mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-12-18 10:33:01 +08:00
Merge branch 'master' into dr-support-pip-cm
This commit is contained in:
commit
f51047abd3
20
README.md
20
README.md
@ -49,7 +49,6 @@ Supports all operating systems and GPU types (NVIDIA, AMD, Intel, Apple Silicon,
|
||||
## [Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
|
||||
See what ComfyUI can do with the [example workflows](https://comfyanonymous.github.io/ComfyUI_examples/).
|
||||
|
||||
|
||||
## Features
|
||||
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
|
||||
- Image Models
|
||||
@ -99,6 +98,23 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
|
||||
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
|
||||
|
||||
## Release Process
|
||||
|
||||
ComfyUI follows a weekly release cycle every Friday, with three interconnected repositories:
|
||||
|
||||
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
|
||||
- Releases a new stable version (e.g., v0.7.0)
|
||||
- Serves as the foundation for the desktop release
|
||||
|
||||
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
|
||||
- Builds a new release using the latest stable core version
|
||||
- Version numbers match the core release (e.g., Desktop v1.7.0 uses Core v1.7.0)
|
||||
|
||||
3. **[ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend)**
|
||||
- Weekly frontend updates are merged into the core repository
|
||||
- Features are frozen for the upcoming core release
|
||||
- Development continues for the next release cycle
|
||||
|
||||
## Shortcuts
|
||||
|
||||
| Keybind | Explanation |
|
||||
@ -149,8 +165,6 @@ Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you
|
||||
|
||||
If you have trouble extracting it, right click the file -> properties -> unblock
|
||||
|
||||
If you have a 50 series Blackwell card like a 5090 or 5080 see [this discussion thread](https://github.com/comfyanonymous/ComfyUI/discussions/6643)
|
||||
|
||||
#### How do I share models between another UI and ComfyUI?
|
||||
|
||||
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
|
||||
|
||||
@ -93,16 +93,20 @@ class CustomNodeManager:
|
||||
|
||||
def add_routes(self, routes, webapp, loadedModules):
|
||||
|
||||
example_workflow_folder_names = ["example_workflows", "example", "examples", "workflow", "workflows"]
|
||||
|
||||
@routes.get("/workflow_templates")
|
||||
async def get_workflow_templates(request):
|
||||
"""Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
|
||||
files = [
|
||||
file
|
||||
for folder in folder_paths.get_folder_paths("custom_nodes")
|
||||
for file in glob.glob(
|
||||
os.path.join(folder, "*/example_workflows/*.json")
|
||||
)
|
||||
]
|
||||
|
||||
files = []
|
||||
|
||||
for folder in folder_paths.get_folder_paths("custom_nodes"):
|
||||
for folder_name in example_workflow_folder_names:
|
||||
pattern = os.path.join(folder, f"*/{folder_name}/*.json")
|
||||
matched_files = glob.glob(pattern)
|
||||
files.extend(matched_files)
|
||||
|
||||
workflow_templates_dict = (
|
||||
{}
|
||||
) # custom_nodes folder name -> example workflow names
|
||||
@ -118,15 +122,22 @@ class CustomNodeManager:
|
||||
|
||||
# Serve workflow templates from custom nodes.
|
||||
for module_name, module_dir in loadedModules:
|
||||
workflows_dir = os.path.join(module_dir, "example_workflows")
|
||||
if os.path.exists(workflows_dir):
|
||||
webapp.add_routes(
|
||||
[
|
||||
web.static(
|
||||
"/api/workflow_templates/" + module_name, workflows_dir
|
||||
)
|
||||
]
|
||||
)
|
||||
for folder_name in example_workflow_folder_names:
|
||||
workflows_dir = os.path.join(module_dir, folder_name)
|
||||
|
||||
if os.path.exists(workflows_dir):
|
||||
if folder_name != "example_workflows":
|
||||
logging.warning(
|
||||
"WARNING: Found example workflow folder '%s' for custom node '%s', consider renaming it to 'example_workflows'",
|
||||
folder_name, module_name)
|
||||
|
||||
webapp.add_routes(
|
||||
[
|
||||
web.static(
|
||||
"/api/workflow_templates/" + module_name, workflows_dir
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
@routes.get("/i18n")
|
||||
async def get_i18n(request):
|
||||
|
||||
@ -48,6 +48,7 @@ class IO(StrEnum):
|
||||
FACE_ANALYSIS = "FACE_ANALYSIS"
|
||||
BBOX = "BBOX"
|
||||
SEGS = "SEGS"
|
||||
VIDEO = "VIDEO"
|
||||
|
||||
ANY = "*"
|
||||
"""Always matches any type, but at a price.
