_extension.get_all_wrappers( + comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options + ), + ).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, denoise_mask=denoise_mask, **kwargs) + + def _forward( + self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, denoise_mask=None, **kwargs + ): + """ + Internal forward pass for LTX models. + + Args: + x: Input tensor + timestep: Timestep tensor + context: Context tensor (e.g., text embeddings) + attention_mask: Attention mask tensor + frame_rate: Frame rate for temporal processing + transformer_options: Additional options for transformer blocks + keyframe_idxs: Keyframe indices for temporal processing + **kwargs: Additional keyword arguments + + Returns: + Processed output tensor + """ + if isinstance(x, list): + input_dtype = x[0].dtype + batch_size = x[0].shape[0] + else: + input_dtype = x.dtype + batch_size = x.shape[0] + # Process input + merged_args = {**transformer_options, **kwargs} + x, pixel_coords, additional_args = self._process_input(x, keyframe_idxs, denoise_mask, **merged_args) + merged_args.update(additional_args) + + # Prepare timestep and context + timestep, embedded_timestep = self._prepare_timestep(timestep, batch_size, input_dtype, **merged_args) + context, attention_mask = self._prepare_context(context, batch_size, x, attention_mask) + + # Prepare attention mask and positional embeddings + attention_mask = self._prepare_attention_mask(attention_mask, input_dtype) + pe = self._prepare_positional_embeddings(pixel_coords, frame_rate, input_dtype) + + # Process transformer blocks + x = self._process_transformer_blocks( + x, context, attention_mask, timestep, pe, transformer_options=transformer_options, **merged_args + ) + + # Process output + x = self._process_output(x, embedded_timestep, keyframe_idxs, **merged_args) + return x + + +class LTXVModel(LTXBaseModel): + """LTXV model for video generation.""" + + def __init__( + self, + in_channels=128, + cross_attention_dim=2048, + attention_head_dim=64, + num_attention_heads=32, + caption_channels=4096, + num_layers=28, + positional_embedding_theta=10000.0, + positional_embedding_max_pos=[20, 2048, 2048], + causal_temporal_positioning=False, + vae_scale_factors=(8, 32, 32), + use_middle_indices_grid=False, + timestep_scale_multiplier = 1000.0, + dtype=None, + device=None, + operations=None, + **kwargs, + ): + super().__init__( + in_channels=in_channels, + cross_attention_dim=cross_attention_dim, + attention_head_dim=attention_head_dim, + num_attention_heads=num_attention_heads, + caption_channels=caption_channels, + num_layers=num_layers, + positional_embedding_theta=positional_embedding_theta, + positional_embedding_max_pos=positional_embedding_max_pos, + causal_temporal_positioning=causal_temporal_positioning, + vae_scale_factors=vae_scale_factors, + use_middle_indices_grid=use_middle_indices_grid, + timestep_scale_multiplier=timestep_scale_multiplier, + dtype=dtype, + device=device, + operations=operations, + **kwargs, + ) + + def _init_model_components(self, device, dtype, **kwargs): + """Initialize LTXV-specific components.""" + # No additional components needed for LTXV beyond base class + pass + + def _init_transformer_blocks(self, device, dtype, **kwargs): + """Initialize transformer blocks for LTXV.""" self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, - num_attention_heads, - attention_head_dim, - context_dim=cross_attention_dim, - # attn_precision=attn_precision, - dtype=dtype, device=device, operations=operations + self.num_attention_heads, + self.attention_head_dim, + context_dim=self.cross_attention_dim, + dtype=dtype, + device=device, + operations=self.operations, ) - for d in range(num_layers) + for _ in range(self.num_layers) ] ) + def _init_output_components(self, device, dtype): + """Initialize output components for LTXV.""" self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device)) - self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) - self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device) - - self.patchifier = SymmetricPatchifier(1) - - def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs): - return comfy.patcher_extension.WrapperExecutor.new_class_executor( - self._forward, - self, - comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options) - ).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, **kwargs) - - def _forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs): - patches_replace = transformer_options.get("patches_replace", {}) - - orig_shape = list(x.shape) + self.norm_out = self.operations.LayerNorm( + self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device + ) + self.proj_out = self.operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device) + self.patchifier = SymmetricPatchifier(1, start_end=True) + def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs): + """Process input for LTXV.""" + additional_args = {"orig_shape": list(x.shape)} x, latent_coords = self.patchifier.patchify(x) pixel_coords = latent_to_pixel_coords( latent_coords=latent_coords, @@ -423,44 +880,30 @@ class LTXVModel(torch.nn.Module): causal_fix=self.causal_temporal_positioning, ) + grid_mask = None if keyframe_idxs is not None: - pixel_coords[:, :, -keyframe_idxs.shape[2]:] = keyframe_idxs + additional_args.update({ "orig_patchified_shape": list(x.shape)}) + denoise_mask = self.patchifier.patchify(denoise_mask)[0] + grid_mask = ~torch.any(denoise_mask < 0, dim=-1)[0] + additional_args.update({"grid_mask": grid_mask}) + x = x[:, grid_mask, :] + pixel_coords = pixel_coords[:, :, grid_mask, ...] - fractional_coords = pixel_coords.to(torch.float32) - fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate) + kf_grid_mask = grid_mask[-keyframe_idxs.shape[2]:] + keyframe_idxs = keyframe_idxs[..., kf_grid_mask, :] + pixel_coords[:, :, -keyframe_idxs.shape[2]:, :] = keyframe_idxs x = self.patchify_proj(x) - timestep = timestep * 1000.0 - - if attention_mask is not None and not torch.is_floating_point(attention_mask): - attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max - - pe = precompute_freqs_cis(fractional_coords, dim=self.inner_dim, out_dtype=x.dtype) - - batch_size = x.shape[0] - timestep, embedded_timestep = self.adaln_single( - timestep.flatten(), - {"resolution": None, "aspect_ratio": None}, - batch_size=batch_size, - hidden_dtype=x.dtype, - ) - # Second dimension is 1 or number of tokens (if timestep_per_token) - timestep = timestep.view(batch_size, -1, timestep.shape[-1]) - embedded_timestep = embedded_timestep.view( - batch_size, -1, embedded_timestep.shape[-1] - ) - - # 2. Blocks - if self.caption_projection is not None: - batch_size = x.shape[0] - context = self.caption_projection(context) - context = context.view( - batch_size, -1, x.shape[-1] - ) + return x, pixel_coords, additional_args + def _process_transformer_blocks(self, x, context, attention_mask, timestep, pe, transformer_options={}, **kwargs): + """Process transformer blocks for LTXV.""" + patches_replace = transformer_options.get("patches_replace", {}) blocks_replace = patches_replace.get("dit", {}) + for i, block in enumerate(self.transformer_blocks): if ("double_block", i) in blocks_replace: + def block_wrap(args): out = {} out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"], transformer_options=args["transformer_options"]) @@ -478,16 +921,28 @@ class LTXVModel(torch.nn.Module): transformer_options=transformer_options, ) - # 3. Output + return x + + def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs): + """Process output for LTXV.""" + # Apply scale-shift modulation scale_shift_values = ( self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None] ) shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] + x = self.norm_out(x) - # Modulation - x = torch.addcmul(x, x, scale).add_(shift) + x = x * (1 + scale) + shift x = self.proj_out(x) + if keyframe_idxs is not None: + grid_mask = kwargs["grid_mask"] + orig_patchified_shape = kwargs["orig_patchified_shape"] + full_x = torch.zeros(orig_patchified_shape, dtype=x.dtype, device=x.device) + full_x[:, grid_mask, :] = x + x = full_x + # Unpatchify to restore original dimensions + orig_shape = kwargs["orig_shape"] x = self.patchifier.unpatchify( latents=x, output_height=orig_shape[3], diff --git a/comfy/ldm/lightricks/symmetric_patchifier.py b/comfy/ldm/lightricks/symmetric_patchifier.py index 4b9972b9f..8f9a41186 100644 --- a/comfy/ldm/lightricks/symmetric_patchifier.py +++ b/comfy/ldm/lightricks/symmetric_patchifier.py @@ -21,20 +21,23 @@ def latent_to_pixel_coords( Returns: Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates. """ + shape = [1] * latent_coords.ndim + shape[1] = -1 pixel_coords = ( latent_coords - * torch.tensor(scale_factors, device=latent_coords.device)[None, :, None] + * torch.tensor(scale_factors, device=latent_coords.device).view(*shape) ) if causal_fix: # Fix temporal scale for first frame to 1 due to causality - pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0) + pixel_coords[:, 0, ...] = (pixel_coords[:, 0, ...] + 1 - scale_factors[0]).clamp(min=0) return pixel_coords class Patchifier(ABC): - def __init__(self, patch_size: int): + def __init__(self, patch_size: int, start_end: bool=False): super().__init__() self._patch_size = (1, patch_size, patch_size) + self.start_end = start_end @abstractmethod def patchify( @@ -71,11 +74,23 @@ class Patchifier(ABC): torch.arange(0, latent_width, self._patch_size[2], device=device), indexing="ij", ) - latent_sample_coords = torch.stack(latent_sample_coords, dim=0) - latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) - latent_coords = rearrange( - latent_coords, "b c f h w -> b c (f h w)", b=batch_size + latent_sample_coords_start = torch.stack(latent_sample_coords, dim=0) + delta = torch.tensor(self._patch_size, device=latent_sample_coords_start.device, dtype=latent_sample_coords_start.dtype)[:, None, None, None] + latent_sample_coords_end = latent_sample_coords_start + delta + + latent_sample_coords_start = latent_sample_coords_start.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) + latent_sample_coords_start = rearrange( + latent_sample_coords_start, "b c f h w -> b c (f h w)", b=batch_size ) + if self.start_end: + latent_sample_coords_end = latent_sample_coords_end.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) + latent_sample_coords_end = rearrange( + latent_sample_coords_end, "b c f h w -> b c (f h w)", b=batch_size + ) + + latent_coords = torch.stack((latent_sample_coords_start, latent_sample_coords_end), dim=-1) + else: + latent_coords = latent_sample_coords_start return latent_coords @@ -115,3 +130,61 @@ class SymmetricPatchifier(Patchifier): q=self._patch_size[2], ) return latents + + +class AudioPatchifier(Patchifier): + def __init__(self, patch_size: int, + sample_rate=16000, + hop_length=160, + audio_latent_downsample_factor=4, + is_causal=True, + start_end=False, + shift = 0 + ): + super().__init__(patch_size, start_end=start_end) + self.hop_length = hop_length + self.sample_rate = sample_rate + self.audio_latent_downsample_factor = audio_latent_downsample_factor + self.is_causal = is_causal + self.shift = shift + + def copy_with_shift(self, shift): + return AudioPatchifier( + self.patch_size, self.sample_rate, self.hop_length, self.audio_latent_downsample_factor, + self.is_causal, self.start_end, shift + ) + + def _get_audio_latent_time_in_sec(self, start_latent, end_latent: int, dtype: torch.dtype, device=torch.device): + audio_latent_frame = torch.arange(start_latent, end_latent, dtype=dtype, device=device) + audio_mel_frame = audio_latent_frame * self.audio_latent_downsample_factor + if self.is_causal: + audio_mel_frame = (audio_mel_frame + 1 - self.audio_latent_downsample_factor).clip(min=0) + return audio_mel_frame * self.hop_length / self.sample_rate + + + def patchify(self, audio_latents: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + # audio_latents: (batch, channels, time, freq) + b, _, t, _ = audio_latents.shape + audio_latents = rearrange( + audio_latents, + "b c t f -> b t (c f)", + ) + + audio_latents_start_timings = self._get_audio_latent_time_in_sec(self.shift, t + self.shift, torch.float32, audio_latents.device) + audio_latents_start_timings = audio_latents_start_timings.unsqueeze(0).expand(b, -1).unsqueeze(1) + + if self.start_end: + audio_latents_end_timings = self._get_audio_latent_time_in_sec(self.shift + 1, t + self.shift + 1, torch.float32, audio_latents.device) + audio_latents_end_timings = audio_latents_end_timings.unsqueeze(0).expand(b, -1).unsqueeze(1) + + audio_latents_timings = torch.stack([audio_latents_start_timings, audio_latents_end_timings], dim=-1) + else: + audio_latents_timings = audio_latents_start_timings + return audio_latents, audio_latents_timings + + def unpatchify(self, audio_latents: torch.Tensor, channels: int, freq: int) -> torch.Tensor: + # audio_latents: (batch, time, freq * channels) + audio_latents = rearrange( + audio_latents, "b t (c f) -> b c t f", c=channels, f=freq + ) + return audio_latents diff --git a/comfy/ldm/lightricks/vae/audio_vae.py b/comfy/ldm/lightricks/vae/audio_vae.py new file mode 100644 index 000000000..a9111d3bd --- /dev/null +++ b/comfy/ldm/lightricks/vae/audio_vae.py @@ -0,0 +1,286 @@ +import json +from dataclasses import dataclass +import math +import torch +import torchaudio + +import comfy.model_management +import comfy.model_patcher +import comfy.utils as utils +from comfy.ldm.mmaudio.vae.distributions import DiagonalGaussianDistribution +from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier +from comfy.ldm.lightricks.vae.causal_audio_autoencoder import ( + CausalityAxis, + CausalAudioAutoencoder, +) +from comfy.ldm.lightricks.vocoders.vocoder import Vocoder + +LATENT_DOWNSAMPLE_FACTOR = 4 + + +@dataclass(frozen=True) +class AudioVAEComponentConfig: + """Container for model component configuration extracted from metadata.""" + + autoencoder: dict + vocoder: dict + + @classmethod + def from_metadata(cls, metadata: dict) -> "AudioVAEComponentConfig": + assert metadata is not None and "config" in metadata, "Metadata is required for audio VAE" + + raw_config = metadata["config"] + if isinstance(raw_config, str): + parsed_config = json.loads(raw_config) + else: + parsed_config = raw_config + + audio_config = parsed_config.get("audio_vae") + vocoder_config = parsed_config.get("vocoder") + + assert audio_config is not None, "Audio VAE config is required for audio VAE" + assert vocoder_config is not None, "Vocoder config is required for audio VAE" + + return cls(autoencoder=audio_config, vocoder=vocoder_config) + + +class ModelDeviceManager: + """Manages device placement and GPU residency for the composed model.""" + + def __init__(self, module: torch.nn.Module): + load_device = comfy.model_management.get_torch_device() + offload_device = comfy.model_management.vae_offload_device() + self.patcher = comfy.model_patcher.ModelPatcher(module, load_device, offload_device) + + def ensure_model_loaded(self) -> None: + comfy.model_management.free_memory( + self.patcher.model_size(), + self.patcher.load_device, + ) + comfy.model_management.load_model_gpu(self.patcher) + + def move_to_load_device(self, tensor: torch.Tensor) -> torch.Tensor: + return tensor.to(self.patcher.load_device) + + @property + def load_device(self): + return self.patcher.load_device + + +class AudioLatentNormalizer: + """Applies per-channel statistics in patch space and restores original layout.""" + + def __init__(self, patchfier: AudioPatchifier, statistics_processor: torch.nn.Module): + self.patchifier = patchfier + self.statistics = statistics_processor + + def normalize(self, latents: torch.Tensor) -> torch.Tensor: + channels = latents.shape[1] + freq = latents.shape[3] + patched, _ = self.patchifier.patchify(latents) + normalized = self.statistics.normalize(patched) + return self.patchifier.unpatchify(normalized, channels=channels, freq=freq) + + def denormalize(self, latents: torch.Tensor) -> torch.Tensor: + channels = latents.shape[1] + freq = latents.shape[3] + patched, _ = self.patchifier.patchify(latents) + denormalized = self.statistics.un_normalize(patched) + return self.patchifier.unpatchify(denormalized, channels=channels, freq=freq) + + +class AudioPreprocessor: + """Prepares raw waveforms for the autoencoder by matching training conditions.""" + + def __init__(self, target_sample_rate: int, mel_bins: int, mel_hop_length: int, n_fft: int): + self.target_sample_rate = target_sample_rate + self.mel_bins = mel_bins + self.mel_hop_length = mel_hop_length + self.n_fft = n_fft + + def resample(self, waveform: torch.Tensor, source_rate: int) -> torch.Tensor: + if source_rate == self.target_sample_rate: + return waveform + return torchaudio.functional.resample(waveform, source_rate, self.target_sample_rate) + + @staticmethod + def normalize_amplitude( + waveform: torch.Tensor, max_amplitude: float = 0.5, eps: float = 1e-5 + ) -> torch.Tensor: + waveform = waveform - waveform.mean(dim=2, keepdim=True) + peak = torch.max(torch.abs(waveform)) + eps + scale = peak.clamp(max=max_amplitude) / peak + return waveform * scale + + def waveform_to_mel( + self, waveform: torch.Tensor, waveform_sample_rate: int, device + ) -> torch.Tensor: + waveform = self.resample(waveform, waveform_sample_rate) + waveform = self.normalize_amplitude(waveform) + + mel_transform = torchaudio.transforms.MelSpectrogram( + sample_rate=self.target_sample_rate, + n_fft=self.n_fft, + win_length=self.n_fft, + hop_length=self.mel_hop_length, + f_min=0.0, + f_max=self.target_sample_rate / 2.0, + n_mels=self.mel_bins, + window_fn=torch.hann_window, + center=True, + pad_mode="reflect", + power=1.0, + mel_scale="slaney", + norm="slaney", + ).to(device) + + mel = mel_transform(waveform) + mel = torch.log(torch.clamp(mel, min=1e-5)) + return mel.permute(0, 1, 3, 2).contiguous() + + +class AudioVAE(torch.nn.Module): + """High-level Audio VAE wrapper exposing encode and decode entry points.""" + + def __init__(self, state_dict: dict, metadata: dict): + super().