mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-09 13:02:31 +08:00
Merge branch 'comfyanonymous:master' into feature/maskpainting
This commit is contained in:
commit
f2eaafebb8
@ -767,7 +767,7 @@ class UniPC:
|
|||||||
model_x = self.model_fn(x, vec_t)
|
model_x = self.model_fn(x, vec_t)
|
||||||
model_prev_list[-1] = model_x
|
model_prev_list[-1] = model_x
|
||||||
if callback is not None:
|
if callback is not None:
|
||||||
callback(step_index, model_prev_list[-1], x)
|
callback(step_index, model_prev_list[-1], x, steps)
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError()
|
raise NotImplementedError()
|
||||||
if denoise_to_zero:
|
if denoise_to_zero:
|
||||||
|
|||||||
@ -623,7 +623,8 @@ class KSampler:
|
|||||||
|
|
||||||
ddim_callback = None
|
ddim_callback = None
|
||||||
if callback is not None:
|
if callback is not None:
|
||||||
ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None)
|
total_steps = len(timesteps) - 1
|
||||||
|
ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
|
||||||
|
|
||||||
sampler = DDIMSampler(self.model, device=self.device)
|
sampler = DDIMSampler(self.model, device=self.device)
|
||||||
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
|
sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
|
||||||
@ -654,13 +655,14 @@ class KSampler:
|
|||||||
noise = noise * sigmas[0]
|
noise = noise * sigmas[0]
|
||||||
|
|
||||||
k_callback = None
|
k_callback = None
|
||||||
|
total_steps = len(sigmas) - 1
|
||||||
if callback is not None:
|
if callback is not None:
|
||||||
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"])
|
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
|
||||||
|
|
||||||
if latent_image is not None:
|
if latent_image is not None:
|
||||||
noise += latent_image
|
noise += latent_image
|
||||||
if self.sampler == "dpm_fast":
|
if self.sampler == "dpm_fast":
|
||||||
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
||||||
elif self.sampler == "dpm_adaptive":
|
elif self.sampler == "dpm_adaptive":
|
||||||
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
|
||||||
else:
|
else:
|
||||||
|
|||||||
23
comfy/sd.py
23
comfy/sd.py
@ -514,11 +514,16 @@ class VAE:
|
|||||||
self.device = device
|
self.device = device
|
||||||
|
|
||||||
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||||
|
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||||
|
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||||
|
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||||
|
pbar = utils.ProgressBar(steps)
|
||||||
|
|
||||||
decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
|
decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
|
||||||
output = torch.clamp((
|
output = torch.clamp((
|
||||||
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8) +
|
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||||
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8) +
|
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||||
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8))
|
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
||||||
/ 3.0) / 2.0, min=0.0, max=1.0)
|
/ 3.0) / 2.0, min=0.0, max=1.0)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
@ -562,9 +567,15 @@ class VAE:
|
|||||||
model_management.unload_model()
|
model_management.unload_model()
|
||||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||||
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
|
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
|
||||||
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4)
|
|
||||||
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4)
|
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||||
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4)
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||||
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||||
|
pbar = utils.ProgressBar(steps)
|
||||||
|
|
||||||
|
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||||
|
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||||
|
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||||
samples /= 3.0
|
samples /= 3.0
|
||||||
self.first_stage_model = self.first_stage_model.cpu()
|
self.first_stage_model = self.first_stage_model.cpu()
|
||||||
samples = samples.cpu()
|
samples = samples.cpu()
|
||||||
|
|||||||
@ -1,4 +1,5 @@
|
|||||||
import torch
|
import torch
|
||||||
|
import math
|
||||||
|
|
||||||
def load_torch_file(ckpt, safe_load=False):
|
def load_torch_file(ckpt, safe_load=False):
|
||||||
if ckpt.lower().endswith(".safetensors"):
|
if ckpt.lower().endswith(".safetensors"):
|
||||||
@ -62,8 +63,11 @@ def common_upscale(samples, width, height, upscale_method, crop):
|
|||||||
s = samples
|
s = samples
|
||||||
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
||||||
|
|
||||||
|
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
|
||||||
|
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3):
