add rebatch node

This commit is contained in:
BlenderNeko 2023-04-28 18:03:22 +02:00
parent 0732fc8f2a
commit f1bd46c519
2 changed files with 90 additions and 0 deletions

View File

@ -0,0 +1,89 @@
import torch
class LatentRebatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "latents": ("LATENT",),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1000}),
}}
RETURN_TYPES = ("LATENT",)
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True, )
FUNCTION = "rebatch"
CATEGORY = "latent"
def get_batch(self, latent, i):
samples = latent[i]['samples']
shape = samples.shape
mask = latent[i]['noise_mask'] if 'noise_mask' in latent[i] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu')
if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]:
torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear")
if mask.shape[0] < samples.shape[0]:
mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
return samples, mask
def get_slices(self, tensors, num, batch_size):
slices = []
for i in range(num):
slices.append(tensors[i*batch_size:(i+1)*batch_size])
if num * batch_size < tensors.shape[0]:
return slices, tensors[num * batch_size:]
else:
return slices, None
def rebatch(self, latents, batch_size):
batch_size = batch_size[0]
output_list = []
current_samples = None
current_masks = None
for i in range(len(latents)):
# fetch new entry of list
samples, masks = self.get_batch(latents, i)
# set to current if current is None
if current_samples is None:
current_samples = samples
current_masks = masks
# add previous to list if dimensions do not match
elif samples.shape[-1] != current_samples.shape[-1] or samples.shape[-2] != current_samples.shape[-2]:
s = dict()
sample_slices, _ = self.get_slices(current_samples, 1, batch_size)
mask_slices, _ = self.get_slices(current_masks, 1, batch_size)
output_list.append({'samples': sample_slices[0], 'noise_mask': mask_slices[0]})
current_samples = samples
current_masks = masks
# cat if everything checks out
else:
current_samples = torch.cat((current_samples, samples))
current_masks = torch.cat((current_masks, masks))
# add to list if dimensions gone above target batch size
if current_samples.shape[0] > batch_size:
num = current_samples.shape[0] // batch_size
sample_slices, latent_remainder = self.get_slices(current_samples, num, batch_size)
mask_slices, mask_remainder = self.get_slices(current_masks, num, batch_size)
for i in range(num):
output_list.append({'samples': sample_slices[i], 'noise_mask': mask_slices[i]})
current_samples = latent_remainder
current_masks = mask_remainder
#add remainder
if current_samples is not None:
sample_slices, _ = self.get_slices(current_samples, 1, batch_size)
mask_slices, _ = self.get_slices(current_masks, 1, batch_size)
output_list.append({'samples': sample_slices[0], 'noise_mask': mask_slices[0]})
return (output_list,)
NODE_CLASS_MAPPINGS = {
"RebatchLatents": LatentRebatch,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"RebatchLatents": "Rebatch Latents",
}

View File

@ -1231,3 +1231,4 @@ def init_custom_nodes():
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))