__init__() + + component_config = AudioVAEComponentConfig.from_metadata(metadata) + + vae_sd = utils.state_dict_prefix_replace(state_dict, {"audio_vae.": ""}, filter_keys=True) + vocoder_sd = utils.state_dict_prefix_replace(state_dict, {"vocoder.": ""}, filter_keys=True) + + self.autoencoder = CausalAudioAutoencoder(config=component_config.autoencoder) + self.vocoder = Vocoder(config=component_config.vocoder) + + self.autoencoder.load_state_dict(vae_sd, strict=False) + self.vocoder.load_state_dict(vocoder_sd, strict=False) + + autoencoder_config = self.autoencoder.get_config() + self.normalizer = AudioLatentNormalizer( + AudioPatchifier( + patch_size=1, + audio_latent_downsample_factor=LATENT_DOWNSAMPLE_FACTOR, + sample_rate=autoencoder_config["sampling_rate"], + hop_length=autoencoder_config["mel_hop_length"], + is_causal=autoencoder_config["is_causal"], + ), + self.autoencoder.per_channel_statistics, + ) + + self.preprocessor = AudioPreprocessor( + target_sample_rate=autoencoder_config["sampling_rate"], + mel_bins=autoencoder_config["mel_bins"], + mel_hop_length=autoencoder_config["mel_hop_length"], + n_fft=autoencoder_config["n_fft"], + ) + + self.device_manager = ModelDeviceManager(self) + + def encode(self, audio: dict) -> torch.Tensor: + """Encode a waveform dictionary into normalized latent tensors.""" + + waveform = audio["waveform"] + waveform_sample_rate = audio["sample_rate"] + input_device = waveform.device + # Ensure that Audio VAE is loaded on the correct device. + self.device_manager.ensure_model_loaded() + + waveform = self.device_manager.move_to_load_device(waveform) + expected_channels = self.autoencoder.encoder.in_channels + if waveform.shape[1] != expected_channels: + raise ValueError( + f"Input audio must have {expected_channels} channels, got {waveform.shape[1]}" + ) + + mel_spec = self.preprocessor.waveform_to_mel( + waveform, waveform_sample_rate, device=self.device_manager.load_device + ) + + latents = self.autoencoder.encode(mel_spec) + posterior = DiagonalGaussianDistribution(latents) + latent_mode = posterior.mode() + + normalized = self.normalizer.normalize(latent_mode) + return normalized.to(input_device) + + def decode(self, latents: torch.Tensor) -> torch.Tensor: + """Decode normalized latent tensors into an audio waveform.""" + original_shape = latents.shape + + # Ensure that Audio VAE is loaded on the correct device. + self.device_manager.ensure_model_loaded() + + latents = self.device_manager.move_to_load_device(latents) + latents = self.normalizer.denormalize(latents) + + target_shape = self.target_shape_from_latents(original_shape) + mel_spec = self.autoencoder.decode(latents, target_shape=target_shape) + + waveform = self.run_vocoder(mel_spec) + return self.device_manager.move_to_load_device(waveform) + + def target_shape_from_latents(self, latents_shape): + batch, _, time, _ = latents_shape + target_length = time * LATENT_DOWNSAMPLE_FACTOR + if self.autoencoder.causality_axis != CausalityAxis.NONE: + target_length -= LATENT_DOWNSAMPLE_FACTOR - 1 + return ( + batch, + self.autoencoder.decoder.out_ch, + target_length, + self.autoencoder.mel_bins, + ) + + def num_of_latents_from_frames(self, frames_number: int, frame_rate: int) -> int: + return math.ceil((float(frames_number) / frame_rate) * self.latents_per_second) + + def run_vocoder(self, mel_spec: torch.Tensor) -> torch.Tensor: + audio_channels = self.autoencoder.decoder.out_ch + vocoder_input = mel_spec.transpose(2, 3) + + if audio_channels == 1: + vocoder_input = vocoder_input.squeeze(1) + elif audio_channels != 2: + raise ValueError(f"Unsupported audio_channels: {audio_channels}") + + return self.vocoder(vocoder_input) + + @property + def sample_rate(self) -> int: + return int(self.autoencoder.sampling_rate) + + @property + def mel_hop_length(self) -> int: + return int(self.autoencoder.mel_hop_length) + + @property + def mel_bins(self) -> int: + return int(self.autoencoder.mel_bins) + + @property + def latent_channels(self) -> int: + return int(self.autoencoder.decoder.z_channels) + + @property + def latent_frequency_bins(self) -> int: + return int(self.mel_bins // LATENT_DOWNSAMPLE_FACTOR) + + @property + def latents_per_second(self) -> float: + return self.sample_rate / self.mel_hop_length / LATENT_DOWNSAMPLE_FACTOR + + @property + def output_sample_rate(self) -> int: + output_rate = getattr(self.vocoder, "output_sample_rate", None) + if output_rate is not None: + return int(output_rate) + upsample_factor = getattr(self.vocoder, "upsample_factor", None) + if upsample_factor is None: + raise AttributeError( + "Vocoder is missing upsample_factor; cannot infer output sample rate" + ) + return int(self.sample_rate * upsample_factor / self.mel_hop_length) + + def memory_required(self, input_shape): + return self.device_manager.patcher.model_size() diff --git a/comfy/ldm/lightricks/vae/causal_audio_autoencoder.py b/comfy/ldm/lightricks/vae/causal_audio_autoencoder.py new file mode 100644 index 000000000..f12b9bb53 --- /dev/null +++ b/comfy/ldm/lightricks/vae/causal_audio_autoencoder.py @@ -0,0 +1,909 @@ +from __future__ import annotations +import torch +from torch import nn +from torch.nn import functional as F +from typing import Optional +from enum import Enum +from .pixel_norm import PixelNorm +import comfy.ops +import logging + +ops = comfy.ops.disable_weight_init + + +class StringConvertibleEnum(Enum): + """ + Base enum class that provides string-to-enum conversion functionality. + + This mixin adds a str_to_enum() class method that handles conversion from + strings, None, or existing enum instances with case-insensitive matching. + """ + + @classmethod + def str_to_enum(cls, value): + """ + Convert a string, enum instance, or None to the appropriate enum member. + + Args: + value: Can be an enum instance of this class, a string, or None + + Returns: + Enum member of this class + + Raises: + ValueError: If the value cannot be converted to a valid enum member + """ + # Already an enum instance of this class + if isinstance(value, cls): + return value + + # None maps to NONE member if it exists + if value is None: + if hasattr(cls, "NONE"): + return cls.NONE + raise ValueError(f"{cls.__name__} does not have a NONE member to map None to") + + # String conversion (case-insensitive) + if isinstance(value, str): + value_lower = value.lower() + + # Try to match against enum values + for member in cls: + # Handle members with None values + if member.value is None: + if value_lower == "none": + return member + # Handle members with string values + elif isinstance(member.value, str) and member.value.lower() == value_lower: + return member + + # Build helpful error message with valid values + valid_values = [] + for member in cls: + if member.value is None: + valid_values.append("none") + elif isinstance(member.value, str): + valid_values.append(member.value) + + raise ValueError(f"Invalid {cls.__name__} string: '{value}'. " f"Valid values are: {valid_values}") + + raise ValueError( + f"Cannot convert type {type(value).__name__} to {cls.__name__} enum. " + f"Expected string, None, or {cls.__name__} instance." + ) + + +class AttentionType(StringConvertibleEnum): + """Enum for specifying the attention mechanism type.""" + + VANILLA = "vanilla" + LINEAR = "linear" + NONE = "none" + + +class CausalityAxis(StringConvertibleEnum): + """Enum for specifying the causality axis in causal convolutions.""" + + NONE = None + WIDTH = "width" + HEIGHT = "height" + WIDTH_COMPATIBILITY = "width-compatibility" + + +def Normalize(in_channels, *, num_groups=32, normtype="group"): + if normtype == "group": + return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) + elif normtype == "pixel": + return PixelNorm(dim=1, eps=1e-6) + else: + raise ValueError(f"Invalid normalization type: {normtype}") + + +class CausalConv2d(nn.Module): + """ + A causal 2D convolution. + + This layer ensures that the output at time `t` only depends on inputs + at time `t` and earlier. It achieves this by applying asymmetric padding + to the time dimension (width) before the convolution. + """ + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + dilation=1, + groups=1, + bias=True, + causality_axis: CausalityAxis = CausalityAxis.HEIGHT, + ): + super().__init__() + + self.causality_axis = causality_axis + + # Ensure kernel_size and dilation are tuples + kernel_size = nn.modules.utils._pair(kernel_size) + dilation = nn.modules.utils._pair(dilation) + + # Calculate padding dimensions + pad_h = (kernel_size[0] - 1) * dilation[0] + pad_w = (kernel_size[1] - 1) * dilation[1] + + # The padding tuple for F.pad is (pad_left, pad_right, pad_top, pad_bottom) + match self.causality_axis: + case CausalityAxis.NONE: + self.padding = (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2) + case CausalityAxis.WIDTH | CausalityAxis.WIDTH_COMPATIBILITY: + self.padding = (pad_w, 0, pad_h // 2, pad_h - pad_h // 2) + case CausalityAxis.HEIGHT: + self.padding = (pad_w // 2, pad_w - pad_w // 2, pad_h, 0) + case _: + raise ValueError(f"Invalid causality_axis: {causality_axis}") + + # The internal convolution layer uses no padding, as we handle it manually + self.conv = ops.Conv2d( + in_channels, + out_channels, + kernel_size, + stride=stride, + padding=0, + dilation=dilation, + groups=groups, + bias=bias, + ) + + def forward(self, x): + # Apply causal padding before convolution + x = F.pad(x, self.padding) + return self.conv(x) + + +def make_conv2d( + in_channels, + out_channels, + kernel_size, + stride=1, + padding=None, + dilation=1, + groups=1, + bias=True, + causality_axis: Optional[CausalityAxis] = None, +): + """ + Create a 2D convolution layer that can be either causal or non-causal. + + Args: + in_channels: Number of input channels + out_channels: Number of output channels + kernel_size: Size of the convolution kernel + stride: Convolution stride + padding: Padding (if None, will be calculated based on causal flag) + dilation: Dilation rate + groups: Number of groups for grouped convolution + bias: Whether to use bias + causality_axis: Dimension along which to apply causality. + + Returns: + Either a regular Conv2d or CausalConv2d layer + """ + if causality_axis is not None: + # For causal convolution, padding is handled internally by CausalConv2d + return CausalConv2d(in_channels, out_channels, kernel_size, stride, dilation, groups, bias, causality_axis) + else: + # For non-causal convolution, use symmetric padding if not specified + if padding is None: + if isinstance(kernel_size, int): + padding = kernel_size // 2 + else: + padding = tuple(k // 2 for k in kernel_size) + return ops.Conv2d( + in_channels, + out_channels, + kernel_size, + stride, + padding, + dilation, + groups, + bias, + ) + + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv, causality_axis: CausalityAxis = CausalityAxis.HEIGHT): + super().__init__() + self.with_conv = with_conv + self.causality_axis = causality_axis + if self.with_conv: + self.conv = make_conv2d(in_channels, in_channels, kernel_size=3, stride=1, causality_axis=causality_axis) + + def forward(self, x): + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + if self.with_conv: + x = self.conv(x) + # Drop FIRST element in the causal axis to undo encoder's padding, while keeping the length 1 + 2 * n. + # For example, if the input is [0, 1, 2], after interpolation, the output is [0, 0, 1, 1, 2, 2]. + # The causal convolution will pad the first element as [-, -, 0, 0, 1, 1, 2, 2], + # So the output elements rely on the following windows: + # 0: [-,-,0] + # 1: [-,0,0] + # 2: [0,0,1] + # 3: [0,1,1] + # 4: [1,1,2] + # 5: [1,2,2] + # Notice that the first and second elements in the output rely only on the first element in the input, + # while all other elements rely on two elements in the input. + # So we can drop the first element to undo the padding (rather than the last element). + # This is a no-op for non-causal convolutions. + match self.causality_axis: + case CausalityAxis.NONE: + pass # x remains unchanged + case CausalityAxis.HEIGHT: + x = x[:, :, 1:, :] + case CausalityAxis.WIDTH: + x = x[:, :, :, 1:] + case CausalityAxis.WIDTH_COMPATIBILITY: + pass # x remains unchanged + case _: + raise ValueError(f"Invalid causality_axis: {self.causality_axis}") + + return x + + +class Downsample(nn.Module): + """ + A downsampling layer that can use either a strided convolution + or average pooling. Supports standard and causal padding for the + convolutional mode. + """ + + def __init__(self, in_channels, with_conv, causality_axis: CausalityAxis = CausalityAxis.WIDTH): + super().__init__() + self.with_conv = with_conv + self.causality_axis = causality_axis + + if self.causality_axis != CausalityAxis.NONE and not self.with_conv: + raise ValueError("causality is only supported when `with_conv=True`.") + + if self.with_conv: + # Do time downsampling here + # no asymmetric padding in torch conv, must do it ourselves + self.conv = ops.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) + + def forward(self, x): + if self.with_conv: + # (pad_left, pad_right, pad_top, pad_bottom) + match self.causality_axis: + case CausalityAxis.NONE: + pad = (0, 1, 0, 1) + case CausalityAxis.WIDTH: + pad = (2, 0, 0, 1) + case CausalityAxis.HEIGHT: + pad = (0, 1, 2, 0) + case CausalityAxis.WIDTH_COMPATIBILITY: + pad = (1, 0, 0, 1) + case _: + raise ValueError(f"Invalid causality_axis: {self.causality_axis}") + + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + # This branch is only taken if with_conv=False, which implies causality_axis is NONE. + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + + return x + + +class ResnetBlock(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout, + temb_channels=512, + norm_type="group", + causality_axis: CausalityAxis = CausalityAxis.HEIGHT, + ): + super().__init__() + self.causality_axis = causality_axis + + if self.causality_axis != CausalityAxis.NONE and norm_type == "group": + raise ValueError("Causal ResnetBlock with GroupNorm is not supported.") + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels, normtype=norm_type) + self.non_linearity = nn.SiLU() + self.conv1 = make_conv2d(in_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis) + if temb_channels > 0: + self.temb_proj = ops.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels, normtype=norm_type) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = make_conv2d(out_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = make_conv2d( + in_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis + ) + else: + self.nin_shortcut = make_conv2d( + in_channels, out_channels, kernel_size=1, stride=1, causality_axis=causality_axis + ) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = self.non_linearity(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(self.non_linearity(temb))[:, :, None, None] + + h = self.norm2(h) + h = self.non_linearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class AttnBlock(nn.Module): + def __init__(self, in_channels, norm_type="group"): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels, normtype=norm_type) + self.q = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) + self.k = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) + self.v = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) + self.proj_out = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = q.reshape(b, c, h * w).contiguous() + q = q.permute(0, 2, 1).contiguous() # b,hw,c + k = k.reshape(b, c, h * w).contiguous() # b,c,hw + w_ = torch.bmm(q, k).contiguous() # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b, c, h * w).contiguous() + w_ = w_.permute(0, 2, 1).contiguous() # b,hw,hw (first hw of k, second of q) + h_ = torch.bmm(v, w_).contiguous() # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] + h_ = h_.reshape(b, c, h, w).contiguous() + + h_ = self.proj_out(h_) + + return x + h_ + + +def make_attn(in_channels, attn_type="vanilla", norm_type="group"): + # Convert string to enum if needed + attn_type = AttentionType.str_to_enum(attn_type) + + if attn_type != AttentionType.NONE: + logging.info(f"making attention of type '{attn_type.value}' with {in_channels} in_channels") + else: + logging.info(f"making identity attention with {in_channels} in_channels") + + match attn_type: + case AttentionType.VANILLA: + return AttnBlock(in_channels, norm_type=norm_type) + case AttentionType.NONE: + return nn.Identity(in_channels) + case AttentionType.LINEAR: + raise NotImplementedError(f"Attention type {attn_type.value} is not supported yet.") + case _: + raise ValueError(f"Unknown attention type: {attn_type}") + + +class Encoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + double_z=True, + attn_type="vanilla", + mid_block_add_attention=True, + norm_type="group", + causality_axis=CausalityAxis.WIDTH.value, + **ignore_kwargs, + ): + super().__init__() + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.z_channels = z_channels + self.double_z = double_z + self.norm_type = norm_type + # Convert string to enum if needed (for config loading) + causality_axis = CausalityAxis.str_to_enum(causality_axis) + self.attn_type = AttentionType.str_to_enum(attn_type) + + # downsampling + self.conv_in = make_conv2d( + in_channels, + self.ch, + kernel_size=3, + stride=1, + causality_axis=causality_axis, + ) + + self.non_linearity = nn.SiLU() + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + + for _ in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type)) + + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in, resamp_with_conv, causality_axis=causality_axis) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + if mid_block_add_attention: + self.mid.attn_1 = make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type) + else: + self.mid.attn_1 = nn.Identity() + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + + # end + self.norm_out = Normalize(block_in, normtype=self.norm_type) + self.conv_out = make_conv2d( + block_in, + 2 * z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + causality_axis=causality_axis, + ) + + def forward(self, x): + """ + Forward pass through the encoder. + + Args: + x: Input tensor of shape [batch, channels, time, n_mels] + + Returns: + Encoded latent representation + """ + feature_maps = [self.conv_in(x)] + + # Process each resolution level (from high to low resolution) + for resolution_level in range(self.num_resolutions): + # Apply residual blocks at current resolution level + for block_idx in range(self.num_res_blocks): + # Apply ResNet block with optional timestep embedding + current_features = self.down[resolution_level].block[block_idx](feature_maps[-1], temb=None) + + # Apply attention if configured for this resolution level + if len(self.down[resolution_level].attn) > 0: + current_features = self.down[resolution_level].attn[block_idx](current_features) + + # Store processed features + feature_maps.append(current_features) + + # Downsample spatial dimensions (except at the final resolution level) + if resolution_level != self.num_resolutions - 1: + downsampled_features = self.down[resolution_level].downsample(feature_maps[-1]) + feature_maps.append(downsampled_features) + + # === MIDDLE PROCESSING PHASE === + # Take the lowest resolution features for middle processing + bottleneck_features = feature_maps[-1] + + # Apply first middle ResNet block + bottleneck_features = self.mid.block_1(bottleneck_features, temb=None) + + # Apply middle attention block + bottleneck_features = self.mid.attn_1(bottleneck_features) + + # Apply second middle ResNet block + bottleneck_features = self.mid.block_2(bottleneck_features, temb=None) + + # === OUTPUT PHASE === + # Normalize the bottleneck features + output_features = self.norm_out(bottleneck_features) + + # Apply non-linearity (SiLU activation) + output_features = self.non_linearity(output_features) + + # Final convolution to produce latent representation + # [batch, channels, time, n_mels] -> [batch, 2 * z_channels if double_z else z_channels, time, n_mels] + return self.conv_out(output_features) + + +class Decoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + give_pre_end=False, + tanh_out=False, + attn_type="vanilla", + mid_block_add_attention=True, + norm_type="group", + causality_axis=CausalityAxis.WIDTH.value, + **ignorekwargs, + ): + super().