mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-21 03:40:16 +08:00
Merge branch 'comfyanonymous:master' into master
This commit is contained in:
commit
f98aad15d5
@ -24,7 +24,7 @@ class BOFTAdapter(WeightAdapterBase):
|
|||||||
) -> Optional["BOFTAdapter"]:
|
) -> Optional["BOFTAdapter"]:
|
||||||
if loaded_keys is None:
|
if loaded_keys is None:
|
||||||
loaded_keys = set()
|
loaded_keys = set()
|
||||||
blocks_name = "{}.boft_blocks".format(x)
|
blocks_name = "{}.oft_blocks".format(x)
|
||||||
rescale_name = "{}.rescale".format(x)
|
rescale_name = "{}.rescale".format(x)
|
||||||
|
|
||||||
blocks = None
|
blocks = None
|
||||||
@ -32,17 +32,18 @@ class BOFTAdapter(WeightAdapterBase):
|
|||||||
blocks = lora[blocks_name]
|
blocks = lora[blocks_name]
|
||||||
if blocks.ndim == 4:
|
if blocks.ndim == 4:
|
||||||
loaded_keys.add(blocks_name)
|
loaded_keys.add(blocks_name)
|
||||||
|
else:
|
||||||
|
blocks = None
|
||||||
|
if blocks is None:
|
||||||
|
return None
|
||||||
|
|
||||||
rescale = None
|
rescale = None
|
||||||
if rescale_name in lora.keys():
|
if rescale_name in lora.keys():
|
||||||
rescale = lora[rescale_name]
|
rescale = lora[rescale_name]
|
||||||
loaded_keys.add(rescale_name)
|
loaded_keys.add(rescale_name)
|
||||||
|
|
||||||
if blocks is not None:
|
weights = (blocks, rescale, alpha, dora_scale)
|
||||||
weights = (blocks, rescale, alpha, dora_scale)
|
return cls(loaded_keys, weights)
|
||||||
return cls(loaded_keys, weights)
|
|
||||||
else:
|
|
||||||
return None
|
|
||||||
|
|
||||||
def calculate_weight(
|
def calculate_weight(
|
||||||
self,
|
self,
|
||||||
@ -71,7 +72,7 @@ class BOFTAdapter(WeightAdapterBase):
|
|||||||
# Get r
|
# Get r
|
||||||
I = torch.eye(boft_b, device=blocks.device, dtype=blocks.dtype)
|
I = torch.eye(boft_b, device=blocks.device, dtype=blocks.dtype)
|
||||||
# for Q = -Q^T
|
# for Q = -Q^T
|
||||||
q = blocks - blocks.transpose(1, 2)
|
q = blocks - blocks.transpose(-1, -2)
|
||||||
normed_q = q
|
normed_q = q
|
||||||
if alpha > 0: # alpha in boft/bboft is for constraint
|
if alpha > 0: # alpha in boft/bboft is for constraint
|
||||||
q_norm = torch.norm(q) + 1e-8
|
q_norm = torch.norm(q) + 1e-8
|
||||||
@ -79,9 +80,8 @@ class BOFTAdapter(WeightAdapterBase):
|
|||||||
normed_q = q * alpha / q_norm
|
normed_q = q * alpha / q_norm
|
||||||
# use float() to prevent unsupported type in .inverse()
|
# use float() to prevent unsupported type in .inverse()
|
||||||
r = (I + normed_q) @ (I - normed_q).float().inverse()
|
r = (I + normed_q) @ (I - normed_q).float().inverse()
|
||||||
r = r.to(original_weight)
|
r = r.to(weight)
|
||||||
|
inp = org = weight
|
||||||
inp = org = original_weight
|
|
||||||
|
|
||||||
r_b = boft_b//2
|
r_b = boft_b//2
|
||||||
for i in range(boft_m):
|
for i in range(boft_m):
|
||||||
@ -91,14 +91,14 @@ class BOFTAdapter(WeightAdapterBase):
|
|||||||
if strength != 1:
|
if strength != 1:
|
||||||
bi = bi * strength + (1-strength) * I
|
bi = bi * strength + (1-strength) * I
|
||||||
inp = (
|
inp = (
|
||||||
inp.unflatten(-1, (-1, g, k))
|
inp.unflatten(0, (-1, g, k))
|
||||||
.transpose(-2, -1)
|
.transpose(1, 2)
|
||||||
.flatten(-3)
|
.flatten(0, 2)
|
||||||
.unflatten(-1, (-1, boft_b))
|
.unflatten(0, (-1, boft_b))
|
||||||
)
|
)
|
||||||
inp = torch.einsum("b n m, b n ... -> b m ...", inp, bi)
|
inp = torch.einsum("b i j, b j ...-> b i ...", bi, inp)
|
||||||
inp = (
|
inp = (
|
||||||
inp.flatten(-2).unflatten(-1, (-1, k, g)).transpose(-2, -1).flatten(-3)
|
inp.flatten(0, 1).unflatten(0, (-1, k, g)).transpose(1, 2).flatten(0, 2)
|
||||||
)
|
)
|
||||||
|
|
||||||
if rescale is not None:
|
if rescale is not None:
|
||||||
@ -109,7 +109,7 @@ class BOFTAdapter(WeightAdapterBase):
|
|||||||
if dora_scale is not None:
|
if dora_scale is not None:
|
||||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||||
else:
|
else:
|
||||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
weight += function((strength * lora_diff).type(weight.dtype))
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||||
return weight
|
return weight
|
||||||
|
|||||||
@ -32,17 +32,18 @@ class OFTAdapter(WeightAdapterBase):
|
|||||||
blocks = lora[blocks_name]
|
blocks = lora[blocks_name]
|
||||||
if blocks.ndim == 3:
|
if blocks.ndim == 3:
