diff --git a/comfy/ldm/qwen_image/model.py b/comfy/ldm/qwen_image/model.py index 57a458210..d5fe003c5 100644 --- a/comfy/ldm/qwen_image/model.py +++ b/comfy/ldm/qwen_image/model.py @@ -132,6 +132,7 @@ class Attention(nn.Module): encoder_hidden_states_mask: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, + transformer_options={}, ) -> Tuple[torch.Tensor, torch.Tensor]: seq_txt = encoder_hidden_states.shape[1] @@ -159,7 +160,7 @@ class Attention(nn.Module): joint_key = joint_key.flatten(start_dim=2) joint_value = joint_value.flatten(start_dim=2) - joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask) + joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options) txt_attn_output = joint_hidden_states[:, :seq_txt, :] img_attn_output = joint_hidden_states[:, seq_txt:, :] @@ -226,6 +227,7 @@ class QwenImageTransformerBlock(nn.Module): encoder_hidden_states_mask: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + transformer_options={}, ) -> Tuple[torch.Tensor, torch.Tensor]: img_mod_params = self.img_mod(temb) txt_mod_params = self.txt_mod(temb) @@ -242,6 +244,7 @@ class QwenImageTransformerBlock(nn.Module): encoder_hidden_states=txt_modulated, encoder_hidden_states_mask=encoder_hidden_states_mask, image_rotary_emb=image_rotary_emb, + transformer_options=transformer_options, ) hidden_states = hidden_states + img_gate1 * img_attn_output @@ -434,9 +437,9 @@ class QwenImageTransformer2DModel(nn.Module): if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} - out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"]) + out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"]) return out - out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb}, {"original_block": block_wrap}) + out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap}) hidden_states = out["img"] encoder_hidden_states = out["txt"] else: @@ -446,11 +449,12 @@ class QwenImageTransformer2DModel(nn.Module): encoder_hidden_states_mask=encoder_hidden_states_mask, temb=temb, image_rotary_emb=image_rotary_emb, + transformer_options=transformer_options, ) if "double_block" in patches: for p in patches["double_block"]: - out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i}) + out = p({"img": hidden_states, "txt": encoder_hidden_states, "x": x, "block_index": i, "transformer_options": transformer_options}) hidden_states = out["img"] encoder_hidden_states = out["txt"]