__init__() + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.out_ch = out_ch + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + self.norm_type = norm_type + self.z_channels = z_channels + # Convert string to enum if needed (for config loading) + causality_axis = CausalityAxis.str_to_enum(causality_axis) + self.attn_type = AttentionType.str_to_enum(attn_type) + + # compute block_in and curr_res at lowest res + block_in = ch * ch_mult[self.num_resolutions - 1] + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.z_shape = (1, z_channels, curr_res, curr_res) + + # z to block_in + self.conv_in = make_conv2d(z_channels, block_in, kernel_size=3, stride=1, causality_axis=causality_axis) + + self.non_linearity = nn.SiLU() + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + if mid_block_add_attention: + self.mid.attn_1 = make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type) + else: + self.mid.attn_1 = nn.Identity() + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + for _ in range(self.num_res_blocks + 1): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + norm_type=self.norm_type, + causality_axis=causality_axis, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv, causality_axis=causality_axis) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in, normtype=self.norm_type) + self.conv_out = make_conv2d(block_in, out_ch, kernel_size=3, stride=1, causality_axis=causality_axis) + + def _adjust_output_shape(self, decoded_output, target_shape): + """ + Adjust output shape to match target dimensions for variable-length audio. + + This function handles the common case where decoded audio spectrograms need to be + resized to match a specific target shape. + + Args: + decoded_output: Tensor of shape (batch, channels, time, frequency) + target_shape: Target shape tuple (batch, channels, time, frequency) + + Returns: + Tensor adjusted to match target_shape exactly + """ + # Current output shape: (batch, channels, time, frequency) + _, _, current_time, current_freq = decoded_output.shape + _, target_channels, target_time, target_freq = target_shape + + # Step 1: Crop first to avoid exceeding target dimensions + decoded_output = decoded_output[ + :, :target_channels, : min(current_time, target_time), : min(current_freq, target_freq) + ] + + # Step 2: Calculate padding needed for time and frequency dimensions + time_padding_needed = target_time - decoded_output.shape[2] + freq_padding_needed = target_freq - decoded_output.shape[3] + + # Step 3: Apply padding if needed + if time_padding_needed > 0 or freq_padding_needed > 0: + # PyTorch padding format: (pad_left, pad_right, pad_top, pad_bottom) + # For audio: pad_left/right = frequency, pad_top/bottom = time + padding = ( + 0, + max(freq_padding_needed, 0), # frequency padding (left, right) + 0, + max(time_padding_needed, 0), # time padding (top, bottom) + ) + decoded_output = F.pad(decoded_output, padding) + + # Step 4: Final safety crop to ensure exact target shape + decoded_output = decoded_output[:, :target_channels, :target_time, :target_freq] + + return decoded_output + + def get_config(self): + return { + "ch": self.ch, + "out_ch": self.out_ch, + "ch_mult": self.ch_mult, + "num_res_blocks": self.num_res_blocks, + "in_channels": self.in_channels, + "resolution": self.resolution, + "z_channels": self.z_channels, + } + + def forward(self, latent_features, target_shape=None): + """ + Decode latent features back to audio spectrograms. + + Args: + latent_features: Encoded latent representation of shape (batch, channels, height, width) + target_shape: Optional target output shape (batch, channels, time, frequency) + If provided, output will be cropped/padded to match this shape + + Returns: + Reconstructed audio spectrogram of shape (batch, channels, time, frequency) + """ + assert target_shape is not None, "Target shape is required for CausalAudioAutoencoder Decoder" + + # Transform latent features to decoder's internal feature dimension + hidden_features = self.conv_in(latent_features) + + # Middle processing + hidden_features = self.mid.block_1(hidden_features, temb=None) + hidden_features = self.mid.attn_1(hidden_features) + hidden_features = self.mid.block_2(hidden_features, temb=None) + + # Upsampling + # Progressively increase spatial resolution from lowest to highest + for resolution_level in reversed(range(self.num_resolutions)): + # Apply residual blocks at current resolution level + for block_index in range(self.num_res_blocks + 1): + hidden_features = self.up[resolution_level].block[block_index](hidden_features, temb=None) + + if len(self.up[resolution_level].attn) > 0: + hidden_features = self.up[resolution_level].attn[block_index](hidden_features) + + if resolution_level != 0: + hidden_features = self.up[resolution_level].upsample(hidden_features) + + # Output + if self.give_pre_end: + # Return intermediate features before final processing (for debugging/analysis) + decoded_output = hidden_features + else: + # Standard output path: normalize, activate, and convert to output channels + # Final normalization layer + hidden_features = self.norm_out(hidden_features) + + # Apply SiLU (Swish) activation function + hidden_features = self.non_linearity(hidden_features) + + # Final convolution to map to output channels (typically 2 for stereo audio) + decoded_output = self.conv_out(hidden_features) + + # Optional tanh activation to bound output values to [-1, 1] range + if self.tanh_out: + decoded_output = torch.tanh(decoded_output) + + # Adjust shape for audio data + if target_shape is not None: + decoded_output = self._adjust_output_shape(decoded_output, target_shape) + + return decoded_output + + +class processor(nn.Module): + def __init__(self): + super().__init__() + self.register_buffer("std-of-means", torch.empty(128)) + self.register_buffer("mean-of-means", torch.empty(128)) + + def un_normalize(self, x): + return (x * self.get_buffer("std-of-means").to(x)) + self.get_buffer("mean-of-means").to(x) + + def normalize(self, x): + return (x - self.get_buffer("mean-of-means").to(x)) / self.get_buffer("std-of-means").to(x) + + +class CausalAudioAutoencoder(nn.Module): + def __init__(self, config=None): + super().__init__() + + if config is None: + config = self._guess_config() + + # Extract encoder and decoder configs from the new format + model_config = config.get("model", {}).get("params", {}) + variables_config = config.get("variables", {}) + + self.sampling_rate = variables_config.get( + "sampling_rate", + model_config.get("sampling_rate", config.get("sampling_rate", 16000)), + ) + encoder_config = model_config.get("encoder", model_config.get("ddconfig", {})) + decoder_config = model_config.get("decoder", encoder_config) + + # Load mel spectrogram parameters + self.mel_bins = encoder_config.get("mel_bins", 64) + self.mel_hop_length = model_config.get("preprocessing", {}).get("stft", {}).get("hop_length", 160) + self.n_fft = model_config.get("preprocessing", {}).get("stft", {}).get("filter_length", 1024) + + # Store causality configuration at VAE level (not just in encoder internals) + causality_axis_value = encoder_config.get("causality_axis", CausalityAxis.WIDTH.value) + self.causality_axis = CausalityAxis.str_to_enum(causality_axis_value) + self.is_causal = self.causality_axis == CausalityAxis.HEIGHT + + self.encoder = Encoder(**encoder_config) + self.decoder = Decoder(**decoder_config) + + self.per_channel_statistics = processor() + + def _guess_config(self): + encoder_config = { + # Required parameters - based on ltx-video-av-1679000 model metadata + "ch": 128, + "out_ch": 8, + "ch_mult": [1, 2, 4], # Based on metadata: [1, 2, 4] not [1, 2, 4, 8] + "num_res_blocks": 2, + "attn_resolutions": [], # Based on metadata: empty list, no attention + "dropout": 0.0, + "resamp_with_conv": True, + "in_channels": 2, # stereo + "resolution": 256, + "z_channels": 8, + "double_z": True, + "attn_type": "vanilla", + "mid_block_add_attention": False, # Based on metadata: false + "norm_type": "pixel", + "causality_axis": "height", # Based on metadata + "mel_bins": 64, # Based on metadata: mel_bins = 64 + } + + decoder_config = { + # Inherits encoder config, can override specific params + **encoder_config, + "out_ch": 2, # Stereo audio output (2 channels) + "give_pre_end": False, + "tanh_out": False, + } + + config = { + "_class_name": "CausalAudioAutoencoder", + "sampling_rate": 16000, + "model": { + "params": { + "encoder": encoder_config, + "decoder": decoder_config, + } + }, + } + + return config + + def get_config(self): + return { + "sampling_rate": self.sampling_rate, + "mel_bins": self.mel_bins, + "mel_hop_length": self.mel_hop_length, + "n_fft": self.n_fft, + "causality_axis": self.causality_axis.value, + "is_causal": self.is_causal, + } + + def encode(self, x): + return self.encoder(x) + + def decode(self, x, target_shape=None): + return self.decoder(x, target_shape=target_shape) diff --git a/comfy/ldm/lightricks/vocoders/vocoder.py b/comfy/ldm/lightricks/vocoders/vocoder.py new file mode 100644 index 000000000..b1f15f2c5 --- /dev/null +++ b/comfy/ldm/lightricks/vocoders/vocoder.py @@ -0,0 +1,213 @@ +import torch +import torch.nn.functional as F +import torch.nn as nn +import comfy.ops +import numpy as np + +ops = comfy.ops.disable_weight_init + +LRELU_SLOPE = 0.1 + +def get_padding(kernel_size, dilation=1): + return int((kernel_size * dilation - dilation) / 2) + + +class ResBlock1(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock1, self).__init__() + self.convs1 = nn.ModuleList( + [ + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ), + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ), + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]), + ), + ] + ) + + self.convs2 = nn.ModuleList( + [ + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ), + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ), + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ), + ] + ) + + def forward(self, x): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + xt = c2(xt) + x = xt + x + return x + + +class ResBlock2(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3)): + super(ResBlock2, self).__init__() + self.convs = nn.ModuleList( + [ + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ), + ops.Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ), + ] + ) + + def forward(self, x): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + xt = c(xt) + x = xt + x + return x + + +class Vocoder(torch.nn.Module): + """ + Vocoder model for synthesizing audio from spectrograms, based on: https://github.com/jik876/hifi-gan. + + """ + + def __init__(self, config=None): + super(Vocoder, self).__init__() + + if config is None: + config = self.get_default_config() + + resblock_kernel_sizes = config.get("resblock_kernel_sizes", [3, 7, 11]) + upsample_rates = config.get("upsample_rates", [6, 5, 2, 2, 2]) + upsample_kernel_sizes = config.get("upsample_kernel_sizes", [16, 15, 8, 4, 4]) + resblock_dilation_sizes = config.get("resblock_dilation_sizes", [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) + upsample_initial_channel = config.get("upsample_initial_channel", 1024) + stereo = config.get("stereo", True) + resblock = config.get("resblock", "1") + + self.output_sample_rate = config.get("output_sample_rate") + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + in_channels = 128 if stereo else 64 + self.conv_pre = ops.Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3) + resblock_class = ResBlock1 if resblock == "1" else ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append( + ops.ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): + self.resblocks.append(resblock_class(ch, k, d)) + + out_channels = 2 if stereo else 1 + self.conv_post = ops.Conv1d(ch, out_channels, 7, 1, padding=3) + + self.upsample_factor = np.prod([self.ups[i].stride[0] for i in range(len(self.ups))]) + + def get_default_config(self): + """Generate default configuration for the vocoder.""" + + config = { + "resblock_kernel_sizes": [3, 7, 11], + "upsample_rates": [6, 5, 2, 2, 2], + "upsample_kernel_sizes": [16, 15, 8, 4, 4], + "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], + "upsample_initial_channel": 1024, + "stereo": True, + "resblock": "1", + } + + return config + + def forward(self, x): + """ + Forward pass of the vocoder. + + Args: + x: Input spectrogram tensor. Can be: + - 3D: (batch_size, channels, time_steps) for mono + - 4D: (batch_size, 2, channels, time_steps) for stereo + + Returns: + Audio tensor of shape (batch_size, out_channels, audio_length) + """ + if x.dim() == 4: # stereo + assert x.shape[1] == 2, "Input must have 2 channels for stereo" + x = torch.cat((x[:, 0, :, :], x[:, 1, :, :]), dim=1) + x = self.conv_pre(x) + for i in range(self.num_upsamples): + x = F.leaky_relu(x, LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x diff --git a/comfy/model_base.py b/comfy/model_base.py index c4f3c0639..49efd700b 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -20,6 +20,7 @@ import comfy.ldm.hunyuan3dv2_1 import comfy.ldm.hunyuan3dv2_1.hunyuandit import torch import logging +import comfy.ldm.lightricks.av_model from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep from comfy.ldm.cascade.stage_c import StageC from comfy.ldm.cascade.stage_b import StageB @@ -946,7 +947,7 @@ class GenmoMochi(BaseModel): class LTXV(BaseModel): def __init__(self, model_config, model_type=ModelType.FLUX, device=None): - super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel) #TODO + super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel) def extra_conds(self, **kwargs): out = super().extra_conds(**kwargs) @@ -977,6 +978,60 @@ class LTXV(BaseModel): def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs): return latent_image +class LTXAV(BaseModel): + def __init__(self, model_config, model_type=ModelType.FLUX, device=None): + super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.av_model.LTXAVModel) #TODO + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + attention_mask = kwargs.get("attention_mask", None) + if attention_mask is not None: + out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + + out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25)) + + denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) + + audio_denoise_mask = None + if denoise_mask is not None and "latent_shapes" in kwargs: + denoise_mask = utils.unpack_latents(denoise_mask, kwargs["latent_shapes"]) + if len(denoise_mask) > 1: + audio_denoise_mask = denoise_mask[1] + denoise_mask = denoise_mask[0] + + if denoise_mask is not None: + out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask) + + if audio_denoise_mask is not None: + out["audio_denoise_mask"] = comfy.conds.CONDRegular(audio_denoise_mask) + + keyframe_idxs = kwargs.get("keyframe_idxs", None) + if keyframe_idxs is not None: + out['keyframe_idxs'] = comfy.conds.CONDRegular(keyframe_idxs) + + latent_shapes = kwargs.get("latent_shapes", None) + if latent_shapes is not None: + out['latent_shapes'] = comfy.conds.CONDConstant(latent_shapes) + + return out + + def process_timestep(self, timestep, x, denoise_mask=None, audio_denoise_mask=None, **kwargs): + v_timestep = timestep + a_timestep = timestep + + if denoise_mask is not None: + v_timestep = self.diffusion_model.patchifier.patchify(((denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (denoise_mask.ndim - 1)))[:, :1])[0] + if audio_denoise_mask is not None: + a_timestep = self.diffusion_model.a_patchifier.patchify(((audio_denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (audio_denoise_mask.ndim - 1)))[:, :1, :, :1])[0] + + return v_timestep, a_timestep + + def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs): + return latent_image + class HunyuanVideo(BaseModel): def __init__(self, model_config, model_type=ModelType.FLOW, device=None): super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo) diff --git a/comfy/model_detection.py b/comfy/model_detection.py index 539e296ed..0853b3aec 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -305,7 +305,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None): if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv dit_config = {} - dit_config["image_model"] = "ltxv" + dit_config["image_model"] = "ltxav" if f'{key_prefix}audio_adaln_single.linear.weight' in state_dict_keys else "ltxv" dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.') shape = state_dict['{}transformer_blocks.0.attn2.to_k.weight'.format(key_prefix)].shape dit_config["attention_head_dim"] = shape[0] // 32 diff --git a/comfy/sd.py b/comfy/sd.py index 7de7dd9c6..32157e18b 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -1041,7 +1041,8 @@ class TEModel(Enum): MISTRAL3_24B_PRUNED_FLUX2 = 15 QWEN3_4B = 16 QWEN3_2B = 17 - JINA_CLIP_2 = 18 + GEMMA_3_12B = 18 + JINA_CLIP_2 = 19 def detect_te_model(sd): @@ -1067,6 +1068,8 @@ def detect_te_model(sd): return TEModel.BYT5_SMALL_GLYPH return TEModel.T5_BASE if 'model.layers.0.post_feedforward_layernorm.weight' in sd: + if 'model.layers.47.self_attn.q_norm.weight' in sd: + return TEModel.GEMMA_3_12B if 'model.layers.0.self_attn.q_norm.weight' in sd: return TEModel.GEMMA_3_4B return TEModel.GEMMA_2_2B @@ -1271,6 +1274,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip elif clip_type == CLIPType.KANDINSKY5_IMAGE: clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage + elif clip_type == CLIPType.LTXV: + clip_target.clip = comfy.text_encoders.lt.ltxav_te(**llama_detect(clip_data)) + clip_target.tokenizer = comfy.text_encoders.lt.LTXAVGemmaTokenizer + tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None) elif clip_type == CLIPType.NEWBIE: clip_target.clip = comfy.text_encoders.newbie.te(**llama_detect(clip_data)) clip_target.tokenizer = comfy.text_encoders.newbie.NewBieTokenizer diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 1888f35ba..ee9a79001 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -836,6 +836,21 @@ class LTXV(supported_models_base.BASE): t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref)) return supported_models_base.ClipTarget(comfy.text_encoders.lt.LTXVT5Tokenizer, comfy.text_encoders.lt.ltxv_te(**t5_detect)) +class LTXAV(LTXV): + unet_config = { + "image_model": "ltxav", + } + + latent_format = latent_formats.LTXAV + + def __init__(self, unet_config): + super().__init__(unet_config) + self.memory_usage_factor = 0.055 # TODO + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.LTXAV(self, device=device) + return out + class HunyuanVideo(supported_models_base.BASE): unet_config = { "image_model": "hunyuan_video", @@ -1536,6 +1551,6 @@ class Kandinsky5Image(Kandinsky5): return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect)) -models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5] +models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, LTXAV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5] models += [SVD_img2vid] diff --git a/comfy/text_encoders/llama.py b/comfy/text_encoders/llama.py index faa4e1de8..76731576b 100644 --- a/comfy/text_encoders/llama.py +++ b/comfy/text_encoders/llama.py @@ -7,6 +7,7 @@ import math from comfy.ldm.modules.attention import optimized_attention_for_device import comfy.model_management import comfy.ldm.common_dit +import comfy.clip_model from . import qwen_vl @@ -188,6 +189,31 @@ class Gemma3_4B_Config: rope_scale = [8.0, 1.0] final_norm: bool = True +@dataclass +class Gemma3_12B_Config: + vocab_size: int = 262208 + hidden_size: int = 3840 + intermediate_size: int = 15360 + num_hidden_layers: int = 48 + num_attention_heads: int = 16 + num_key_value_heads: int = 8 + max_position_embeddings: int = 131072 + rms_norm_eps: float = 1e-6 + rope_theta = [1000000.0, 10000.0] + transformer_type: str = "gemma3" + head_dim = 256 + rms_norm_add = True + mlp_activation = "gelu_pytorch_tanh" + qkv_bias = False + rope_dims = None + q_norm = "gemma3" + k_norm = "gemma3" + sliding_attention = [1024, 1024, 1024, 1024, 1024, False] + rope_scale = [8.0, 1.0] + final_norm: bool = True + vision_config = {"num_channels": 3, "hidden_act": "gelu_pytorch_tanh", "hidden_size": 1152, "image_size": 896, "intermediate_size": 4304, "model_type": "siglip_vision_model", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14} + mm_tokens_per_image = 256 + class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None): super().__init__() @@ -520,6 +546,41 @@ class Llama2_(nn.Module): return x, intermediate + +class Gemma3MultiModalProjector(torch.nn.Module): + def __init__(self, config, dtype, device, operations): + super().