diff --git a/comfy/ldm/modules/attention.py b/comfy/ldm/modules/attention.py index 0e3821ef0..dd8c6ba72 100644 --- a/comfy/ldm/modules/attention.py +++ b/comfy/ldm/modules/attention.py @@ -98,7 +98,7 @@ def var_attn_arg(kwargs): cu_seqlens_k = kwargs.get("cu_seqlens_k", cu_seqlens_q) max_seqlen_q = kwargs.get("max_seqlen_q", None) max_seqlen_k = kwargs.get("max_seqlen_k", max_seqlen_q) - assert cu_seqlens_q != None, "cu_seqlens_q shouldn't be None when var_length is True" + assert cu_seqlens_q is not None, "cu_seqlens_q shouldn't be None when var_length is True" return cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k # feedforward class GEGLU(nn.Module): @@ -449,9 +449,12 @@ def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_resh k = k.view(1, total_tokens, heads, dim_head) v = v.view(1, total_tokens, heads, dim_head) else: - if q.ndim == 3: q = q.unsqueeze(0) - if k.ndim == 3: k = k.unsqueeze(0) - if v.ndim == 3: v = v.unsqueeze(0) + if q.ndim == 3: + q = q.unsqueeze(0) + if k.ndim == 3: + k = k.unsqueeze(0) + if v.ndim == 3: + v = v.unsqueeze(0) dim_head = q.shape[-1] target_output_shape = (q.shape[1], -1) @@ -526,7 +529,8 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha k = k.view(k.shape[0], heads, head_dim) v = v.view(v.shape[0], heads, head_dim) - b = q.size(0); dim_head = q.shape[-1] + b = q.size(0) + dim_head = q.shape[-1] q = torch.nested.nested_tensor_from_jagged(q, offsets=cu_seqlens_q.long()) k = torch.nested.nested_tensor_from_jagged(k, offsets=cu_seqlens_k.long()) v = torch.nested.nested_tensor_from_jagged(v, offsets=cu_seqlens_k.long()) diff --git a/comfy_extras/nodes_seedvr.py b/comfy_extras/nodes_seedvr.py index 945cf966b..c4e8f3958 100644 --- a/comfy_extras/nodes_seedvr.py +++ b/comfy_extras/nodes_seedvr.py @@ -78,8 +78,10 @@ def tiled_vae(x, vae_model, tile_size=(512, 512), tile_overlap=(64, 64), tempora else: out = vae_model.decode_(t_chunk) - if isinstance(out, (tuple, list)): out = out[0] - if out.ndim == 4: out = out.unsqueeze(2) + if isinstance(out, (tuple, list)): + out = out[0] + if out.ndim == 4: + out = out.unsqueeze(2) if pad_amount > 0: if encode: @@ -136,13 +138,17 @@ def tiled_vae(x, vae_model, tile_size=(512, 512), tile_overlap=(64, 64), tempora if cur_ov_h > 0: r = get_ramp(cur_ov_h) - if y_idx > 0: w_h[:cur_ov_h] = r - if y_end < h: w_h[-cur_ov_h:] = 1.0 - r + if y_idx > 0: + w_h[:cur_ov_h] = r + if y_end < h: + w_h[-cur_ov_h:] = 1.0 - r if cur_ov_w > 0: r = get_ramp(cur_ov_w) - if x_idx > 0: w_w[:cur_ov_w] = r - if x_end < w: w_w[-cur_ov_w:] = 1.0 - r + if x_idx > 0: + w_w[:cur_ov_w] = r + if x_end < w: + w_w[-cur_ov_w:] = 1.0 - r final_weight = w_h.view(1,1,1,-1,1) * w_w.view(1,1,1,1,-1) @@ -335,7 +341,8 @@ class SeedVR2InputProcessing(io.ComfyNode): comfy.model_management.load_models_gpu([vae.patcher]) vae_model = vae.first_stage_model - scale = 0.9152; shift = 0 + scale = 0.9152 + shift = 0 if images.dim() != 5: # add the t dim images = images.unsqueeze(0) images = images.permute(0, 1, 4, 2, 3)