|
||||
@ -273,7 +274,7 @@ class ComfyNodeABC(ABC):
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
|
||||
"""
|
||||
OUTPUT_IS_LIST: tuple[bool]
|
||||
OUTPUT_IS_LIST: tuple[bool, ...]
|
||||
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
|
||||
|
||||
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
|
||||
@ -292,7 +293,7 @@ class ComfyNodeABC(ABC):
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
|
||||
"""
|
||||
|
||||
RETURN_TYPES: tuple[IO]
|
||||
RETURN_TYPES: tuple[IO, ...]
|
||||
"""A tuple representing the outputs of this node.
|
||||
|
||||
Usage::
|
||||
@ -301,12 +302,12 @@ class ComfyNodeABC(ABC):
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
|
||||
"""
|
||||
RETURN_NAMES: tuple[str]
|
||||
RETURN_NAMES: tuple[str, ...]
|
||||
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
|
||||
|
||||
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
|
||||
"""
|
||||
OUTPUT_TOOLTIPS: tuple[str]
|
||||
OUTPUT_TOOLTIPS: tuple[str, ...]
|
||||
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
|
||||
FUNCTION: str
|
||||
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
|
||||
|
||||
@ -1345,28 +1345,52 @@ def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, cal
|
||||
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
|
||||
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2., cfg_pp=False):
|
||||
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
old_d = None
|
||||
|
||||
uncond_denoised = None
|
||||
def post_cfg_function(args):
|
||||
nonlocal uncond_denoised
|
||||
uncond_denoised = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
if cfg_pp:
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
if cfg_pp:
|
||||
d = to_d(x, sigmas[i], uncond_denoised)
|
||||
else:
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigmas[i]
|
||||
if i == 0:
|
||||
# Euler method
|
||||
x = x + d * dt
|
||||
if cfg_pp:
|
||||
x = denoised + d * sigmas[i + 1]
|
||||
else:
|
||||
x = x + d * dt
|
||||
else:
|
||||
# Gradient estimation
|
||||
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
|
||||
x = x + d_bar * dt
|
||||
if cfg_pp:
|
||||
d_bar = (ge_gamma - 1) * (d - old_d)
|
||||
x = denoised + d * sigmas[i + 1] + d_bar * dt
|
||||
else:
|
||||
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
|
||||
x = x + d_bar * dt
|
||||
old_d = d
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
|
||||
return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3):
|
||||
"""
|
||||
|
||||
@ -699,10 +699,13 @@ class HiDreamImageTransformer2DModel(nn.Module):
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states_llama3=None,
|
||||
image_cond=None,
|
||||
control = None,
|
||||
transformer_options = {},
|
||||
) -> torch.Tensor:
|
||||
bs, c, h, w = x.shape
|
||||
if image_cond is not None:
|
||||
x = torch.cat([x, image_cond], dim=-1)
|
||||
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
||||
timesteps = t
|
||||
pooled_embeds = y
|
||||
|
||||
@ -631,6 +631,7 @@ class VaceWanModel(WanModel):
|
||||
if ii is not None:
|
||||
c_skip, c = self.vace_blocks[ii](c, x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
||||
x += c_skip * vace_strength
|
||||
del c_skip
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
|
||||
@ -1104,4 +1104,7 @@ class HiDream(BaseModel):
|
||||
conditioning_llama3 = kwargs.get("conditioning_llama3", None)
|
||||
if conditioning_llama3 is not None:
|
||||
out['encoder_hidden_states_llama3'] = comfy.conds.CONDRegular(conditioning_llama3)
|
||||
image_cond = kwargs.get("concat_latent_image", None)
|
||||
if image_cond is not None:
|
||||
out['image_cond'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_cond))
|
||||
return out
|
||||
|
||||
@ -946,9 +946,9 @@ if args.async_offload:
|
||||
NUM_STREAMS = 2
|
||||
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
|
||||
|
||||
stream_counter = 0
|
||||
stream_counters = {}
|
||||
def get_offload_stream(device):
|
||||
global stream_counter
|
||||
stream_counter = stream_counters.get(device, 0)
|
||||
if NUM_STREAMS <= 1:
|
||||
return None
|
||||
|
||||
@ -958,14 +958,16 @@ def get_offload_stream(device):
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
if is_device_cuda(device):
|
||||
ss[stream_counter].wait_stream(torch.cuda.current_stream())
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
elif is_device_cuda(device):
|
||||
ss = []
|
||||
for k in range(NUM_STREAMS):
|
||||
ss.append(torch.cuda.Stream(device=device, priority=10))
|
||||
ss.append(torch.cuda.Stream(device=device, priority=0))