__init__() + + self.mm_input_projection_weight = nn.Parameter( + torch.empty(config.vision_config["hidden_size"], config.hidden_size, device=device, dtype=dtype) + ) + + self.mm_soft_emb_norm = RMSNorm(config.vision_config["hidden_size"], eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype) + + self.patches_per_image = int(config.vision_config["image_size"] // config.vision_config["patch_size"]) + self.tokens_per_side = int(config.mm_tokens_per_image**0.5) + self.kernel_size = self.patches_per_image // self.tokens_per_side + self.avg_pool = nn.AvgPool2d(kernel_size=self.kernel_size, stride=self.kernel_size) + + def forward(self, vision_outputs: torch.Tensor): + batch_size, _, seq_length = vision_outputs.shape + + reshaped_vision_outputs = vision_outputs.transpose(1, 2) + reshaped_vision_outputs = reshaped_vision_outputs.reshape( + batch_size, seq_length, self.patches_per_image, self.patches_per_image + ) + reshaped_vision_outputs = reshaped_vision_outputs.contiguous() + + pooled_vision_outputs = self.avg_pool(reshaped_vision_outputs) + pooled_vision_outputs = pooled_vision_outputs.flatten(2) + pooled_vision_outputs = pooled_vision_outputs.transpose(1, 2) + + normed_vision_outputs = self.mm_soft_emb_norm(pooled_vision_outputs) + + projected_vision_outputs = torch.matmul(normed_vision_outputs, comfy.model_management.cast_to_device(self.mm_input_projection_weight, device=normed_vision_outputs.device, dtype=normed_vision_outputs.dtype)) + return projected_vision_outputs.type_as(vision_outputs) + + class BaseLlama: def get_input_embeddings(self): return self.model.embed_tokens @@ -636,3 +697,21 @@ class Gemma3_4B(BaseLlama, torch.nn.Module): self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) self.dtype = dtype + +class Gemma3_12B(BaseLlama, torch.nn.Module): + def __init__(self, config_dict, dtype, device, operations): + super().__init__() + config = Gemma3_12B_Config(**config_dict) + self.num_layers = config.num_hidden_layers + + self.model = Llama2_(config, device=device, dtype=dtype, ops=operations) + self.multi_modal_projector = Gemma3MultiModalProjector(config, dtype, device, operations) + self.vision_model = comfy.clip_model.CLIPVision(config.vision_config, dtype, device, operations) + self.dtype = dtype + self.image_size = config.vision_config["image_size"] + + def preprocess_embed(self, embed, device): + if embed["type"] == "image": + image = comfy.clip_model.clip_preprocess(embed["data"], size=self.image_size, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], crop=True) + return self.multi_modal_projector(self.vision_model(image.to(device, dtype=torch.float32))[0]), None + return None, None diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index 48ea67e67..2c2d453e8 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -1,7 +1,11 @@ from comfy import sd1_clip import os from transformers import T5TokenizerFast +from .spiece_tokenizer import SPieceTokenizer import comfy.text_encoders.genmo +from comfy.ldm.lightricks.embeddings_connector import Embeddings1DConnector +import torch +import comfy.utils class T5XXLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): @@ -16,3 +20,110 @@ class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer): def ltxv_te(*args, **kwargs): return comfy.text_encoders.genmo.mochi_te(*args, **kwargs) + + +class Gemma3_12BTokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer = tokenizer_data.get("spiece_model", None) + super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data) + + def state_dict(self): + return {"spiece_model": self.tokenizer.serialize_model()} + +class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma3_12b", tokenizer=Gemma3_12BTokenizer) + +class Gemma3_12BModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}): + llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None) + if llama_scaled_fp8 is not None: + model_options = model_options.copy() + model_options["scaled_fp8"] = llama_scaled_fp8 + + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) + + def tokenize_with_weights(self, text, return_word_ids=False, llama_template="{}", image_embeds=None, **kwargs): + text = llama_template.format(text) + text_tokens = super().tokenize_with_weights(text, return_word_ids) + embed_count = 0 + for k in text_tokens: + tt = text_tokens[k] + for r in tt: + for i in range(len(r)): + if r[i][0] == 262144: + if image_embeds is not None and embed_count < image_embeds.shape[0]: + r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image"},) + r[i][1:] + embed_count += 1 + return text_tokens + +class LTXAVTEModel(torch.nn.Module): + def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}): + super().__init__() + self.dtypes = set() + self.dtypes.add(dtype) + + self.gemma3_12b = Gemma3_12BModel(device=device, dtype=dtype_llama, model_options=model_options, layer="all", layer_idx=None) + self.dtypes.add(dtype_llama) + + operations = self.gemma3_12b.operations # TODO + self.text_embedding_projection = operations.Linear(3840 * 49, 3840, bias=False, dtype=dtype, device=device) + + self.audio_embeddings_connector = Embeddings1DConnector( + split_rope=True, + double_precision_rope=True, + dtype=dtype, + device=device, + operations=operations, + ) + + self.video_embeddings_connector = Embeddings1DConnector( + split_rope=True, + double_precision_rope=True, + dtype=dtype, + device=device, + operations=operations, + ) + + def set_clip_options(self, options): + self.gemma3_12b.set_clip_options(options) + + def reset_clip_options(self): + self.gemma3_12b.reset_clip_options() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs = token_weight_pairs["gemma3_12b"] + + out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs) + out_device = out.device + out = out.movedim(1, -1).to(self.text_embedding_projection.weight.device) + out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6) + out = out.reshape((out.shape[0], out.shape[1], -1)) + out = self.text_embedding_projection(out) + out_vid = self.video_embeddings_connector(out)[0] + out_audio = self.audio_embeddings_connector(out)[0] + out = torch.concat((out_vid, out_audio), dim=-1) + + return out.to(out_device), pooled + + def load_sd(self, sd): + if "model.layers.47.self_attn.q_norm.weight" in sd: + return self.gemma3_12b.load_sd(sd) + else: + sdo = comfy.utils.state_dict_prefix_replace(sd, {"text_embedding_projection.aggregate_embed.weight": "text_embedding_projection.weight", "model.diffusion_model.video_embeddings_connector.": "video_embeddings_connector.", "model.diffusion_model.audio_embeddings_connector.": "audio_embeddings_connector."}, filter_keys=True) + if len(sdo) == 0: + sdo = sd + + return self.load_state_dict(sdo, strict=False) + + +def ltxav_te(dtype_llama=None, llama_scaled_fp8=None): + class LTXAVTEModel_(LTXAVTEModel): + def __init__(self, device="cpu", dtype=None, model_options={}): + if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: + model_options = model_options.copy() + model_options["llama_scaled_fp8"] = llama_scaled_fp8 + if dtype_llama is not None: + dtype = dtype_llama + super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options) + return LTXAVTEModel_ diff --git a/comfy/utils.py b/comfy/utils.py index e4162d7ac..ffa98c9b1 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -1198,7 +1198,7 @@ def unpack_latents(combined_latent, latent_shapes): combined_latent = combined_latent[:, :, cut:] output_tensors.append(tens.reshape([tens.shape[0]] + list(shape)[1:])) else: - output_tensors = combined_latent + output_tensors = [combined_latent] return output_tensors def detect_layer_quantization(state_dict, prefix): diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index c7916443c..94ad5e8a8 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -112,7 +112,7 @@ class VAEDecodeAudio(IO.ComfyNode): std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 std[std < 1.0] = 1.0 audio /= std - return IO.NodeOutput({"waveform": audio, "sample_rate": 44100}) + return IO.NodeOutput({"waveform": audio, "sample_rate": 44100 if "sample_rate" not in samples else samples["sample_rate"]}) decode = execute # TODO: remove diff --git a/comfy_extras/nodes_hunyuan.py b/comfy_extras/nodes_hunyuan.py index 32be182f1..ceff657d3 100644 --- a/comfy_extras/nodes_hunyuan.py +++ b/comfy_extras/nodes_hunyuan.py @@ -5,7 +5,9 @@ import comfy.model_management from typing_extensions import override from comfy_api.latest import ComfyExtension, io from comfy.ldm.hunyuan_video.upsampler import HunyuanVideo15SRModel +from comfy.ldm.lightricks.latent_upsampler import LatentUpsampler import folder_paths +import json class CLIPTextEncodeHunyuanDiT(io.ComfyNode): @classmethod @@ -186,7 +188,7 @@ class LatentUpscaleModelLoader(io.ComfyNode): @classmethod def execute(cls, model_name) -> io.NodeOutput: model_path = folder_paths.get_full_path_or_raise("latent_upscale_models", model_name) - sd = comfy.utils.load_torch_file(model_path, safe_load=True) + sd, metadata = comfy.utils.load_torch_file(model_path, safe_load=True, return_metadata=True) if "blocks.0.block.0.conv.weight" in sd: config = { @@ -197,6 +199,8 @@ class LatentUpscaleModelLoader(io.ComfyNode): "global_residual": False, } model_type = "720p" + model = HunyuanVideo15SRModel(model_type, config) + model.load_sd(sd) elif "up.0.block.0.conv1.conv.weight" in sd: sd = {key.replace("nin_shortcut", "nin_shortcut.conv", 1): value for key, value in sd.items()} config = { @@ -205,9 +209,12 @@ class LatentUpscaleModelLoader(io.ComfyNode): "block_out_channels": tuple(sd[f"up.{i}.block.0.conv1.conv.weight"].shape[0] for i in range(len([k for k in sd.keys() if k.startswith("up.") and k.endswith(".block.0.conv1.conv.weight")]))), } model_type = "1080p" - - model = HunyuanVideo15SRModel(model_type, config) - model.load_sd(sd) + model = HunyuanVideo15SRModel(model_type, config) + model.load_sd(sd) + elif "post_upsample_res_blocks.0.conv2.bias" in sd: + config = json.loads(metadata["config"]) + model = LatentUpsampler.from_config(config).to(dtype=comfy.model_management.vae_dtype(allowed_dtypes=[torch.bfloat16, torch.float32])) + model.load_state_dict(sd) return io.NodeOutput(model) diff --git a/comfy_extras/nodes_lt.py b/comfy_extras/nodes_lt.py index 50da5f4eb..b91a22309 100644 --- a/comfy_extras/nodes_lt.py +++ b/comfy_extras/nodes_lt.py @@ -81,6 +81,59 @@ class LTXVImgToVideo(io.ComfyNode): generate = execute # TODO: remove +class LTXVImgToVideoInplace(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LTXVImgToVideoInplace", + category="conditioning/video_models", + inputs=[ + io.Vae.Input("vae"), + io.Image.Input("image"), + io.Latent.Input("latent"), + io.Float.Input("strength", default=1.0, min=0.0, max=1.0), + io.Boolean.Input("bypass", default=False, tooltip="Bypass the conditioning.") + ], + outputs=[ + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, vae, image, latent, strength, bypass=False) -> io.NodeOutput: + if bypass: + return (latent,) + + samples = latent["samples"] + _, height_scale_factor, width_scale_factor = ( + vae.downscale_index_formula + ) + + batch, _, latent_frames, latent_height, latent_width = samples.shape + width = latent_width * width_scale_factor + height = latent_height * height_scale_factor + + if image.shape[1] != height or image.shape[2] != width: + pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) + else: + pixels = image + encode_pixels = pixels[:, :, :, :3] + t = vae.encode(encode_pixels) + + samples[:, :, :t.shape[2]] = t + + conditioning_latent_frames_mask = torch.ones( + (batch, 1, latent_frames, 1, 1), + dtype=torch.float32, + device=samples.device, + ) + conditioning_latent_frames_mask[:, :, :t.shape[2]] = 1.0 - strength + + return io.NodeOutput({"samples": samples, "noise_mask": conditioning_latent_frames_mask}) + + generate = execute # TODO: remove + + def conditioning_get_any_value(conditioning, key, default=None): for t in conditioning: if key in t[1]: @@ -106,12 +159,12 @@ def get_keyframe_idxs(cond): keyframe_idxs = conditioning_get_any_value(cond, "keyframe_idxs", None) if keyframe_idxs is None: return None, 0 - num_keyframes = torch.unique(keyframe_idxs[:, 0]).shape[0] + # keyframe_idxs contains start/end positions (last dimension), checking for unqiue values only for start + num_keyframes = torch.unique(keyframe_idxs[:, 0, :, 0]).shape[0] return keyframe_idxs, num_keyframes class LTXVAddGuide(io.ComfyNode): - NUM_PREFIX_FRAMES = 2 - PATCHIFIER = SymmetricPatchifier(1) + PATCHIFIER = SymmetricPatchifier(1, start_end=True) @classmethod def define_schema(cls): @@ -182,26 +235,35 @@ class LTXVAddGuide(io.ComfyNode): return node_helpers.conditioning_set_values(cond, {"keyframe_idxs": keyframe_idxs}) @classmethod - def append_keyframe(cls, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors): - _, latent_idx = cls.get_latent_index( - cond=positive, - latent_length=latent_image.shape[2], - guide_length=guiding_latent.shape[2], - frame_idx=frame_idx, - scale_factors=scale_factors, - ) - noise_mask[:, :, latent_idx:latent_idx + guiding_latent.shape[2]] = 1.0 + def append_keyframe(cls, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors, guide_mask=None, in_channels=128): + if latent_image.shape[1] != in_channels or guiding_latent.shape[1] != in_channels: + raise ValueError("Adding guide to a combined AV latent is not supported.") positive = cls.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors) negative = cls.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors) - mask = torch.full( - (noise_mask.shape[0], 1, guiding_latent.shape[2], noise_mask.shape[3], noise_mask.shape[4]), - 1.0 - strength, - dtype=noise_mask.dtype, - device=noise_mask.device, - ) + if guide_mask is not None: + target_h = max(noise_mask.shape[3], guide_mask.shape[3]) + target_w = max(noise_mask.shape[4], guide_mask.shape[4]) + if noise_mask.shape[3] == 1 or noise_mask.shape[4] == 1: + noise_mask = noise_mask.expand(-1, -1, -1, target_h, target_w) + + if guide_mask.shape[3] == 1 or guide_mask.shape[4] == 1: + guide_mask = guide_mask.expand(-1, -1, -1, target_h, target_w) + mask = guide_mask - strength + else: + mask = torch.full( + (noise_mask.shape[0], 1, guiding_latent.shape[2], noise_mask.shape[3], noise_mask.shape[4]), + 1.0 - strength, + dtype=noise_mask.dtype, + device=noise_mask.device, + ) + # This solves audio video combined latent case where latent_image has audio latent concatenated + # in channel dimension with video latent. The solution is to pad guiding latent accordingly. + if latent_image.shape[1] > guiding_latent.shape[1]: + pad_len = latent_image.shape[1] - guiding_latent.shape[1] + guiding_latent = torch.nn.functional.pad(guiding_latent, pad=(0, 0, 0, 0, 0, 0, 0, pad_len), value=0) latent_image = torch.cat([latent_image, guiding_latent], dim=2) noise_mask = torch.cat([noise_mask, mask], dim=2) return positive, negative, latent_image, noise_mask @@ -238,33 +300,17 @@ class LTXVAddGuide(io.ComfyNode): frame_idx, latent_idx = cls.get_latent_index(positive, latent_length, len(image), frame_idx, scale_factors) assert latent_idx + t.shape[2] <= latent_length, "Conditioning frames exceed the length of the latent sequence." - num_prefix_frames = min(cls.NUM_PREFIX_FRAMES, t.shape[2]) - positive, negative, latent_image, noise_mask = cls.append_keyframe( positive, negative, frame_idx, latent_image, noise_mask, - t[:, :, :num_prefix_frames], + t, strength, scale_factors, ) - latent_idx += num_prefix_frames - - t = t[:, :, num_prefix_frames:] - if t.shape[2] == 0: - return io.NodeOutput(positive, negative, {"samples": latent_image, "noise_mask": noise_mask}) - - latent_image, noise_mask = cls.replace_latent_frames( - latent_image, - noise_mask, - t, - latent_idx, - strength, - ) - return io.NodeOutput(positive, negative, {"samples": latent_image, "noise_mask": noise_mask}) generate = execute # TODO: remove @@ -507,18 +553,90 @@ class LTXVPreprocess(io.ComfyNode): preprocess = execute # TODO: remove + +import comfy.nested_tensor +class LTXVConcatAVLatent(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LTXVConcatAVLatent", + category="latent/video/ltxv", + inputs=[ + io.Latent.Input("video_latent"), + io.Latent.Input("audio_latent"), + ], + outputs=[ + io.Latent.Output(display_name="latent"), + ], + ) + + @classmethod + def execute(cls, video_latent, audio_latent) -> io.NodeOutput: + output = {} + output.update(video_latent) + output.update(audio_latent) + video_noise_mask = video_latent.get("noise_mask", None) + audio_noise_mask = audio_latent.get("noise_mask", None) + + if video_noise_mask is not None or audio_noise_mask is not None: + if video_noise_mask is None: + video_noise_mask = torch.ones_like(video_latent["samples"]) + if audio_noise_mask is None: + audio_noise_mask = torch.ones_like(audio_latent["samples"]) + output["noise_mask"] = comfy.nested_tensor.NestedTensor((video_noise_mask, audio_noise_mask)) + + output["samples"] = comfy.nested_tensor.NestedTensor((video_latent["samples"], audio_latent["samples"])) + + return io.NodeOutput(output) + + +class LTXVSeparateAVLatent(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="LTXVSeparateAVLatent", + category="latent/video/ltxv", + description="LTXV Separate AV Latent", + inputs=[ + io.Latent.Input("av_latent"), + ], + outputs=[ + io.Latent.Output(display_name="video_latent"), + io.Latent.Output(display_name="audio_latent"), + ], + ) + + @classmethod + def execute(cls, av_latent) -> io.NodeOutput: + latents = av_latent["samples"].unbind() + video_latent = av_latent.copy() + video_latent["samples"] = latents[0] + audio_latent = av_latent.copy() + audio_latent["samples"] = latents[1] + if "noise_mask" in av_latent: + masks = av_latent["noise_mask"] + if masks is not None: + masks = masks.unbind() + video_latent["noise_mask"] = masks[0] + audio_latent["noise_mask"] = masks[1] + return io.NodeOutput(video_latent, audio_latent) + + class LtxvExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ EmptyLTXVLatentVideo, LTXVImgToVideo, + LTXVImgToVideoInplace, ModelSamplingLTXV, LTXVConditioning, LTXVScheduler, LTXVAddGuide, LTXVPreprocess, LTXVCropGuides, + LTXVConcatAVLatent, + LTXVSeparateAVLatent, ] diff --git a/comfy_extras/nodes_lt_audio.py b/comfy_extras/nodes_lt_audio.py new file mode 100644 index 000000000..b0b7000ef --- /dev/null +++ b/comfy_extras/nodes_lt_audio.py @@ -0,0 +1,183 @@ +import folder_paths +import comfy.utils +import comfy.model_management +import torch + +from comfy.ldm.lightricks.vae.audio_vae import AudioVAE +from comfy_api.latest import ComfyExtension, io + + +class LTXVAudioVAELoader(io.ComfyNode): + @classmethod + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="LTXVAudioVAELoader", + display_name="LTXV Audio VAE Loader", + category="audio", + inputs=[ + io.Combo.Input( + "ckpt_name", + options=folder_paths.get_filename_list("checkpoints"), + tooltip="Audio VAE checkpoint to load.", + ) + ], + outputs=[io.Vae.Output(display_name="Audio VAE")], + ) + + @classmethod + def execute(cls, ckpt_name: str) -> io.NodeOutput: + ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name) + sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True) + return io.NodeOutput(AudioVAE(sd, metadata)) + + +class LTXVAudioVAEEncode(io.ComfyNode): + @classmethod + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="LTXVAudioVAEEncode", + display_name="LTXV Audio VAE Encode", + category="audio", + inputs=[ + io.Audio.Input("audio", tooltip="The audio to be encoded."), + io.Vae.Input( + id="audio_vae", + display_name="Audio VAE", + tooltip="The Audio VAE model to use for encoding.", + ), + ], + outputs=[io.Latent.Output(display_name="Audio Latent")], + ) + + @classmethod + def execute(cls, audio, audio_vae: AudioVAE) -> io.NodeOutput: + audio_latents = audio_vae.encode(audio) + return io.NodeOutput( + { + "samples": audio_latents, + "sample_rate": int(audio_vae.sample_rate), + "type": "audio", + } + ) + + +class LTXVAudioVAEDecode(io.ComfyNode): + @classmethod + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="LTXVAudioVAEDecode", + display_name="LTXV Audio VAE Decode", + category="audio", + inputs=[ + io.Latent.Input("samples", tooltip="The latent to be decoded."), + io.Vae.Input( + id="audio_vae", + display_name="Audio VAE", + tooltip="The Audio VAE model used for decoding the latent.", + ), + ], + outputs=[io.Audio.Output(display_name="Audio")], + ) + + @classmethod + def execute(cls, samples, audio_vae: AudioVAE) -> io.NodeOutput: + audio_latent = samples["samples"] + if audio_latent.is_nested: + audio_latent = audio_latent.unbind()[-1] + audio = audio_vae.decode(audio_latent).to(audio_latent.device) + output_audio_sample_rate = audio_vae.output_sample_rate + return io.NodeOutput( + { + "waveform": audio, + "sample_rate": int(output_audio_sample_rate), + } + ) + + +class LTXVEmptyLatentAudio(io.ComfyNode): + @classmethod + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="LTXVEmptyLatentAudio", + display_name="LTXV