|
||||||
loaded_keys.add(blocks_name)
|
loaded_keys.add(blocks_name)
|
||||||
|
else:
|
||||||
|
blocks = None
|
||||||
|
if blocks is None:
|
||||||
|
return None
|
||||||
|
|
||||||
rescale = None
|
rescale = None
|
||||||
if rescale_name in lora.keys():
|
if rescale_name in lora.keys():
|
||||||
rescale = lora[rescale_name]
|
rescale = lora[rescale_name]
|
||||||
loaded_keys.add(rescale_name)
|
loaded_keys.add(rescale_name)
|
||||||
|
|
||||||
if blocks is not None:
|
weights = (blocks, rescale, alpha, dora_scale)
|
||||||
weights = (blocks, rescale, alpha, dora_scale)
|
return cls(loaded_keys, weights)
|
||||||
return cls(loaded_keys, weights)
|
|
||||||
else:
|
|
||||||
return None
|
|
||||||
|
|
||||||
def calculate_weight(
|
def calculate_weight(
|
||||||
self,
|
self,
|
||||||
@ -79,16 +80,17 @@ class OFTAdapter(WeightAdapterBase):
|
|||||||
normed_q = q * alpha / q_norm
|
normed_q = q * alpha / q_norm
|
||||||
# use float() to prevent unsupported type in .inverse()
|
# use float() to prevent unsupported type in .inverse()
|
||||||
r = (I + normed_q) @ (I - normed_q).float().inverse()
|
r = (I + normed_q) @ (I - normed_q).float().inverse()
|
||||||
r = r.to(original_weight)
|
r = r.to(weight)
|
||||||
|
_, *shape = weight.shape
|
||||||
lora_diff = torch.einsum(
|
lora_diff = torch.einsum(
|
||||||
"k n m, k n ... -> k m ...",
|
"k n m, k n ... -> k m ...",
|
||||||
(r * strength) - strength * I,
|
(r * strength) - strength * I,
|
||||||
original_weight,
|
weight.view(block_num, block_size, *shape),
|
||||||
)
|
).view(-1, *shape)
|
||||||
if dora_scale is not None:
|
if dora_scale is not None:
|
||||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||||
else:
|
else:
|
||||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
weight += function((strength * lora_diff).type(weight.dtype))
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
logging.error("ERROR {} {} {}".format(self.name, key, e))
|
||||||
return weight
|
return weight
|
||||||
|
|||||||
43
comfy_extras/nodes_preview_any.py
Normal file
43
comfy_extras/nodes_preview_any.py
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
import json
|
||||||
|
from comfy.comfy_types.node_typing import IO
|
||||||
|
|
||||||
|
# Preview Any - original implement from
|
||||||
|
# https://github.com/rgthree/rgthree-comfy/blob/main/py/display_any.py
|
||||||
|
# upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes
|
||||||
|
class PreviewAny():
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(cls):
|
||||||
|
return {
|
||||||
|
"required": {"source": (IO.ANY, {})},
|
||||||
|
}
|
||||||
|
|
||||||
|
RETURN_TYPES = ()
|
||||||
|
FUNCTION = "main"
|
||||||
|
OUTPUT_NODE = True
|
||||||
|
|
||||||
|
CATEGORY = "utils"
|
||||||
|
|
||||||
|
def main(self, source=None):
|
||||||
|
value = 'None'
|
||||||
|
if isinstance(source, str):
|
||||||
|
value = source
|
||||||
|
elif isinstance(source, (int, float, bool)):
|
||||||
|
value = str(source)
|
||||||
|
elif source is not None:
|
||||||
|
try:
|
||||||
|
value = json.dumps(source)
|
||||||
|
except Exception:
|
||||||
|
try:
|
||||||
|
value = str(source)
|
||||||
|
except Exception:
|
||||||
|
value = 'source exists, but could not be serialized.'
|
||||||
|
|
||||||
|
return {"ui": {"text": (value,)}}
|
||||||
|
|
||||||
|
NODE_CLASS_MAPPINGS = {
|
||||||
|
"PreviewAny": PreviewAny,
|
||||||
|
}
|
||||||
|
|
||||||
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||||
|
"PreviewAny": "Preview Any",
|
||||||
|
}
|
||||||
1
nodes.py
1
nodes.py
@ -2258,6 +2258,7 @@ def init_builtin_extra_nodes():
|
|||||||
"nodes_optimalsteps.py",
|
"nodes_optimalsteps.py",
|
||||||
"nodes_hidream.py",
|
"nodes_hidream.py",
|
||||||
"nodes_fresca.py",
|
"nodes_fresca.py",
|
||||||
|
"nodes_preview_any.py",
|
||||||
]
|
]
|
||||||
|
|
||||||
api_nodes_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_api_nodes")
|
api_nodes_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_api_nodes")
|
||||||
|
|||||||
@ -1,4 +1,4 @@
|
|||||||
comfyui-frontend-package==1.18.5
|
comfyui-frontend-package==1.18.6
|
||||||
comfyui-workflow-templates==0.1.3
|
comfyui-workflow-templates==0.1.3
|
||||||
torch
|
torch
|
||||||
torchsde
|
torchsde
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user