|
||||
STREAMS[device] = ss
|
||||
s = ss[stream_counter]
|
||||
stream_counter = (stream_counter + 1) % len(ss)
|
||||
stream_counters[device] = stream_counter
|
||||
return s
|
||||
return None
|
||||
|
||||
|
||||
@ -111,13 +111,14 @@ class ModelSamplingDiscrete(torch.nn.Module):
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
self.zsnr = zsnr
|
||||
|
||||
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
||||
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
||||
|
||||
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
||||
if zsnr:
|
||||
if self.zsnr:
|
||||
sigmas = rescale_zero_terminal_snr_sigmas(sigmas)
|
||||
|
||||
self.set_sigmas(sigmas)
|
||||
|
||||
@ -710,7 +710,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
|
||||
"gradient_estimation", "er_sde", "seeds_2", "seeds_3"]
|
||||
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
|
||||
@ -993,6 +993,10 @@ class WAN21_Vace(WAN21_T2V):
|
||||
"model_type": "vace",
|
||||
}
|
||||
|
||||
def __init__(self, unet_config):
|
||||
super().__init__(unet_config)
|
||||
self.memory_usage_factor = 1.2 * self.memory_usage_factor
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
|
||||
return out
|
||||
|
||||
8
comfy_api/input/__init__.py
Normal file
8
comfy_api/input/__init__.py
Normal file
@ -0,0 +1,8 @@
|
||||
from .basic_types import ImageInput, AudioInput
|
||||
from .video_types import VideoInput
|
||||
|
||||
__all__ = [
|
||||
"ImageInput",
|
||||
"AudioInput",
|
||||
"VideoInput",
|
||||
]
|
||||
20
comfy_api/input/basic_types.py
Normal file
20
comfy_api/input/basic_types.py
Normal file
@ -0,0 +1,20 @@
|
||||
import torch
|
||||
from typing import TypedDict
|
||||
|
||||
ImageInput = torch.Tensor
|
||||
"""
|
||||
An image in format [B, H, W, C] where B is the batch size, C is the number of channels,
|
||||
"""
|
||||
|
||||
class AudioInput(TypedDict):
|
||||
"""
|
||||
TypedDict representing audio input.
|
||||
"""
|
||||
|
||||
waveform: torch.Tensor
|
||||
"""
|
||||
Tensor in the format [B, C, T] where B is the batch size, C is the number of channels,
|
||||
"""
|
||||
|
||||
sample_rate: int
|
||||
|
||||
45
comfy_api/input/video_types.py
Normal file
45
comfy_api/input/video_types.py
Normal file
@ -0,0 +1,45 @@
|
||||
from __future__ import annotations
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
class VideoInput(ABC):
|
||||
"""
|
||||
Abstract base class for video input types.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get_components(self) -> VideoComponents:
|
||||
"""
|
||||
Abstract method to get the video components (images, audio, and frame rate).
|
||||
|
||||
Returns:
|
||||
VideoComponents containing images, audio, and frame rate
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def save_to(
|
||||
self,
|
||||
path: str,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
):
|
||||
"""
|
||||
Abstract method to save the video input to a file.
|
||||
"""
|
||||
pass
|
||||
|
||||
# Provide a default implementation, but subclasses can provide optimized versions
|
||||
# if possible.
|
||||
def get_dimensions(self) -> tuple[int, int]:
|
||||
"""
|
||||
Returns the dimensions of the video input.
|
||||
|
||||
Returns:
|
||||
Tuple of (width, height)
|
||||
"""
|
||||
components = self.get_components()
|
||||
return components.images.shape[2], components.images.shape[1]
|
||||
|
||||
7
comfy_api/input_impl/__init__.py
Normal file
7
comfy_api/input_impl/__init__.py
Normal file
@ -0,0 +1,7 @@
|
||||
from .video_types import VideoFromFile, VideoFromComponents
|
||||
|
||||
__all__ = [
|
||||
# Implementations
|
||||
"VideoFromFile",
|
||||
"VideoFromComponents",
|
||||
]
|
||||
224
comfy_api/input_impl/video_types.py
Normal file
224
comfy_api/input_impl/video_types.py
Normal file
@ -0,0 +1,224 @@
|
||||
from __future__ import annotations
|
||||
from av.container import InputContainer
|
||||
from av.subtitles.stream import SubtitleStream
|
||||
from fractions import Fraction
|
||||
from typing import Optional
|
||||
from comfy_api.input import AudioInput
|
||||
import av
|
||||
import io
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
from comfy_api.input import VideoInput
|
||||
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
class VideoFromFile(VideoInput):
|
||||
"""
|
||||
Class representing video input from a file.
|
||||
"""
|
||||
|
||||
def __init__(self, file: str | io.BytesIO):
|
||||
"""
|
||||
Initialize the VideoFromFile object based off of either a path on disk or a BytesIO object
|
||||
containing the file contents.