Empty Latent Audio", + category="latent/audio", + inputs=[ + io.Int.Input( + "frames_number", + default=97, + min=1, + max=1000, + step=1, + display_mode=io.NumberDisplay.number, + tooltip="Number of frames.", + ), + io.Int.Input( + "frame_rate", + default=25, + min=1, + max=1000, + step=1, + display_mode=io.NumberDisplay.number, + tooltip="Number of frames per second.", + ), + io.Int.Input( + "batch_size", + default=1, + min=1, + max=4096, + display_mode=io.NumberDisplay.number, + tooltip="The number of latent audio samples in the batch.", + ), + io.Vae.Input( + id="audio_vae", + display_name="Audio VAE", + tooltip="The Audio VAE model to get configuration from.", + ), + ], + outputs=[io.Latent.Output(display_name="Latent")], + ) + + @classmethod + def execute( + cls, + frames_number: int, + frame_rate: int, + batch_size: int, + audio_vae: AudioVAE, + ) -> io.NodeOutput: + """Generate empty audio latents matching the reference pipeline structure.""" + + assert audio_vae is not None, "Audio VAE model is required" + + z_channels = audio_vae.latent_channels + audio_freq = audio_vae.latent_frequency_bins + sampling_rate = int(audio_vae.sample_rate) + + num_audio_latents = audio_vae.num_of_latents_from_frames(frames_number, frame_rate) + + audio_latents = torch.zeros( + (batch_size, z_channels, num_audio_latents, audio_freq), + device=comfy.model_management.intermediate_device(), + ) + + return io.NodeOutput( + { + "samples": audio_latents, + "sample_rate": sampling_rate, + "type": "audio", + } + ) + + +class LTXVAudioExtension(ComfyExtension): + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + LTXVAudioVAELoader, + LTXVAudioVAEEncode, + LTXVAudioVAEDecode, + LTXVEmptyLatentAudio, + ] + + +async def comfy_entrypoint() -> ComfyExtension: + return LTXVAudioExtension() diff --git a/comfy_extras/nodes_lt_upsampler.py b/comfy_extras/nodes_lt_upsampler.py new file mode 100644 index 000000000..f99ba13fb --- /dev/null +++ b/comfy_extras/nodes_lt_upsampler.py @@ -0,0 +1,75 @@ +from comfy import model_management +import math + +class LTXVLatentUpsampler: + """ + Upsamples a video latent by a factor of 2. + """ + + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "samples": ("LATENT",), + "upscale_model": ("LATENT_UPSCALE_MODEL",), + "vae": ("VAE",), + } + } + + RETURN_TYPES = ("LATENT",) + FUNCTION = "upsample_latent" + CATEGORY = "latent/video" + EXPERIMENTAL = True + + def upsample_latent( + self, + samples: dict, + upscale_model, + vae, + ) -> tuple: + """ + Upsample the input latent using the provided model. + + Args: + samples (dict): Input latent samples + upscale_model (LatentUpsampler): Loaded upscale model + vae: VAE model for normalization + auto_tiling (bool): Whether to automatically tile the input for processing + + Returns: + tuple: Tuple containing the upsampled latent + """ + device = model_management.get_torch_device() + memory_required = model_management.module_size(upscale_model) + + model_dtype = next(upscale_model.parameters()).dtype + latents = samples["samples"] + input_dtype = latents.dtype + + memory_required += math.prod(latents.shape) * 3000.0 # TODO: more accurate + model_management.free_memory(memory_required, device) + + try: + upscale_model.to(device) # TODO: use the comfy model management system. + + latents = latents.to(dtype=model_dtype, device=device) + + """Upsample latents without tiling.""" + latents = vae.first_stage_model.per_channel_statistics.un_normalize(latents) + upsampled_latents = upscale_model(latents) + finally: + upscale_model.cpu() + + upsampled_latents = vae.first_stage_model.per_channel_statistics.normalize( + upsampled_latents + ) + upsampled_latents = upsampled_latents.to(dtype=input_dtype, device=model_management.intermediate_device()) + return_dict = samples.copy() + return_dict["samples"] = upsampled_latents + return_dict.pop("noise_mask", None) + return (return_dict,) + + +NODE_CLASS_MAPPINGS = { + "LTXVLatentUpsampler": LTXVLatentUpsampler, +} diff --git a/nodes.py b/nodes.py index 662907ae6..56b74ebe3 100644 --- a/nodes.py +++ b/nodes.py @@ -295,7 +295,11 @@ class VAEDecode: DESCRIPTION = "Decodes latent images back into pixel space images." def decode(self, vae, samples): - images = vae.decode(samples["samples"]) + latent = samples["samples"] + if latent.is_nested: + latent = latent.unbind()[0] + + images = vae.decode(latent) if len(images.shape) == 5: #Combine batches images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1]) return (images, ) @@ -970,7 +974,7 @@ class DualCLIPLoader: def INPUT_TYPES(s): return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), - "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "newbie"], ), + "type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "ltxv", "newbie"], ), }, "optional": { "device": (["default", "cpu"], {"advanced": True}), @@ -2331,6 +2335,8 @@ async def init_builtin_extra_nodes(): "nodes_mochi.py", "nodes_slg.py", "nodes_mahiro.py", + "nodes_lt_upsampler.py", + "nodes_lt_audio.py", "nodes_lt.py", "nodes_hooks.py", "nodes_load_3d.py", diff --git a/pyproject.toml b/pyproject.toml index 60378de1e..a7d159be9 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,7 +3,7 @@ name = "ComfyUI" version = "0.7.0" readme = "README.md" license = { file = "LICENSE" } -requires-python = ">=3.9" +requires-python = ">=3.10" [project.urls] homepage = "https://www.comfy.org/" From d1b9822f741843c64b2cbd8e1bcdd49794b182ce Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Sun, 4 Jan 2026 23:27:31 -0800 Subject: [PATCH 250/271] Add LTXAVTextEncoderLoader node. (#11634) --- comfy_extras/nodes_lt_audio.py | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) diff --git a/comfy_extras/nodes_lt_audio.py b/comfy_extras/nodes_lt_audio.py index b0b7000ef..2d3d103b4 100644 --- a/comfy_extras/nodes_lt_audio.py +++ b/comfy_extras/nodes_lt_audio.py @@ -169,6 +169,38 @@ class LTXVEmptyLatentAudio(io.ComfyNode): ) +class LTXAVTextEncoderLoader(io.ComfyNode): + @classmethod + def define_schema(cls) -> io.Schema: + return io.Schema( + node_id="LTXAVTextEncoderLoader", + display_name="LTXV Audio Text Encoder Loader", + category="advanced/loaders", + description="[Recipes]\n\nltxav: gemma 3 12B", + inputs=[ + io.Combo.Input( + "text_encoder", + options=folder_paths.get_filename_list("text_encoders"), + ), + io.Combo.Input( + "ckpt_name", + options=folder_paths.get_filename_list("checkpoints"), + ) + ], + outputs=[io.Clip.Output(display_name="Audio VAE")], + ) + + @classmethod + def execute(cls, text_encoder, ckpt_name, device="default"): + clip_type = comfy.sd.CLIPType.LTXV + + clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder) + clip_path2 = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name) + + clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type) + return io.NodeOutput(clip) + + class LTXVAudioExtension(ComfyExtension): async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ @@ -176,6 +208,7 @@ class LTXVAudioExtension(ComfyExtension): LTXVAudioVAEEncode, LTXVAudioVAEDecode, LTXVEmptyLatentAudio, + LTXAVTextEncoderLoader, ] From d157c3299d6f9e1b57981bdb4931f1d7129e4e8d Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 5 Jan 2026 00:48:31 -0800 Subject: [PATCH 251/271] Refactor module_size function. (#11637) --- comfy/model_management.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index 2501cecb7..7f5a8aee9 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -456,7 +456,7 @@ def module_size(module): sd = module.state_dict() for k in sd: t = sd[k] - module_mem += t.nelement() * t.element_size() + module_mem += t.nbytes return module_mem class LoadedModel: From 4f3f9e72a9d0c15d00c0c362b8e90f1db5af6cfb Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 5 Jan 2026 02:41:23 -0800 Subject: [PATCH 252/271] Fix name. (#11638) --- comfy_extras/nodes_lt_audio.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/comfy_extras/nodes_lt_audio.py b/comfy_extras/nodes_lt_audio.py index 2d3d103b4..26b0160d2 100644 --- a/comfy_extras/nodes_lt_audio.py +++ b/comfy_extras/nodes_lt_audio.py @@ -187,7 +187,7 @@ class LTXAVTextEncoderLoader(io.ComfyNode): options=folder_paths.get_filename_list("checkpoints"), ) ], - outputs=[io.Clip.Output(display_name="Audio VAE")], + outputs=[io.Clip.Output()], ) @classmethod From 6da00dd899e3ee6f2a0a8163b080a9f373395025 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 5 Jan 2026 18:48:58 -0800 Subject: [PATCH 253/271] Initial ops changes to use comfy_kitchen: Initial nvfp4 checkpoint support. (#11635) --------- Co-authored-by: Jedrzej Kosinski --- .github/workflows/test-build.yml | 2 +- .github/workflows/test-launch.yml | 4 +- comfy/model_management.py | 4 +- comfy/ops.py | 164 +++-- comfy/quant_ops.py | 641 +++--------------- requirements.txt | 1 + .../comfy_quant/test_mixed_precision.py | 12 +- tests-unit/comfy_quant/test_quant_registry.py | 190 ------ 8 files changed, 223 insertions(+), 795 deletions(-) delete mode 100644 tests-unit/comfy_quant/test_quant_registry.py diff --git a/.github/workflows/test-build.yml b/.github/workflows/test-build.yml index 419873ad8..9160242e9 100644 --- a/.github/workflows/test-build.yml +++ b/.github/workflows/test-build.yml @@ -18,7 +18,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"] + python-version: ["3.10", "3.11", "3.12", "3.13", "3.14"] steps: - uses: actions/checkout@v4 - name: Set up Python ${{ matrix.python-version }} diff --git a/.github/workflows/test-launch.yml b/.github/workflows/test-launch.yml index fd70aff23..ef0d3f123 100644 --- a/.github/workflows/test-launch.yml +++ b/.github/workflows/test-launch.yml @@ -32,7 +32,9 @@ jobs: working-directory: ComfyUI - name: Check for unhandled exceptions in server log run: | - if grep -qE "Exception|Error" console_output.log; then + grep -v "Found comfy_kitchen backend triton: {'available': False, 'disabled': True, 'unavailable_reason': \"ImportError: No module named 'triton'\", 'capabilities': \[\]}" console_output.log | grep -v "Found comfy_kitchen backend triton: {'available': False, 'disabled': False, 'unavailable_reason': \"ImportError: No module named 'triton'\", 'capabilities': \[\]}" > console_output_filtered.log + cat console_output_filtered.log + if grep -qE "Exception|Error" console_output_filtered.log; then echo "Unhandled exception/error found in server log." exit 1 fi diff --git a/comfy/model_management.py b/comfy/model_management.py index 7f5a8aee9..22f4de044 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1156,7 +1156,7 @@ def pin_memory(tensor): if not tensor.is_contiguous(): return False - size = tensor.numel() * tensor.element_size() + size = tensor.nbytes if (TOTAL_PINNED_MEMORY + size) > MAX_PINNED_MEMORY: return False @@ -1183,7 +1183,7 @@ def unpin_memory(tensor): return False ptr = tensor.data_ptr() - size = tensor.numel() * tensor.element_size() + size = tensor.nbytes size_stored = PINNED_MEMORY.get(ptr, None) if size_stored is None: diff --git a/comfy/ops.py b/comfy/ops.py index 16889bb82..f5e1e9230 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -79,7 +79,7 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of if input is not None: if dtype is None: if isinstance(input, QuantizedTensor): - dtype = input._layout_params["orig_dtype"] + dtype = input.params.orig_dtype else: dtype = input.dtype if bias_dtype is None: @@ -412,26 +412,34 @@ def fp8_linear(self, input): return None input_dtype = input.dtype + input_shape = input.shape + tensor_3d = input.ndim == 3 - if input.ndim == 3 or input.ndim == 2: - w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True) - scale_weight = torch.ones((), device=input.device, dtype=torch.float32) + if tensor_3d: + input = input.reshape(-1, input_shape[2]) - scale_input = torch.ones((), device=input.device, dtype=torch.float32) - input = torch.clamp(input, min=-448, max=448, out=input) - layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype} - quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight) + if input.ndim != 2: + return None + w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True) + scale_weight = torch.ones((), device=input.device, dtype=torch.float32) - # Wrap weight in QuantizedTensor - this enables unified dispatch - # Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py! - layout_params_weight = {'scale': scale_weight, 'orig_dtype': input_dtype} - quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight) - o = torch.nn.functional.linear(quantized_input, quantized_weight, bias) + scale_input = torch.ones((), device=input.device, dtype=torch.float32) + input = torch.clamp(input, min=-448, max=448, out=input) + input_fp8 = input.to(dtype).contiguous() + layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape)) + quantized_input = QuantizedTensor(input_fp8, TensorCoreFP8Layout, layout_params_input) - uncast_bias_weight(self, w, bias, offload_stream) - return o + # Wrap weight in QuantizedTensor - this enables unified dispatch + # Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py! + layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape)) + quantized_weight = QuantizedTensor(w, TensorCoreFP8Layout, layout_params_weight) + o = torch.nn.functional.linear(quantized_input, quantized_weight, bias) - return None + uncast_bias_weight(self, w, bias, offload_stream) + if tensor_3d: + o = o.reshape((input_shape[0], input_shape[1], w.shape[0])) + + return o class fp8_ops(manual_cast): class Linear(manual_cast.Linear): @@ -477,7 +485,12 @@ if CUBLAS_IS_AVAILABLE: # ============================================================================== # Mixed Precision Operations # ============================================================================== -from .quant_ops import QuantizedTensor, QUANT_ALGOS +from .quant_ops import ( + QuantizedTensor, + QUANT_ALGOS, + TensorCoreFP8Layout, + get_layout_class, +) def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False): @@ -497,14 +510,15 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec ) -> None: super().__init__() - if dtype is None: - dtype = MixedPrecisionOps._compute_dtype - - self.factory_kwargs = {"device": device, "dtype": dtype} + self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype} + # self.factory_kwargs = {"device": device, "dtype": dtype} self.in_features = in_features self.out_features = out_features - self._has_bias = bias + if bias: + self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs)) + else: + self.register_parameter("bias", None) self.tensor_class = None self._full_precision_mm = MixedPrecisionOps._full_precision_mm @@ -512,6 +526,16 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def reset_parameters(self): return None + def _load_scale_param(self, state_dict, prefix, param_name, device, manually_loaded_keys, dtype=None): + key = f"{prefix}{param_name}" + value = state_dict.pop(key, None) + if value is not None: + value = value.to(device=device) + if dtype is not None: + value = value.view(dtype=dtype) + manually_loaded_keys.append(key) + return value + def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): @@ -529,14 +553,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec layer_conf = json.loads(layer_conf.numpy().tobytes()) if layer_conf is None: - dtype = self.factory_kwargs["dtype"] - self.weight = torch.nn.Parameter(weight.to(device=device, dtype=dtype), requires_grad=False) - if dtype != MixedPrecisionOps._compute_dtype: - self.comfy_cast_weights = True - if self._has_bias: - self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=dtype)) - else: - self.register_parameter("bias", None) + self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False) else: self.quant_format = layer_conf.get("format", None) if not self._full_precision_mm: @@ -547,31 +564,46 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec qconfig = QUANT_ALGOS[self.quant_format] self.layout_type = qconfig["comfy_tensor_layout"] + layout_cls = get_layout_class(self.layout_type) - weight_scale_key = f"{prefix}weight_scale" - scale = state_dict.pop(weight_scale_key, None) - if scale is not None: - scale = scale.to(device) - layout_params = { - 'scale': scale, - 'orig_dtype': MixedPrecisionOps._compute_dtype, - 'block_size': qconfig.get("group_size", None), - } + # Load format-specific parameters + if self.quant_format in ["float8_e4m3fn", "float8_e5m2"]: + # FP8: single tensor scale + scale = self._load_scale_param(state_dict, prefix, "weight_scale", device, manually_loaded_keys) - if scale is not None: - manually_loaded_keys.append(weight_scale_key) + params = layout_cls.Params( + scale=scale, + orig_dtype=MixedPrecisionOps._compute_dtype, + orig_shape=(self.out_features, self.in_features), + ) + + elif self.quant_format == "nvfp4": + # NVFP4: tensor_scale (weight_scale_2) + block_scale (weight_scale) + tensor_scale = self._load_scale_param(state_dict, prefix, "weight_scale_2", device, manually_loaded_keys) + block_scale = self._load_scale_param(state_dict, prefix, "weight_scale", device, manually_loaded_keys, + dtype=torch.float8_e4m3fn) + + if tensor_scale is None or block_scale is None: + raise ValueError(f"Missing NVFP4 scales for layer {layer_name}") + + params = layout_cls.Params( + scale=tensor_scale, + block_scale=block_scale, + orig_dtype=MixedPrecisionOps._compute_dtype, + orig_shape=(self.out_features, self.in_features), + ) + else: + raise ValueError(f"Unsupported quantization format: {self.quant_format}") self.weight = torch.nn.Parameter( - QuantizedTensor(weight.to(device=device, dtype=qconfig.get("storage_t", None)), self.layout_type, layout_params), + QuantizedTensor(weight.to(device=device, dtype=qconfig["storage_t"]), self.layout_type, params), requires_grad=False ) - if self._has_bias: - self.bias = torch.nn.Parameter(torch.empty(self.out_features, device=device, dtype=MixedPrecisionOps._compute_dtype)) - else: - self.register_parameter("bias", None) - for param_name in qconfig["parameters"]: + if param_name in {"weight_scale", "weight_scale_2"}: + continue # Already handled above + param_key = f"{prefix}{param_name}" _v = state_dict.pop(param_key, None) if _v is None: @@ -588,7 +620,15 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def state_dict(self, *args, destination=None, prefix="", **kwargs): sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs) if isinstance(self.weight, QuantizedTensor): - sd["{}weight_scale".format(prefix)] = self.weight._layout_params['scale'] + layout_cls = self.weight._layout_cls + + # Check if it's any FP8 variant (E4M3 or E5M2) + if layout_cls in ("TensorCoreFP8E4M3Layout", "TensorCoreFP8E5M2Layout", "TensorCoreFP8Layout"): + sd["{}weight_scale".format(prefix)] = self.weight._params.scale + elif layout_cls == "TensorCoreNVFP4Layout": + sd["{}weight_scale_2".format(prefix)] = self.weight._params.scale + sd["{}weight_scale".format(prefix)] = self.weight._params.block_scale + quant_conf = {"format": self.quant_format} if self._full_precision_mm: quant_conf["full_precision_matrix_mult"] = True @@ -607,12 +647,33 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def forward(self, input, *args, **kwargs): run_every_op() + input_shape = input.shape + tensor_3d = input.ndim == 3 + if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0: return self.forward_comfy_cast_weights(input, *args, **kwargs) + if (getattr(self, 'layout_type', None) is not None and not isinstance(input, QuantizedTensor)): - input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None), dtype=self.weight.dtype) - return self._forward(input, self.weight, self.bias) + + # Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others) + if tensor_3d: + input = input.reshape(-1, input_shape[2]) + + if input.ndim != 2: + # Fall back to comfy_cast_weights for non-2D tensors + return self.forward_comfy_cast_weights(input.reshape(input_shape), *args, **kwargs) + + # dtype is now implicit in the layout class + input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None)) + + output = self._forward(input, self.weight, self.bias) + + # Reshape output back to 3D if input was 3D + if tensor_3d: + output = output.reshape((input_shape[0], input_shape[1], self.weight.shape[0])) + + return output def convert_weight(self, weight, inplace=False, **kwargs): if isinstance(weight, QuantizedTensor): @@ -622,7 +683,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs): if getattr(self, 'layout_type', None) is not None: - weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", dtype=self.weight.dtype, stochastic_rounding=seed, inplace_ops=True) + # dtype is now implicit in the layout class + weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", stochastic_rounding=seed, inplace_ops=True) else: weight = weight.to(self.weight.dtype) if return_weight: diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index cd96541d7..cd737726f 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -1,580 +1,133 @@ import torch import logging -from typing import Tuple, Dict + +try: + import comfy_kitchen as ck + from comfy_kitchen.tensor import ( + QuantizedTensor, + QuantizedLayout, + TensorCoreFP8Layout as _CKFp8Layout, + TensorCoreNVFP4Layout, # Direct import, no wrapper needed + register_layout_op, + register_layout_class, + get_layout_class, + ) + _CK_AVAILABLE = True + ck.registry.disable("triton") + for k, v in ck.list_backends().items(): + logging.info(f"Found comfy_kitchen backend {k}: {v}") +except ImportError as e: + logging.error(f"Failed to import comfy_kitchen, Error: {e}, fp8 and fp4 support will not be available.") + _CK_AVAILABLE = False + + class QuantizedTensor: + pass + + class _CKFp8Layout: + pass + + class TensorCoreNVFP4Layout: + pass + + def register_layout_class(name, cls): + pass + + def get_layout_class(name): + return None + import comfy.float -_LAYOUT_REGISTRY = {} -_GENERIC_UTILS = {} - - -def register_layout_op(torch_op, layout_type): - """ - Decorator to register a layout-specific operation handler. - Args: - torch_op: PyTorch operation (e.g., torch.ops.aten.linear.default) - layout_type: Layout class (e.g., TensorCoreFP8Layout) - Example: - @register_layout_op(torch.ops.aten.linear.default, TensorCoreFP8Layout) - def fp8_linear(func, args, kwargs): - # FP8-specific linear implementation - ... - """ - def decorator(handler_func): - if torch_op not in _LAYOUT_REGISTRY: - _LAYOUT_REGISTRY[torch_op] = {} - _LAYOUT_REGISTRY[torch_op][layout_type] = handler_func - return handler_func - return decorator - - -def register_generic_util(torch_op): - """ - Decorator to register a generic utility that works for all layouts. - Args: - torch_op: PyTorch operation (e.g., torch.ops.aten.detach.default) - - Example: - @register_generic_util(torch.ops.aten.detach.default) - def generic_detach(func, args, kwargs): - # Works for any layout - ... - """ - def decorator(handler_func): - _GENERIC_UTILS[torch_op] = handler_func - return handler_func - return decorator - - -def _get_layout_from_args(args): - for arg in args: - if isinstance(arg, QuantizedTensor): - return arg._layout_type - elif isinstance(arg, (list, tuple)): - for item in arg: - if isinstance(item, QuantizedTensor): - return item._layout_type - return None - - -def _move_layout_params_to_device(params, device): - new_params = {} - for k, v in params.items(): - if isinstance(v, torch.Tensor): - new_params[k] = v.to(device=device) - else: - new_params[k] = v - return new_params - - -def _copy_layout_params(params): - new_params = {} - for k, v in params.items(): - if isinstance(v, torch.Tensor): - new_params[k] = v.clone() - else: - new_params[k] = v - return new_params - -def _copy_layout_params_inplace(src, dst, non_blocking=False): - for k, v in src.items(): - if isinstance(v, torch.Tensor): - dst[k].copy_(v, non_blocking=non_blocking) - else: - dst[k] = v - -class QuantizedLayout: - """ - Base class for quantization layouts. - - A layout encapsulates the format-specific logic for quantization/dequantization - and provides a uniform interface for extracting raw tensors needed for computation. - - New quantization formats should subclass this and implement the required methods. - """ - @classmethod - def quantize(cls, tensor, **kwargs) -> Tuple[torch.Tensor, Dict]: - raise NotImplementedError(f"{cls.__name__} must implement quantize()") - - @staticmethod - def dequantize(qdata, **layout_params) -> torch.Tensor: - raise NotImplementedError("TensorLayout must implement dequantize()") - - @classmethod - def get_plain_tensors(cls, qtensor) -> torch.Tensor: - raise NotImplementedError(f"{cls.__name__} must implement get_plain_tensors()") - - -class QuantizedTensor(torch.Tensor): - """ - Universal quantized tensor that works with any layout. - - This tensor subclass uses a pluggable layout system to support multiple - quantization formats (FP8, INT4, INT8, etc.) without code duplication. - - The layout_type determines format-specific behavior, while common operations - (detach, clone, to) are handled generically. - - Attributes: - _qdata: The quantized tensor data - _layout_type: Layout class (e.g., TensorCoreFP8Layout) - _layout_params: Dict with layout-specific params (scale, zero_point, etc.) - """ - - @staticmethod - def __new__(cls, qdata, layout_type, layout_params): - """ - Create a quantized tensor. - - Args: - qdata: The quantized data tensor - layout_type: Layout class (subclass of QuantizedLayout) - layout_params: Dict with layout-specific parameters - """ - return torch.Tensor._make_wrapper_subclass(cls, qdata.shape, device=qdata.device, dtype=qdata.dtype, requires_grad=False) - - def __init__(self, qdata, layout_type, layout_params): - self._qdata = qdata - self._layout_type = layout_type - self._layout_params = layout_params - - def __repr__(self): - layout_name = self._layout_type - param_str = ", ".join(f"{k}={v}" for k, v in list(self._layout_params.items())[:2]) - return f"QuantizedTensor(shape={self.shape}, layout={layout_name}, {param_str})" - - @property - def layout_type(self): - return self._layout_type - - def __tensor_flatten__(self): - """ - Tensor flattening protocol for proper device movement. - """ - inner_tensors = ["_qdata"] - ctx = { - "layout_type": self._layout_type, - } - - tensor_params = {} - non_tensor_params = {} - for k, v in self._layout_params.items(): - if isinstance(v, torch.Tensor): - tensor_params[k] = v - else: - non_tensor_params[k] = v - - ctx["tensor_param_keys"] = list(tensor_params.keys()) - ctx["non_tensor_params"] = non_tensor_params - - for k, v in tensor_params.items(): - attr_name = f"_layout_param_{k}" - object.__setattr__(self, attr_name, v) - inner_tensors.append(attr_name) - - return inner_tensors, ctx - - @staticmethod - def __tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride): - """ - Tensor unflattening protocol for proper device movement. - Reconstructs the QuantizedTensor after device movement. - """ - layout_type = ctx["layout_type"] - layout_params = dict(ctx["non_tensor_params"]) - - for key in ctx["tensor_param_keys"]: - attr_name = f"_layout_param_{key}" - layout_params[key] = inner_tensors[attr_name] - - return QuantizedTensor(inner_tensors["_qdata"], layout_type, layout_params) - - @classmethod - def from_float(cls, tensor, layout_type, **quantize_kwargs) -> 'QuantizedTensor': - qdata, layout_params = LAYOUTS[layout_type].quantize(tensor, **quantize_kwargs) - return cls(qdata, layout_type, layout_params) - - def dequantize(self) -> torch.Tensor: - return LAYOUTS[self._layout_type].dequantize(self._qdata, **self._layout_params) - - @classmethod - def __torch_dispatch__(cls, func, types, args=(), kwargs=None): - kwargs = kwargs or {} - - # Step 1: Check generic utilities first (detach, clone, to, etc.) - if func in _GENERIC_UTILS: - return _GENERIC_UTILS[func](func, args, kwargs) - - # Step 2: Check layout-specific handlers (linear, matmul, etc.) - layout_type = _get_layout_from_args(args) - if layout_type and func in _LAYOUT_REGISTRY: - handler = _LAYOUT_REGISTRY[func].get(layout_type) - if handler: - return handler(func, args, kwargs) - - # Step 3: Fallback to dequantization - if isinstance(args[0] if args else None, QuantizedTensor): - logging.info(f"QuantizedTensor: Unhandled operation {func}, falling back to dequantization. kwargs={kwargs}") - return cls._dequant_and_fallback(func, args, kwargs) - - @classmethod - def _dequant_and_fallback(cls, func, args, kwargs): - def dequant_arg(arg): - if isinstance(arg, QuantizedTensor): - return arg.dequantize() - elif isinstance(arg, (list, tuple)): - return type(arg)(dequant_arg(a) for a in arg) - return arg - - new_args = dequant_arg(args) - new_kwargs = dequant_arg(kwargs) - return func(*new_args, **new_kwargs) - - def data_ptr(self): - return self._qdata.data_ptr() - - def is_pinned(self): - return self._qdata.is_pinned() - - def is_contiguous(self, *arg, **kwargs): - return self._qdata.is_contiguous(*arg, **kwargs) - - def storage(self): - return self._qdata.storage() - # ============================================================================== -# Generic Utilities (Layout-Agnostic Operations) +# FP8 Layouts with Comfy-Specific Extensions # ============================================================================== -def _create_transformed_qtensor(qt, transform_fn): - new_data = transform_fn(qt._qdata) - new_params = _copy_layout_params(qt._layout_params) - return QuantizedTensor(new_data, qt._layout_type, new_params) +class _TensorCoreFP8LayoutBase(_CKFp8Layout): + FP8_DTYPE = None # Must be overridden in subclass - -def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"): - if target_layout is not None and target_layout != torch.strided: - logging.warning( - f"QuantizedTensor: layout change requested to {target_layout}, " - f"but not supported. Ignoring layout." - ) - - # Handle device transfer - current_device = qt._qdata.device - if target_device is not None: - # Normalize device for comparison - if isinstance(target_device, str): - target_device = torch.device(target_device) - if isinstance(current_device, str): - current_device = torch.device(current_device) - - if target_device != current_device: - logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}") - new_q_data = qt._qdata.to(device=target_device) - new_params = _move_layout_params_to_device(qt._layout_params, target_device) - if target_dtype is not None: - new_params["orig_dtype"] = target_dtype - new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params) - logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}") - return new_qt - - logging.debug(f"QuantizedTensor.{op_name}: No device change needed, returning original") - return qt - - -@register_generic_util(torch.ops.aten.detach.default) -def generic_detach(func, args, kwargs): - """Detach operation - creates a detached copy of the quantized tensor.""" - qt = args[0] - if isinstance(qt, QuantizedTensor): - return _create_transformed_qtensor(qt, lambda x: x.detach()) - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten.clone.default) -def generic_clone(func, args, kwargs): - """Clone operation - creates a deep copy of the quantized tensor.""" - qt = args[0] - if isinstance(qt, QuantizedTensor): - return _create_transformed_qtensor(qt, lambda x: x.clone()) - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten._to_copy.default) -def generic_to_copy(func, args, kwargs): - """Device/dtype transfer operation - handles .to(device) calls.""" - qt = args[0] - if isinstance(qt, QuantizedTensor): - return _handle_device_transfer( - qt, - target_device=kwargs.get('device', None), - target_dtype=kwargs.get('dtype', None), - op_name="_to_copy" - ) - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten.to.dtype_layout) -def generic_to_dtype_layout(func, args, kwargs): - """Handle .to(device) calls using the dtype_layout variant.""" - qt = args[0] - if isinstance(qt, QuantizedTensor): - return _handle_device_transfer( - qt, - target_device=kwargs.get('device', None), - target_dtype=kwargs.get('dtype', None), - target_layout=kwargs.get('layout', None), - op_name="to" - ) - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten.copy_.default) -def generic_copy_(func, args, kwargs): - qt_dest = args[0] - src = args[1] - non_blocking = args[2] if len(args) > 2 else False - if isinstance(qt_dest, QuantizedTensor): - if isinstance(src, QuantizedTensor): - # Copy from another quantized tensor - qt_dest._qdata.copy_(src._qdata, non_blocking=non_blocking) - qt_dest._layout_type = src._layout_type - orig_dtype = qt_dest._layout_params["orig_dtype"] - _copy_layout_params_inplace(src._layout_params, qt_dest._layout_params, non_blocking=non_blocking) - qt_dest._layout_params["orig_dtype"] = orig_dtype - else: - # Copy from regular tensor - just copy raw data - qt_dest._qdata.copy_(src) - return qt_dest - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten.to.dtype) -def generic_to_dtype(func, args, kwargs): - """Handle .to(dtype) calls - dtype conversion only.""" - src = args[0] - if isinstance(src, QuantizedTensor): - # For dtype-only conversion, just change the orig_dtype, no real cast is needed - target_dtype = args[1] if len(args) > 1 else kwargs.get('dtype') - src._layout_params["orig_dtype"] = target_dtype - return src - return func(*args, **kwargs) - - -@register_generic_util(torch.ops.aten._has_compatible_shallow_copy_type.default) -def generic_has_compatible_shallow_copy_type(func, args, kwargs): - return True - - -@register_generic_util(torch.ops.aten.empty_like.default) -def generic_empty_like(func, args, kwargs): - """Empty_like operation - creates an empty tensor with the same quantized structure.""" - qt = args[0] - if isinstance(qt, QuantizedTensor): - # Create empty tensor with same shape and dtype as the quantized data - hp_dtype = kwargs.pop('dtype', qt._layout_params["orig_dtype"]) - new_qdata = torch.empty_like(qt._qdata, **kwargs) - - # Handle device transfer for layout params - target_device = kwargs.get('device', new_qdata.device) - new_params = _move_layout_params_to_device(qt._layout_params, target_device) - - # Update orig_dtype if dtype is specified - new_params['orig_dtype'] = hp_dtype - - return QuantizedTensor(new_qdata, qt._layout_type, new_params) - return func(*args, **kwargs) - -# ============================================================================== -# FP8 Layout + Operation Handlers -# ============================================================================== -class TensorCoreFP8Layout(QuantizedLayout): - """ - Storage format: - - qdata: FP8 tensor (torch.float8_e4m3fn or torch.float8_e5m2) - - scale: Scalar tensor (float32) for dequantization - - orig_dtype: Original dtype before quantization (for casting back) - """ @classmethod - def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn, stochastic_rounding=0, inplace_ops=False): + def quantize(cls, tensor, scale=None, stochastic_rounding=0, inplace_ops=False): + if cls.FP8_DTYPE is None: + raise NotImplementedError(f"{cls.__name__} must define FP8_DTYPE") + orig_dtype = tensor.dtype + orig_shape = tuple(tensor.shape) if isinstance(scale, str) and scale == "recalculate": - scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(dtype).max + scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(cls.FP8_DTYPE).max if tensor.dtype not in [torch.float32, torch.bfloat16]: # Prevent scale from being too small tensor_info = torch.finfo(tensor.dtype) scale = (1.0 / torch.clamp((1.0 / scale), min=tensor_info.min, max=tensor_info.max)) - if scale is not None: - if not isinstance(scale, torch.Tensor): - scale = torch.tensor(scale) - scale = scale.to(device=tensor.device, dtype=torch.float32) + if scale is None: + scale = torch.ones((), device=tensor.device, dtype=torch.float32) + if not isinstance(scale, torch.Tensor): + scale = torch.tensor(scale, device=tensor.device, dtype=torch.float32) + if stochastic_rounding > 0: if inplace_ops: tensor *= (1.0 / scale).to(tensor.dtype) else: tensor = tensor * (1.0 / scale).to(tensor.dtype) + qdata = comfy.float.stochastic_rounding(tensor, dtype=cls.FP8_DTYPE, seed=stochastic_rounding) else: - scale = torch.ones((), device=tensor.device, dtype=torch.float32) + qdata = ck.quantize_per_tensor_fp8(tensor, scale, cls.FP8_DTYPE) - if stochastic_rounding > 0: - tensor = comfy.float.stochastic_rounding(tensor, dtype=dtype, seed=stochastic_rounding) - else: - lp_amax = torch.finfo(dtype).max - torch.clamp(tensor, min=-lp_amax, max=lp_amax, out=tensor) - tensor = tensor.to(dtype, memory_format=torch.contiguous_format) + params = cls.Params(scale=scale.float(), orig_dtype=orig_dtype, orig_shape=orig_shape) + return qdata, params - layout_params = { - 'scale': scale, - 'orig_dtype': orig_dtype - } - return tensor, layout_params - @staticmethod - def dequantize(qdata, scale, orig_dtype, **kwargs): - plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype) - plain_tensor.mul_(scale) - return plain_tensor +class TensorCoreFP8E4M3Layout(_TensorCoreFP8LayoutBase): + FP8_DTYPE = torch.float8_e4m3fn - @classmethod - def get_plain_tensors(cls, qtensor): - return qtensor._qdata, qtensor._layout_params['scale'] + +class TensorCoreFP8E5M2Layout(_TensorCoreFP8LayoutBase): + FP8_DTYPE = torch.float8_e5m2 + + +# Backward compatibility alias - default to E4M3 +TensorCoreFP8Layout = TensorCoreFP8E4M3Layout + + +# ============================================================================== +# Registry +# ============================================================================== + +register_layout_class("TensorCoreFP8Layout", TensorCoreFP8Layout) +register_layout_class("TensorCoreFP8E4M3Layout", TensorCoreFP8E4M3Layout) +register_layout_class("TensorCoreFP8E5M2Layout", TensorCoreFP8E5M2Layout) +register_layout_class("TensorCoreNVFP4Layout", TensorCoreNVFP4Layout) QUANT_ALGOS = { "float8_e4m3fn": { "storage_t": torch.float8_e4m3fn, "parameters": {"weight_scale", "input_scale"}, - "comfy_tensor_layout": "TensorCoreFP8Layout", + "comfy_tensor_layout": "TensorCoreFP8E4M3Layout", + }, + "float8_e5m2": { + "storage_t": torch.float8_e5m2, + "parameters": {"weight_scale", "input_scale"}, + "comfy_tensor_layout": "TensorCoreFP8E5M2Layout", + }, + "nvfp4": { + "storage_t": torch.uint8, + "parameters": {"weight_scale", "weight_scale_2", "input_scale"}, + "comfy_tensor_layout": "TensorCoreNVFP4Layout", + "group_size": 16, }, } -LAYOUTS = { - "TensorCoreFP8Layout": TensorCoreFP8Layout, -} +# ============================================================================== +# Re-exports for backward compatibility +# ============================================================================== -@register_layout_op(torch.ops.aten.linear.default, "TensorCoreFP8Layout") -def fp8_linear(func, args, kwargs): - input_tensor = args[0] - weight = args[1] - bias = args[2] if len(args) > 2 else None - - if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor): - plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor) - plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight) - - out_dtype = kwargs.get("out_dtype") - if out_dtype is None: - out_dtype = input_tensor._layout_params['orig_dtype'] - - weight_t = plain_weight.t() - - tensor_2d = False - if len(plain_input.shape) == 2: - tensor_2d = True - plain_input = plain_input.unsqueeze(1) - - input_shape = plain_input.shape - if len(input_shape) != 3: - return None - - try: - output = torch._scaled_mm( - plain_input.reshape(-1, input_shape[2]).contiguous(), - weight_t, - bias=bias, - scale_a=scale_a, - scale_b=scale_b, - out_dtype=out_dtype, - ) - - if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4 - output = output[0] - - if not tensor_2d: - output = output.reshape((-1, input_shape[1], weight.shape[0])) - - if output.dtype in [torch.float8_e4m3fn, torch.float8_e5m2]: - output_scale = scale_a * scale_b - output_params = { - 'scale': output_scale, - 'orig_dtype': input_tensor._layout_params['orig_dtype'] - } - return QuantizedTensor(output, "TensorCoreFP8Layout", output_params) - else: - return output - - except Exception as e: - raise RuntimeError(f"FP8 _scaled_mm failed, falling back to dequantization: {e}") - - # Case 2: DQ Fallback - if isinstance(weight, QuantizedTensor): - weight = weight.dequantize() - if isinstance(input_tensor, QuantizedTensor): - input_tensor = input_tensor.dequantize() - - return torch.nn.functional.linear(input_tensor, weight, bias) - -def fp8_mm_(input_tensor, weight, bias=None, out_dtype=None): - if out_dtype is None: - out_dtype = input_tensor._layout_params['orig_dtype'] - - plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor) - plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight) - - output = torch._scaled_mm( - plain_input.contiguous(), - plain_weight, - bias=bias, - scale_a=scale_a, - scale_b=scale_b, - out_dtype=out_dtype, - ) - - if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4 - output = output[0] - return output - -@register_layout_op(torch.ops.aten.addmm.default, "TensorCoreFP8Layout") -def fp8_addmm(func, args, kwargs): - input_tensor = args[1] - weight = args[2] - bias = args[0] - - if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor): - return fp8_mm_(input_tensor, weight, bias=bias, out_dtype=kwargs.get("out_dtype", None)) - - a = list(args) - if isinstance(args[0], QuantizedTensor): - a[0] = args[0].dequantize() - if isinstance(args[1], QuantizedTensor): - a[1] = args[1].dequantize() - if isinstance(args[2], QuantizedTensor): - a[2] = args[2].dequantize() - - return func(*a, **kwargs) - -@register_layout_op(torch.ops.aten.mm.default, "TensorCoreFP8Layout") -def fp8_mm(func, args, kwargs): - input_tensor = args[0] - weight = args[1] - - if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor): - return fp8_mm_(input_tensor, weight, bias=None, out_dtype=kwargs.get("out_dtype", None)) - - a = list(args) - if isinstance(args[0], QuantizedTensor): - a[0] = args[0].dequantize() - if isinstance(args[1], QuantizedTensor): - a[1] = args[1].dequantize() - return func(*a, **kwargs) - -@register_layout_op(torch.ops.aten.view.default, "TensorCoreFP8Layout") -@register_layout_op(torch.ops.aten.t.default, "TensorCoreFP8Layout") -def fp8_func(func, args, kwargs): - input_tensor = args[0] - if isinstance(input_tensor, QuantizedTensor): - plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor) - ar = list(args) - ar[0] = plain_input - return QuantizedTensor(func(*ar, **kwargs), "TensorCoreFP8Layout", input_tensor._layout_params) - return func(*args, **kwargs) +__all__ = [ + "QuantizedTensor", + "QuantizedLayout", + "TensorCoreFP8Layout", + "TensorCoreFP8E4M3Layout", + "TensorCoreFP8E5M2Layout", + "TensorCoreNVFP4Layout", + "QUANT_ALGOS", + "register_layout_op", +] diff --git a/requirements.txt b/requirements.txt index 3a05799eb..0ee152032 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,6 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 +comfy-kitchen>=0.2.0 #non essential dependencies: kornia>=0.7.1 diff --git a/tests-unit/comfy_quant/test_mixed_precision.py b/tests-unit/comfy_quant/test_mixed_precision.py index 3a54941e6..7b2eac940 100644 --- a/tests-unit/comfy_quant/test_mixed_precision.py +++ b/tests-unit/comfy_quant/test_mixed_precision.py @@ -103,18 +103,18 @@ class TestMixedPrecisionOps(unittest.TestCase): # Verify weights are wrapped in QuantizedTensor self.assertIsInstance(model.layer1.weight, QuantizedTensor) - self.assertEqual(model.layer1.weight._layout_type, "TensorCoreFP8Layout") + self.assertEqual(model.layer1.weight._layout_cls, "TensorCoreFP8E4M3Layout") # Layer 2 should NOT be quantized self.assertNotIsInstance(model.layer2.weight, QuantizedTensor) # Layer 3 should be quantized self.assertIsInstance(model.layer3.weight, QuantizedTensor) - self.assertEqual(model.layer3.weight._layout_type, "TensorCoreFP8Layout") + self.assertEqual(model.layer3.weight._layout_cls, "TensorCoreFP8E4M3Layout") # Verify scales were loaded - self.assertEqual(model.layer1.weight._layout_params['scale'].item(), 2.0) - self.assertEqual(model.layer3.weight._layout_params['scale'].item(), 1.5) + self.assertEqual(model.layer1.weight._params.scale.item(), 2.0) + self.assertEqual(model.layer3.weight._params.scale.item(), 1.5) # Forward pass input_tensor = torch.randn(5, 10, dtype=torch.bfloat16) @@ -154,8 +154,8 @@ class TestMixedPrecisionOps(unittest.TestCase): # Verify layer1.weight is a QuantizedTensor with scale preserved self.assertIsInstance(state_dict2["layer1.weight"], QuantizedTensor) - self.assertEqual(state_dict2["layer1.weight"]._layout_params['scale'].item(), 3.0) - self.assertEqual(state_dict2["layer1.weight"]._layout_type, "TensorCoreFP8Layout") + self.assertEqual(state_dict2["layer1.weight"]._params.scale.item(), 3.0) + self.assertEqual(state_dict2["layer1.weight"]._layout_cls, "TensorCoreFP8E4M3Layout") # Verify non-quantized layers are standard tensors self.assertNotIsInstance(state_dict2["layer2.weight"], QuantizedTensor) diff --git a/tests-unit/comfy_quant/test_quant_registry.py b/tests-unit/comfy_quant/test_quant_registry.py deleted file mode 100644 index 9cb54ede8..000000000 --- a/tests-unit/comfy_quant/test_quant_registry.py +++ /dev/null @@ -1,190 +0,0 @@ -import unittest -import torch -import sys -import os - -# Add comfy to path -sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "..")) - -def has_gpu(): - return torch.cuda.is_available() - -from comfy.cli_args import args -if not has_gpu(): - args.cpu = True - -from comfy.quant_ops import QuantizedTensor, TensorCoreFP8Layout - - -class TestQuantizedTensor(unittest.TestCase): - """Test the QuantizedTensor subclass with FP8 layout""" - - def test_creation(self): - """Test creating a QuantizedTensor with TensorCoreFP8Layout""" - fp8_data = torch.randn(256, 128, dtype=torch.float32).to(torch.float8_e4m3fn) - scale = torch.tensor(2.0) - layout_params = {'scale': scale, 'orig_dtype': torch.bfloat16} - - qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) - - self.assertIsInstance(qt, QuantizedTensor) - self.assertEqual(qt.shape, (256, 128)) - self.assertEqual(qt.dtype, torch.float8_e4m3fn) - self.assertEqual(qt._layout_params['scale'], scale) - self.assertEqual(qt._layout_params['orig_dtype'], torch.bfloat16) - self.assertEqual(qt._layout_type, "TensorCoreFP8Layout") - - def test_dequantize(self): - """Test explicit dequantization""" - - fp8_data = torch.ones(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) - scale = torch.tensor(3.0) - layout_params = {'scale': scale, 'orig_dtype': torch.float32} - - qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) - dequantized = qt.dequantize() - - self.assertEqual(dequantized.dtype, torch.float32) - self.assertTrue(torch.allclose(dequantized, torch.ones(10, 20) * 3.0, rtol=0.1)) - - def test_from_float(self): - """Test creating QuantizedTensor from float tensor""" - float_tensor = torch.randn(64, 32, dtype=torch.float32) - scale = torch.tensor(1.5) - - qt = QuantizedTensor.from_float( - float_tensor, - "TensorCoreFP8Layout", - scale=scale, - dtype=torch.float8_e4m3fn - ) - - self.assertIsInstance(qt, QuantizedTensor) - self.assertEqual(qt.dtype, torch.float8_e4m3fn) - self.assertEqual(qt.shape, (64, 32)) - - # Verify dequantization gives approximately original values - dequantized = qt.dequantize() - mean_rel_error = ((dequantized - float_tensor).abs() / (float_tensor.abs() + 1e-6)).mean() - self.assertLess(mean_rel_error, 0.1) - - -class TestGenericUtilities(unittest.TestCase): - """Test generic utility operations""" - - def test_detach(self): - """Test detach operation on quantized tensor""" - fp8_data = torch.randn(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) - scale = torch.tensor(1.5) - layout_params = {'scale': scale, 'orig_dtype': torch.float32} - qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) - - # Detach should return a new QuantizedTensor - qt_detached = qt.detach() - - self.assertIsInstance(qt_detached, QuantizedTensor) - self.assertEqual(qt_detached.shape, qt.shape) - self.assertEqual(qt_detached._layout_type, "TensorCoreFP8Layout") - - def test_clone(self): - """Test clone operation on quantized tensor""" - fp8_data = torch.randn(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) - scale = torch.tensor(1.5) - layout_params = {'scale': scale, 'orig_dtype': torch.float32} - qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) - - # Clone should return a new QuantizedTensor - qt_cloned = qt.clone() - - self.assertIsInstance(qt_cloned, QuantizedTensor) - self.assertEqual(qt_cloned.shape, qt.shape) - self.assertEqual(qt_cloned._layout_type, "TensorCoreFP8Layout") - - # Verify it's a deep copy - self.assertIsNot(qt_cloned._qdata, qt._qdata) - - @unittest.skipUnless(has_gpu(), "GPU not available") - def test_to_device(self): - """Test device transfer""" - fp8_data = torch.randn(10, 20, dtype=torch.float32).to(torch.float8_e4m3fn) - scale = torch.tensor(1.5) - layout_params = {'scale': scale, 'orig_dtype': torch.float32} - qt = QuantizedTensor(fp8_data, "TensorCoreFP8Layout", layout_params) - - # Moving to same device should work (CPU to CPU) - qt_cpu = qt.to('cpu') - - self.assertIsInstance(qt_cpu, QuantizedTensor) - self.assertEqual(qt_cpu.device.type, 'cpu') - self.assertEqual(qt_cpu._layout_params['scale'].device.type, 'cpu') - - -class TestTensorCoreFP8Layout(unittest.TestCase): - """Test the TensorCoreFP8Layout implementation""" - - def test_quantize(self): - """Test quantization method""" - float_tensor = torch.randn(32, 64, dtype=torch.float32) - scale = torch.tensor(1.5) - - qdata, layout_params = TensorCoreFP8Layout.quantize( - float_tensor, - scale=scale, - dtype=torch.float8_e4m3fn - ) - - self.assertEqual(qdata.dtype, torch.float8_e4m3fn) - self.assertEqual(qdata.shape, float_tensor.shape) - self.assertIn('scale', layout_params) - self.assertIn('orig_dtype', layout_params) - self.assertEqual(layout_params['orig_dtype'], torch.float32) - - def test_dequantize(self): - """Test dequantization method""" - float_tensor = torch.ones(10, 20, dtype=torch.float32) * 3.0 - scale = torch.tensor(1.0) - - qdata, layout_params = TensorCoreFP8Layout.quantize( - float_tensor, - scale=scale, - dtype=torch.float8_e4m3fn - ) - - dequantized = TensorCoreFP8Layout.dequantize(qdata, **layout_params) - - # Should approximately match original - self.assertTrue(torch.allclose(dequantized, float_tensor, rtol=0.1, atol=0.1)) - - -class TestFallbackMechanism(unittest.TestCase): - """Test fallback for unsupported operations""" - - def test_unsupported_op_dequantizes(self): - """Test that unsupported operations fall back to dequantization""" - # Set seed for reproducibility - torch.manual_seed(42) - - # Create quantized tensor - a_fp32 = torch.randn(10, 20, dtype=torch.float32) - scale = torch.tensor(1.0) - a_q = QuantizedTensor.from_float( - a_fp32, - "TensorCoreFP8Layout", - scale=scale, - dtype=torch.float8_e4m3fn - ) - - # Call an operation that doesn't have a registered handler - # For example, torch.abs - result = torch.abs(a_q) - - # Should work via fallback (dequantize → abs → return) - self.assertNotIsInstance(result, QuantizedTensor) - expected = torch.abs(a_fp32) - # FP8 introduces quantization error, so use loose tolerance - mean_error = (result - expected).abs().mean() - self.assertLess(mean_error, 0.05, f"Mean error {mean_error:.4f} is too large") - - -if __name__ == "__main__": - unittest.main() From 6ef85c49151cf8c4d6bf5e7ccfc566b8d0681cbd Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 5 Jan 2026 19:50:35 -0800 Subject: [PATCH 254/271] Use rope functions from comfy kitchen. (#11647) --- comfy/ldm/flux/math.py | 23 +++++++++++++++-------- 1 file changed, 15 insertions(+), 8 deletions(-) diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py index 6a22df8bc..f9597de5b 100644 --- a/comfy/ldm/flux/math.py +++ b/comfy/ldm/flux/math.py @@ -4,6 +4,7 @@ from torch import Tensor from comfy.ldm.modules.attention import optimized_attention import comfy.model_management +import logging def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor: @@ -13,7 +14,6 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transforme x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options) return x - def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu() or comfy.model_management.is_directml_enabled(): @@ -28,13 +28,20 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor: out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) return out.to(dtype=torch.float32, device=pos.device) -def apply_rope1(x: Tensor, freqs_cis: Tensor): - x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) - x_out = freqs_cis[..., 0] * x_[..., 0] - x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) +try: + import comfy.quant_ops + apply_rope = comfy.quant_ops.ck.apply_rope + apply_rope1 = comfy.quant_ops.ck.apply_rope1 +except: + logging.warning("No comfy kitchen, using old apply_rope functions.") + def apply_rope1(x: Tensor, freqs_cis: Tensor): + x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) - return x_out.reshape(*x.shape).type_as(x) + x_out = freqs_cis[..., 0] * x_[..., 0] + x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) -def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): - return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) + return x_out.reshape(*x.shape).type_as(x) + + def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): + return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) From 161800241117fae7af90e0c938d0cf8cb2f2ddb1 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Mon, 5 Jan 2026 20:07:39 -0800 Subject: [PATCH 255/271] Revert "Use rope functions from comfy kitchen. (#11647)" (#11648) This reverts commit 6ef85c49151cf8c4d6bf5e7ccfc566b8d0681cbd. --- comfy/ldm/flux/math.py | 23 ++++++++--------------- 1 file changed, 8 insertions(+), 15 deletions(-) diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py index f9597de5b..6a22df8bc 100644 --- a/comfy/ldm/flux/math.py +++ b/comfy/ldm/flux/math.py @@ -4,7 +4,6 @@ from torch import Tensor from comfy.ldm.modules.attention import optimized_attention import comfy.model_management -import logging def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor: @@ -14,6 +13,7 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transforme x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options) return x + def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu() or comfy.model_management.is_directml_enabled(): @@ -28,20 +28,13 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor: out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) return out.to(dtype=torch.float32, device=pos.device) +def apply_rope1(x: Tensor, freqs_cis: Tensor): + x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) -try: - import comfy.quant_ops - apply_rope = comfy.quant_ops.ck.apply_rope - apply_rope1 = comfy.quant_ops.ck.apply_rope1 -except: - logging.warning("No comfy kitchen, using old apply_rope functions.") - def apply_rope1(x: Tensor, freqs_cis: Tensor): - x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) + x_out = freqs_cis[..., 0] * x_[..., 0] + x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) - x_out = freqs_cis[..., 0] * x_[..., 0] - x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) + return x_out.reshape(*x.shape).type_as(x) - return x_out.reshape(*x.shape).type_as(x) - - def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): - return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) +def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): + return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) From e14f3b661069971163ddc56036b0f486933b9162 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Tue, 6 Jan 2026 14:37:11 +0800 Subject: [PATCH 256/271] chore: update workflow templates to v0.7.66 (#11652) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 0ee152032..9c9c0e29e 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.65 +comfyui-workflow-templates==0.7.66 comfyui-embedded-docs==0.3.1 torch torchsde From 96e0d0924e027248733bc6e0b8102dcdc8acde33 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 11:43:24 -0800 Subject: [PATCH 257/271] Add helpful message to portable. (#11671) --- .../advanced/run_nvidia_gpu_disable_api_nodes.bat | 2 +- .ci/windows_nvidia_base_files/run_nvidia_gpu.bat | 2 +- .../run_nvidia_gpu_fast_fp16_accumulation.bat | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat b/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat index ed00583b6..4501ef9a1 100644 --- a/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat +++ b/.ci/windows_nvidia_base_files/advanced/run_nvidia_gpu_disable_api_nodes.bat @@ -1,3 +1,3 @@ ..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --disable-api-nodes -echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. +echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe pause diff --git a/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat b/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat index 4898a424f..6487ac7ce 100755 --- a/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat +++ b/.ci/windows_nvidia_base_files/run_nvidia_gpu.bat @@ -1,3 +1,3 @@ .\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build -echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. +echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe pause diff --git a/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat b/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat index 32611e4af..01c5bb33b 100644 --- a/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat +++ b/.ci/windows_nvidia_base_files/run_nvidia_gpu_fast_fp16_accumulation.bat @@ -1,3 +1,3 @@ .