|
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, pbar = None):
|
||||||
output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device="cpu")
|
output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device="cpu")
|
||||||
for b in range(samples.shape[0]):
|
for b in range(samples.shape[0]):
|
||||||
s = samples[b:b+1]
|
s = samples[b:b+1]
|
||||||
@ -83,6 +87,33 @@ def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_am
|
|||||||
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
|
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
|
||||||
out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
|
out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
|
||||||
out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
|
out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
|
||||||
|
if pbar is not None:
|
||||||
|
pbar.update(1)
|
||||||
|
|
||||||
output[b:b+1] = out/out_div
|
output[b:b+1] = out/out_div
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
PROGRESS_BAR_HOOK = None
|
||||||
|
def set_progress_bar_global_hook(function):
|
||||||
|
global PROGRESS_BAR_HOOK
|
||||||
|
PROGRESS_BAR_HOOK = function
|
||||||
|
|
||||||
|
class ProgressBar:
|
||||||
|
def __init__(self, total):
|
||||||
|
global PROGRESS_BAR_HOOK
|
||||||
|
self.total = total
|
||||||
|
self.current = 0
|
||||||
|
self.hook = PROGRESS_BAR_HOOK
|
||||||
|
|
||||||
|
def update_absolute(self, value, total=None):
|
||||||
|
if total is not None:
|
||||||
|
self.total = total
|
||||||
|
if value > self.total:
|
||||||
|
value = self.total
|
||||||
|
self.current = value
|
||||||
|
if self.hook is not None:
|
||||||
|
self.hook(self.current, self.total)
|
||||||
|
|
||||||
|
def update(self, value):
|
||||||
|
self.update_absolute(self.current + value)
|
||||||
|
|||||||
@ -37,7 +37,12 @@ class ImageUpscaleWithModel:
|
|||||||
device = model_management.get_torch_device()
|
device = model_management.get_torch_device()
|
||||||
upscale_model.to(device)
|
upscale_model.to(device)
|
||||||
in_img = image.movedim(-1,-3).to(device)
|
in_img = image.movedim(-1,-3).to(device)
|
||||||
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=128 + 64, tile_y=128 + 64, overlap = 8, upscale_amount=upscale_model.scale)
|
|
||||||
|
tile = 128 + 64
|
||||||
|
overlap = 8
|
||||||
|
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
|
||||||
|
pbar = comfy.utils.ProgressBar(steps)
|
||||||
|
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
|
||||||
upscale_model.cpu()
|
upscale_model.cpu()
|
||||||
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
|
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
|
||||||
return (s,)
|
return (s,)
|
||||||
|
|||||||
12
main.py
12
main.py
@ -5,6 +5,7 @@ import shutil
|
|||||||
import threading
|
import threading
|
||||||
|
|
||||||
from comfy.cli_args import args
|
from comfy.cli_args import args
|
||||||
|
import comfy.utils
|
||||||
|
|
||||||
if os.name == "nt":
|
if os.name == "nt":
|
||||||
import logging
|
import logging
|
||||||
@ -39,14 +40,9 @@ async def run(server, address='', port=8188, verbose=True, call_on_start=None):
|
|||||||
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
|
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
|
||||||
|
|
||||||
def hijack_progress(server):
|
def hijack_progress(server):
|
||||||
from tqdm.auto import tqdm
|
def hook(value, total):
|
||||||
orig_func = getattr(tqdm, "update")
|
server.send_sync("progress", { "value": value, "max": total}, server.client_id)
|
||||||
def wrapped_func(*args, **kwargs):
|
comfy.utils.set_progress_bar_global_hook(hook)
|
||||||
pbar = args[0]
|
|
||||||
v = orig_func(*args, **kwargs)
|
|
||||||
server.send_sync("progress", { "value": pbar.n, "max": pbar.total}, server.client_id)
|
|
||||||
return v
|
|
||||||
setattr(tqdm, "update", wrapped_func)
|
|
||||||
|
|
||||||
def cleanup_temp():
|
def cleanup_temp():
|
||||||
temp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
temp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
||||||
|
|||||||
6
nodes.py
6
nodes.py
@ -815,9 +815,13 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
|||||||
if "noise_mask" in latent:
|
if "noise_mask" in latent:
|
||||||
noise_mask = latent["noise_mask"]
|
noise_mask = latent["noise_mask"]
|
||||||
|
|
||||||
|
pbar = comfy.utils.ProgressBar(steps)
|
||||||
|
def callback(step, x0, x, total_steps):
|
||||||
|
pbar.update_absolute(step + 1, total_steps)
|
||||||
|
|
||||||
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
||||||
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
||||||
force_full_denoise=force_full_denoise, noise_mask=noise_mask)
|
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
|
||||||
out = latent.copy()
|
out = latent.copy()
|
||||||
out["samples"] = samples
|
out["samples"] = samples
|
||||||
return (out, )
|
return (out, )
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user