|
||||
"""
|
||||
self.__file = file
|
||||
|
||||
def get_dimensions(self) -> tuple[int, int]:
|
||||
"""
|
||||
Returns the dimensions of the video input.
|
||||
|
||||
Returns:
|
||||
Tuple of (width, height)
|
||||
"""
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0) # Reset the BytesIO object to the beginning
|
||||
with av.open(self.__file, mode='r') as container:
|
||||
for stream in container.streams:
|
||||
if stream.type == 'video':
|
||||
assert isinstance(stream, av.VideoStream)
|
||||
return stream.width, stream.height
|
||||
raise ValueError(f"No video stream found in file '{self.__file}'")
|
||||
|
||||
def get_components_internal(self, container: InputContainer) -> VideoComponents:
|
||||
# Get video frames
|
||||
frames = []
|
||||
for frame in container.decode(video=0):
|
||||
img = frame.to_ndarray(format='rgb24') # shape: (H, W, 3)
|
||||
img = torch.from_numpy(img) / 255.0 # shape: (H, W, 3)
|
||||
frames.append(img)
|
||||
|
||||
images = torch.stack(frames) if len(frames) > 0 else torch.zeros(0, 3, 0, 0)
|
||||
|
||||
# Get frame rate
|
||||
video_stream = next(s for s in container.streams if s.type == 'video')
|
||||
frame_rate = Fraction(video_stream.average_rate) if video_stream and video_stream.average_rate else Fraction(1)
|
||||
|
||||
# Get audio if available
|
||||
audio = None
|
||||
try:
|
||||
container.seek(0) # Reset the container to the beginning
|
||||
for stream in container.streams:
|
||||
if stream.type != 'audio':
|
||||
continue
|
||||
assert isinstance(stream, av.AudioStream)
|
||||
audio_frames = []
|
||||
for packet in container.demux(stream):
|
||||
for frame in packet.decode():
|
||||
assert isinstance(frame, av.AudioFrame)
|
||||
audio_frames.append(frame.to_ndarray()) # shape: (channels, samples)
|
||||
if len(audio_frames) > 0:
|
||||
audio_data = np.concatenate(audio_frames, axis=1) # shape: (channels, total_samples)
|
||||
audio_tensor = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, channels, total_samples)
|
||||
audio = AudioInput({
|
||||
"waveform": audio_tensor,
|
||||
"sample_rate": int(stream.sample_rate) if stream.sample_rate else 1,
|
||||
})
|
||||
except StopIteration:
|
||||
pass # No audio stream
|
||||
|
||||
metadata = container.metadata
|
||||
return VideoComponents(images=images, audio=audio, frame_rate=frame_rate, metadata=metadata)
|
||||
|
||||
def get_components(self) -> VideoComponents:
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0) # Reset the BytesIO object to the beginning
|
||||
with av.open(self.__file, mode='r') as container:
|
||||
return self.get_components_internal(container)
|
||||
raise ValueError(f"No video stream found in file '{self.__file}'")
|
||||
|
||||
def save_to(
|
||||
self,
|
||||
path: str,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
):
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0) # Reset the BytesIO object to the beginning
|
||||
with av.open(self.__file, mode='r') as container:
|
||||
container_format = container.format.name
|
||||
video_encoding = container.streams.video[0].codec.name if len(container.streams.video) > 0 else None
|
||||
reuse_streams = True
|
||||
if format != VideoContainer.AUTO and format not in container_format.split(","):
|
||||
reuse_streams = False
|
||||
if codec != VideoCodec.AUTO and codec != video_encoding and video_encoding is not None:
|
||||
reuse_streams = False
|
||||
|
||||
if not reuse_streams:
|
||||
components = self.get_components_internal(container)
|
||||
video = VideoFromComponents(components)
|
||||
return video.save_to(
|
||||
path,
|
||||
format=format,
|
||||
codec=codec,
|
||||
metadata=metadata
|
||||
)
|
||||
|
||||
streams = container.streams
|
||||
with av.open(path, mode='w', options={"movflags": "use_metadata_tags"}) as output_container:
|
||||
# Copy over the original metadata
|
||||
for key, value in container.metadata.items():
|
||||
if metadata is None or key not in metadata:
|
||||
output_container.metadata[key] = value
|
||||
|
||||
# Add our new metadata
|
||||
if metadata is not None:
|
||||
for key, value in metadata.items():
|
||||
if isinstance(value, str):
|
||||
output_container.metadata[key] = value
|
||||
else:
|
||||
output_container.metadata[key] = json.dumps(value)
|
||||
|
||||
# Add streams to the new container
|
||||
stream_map = {}
|
||||
for stream in streams:
|
||||
if isinstance(stream, (av.VideoStream, av.AudioStream, SubtitleStream)):
|
||||
out_stream = output_container.add_stream_from_template(template=stream, opaque=True)
|
||||
stream_map[stream] = out_stream
|
||||
|
||||
# Write packets to the new container
|
||||
for packet in container.demux():
|
||||
if packet.stream in stream_map and packet.dts is not None:
|
||||
packet.stream = stream_map[packet.stream]
|
||||
output_container.mux(packet)
|
||||
|
||||
class VideoFromComponents(VideoInput):
|
||||
"""
|
||||
Class representing video input from tensors.