\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation -echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. +echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe pause From 6ffc159bdd56d1ad73e954081def6a7f163e7a7f Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 12:53:43 -0800 Subject: [PATCH 258/271] Update comfy-kitchen version to 0.2.1 (#11672) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 9c9c0e29e..22cb50e2d 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,7 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 -comfy-kitchen>=0.2.0 +comfy-kitchen>=0.2.1 #non essential dependencies: kornia>=0.7.1 From c3c3e93c5bb3034175c17ef8beeb8fe8626c66ab Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 13:57:50 -0800 Subject: [PATCH 259/271] Use rope functions from comfy kitchen. (#11674) --- comfy/ldm/flux/math.py | 23 +++++++++++++++-------- requirements.txt | 2 +- 2 files changed, 16 insertions(+), 9 deletions(-) diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py index 6a22df8bc..f9597de5b 100644 --- a/comfy/ldm/flux/math.py +++ b/comfy/ldm/flux/math.py @@ -4,6 +4,7 @@ from torch import Tensor from comfy.ldm.modules.attention import optimized_attention import comfy.model_management +import logging def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor: @@ -13,7 +14,6 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transforme x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options) return x - def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu() or comfy.model_management.is_directml_enabled(): @@ -28,13 +28,20 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor: out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) return out.to(dtype=torch.float32, device=pos.device) -def apply_rope1(x: Tensor, freqs_cis: Tensor): - x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) - x_out = freqs_cis[..., 0] * x_[..., 0] - x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) +try: + import comfy.quant_ops + apply_rope = comfy.quant_ops.ck.apply_rope + apply_rope1 = comfy.quant_ops.ck.apply_rope1 +except: + logging.warning("No comfy kitchen, using old apply_rope functions.") + def apply_rope1(x: Tensor, freqs_cis: Tensor): + x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2) - return x_out.reshape(*x.shape).type_as(x) + x_out = freqs_cis[..., 0] * x_[..., 0] + x_out.addcmul_(freqs_cis[..., 1], x_[..., 1]) -def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): - return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) + return x_out.reshape(*x.shape).type_as(x) + + def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor): + return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis) diff --git a/requirements.txt b/requirements.txt index 22cb50e2d..7798cb179 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,7 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 -comfy-kitchen>=0.2.1 +comfy-kitchen>=0.2.2 #non essential dependencies: kornia>=0.7.1 From c3566c0d765200068d26d0888f035504a50012f2 Mon Sep 17 00:00:00 2001 From: ComfyUI Wiki Date: Wed, 7 Jan 2026 06:28:29 +0800 Subject: [PATCH 260/271] chore: update workflow templates to v0.7.67 (#11667) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 7798cb179..caad0026a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ comfyui-frontend-package==1.35.9 -comfyui-workflow-templates==0.7.66 +comfyui-workflow-templates==0.7.67 comfyui-embedded-docs==0.3.1 torch torchsde From 023cf13721cac256c323e2226319b766d07b1f36 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 14:33:03 -0800 Subject: [PATCH 261/271] Fix lowvram issue with ltxv2 text encoder. (#11675) --- comfy/ldm/lightricks/embeddings_connector.py | 2 +- comfy/text_encoders/lt.py | 4 +++- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/comfy/ldm/lightricks/embeddings_connector.py b/comfy/ldm/lightricks/embeddings_connector.py index f7a43f3c3..06f5ada89 100644 --- a/comfy/ldm/lightricks/embeddings_connector.py +++ b/comfy/ldm/lightricks/embeddings_connector.py @@ -276,7 +276,7 @@ class Embeddings1DConnector(nn.Module): max(1024, hidden_states.shape[1]) / self.num_learnable_registers ) learnable_registers = torch.tile( - self.learnable_registers, (num_registers_duplications, 1) + self.learnable_registers.to(hidden_states), (num_registers_duplications, 1) ) hidden_states = torch.cat((hidden_states, learnable_registers[hidden_states.shape[1]:].unsqueeze(0).repeat(hidden_states.shape[0], 1, 1)), dim=1) diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index 2c2d453e8..e5964e42b 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -86,17 +86,19 @@ class LTXAVTEModel(torch.nn.Module): ) def set_clip_options(self, options): + self.execution_device = options.get("execution_device", self.execution_device) self.gemma3_12b.set_clip_options(options) def reset_clip_options(self): self.gemma3_12b.reset_clip_options() + self.execution_device = None def encode_token_weights(self, token_weight_pairs): token_weight_pairs = token_weight_pairs["gemma3_12b"] out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs) out_device = out.device - out = out.movedim(1, -1).to(self.text_embedding_projection.weight.device) + out = out.movedim(1, -1).to(self.execution_device) out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6) out = out.reshape((out.shape[0], out.shape[1], -1)) out = self.text_embedding_projection(out) From 6e9ee55cdd9e0eca6b5144063575b983f3311762 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 14:41:27 -0800 Subject: [PATCH 262/271] Disable ltxav previews. (#11676) --- comfy/latent_formats.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index 9bbe30b53..cb4f52ce1 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -408,7 +408,9 @@ class LTXV(LatentFormat): self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512] class LTXAV(LTXV): - pass + def __init__(self): + self.latent_rgb_factors = None + self.latent_rgb_factors_bias = None class HunyuanVideo(LatentFormat): latent_channels = 16 From 2c03884f5fb7fa213161dfe1e9a09a8e8c4b6062 Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 15:07:26 -0800 Subject: [PATCH 263/271] Skip fp4 matrix mult on devices that don't support it. (#11677) --- comfy/model_management.py | 10 ++++++++++ comfy/ops.py | 21 +++++++++++++++++---- 2 files changed, 27 insertions(+), 4 deletions(-) diff --git a/comfy/model_management.py b/comfy/model_management.py index 22f4de044..928282092 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -1504,6 +1504,16 @@ def supports_fp8_compute(device=None): return True +def supports_nvfp4_compute(device=None): + if not is_nvidia(): + return False + + props = torch.cuda.get_device_properties(device) + if props.major < 10: + return False + + return True + def extended_fp16_support(): # TODO: check why some models work with fp16 on newer torch versions but not on older if torch_version_numeric < (2, 7): diff --git a/comfy/ops.py b/comfy/ops.py index f5e1e9230..8f9fdce36 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -493,11 +493,12 @@ from .quant_ops import ( ) -def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False): +def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False, disabled=[]): class MixedPrecisionOps(manual_cast): _quant_config = quant_config _compute_dtype = compute_dtype _full_precision_mm = full_precision_mm + _disabled = disabled class Linear(torch.nn.Module, CastWeightBiasOp): def __init__( @@ -522,6 +523,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec self.tensor_class = None self._full_precision_mm = MixedPrecisionOps._full_precision_mm + self._full_precision_mm_config = False def reset_parameters(self): return None @@ -556,8 +558,12 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False) else: self.quant_format = layer_conf.get("format", None) + self._full_precision_mm_config = layer_conf.get("full_precision_matrix_mult", False) if not self._full_precision_mm: - self._full_precision_mm = layer_conf.get("full_precision_matrix_mult", False) + self._full_precision_mm = self._full_precision_mm_config + + if self.quant_format in MixedPrecisionOps._disabled: + self._full_precision_mm = True if self.quant_format is None: raise ValueError(f"Unknown quantization format for layer {layer_name}") @@ -630,7 +636,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec sd["{}weight_scale".format(prefix)] = self.weight._params.block_scale quant_conf = {"format": self.quant_format} - if self._full_precision_mm: + if self._full_precision_mm_config: quant_conf["full_precision_matrix_mult"] = True sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8) return sd @@ -711,10 +717,17 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, model_config=None): fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular + nvfp4_compute = comfy.model_management.supports_nvfp4_compute(load_device) if model_config and hasattr(model_config, 'quant_config') and model_config.quant_config: logging.info("Using mixed precision operations") - return mixed_precision_ops(model_config.quant_config, compute_dtype, full_precision_mm=not fp8_compute) + disabled = set() + if not nvfp4_compute: + disabled.add("nvfp4") + if not fp8_compute: + disabled.add("float8_e4m3fn") + disabled.add("float8_e5m2") + return mixed_precision_ops(model_config.quant_config, compute_dtype, disabled=disabled) if ( fp8_compute and From edee33f55ea27a1931475d3ea788fd6e9a81677b Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 19:13:43 -0800 Subject: [PATCH 264/271] Disable comfy kitchen cuda if pytorch cuda less than 13 (#11681) --- comfy/quant_ops.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/comfy/quant_ops.py b/comfy/quant_ops.py index cd737726f..5a17bc6f5 100644 --- a/comfy/quant_ops.py +++ b/comfy/quant_ops.py @@ -13,6 +13,13 @@ try: get_layout_class, ) _CK_AVAILABLE = True + if torch.version.cuda is None: + ck.registry.disable("cuda") + else: + cuda_version = tuple(map(int, str(torch.version.cuda).split('.'))) + if cuda_version < (13,): + ck.registry.disable("cuda") + ck.registry.disable("triton") for k, v in ck.list_backends().items(): logging.info(f"Found comfy_kitchen backend {k}: {v}") From c5cfb34c07048350f472a9a4f1ccbf75a56ed38f Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 20:51:45 -0800 Subject: [PATCH 265/271] Update comfy-kitchen version to 0.2.3 (#11685) --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index caad0026a..bc8346bcf 100644 --- a/requirements.txt +++ b/requirements.txt @@ -21,7 +21,7 @@ psutil alembic SQLAlchemy av>=14.2.0 -comfy-kitchen>=0.2.2 +comfy-kitchen>=0.2.3 #non essential dependencies: kornia>=0.7.1 From ce0000c4f2a7dba12324585dddb784b43e3cd3d0 Mon Sep 17 00:00:00 2001 From: Yoland Yan <4950057+yoland68@users.noreply.github.com> Date: Tue, 6 Jan 2026 21:57:31 -0800 Subject: [PATCH 266/271] Force sequential execution in CI test jobs (#11687) Added max-parallel setting to enforce sequential execution in test jobs. --- .github/workflows/test-ci.yml | 2 ++ 1 file changed, 2 insertions(+) diff --git a/.github/workflows/test-ci.yml b/.github/workflows/test-ci.yml index adfc5dd32..63df2dc3a 100644 --- a/.github/workflows/test-ci.yml +++ b/.github/workflows/test-ci.yml @@ -20,6 +20,7 @@ jobs: test-stable: strategy: fail-fast: false + max-parallel: 1 # This forces sequential execution matrix: # os: [macos, linux, windows] # os: [macos, linux] @@ -74,6 +75,7 @@ jobs: test-unix-nightly: strategy: fail-fast: false + max-parallel: 1 # This forces sequential execution matrix: # os: [macos, linux] os: [linux] From 79e94544bd7ec0cc7a4e5e6167907e7d781c4b76 Mon Sep 17 00:00:00 2001 From: Alexander Piskun <13381981+bigcat88@users.noreply.github.com> Date: Wed, 7 Jan 2026 08:04:50 +0200 Subject: [PATCH 267/271] feat(api-nodes): add WAN2.6 ReferenceToVideo (#11644) --- comfy_api_nodes/nodes_wan.py | 160 +++++++++++++++++++++++++ comfy_api_nodes/util/upload_helpers.py | 2 +- 2 files changed, 161 insertions(+), 1 deletion(-) diff --git a/comfy_api_nodes/nodes_wan.py b/comfy_api_nodes/nodes_wan.py index 1675fd863..3e04786a9 100644 --- a/comfy_api_nodes/nodes_wan.py +++ b/comfy_api_nodes/nodes_wan.py @@ -13,7 +13,9 @@ from comfy_api_nodes.util import ( poll_op, sync_op, tensor_to_base64_string, + upload_video_to_comfyapi, validate_audio_duration, + validate_video_duration, ) @@ -41,6 +43,12 @@ class Image2VideoInputField(BaseModel): audio_url: str | None = Field(None) +class Reference2VideoInputField(BaseModel): + prompt: str = Field(...) + negative_prompt: str | None = Field(None) + reference_video_urls: list[str] = Field(...) + + class Txt2ImageParametersField(BaseModel): size: str = Field(...) n: int = Field(1, description="Number of images to generate.") # we support only value=1 @@ -76,6 +84,14 @@ class Image2VideoParametersField(BaseModel): shot_type: str = Field("single") +class Reference2VideoParametersField(BaseModel): + size: str = Field(...) + duration: int = Field(5, ge=5, le=15) + shot_type: str = Field("single") + seed: int = Field(..., ge=0, le=2147483647) + watermark: bool = Field(False) + + class Text2ImageTaskCreationRequest(BaseModel): model: str = Field(...) input: Text2ImageInputField = Field(...) @@ -100,6 +116,12 @@ class Image2VideoTaskCreationRequest(BaseModel): parameters: Image2VideoParametersField = Field(...) +class Reference2VideoTaskCreationRequest(BaseModel): + model: str = Field(...) + input: Reference2VideoInputField = Field(...) + parameters: Reference2VideoParametersField = Field(...) + + class TaskCreationOutputField(BaseModel): task_id: str = Field(...) task_status: str = Field(...) @@ -721,6 +743,143 @@ class WanImageToVideoApi(IO.ComfyNode): return IO.NodeOutput(await download_url_to_video_output(response.output.video_url)) +class WanReferenceVideoApi(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="WanReferenceVideoApi", + display_name="Wan Reference to Video", + category="api node/video/Wan", + description="Use the character and voice from input videos, combined with a prompt, " + "to generate a new video that maintains character consistency.", + inputs=[ + IO.Combo.Input("model", options=["wan2.6-r2v"]), + IO.String.Input( + "prompt", + multiline=True, + default="", + tooltip="Prompt describing the elements and visual features. Supports English and Chinese. " + "Use identifiers such as `character1` and `character2` to refer to the reference characters.", + ), + IO.String.Input( + "negative_prompt", + multiline=True, + default="", + tooltip="Negative prompt describing what to avoid.", + ), + IO.Autogrow.Input( + "reference_videos", + template=IO.Autogrow.TemplateNames( + IO.Video.Input("reference_video"), + names=["character1", "character2", "character3"], + min=1, + ), + ), + IO.Combo.Input( + "size", + options=[ + "720p: 1:1 (960x960)", + "720p: 16:9 (1280x720)", + "720p: 9:16 (720x1280)", + "720p: 4:3 (1088x832)", + "720p: 3:4 (832x1088)", + "1080p: 1:1 (1440x1440)", + "1080p: 16:9 (1920x1080)", + "1080p: 9:16 (1080x1920)", + "1080p: 4:3 (1632x1248)", + "1080p: 3:4 (1248x1632)", + ], + ), + IO.Int.Input( + "duration", + default=5, + min=5, + max=10, + step=5, + display_mode=IO.NumberDisplay.slider, + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + step=1, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + ), + IO.Combo.Input( + "shot_type", + options=["single", "multi"], + tooltip="Specifies the shot type for the generated video, that is, whether the video is a " + "single continuous shot or multiple shots with cuts.", + ), + IO.Boolean.Input( + "watermark", + default=False, + tooltip="Whether to add an AI-generated watermark to the result.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + ) + + @classmethod + async def execute( + cls, + model: str, + prompt: str, + negative_prompt: str, + reference_videos: IO.Autogrow.Type, + size: str, + duration: int, + seed: int, + shot_type: str, + watermark: bool, + ): + reference_video_urls = [] + for i in reference_videos: + validate_video_duration(reference_videos[i], min_duration=2, max_duration=30) + for i in reference_videos: + reference_video_urls.append(await upload_video_to_comfyapi(cls, reference_videos[i])) + width, height = RES_IN_PARENS.search(size).groups() + initial_response = await sync_op( + cls, + ApiEndpoint(path="/proxy/wan/api/v1/services/aigc/video-generation/video-synthesis", method="POST"), + response_model=TaskCreationResponse, + data=Reference2VideoTaskCreationRequest( + model=model, + input=Reference2VideoInputField( + prompt=prompt, negative_prompt=negative_prompt, reference_video_urls=reference_video_urls + ), + parameters=Reference2VideoParametersField( + size=f"{width}*{height}", + duration=duration, + shot_type=shot_type, + watermark=watermark, + seed=seed, + ), + ), + ) + if not initial_response.output: + raise Exception(f"An unknown error occurred: {initial_response.code} - {initial_response.message}") + response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/wan/api/v1/tasks/{initial_response.output.task_id}"), + response_model=VideoTaskStatusResponse, + status_extractor=lambda x: x.output.task_status, + poll_interval=6, + max_poll_attempts=280, + ) + return IO.NodeOutput(await download_url_to_video_output(response.output.video_url)) + + class WanApiExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: @@ -729,6 +888,7 @@ class WanApiExtension(ComfyExtension): WanImageToImageApi, WanTextToVideoApi, WanImageToVideoApi, + WanReferenceVideoApi, ] diff --git a/comfy_api_nodes/util/upload_helpers.py b/comfy_api_nodes/util/upload_helpers.py index b8d33f4d1..f1ed7fe9c 100644 --- a/comfy_api_nodes/util/upload_helpers.py +++ b/comfy_api_nodes/util/upload_helpers.py @@ -119,7 +119,7 @@ async def upload_video_to_comfyapi( raise ValueError(f"Could not verify video duration from source: {e}") from e upload_mime_type = f"video/{container.value.lower()}" - filename = f"uploaded_video.{container.value.lower()}" + filename = f"{uuid.uuid4()}.{container.value.lower()}" # Convert VideoInput to BytesIO using specified container/codec video_bytes_io = BytesIO() From b7d7cc1d496afe3c82279eec74c4d47399aab8ea Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Tue, 6 Jan 2026 22:39:06 -0800 Subject: [PATCH 268/271] Fix fp8 fast issue. (#11688) --- comfy/ops.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/comfy/ops.py b/comfy/ops.py index 8f9fdce36..cd536e22d 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -427,12 +427,12 @@ def fp8_linear(self, input): input = torch.clamp(input, min=-448, max=448, out=input) input_fp8 = input.to(dtype).contiguous() layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape)) - quantized_input = QuantizedTensor(input_fp8, TensorCoreFP8Layout, layout_params_input) + quantized_input = QuantizedTensor(input_fp8, "TensorCoreFP8Layout", layout_params_input) # Wrap weight in QuantizedTensor - this enables unified dispatch # Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py! layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape)) - quantized_weight = QuantizedTensor(w, TensorCoreFP8Layout, layout_params_weight) + quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight) o = torch.nn.functional.linear(quantized_input, quantized_weight, bias) uncast_bias_weight(self, w, bias, offload_stream) From fc0cb10bcbee6e73ed3caf34c27f7bde4559a07f Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Wed, 7 Jan 2026 04:07:31 -0500 Subject: [PATCH 269/271] ComfyUI v0.8.0 --- comfyui_version.py | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/comfyui_version.py b/comfyui_version.py index 1ed60fe5c..750673f08 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.7.0" +__version__ = "0.8.0" diff --git a/pyproject.toml b/pyproject.toml index a7d159be9..951c2c978 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.7.0" +version = "0.8.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10" From c0c9720d77774ed2c87981da87189fe1c14a57fa Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 01:48:28 -0800 Subject: [PATCH 270/271] Fix stable release workflow not pulling latest comfy kitchen. (#11695) --- .github/workflows/stable-release.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/stable-release.yml b/.github/workflows/stable-release.yml index 28484a9d1..f501b7b31 100644 --- a/.github/workflows/stable-release.yml +++ b/.github/workflows/stable-release.yml @@ -117,7 +117,7 @@ jobs: ./python.exe get-pip.py ./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/* - grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt + grep comfy ../ComfyUI/requirements.txt > ./requirements_comfyui.txt ./python.exe -s -m pip install -r requirements_comfyui.txt rm requirements_comfyui.txt From 3cd7b32f1b7e7e90395cefe7d9f9b1f89276d8ce Mon Sep 17 00:00:00 2001 From: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com> Date: Wed, 7 Jan 2026 02:15:14 -0800 Subject: [PATCH 271/271] Support gemma 12B with quant weights. (#11696) --- comfy/text_encoders/lt.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index e5964e42b..130ebaeae 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -36,10 +36,10 @@ class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer): class Gemma3_12BModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}): - llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None) - if llama_scaled_fp8 is not None: + llama_quantization_metadata = model_options.get("llama_quantization_metadata", None) + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["scaled_fp8"] = llama_scaled_fp8 + model_options["quantization_metadata"] = llama_quantization_metadata super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) @@ -119,12 +119,12 @@ class LTXAVTEModel(torch.nn.Module): return self.load_state_dict(sdo, strict=False) -def ltxav_te(dtype_llama=None, llama_scaled_fp8=None): +def ltxav_te(dtype_llama=None, llama_quantization_metadata=None): class LTXAVTEModel_(LTXAVTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): - if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options: + if llama_quantization_metadata is not None: model_options = model_options.copy() - model_options["llama_scaled_fp8"] = llama_scaled_fp8 + model_options["llama_quantization_metadata"] = llama_quantization_metadata if dtype_llama is not None: dtype = dtype_llama super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)