|
||||
"""
|
||||
|
||||
def __init__(self, components: VideoComponents):
|
||||
self.__components = components
|
||||
|
||||
def get_components(self) -> VideoComponents:
|
||||
return VideoComponents(
|
||||
images=self.__components.images,
|
||||
audio=self.__components.audio,
|
||||
frame_rate=self.__components.frame_rate
|
||||
)
|
||||
|
||||
def save_to(
|
||||
self,
|
||||
path: str,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
):
|
||||
if format != VideoContainer.AUTO and format != VideoContainer.MP4:
|
||||
raise ValueError("Only MP4 format is supported for now")
|
||||
if codec != VideoCodec.AUTO and codec != VideoCodec.H264:
|
||||
raise ValueError("Only H264 codec is supported for now")
|
||||
with av.open(path, mode='w', options={'movflags': 'use_metadata_tags'}) as output:
|
||||
# Add metadata before writing any streams
|
||||
if metadata is not None:
|
||||
for key, value in metadata.items():
|
||||
output.metadata[key] = json.dumps(value)
|
||||
|
||||
frame_rate = Fraction(round(self.__components.frame_rate * 1000), 1000)
|
||||
# Create a video stream
|
||||
video_stream = output.add_stream('h264', rate=frame_rate)
|
||||
video_stream.width = self.__components.images.shape[2]
|
||||
video_stream.height = self.__components.images.shape[1]
|
||||
video_stream.pix_fmt = 'yuv420p'
|
||||
|
||||
# Create an audio stream
|
||||
audio_sample_rate = 1
|
||||
audio_stream: Optional[av.AudioStream] = None
|
||||
if self.__components.audio:
|
||||
audio_sample_rate = int(self.__components.audio['sample_rate'])
|
||||
audio_stream = output.add_stream('aac', rate=audio_sample_rate)
|
||||
audio_stream.sample_rate = audio_sample_rate
|
||||
audio_stream.format = 'fltp'
|
||||
|
||||
# Encode video
|
||||
for i, frame in enumerate(self.__components.images):
|
||||
img = (frame * 255).clamp(0, 255).byte().cpu().numpy() # shape: (H, W, 3)
|
||||
frame = av.VideoFrame.from_ndarray(img, format='rgb24')
|
||||
frame = frame.reformat(format='yuv420p') # Convert to YUV420P as required by h264
|
||||
packet = video_stream.encode(frame)
|
||||
output.mux(packet)
|
||||
|
||||
# Flush video
|
||||
packet = video_stream.encode(None)
|
||||
output.mux(packet)
|
||||
|
||||
if audio_stream and self.__components.audio:
|
||||
# Encode audio
|
||||
samples_per_frame = int(audio_sample_rate / frame_rate)
|
||||
num_frames = self.__components.audio['waveform'].shape[2] // samples_per_frame
|
||||
for i in range(num_frames):
|
||||
start = i * samples_per_frame
|
||||
end = start + samples_per_frame
|
||||
# TODO(Feature) - Add support for stereo audio
|
||||
chunk = self.__components.audio['waveform'][0, 0, start:end].unsqueeze(0).numpy()
|
||||
audio_frame = av.AudioFrame.from_ndarray(chunk, format='fltp', layout='mono')
|
||||
audio_frame.sample_rate = audio_sample_rate
|
||||
audio_frame.pts = i * samples_per_frame
|
||||
for packet in audio_stream.encode(audio_frame):
|
||||
output.mux(packet)
|
||||
|
||||
# Flush audio
|
||||
for packet in audio_stream.encode(None):
|
||||
output.mux(packet)
|
||||
|
||||
8
comfy_api/util/__init__.py
Normal file
8
comfy_api/util/__init__.py
Normal file
@ -0,0 +1,8 @@
|
||||
from .video_types import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
__all__ = [
|
||||
# Utility Types
|
||||
"VideoContainer",
|
||||
"VideoCodec",
|
||||
"VideoComponents",
|
||||
]
|
||||
51
comfy_api/util/video_types.py
Normal file
51
comfy_api/util/video_types.py
Normal file
@ -0,0 +1,51 @@
|
||||
from __future__ import annotations
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from fractions import Fraction
|
||||
from typing import Optional
|
||||
from comfy_api.input import ImageInput, AudioInput
|
||||
|
||||
class VideoCodec(str, Enum):
|
||||
AUTO = "auto"
|
||||
H264 = "h264"
|
||||
|
||||
@classmethod
|
||||
def as_input(cls) -> list[str]:
|
||||
"""
|
||||
Returns a list of codec names that can be used as node input.
|
||||
"""
|
||||
return [member.value for member in cls]
|
||||
|
||||
class VideoContainer(str, Enum):
|
||||
AUTO = "auto"
|
||||
MP4 = "mp4"
|
||||
|
||||
@classmethod
|
||||
def as_input(cls) -> list[str]:
|
||||
"""
|
||||
Returns a list of container names that can be used as node input.
|
||||
"""
|
||||
return [member.value for member in cls]
|
||||
|
||||
@classmethod
|
||||
def get_extension(cls, value) -> str:
|
||||
"""
|
||||
Returns the file extension for the container.
|
||||
"""
|
||||
if isinstance(value, str):
|
||||
value = cls(value)
|
||||
if value == VideoContainer.MP4 or value == VideoContainer.AUTO:
|
||||
return "mp4"
|
||||
return ""
|
||||
|
||||
@dataclass
|
||||
class VideoComponents:
|
||||
"""
|
||||
Dataclass representing the components of a video.
|
||||
"""
|
||||
|
||||
images: ImageInput
|
||||
frame_rate: Fraction
|
||||
audio: Optional[AudioInput] = None
|
||||
metadata: Optional[dict] = None
|
||||
|
||||
@ -1,21 +1,22 @@
|
||||
import base64
|
||||
import io
|
||||
import math
|
||||
from inspect import cleandoc
|
||||
|
||||
from comfy.utils import common_upscale
|
||||
import numpy as np
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
|
||||
from comfy.utils import common_upscale
|
||||
from comfy_api_nodes.apis import (
|
||||
OpenAIImageGenerationRequest,
|
||||
OpenAIImageEditRequest,
|
||||
OpenAIImageGenerationResponse
|
||||
OpenAIImageGenerationRequest,
|
||||
OpenAIImageGenerationResponse,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import ApiEndpoint, HttpMethod, SynchronousOperation
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import requests
|
||||
import torch
|
||||
import math
|
||||
import base64
|
||||
|
||||
def downscale_input(image):
|
||||
samples = image.movedim(-1,1)
|
||||
@ -331,6 +332,11 @@ class OpenAIGPTImage1(ComfyNodeABC):
|
||||
"default": None,
|
||||
"tooltip": "Optional mask for inpainting (white areas will be replaced)",
|
||||
}),
|
||||
"moderation": (IO.COMBO, {
|
||||
"options": ["low","auto"],
|
||||
"default": "low",
|
||||
"tooltip": "Moderation level",
|
||||
}),
|
||||
},
|
||||
"hidden": {
|
||||
"auth_token": "AUTH_TOKEN_COMFY_ORG"
|
||||
@ -343,7 +349,7 @@ class OpenAIGPTImage1(ComfyNodeABC):
|
||||
DESCRIPTION = cleandoc(__doc__ or "")
|
||||
API_NODE = True
|
||||
|
||||
def api_call(self, prompt, seed=0, quality="low", background="opaque", image=None, mask=None, n=1, size="1024x1024", auth_token=None):
|
||||
def api_call(self, prompt, seed=0, quality="low", background="opaque", image=None, mask=None, n=1, size="1024x1024", auth_token=None, moderation="low"):
|
||||
model = "gpt-image-1"
|
||||
path = "/proxy/openai/images/generations"
|
||||
request_class = OpenAIImageGenerationRequest
|
||||
@ -415,6 +421,7 @@ class OpenAIGPTImage1(ComfyNodeABC):
|
||||
n=n,
|
||||
seed=seed,
|
||||
size=size,
|
||||
moderation=moderation,
|
||||
),
|
||||
files=files if files else None,
|
||||
auth_token=auth_token
|
||||
|
||||
@ -38,6 +38,7 @@ class LTXVImgToVideo:
|
||||
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
|
||||
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0}),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
||||
@ -46,7 +47,7 @@ class LTXVImgToVideo:
|
||||
CATEGORY = "conditioning/video_models"
|
||||
FUNCTION = "generate"
|
||||
|
||||
def generate(self, positive, negative, image, vae, width, height, length, batch_size):
|
||||
def generate(self, positive, negative, image, vae, width, height, length, batch_size, strength):
|
||||
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
encode_pixels = pixels[:, :, :, :3]
|
||||
t = vae.encode(encode_pixels)
|
||||
@ -59,7 +60,7 @@ class LTXVImgToVideo:
|
||||
dtype=torch.float32,
|
||||
device=latent.device,
|
||||
)
|
||||
conditioning_latent_frames_mask[:, :, :t.shape[2]] = 0
|
||||
conditioning_latent_frames_mask[:, :, :t.shape[2]] = 1.0 - strength
|
||||
|
||||
return (positive, negative, {"samples": latent, "noise_mask": conditioning_latent_frames_mask}, )
|
||||
|
||||
@ -152,6 +153,15 @@ class LTXVAddGuide:
|
||||
return node_helpers.conditioning_set_values(cond, {"keyframe_idxs": keyframe_idxs})
|
||||
|
||||
def append_keyframe(self, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors):
|
||||
_, latent_idx = self.get_latent_index(
|
||||
cond=positive,
|
||||
latent_length=latent_image.shape[2],
|
||||
guide_length=guiding_latent.shape[2],
|
||||
frame_idx=frame_idx,
|
||||
scale_factors=scale_factors,
|
||||
)
|
||||
noise_mask[:, :, latent_idx:latent_idx + guiding_latent.shape[2]] = 1.0
|
||||
|
||||
positive = self.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors)
|
||||
negative = self.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors)
|
||||
|
||||
|
||||
@ -209,6 +209,9 @@ def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefi
|
||||
metadata["modelspec.predict_key"] = "epsilon"
|
||||
elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION:
|
||||
metadata["modelspec.predict_key"] = "v"
|
||||
extra_keys["v_pred"] = torch.tensor([])
|
||||
if getattr(model_sampling, "zsnr", False):
|
||||
extra_keys["ztsnr"] = torch.tensor([])
|
||||
|
||||
if not args.disable_metadata:
|
||||
metadata["prompt"] = prompt_info
|
||||
|
||||
@ -5,9 +5,13 @@ import av
|
||||
import torch
|
||||
import folder_paths
|
||||
import json
|
||||
from typing import Optional, Literal
|
||||
from fractions import Fraction
|
||||
from comfy.comfy_types import FileLocator
|
||||
|
||||
from comfy.comfy_types import IO, FileLocator, ComfyNodeABC
|
||||
from comfy_api.input import ImageInput, AudioInput, VideoInput
|
||||
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
|
||||
from comfy_api.input_impl import VideoFromFile, VideoFromComponents
|
||||
from comfy.cli_args import args
|
||||
|
||||
class SaveWEBM:
|
||||
def __init__(self):
|
||||
@ -75,7 +79,163 @@ class SaveWEBM:
|
||||
|
||||
return {"ui": {"images": results, "animated": (True,)}} # TODO: frontend side
|
||||
|
||||
class SaveVideo(ComfyNodeABC):
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
self.type: Literal["output"] = "output"
|
||||
self.prefix_append = ""
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"video": (IO.VIDEO, {"tooltip": "The video to save."}),
|
||||
"filename_prefix": ("STRING", {"default": "video/ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}),
|
||||
"format": (VideoContainer.as_input(), {"default": "auto", "tooltip": "The format to save the video as."}),
|
||||
"codec": (VideoCodec.as_input(), {"default": "auto", "tooltip": "The codec to use for the video."}),
|
||||
},
|
||||
"hidden": {
|
||||
"prompt": "PROMPT",
|
||||
"extra_pnginfo": "EXTRA_PNGINFO"
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save_video"
|
||||
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "image/video"
|
||||
DESCRIPTION = "Saves the input images to your ComfyUI output directory."
|
||||
|
||||
def save_video(self, video: VideoInput, filename_prefix, format, codec, prompt=None, extra_pnginfo=None):
|
||||
filename_prefix += self.prefix_append
|
||||
width, height = video.get_dimensions()
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
filename_prefix,
|
||||
self.output_dir,
|
||||
width,
|
||||
height
|
||||
)
|
||||
results: list[FileLocator] = list()
|
||||
saved_metadata = None
|
||||
if not args.disable_metadata:
|
||||
metadata = {}
|
||||
if extra_pnginfo is not None:
|
||||
metadata.update(extra_pnginfo)
|
||||
if prompt is not None:
|
||||
metadata["prompt"] = prompt
|
||||
if len(metadata) > 0:
|
||||
saved_metadata = metadata
|
||||
file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}"
|
||||
video.save_to(
|
||||
os.path.join(full_output_folder, file),
|
||||
format=format,
|
||||
codec=codec,
|
||||
metadata=saved_metadata
|
||||
)
|
||||
|
||||
results.append({
|
||||
"filename": file,
|
||||
"subfolder": subfolder,
|
||||
"type": self.type
|
||||
})
|
||||
counter += 1
|
||||
|
||||
return { "ui": { "images": results, "animated": (True,) } }
|
||||
|
||||
class CreateVideo(ComfyNodeABC):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"images": (IO.IMAGE, {"tooltip": "The images to create a video from."}),
|
||||
"fps": ("FLOAT", {"default": 30.0, "min": 1.0, "max": 120.0, "step": 1.0}),
|
||||
},
|
||||
"optional": {
|
||||
"audio": (IO.AUDIO, {"tooltip": "The audio to add to the video."}),
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.VIDEO,)
|
||||
FUNCTION = "create_video"
|
||||
|
||||
CATEGORY = "image/video"
|
||||
DESCRIPTION = "Create a video from images."
|
||||
|
||||
def create_video(self, images: ImageInput, fps: float, audio: Optional[AudioInput] = None):
|
||||
return (VideoFromComponents(
|
||||
VideoComponents(
|
||||
images=images,
|
||||
audio=audio,
|
||||
frame_rate=Fraction(fps),
|
||||
)
|
||||
),)
|
||||
|
||||
class GetVideoComponents(ComfyNodeABC):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"video": (IO.VIDEO, {"tooltip": "The video to extract components from."}),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = (IO.IMAGE, IO.AUDIO, IO.FLOAT)
|
||||
RETURN_NAMES = ("images", "audio", "fps")
|
||||
FUNCTION = "get_components"
|
||||
|
||||
CATEGORY = "image/video"
|
||||
DESCRIPTION = "Extracts all components from a video: frames, audio, and framerate."
|
||||
|
||||
def get_components(self, video: VideoInput):
|
||||
components = video.get_components()
|
||||
|
||||
return (components.images, components.audio, float(components.frame_rate))
|
||||
|
||||
class LoadVideo(ComfyNodeABC):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
||||
files = folder_paths.filter_files_content_types(files, ["video"])
|
||||
return {"required":
|
||||
{"file": (sorted(files), {"video_upload": True})},
|
||||
}
|
||||
|
||||
CATEGORY = "image/video"
|
||||
|
||||
RETURN_TYPES = (IO.VIDEO,)
|
||||
FUNCTION = "load_video"
|
||||
def load_video(self, file):
|
||||
video_path = folder_paths.get_annotated_filepath(file)
|
||||
return (VideoFromFile(video_path),)
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(cls, file):
|
||||
video_path = folder_paths.get_annotated_filepath(file)
|
||||
mod_time = os.path.getmtime(video_path)
|
||||
# Instead of hashing the file, we can just use the modification time to avoid
|
||||
# rehashing large files.
|
||||
return mod_time
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(cls, file):
|
||||
if not folder_paths.exists_annotated_filepath(file):
|
||||
return "Invalid video file: {}".format(file)
|
||||
|
||||
return True
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"SaveWEBM": SaveWEBM,
|
||||
"SaveVideo": SaveVideo,
|
||||
"CreateVideo": CreateVideo,
|
||||
"GetVideoComponents": GetVideoComponents,
|
||||
"LoadVideo": LoadVideo,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"SaveVideo": "Save Video",
|
||||
"CreateVideo": "Create Video",
|
||||
"GetVideoComponents": "Get Video Components",
|
||||
"LoadVideo": "Load Video",
|
||||
}
|
||||
|
||||
@ -4,7 +4,7 @@ import os
|
||||
import time
|
||||
import mimetypes
|
||||
import logging
|
||||
from typing import Literal
|
||||
from typing import Literal, List
|
||||
from collections.abc import Collection
|
||||
|
||||
from comfy.cli_args import args
|
||||
@ -141,7 +141,7 @@ def get_directory_by_type(type_name: str) -> str | None:
|
||||
return get_input_directory()
|
||||
return None
|
||||
|
||||
def filter_files_content_types(files: list[str], content_types: Literal["image", "video", "audio", "model"]) -> list[str]:
|
||||
def filter_files_content_types(files: list[str], content_types: List[Literal["image", "video", "audio", "model"]]) -> list[str]:
|
||||
"""
|
||||
Example:
|
||||
files = os.listdir(folder_paths.get_input_directory())
|
||||
|
||||
@ -23,5 +23,5 @@ psutil
|
||||
kornia>=0.7.1
|
||||
spandrel
|
||||
soundfile
|
||||
av>=14.1.0
|
||||
av>=14.2.0
|
||||
pydantic~=2.0
|
||||
|
||||
Loading…
Reference in New Issue
Block a user