Add new processors and change names

This commit is contained in:
Hacker 17082006 2023-02-20 22:03:17 +07:00
parent fd21cbb13e
commit fb373b34e2

View File

@ -2,6 +2,7 @@ from . import canny, hed, midas, mlsd, openpose, uniformer
from .util import HWC3
import torch
import numpy as np
import cv2
def img_np_to_tensor(img_np):
return torch.from_numpy(img_np.astype(np.float32) / 255.0)[None,]
@ -11,8 +12,16 @@ def img_tensor_to_np(img_tensor):
return img_tensor.squeeze(0).numpy().astype(np.uint8)
#Thanks ChatGPT
def common_annotator_call(annotator_callback, tensor_image, *args):
call_result = annotator_callback(img_tensor_to_np(tensor_image), *args)
if type(call_result) is tuple:
for i in range(len(call_result)):
call_result[i] = HWC3(call_result[i])
else:
call_result = HWC3(call_result)
return call_result
class CannyPreprocessor:
class CannyEdgePreproces:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ) ,
@ -26,27 +35,59 @@ class CannyPreprocessor:
CATEGORY = "preprocessor"
def detect_edge(self, image, low_threshold, high_threshold, l2gradient):
apply_canny = canny.CannyDetector()
image = apply_canny(img_tensor_to_np(image), low_threshold, high_threshold, l2gradient == "enable")
image = img_np_to_tensor(HWC3(image))
return (image,)
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_canny2image.py
np_detected_map = common_annotator_call(canny.CannyDetector(), image, low_threshold, high_threshold, l2gradient == "enable")
return (img_np_to_tensor(np_detected_map),)
class HEDPreprocessor:
class HEDPreproces:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",) }}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect_edge"
FUNCTION = "detect_boundary"
CATEGORY = "preprocessor"
def detect_edge(self, image):
apply_hed = hed.HEDdetector()
image = apply_hed(img_tensor_to_np(image))
image = img_np_to_tensor(HWC3(image))
return (image,)
def detect_boundary(self, image):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_hed2image.py
np_detected_map = common_annotator_call(hed.HEDdetector(), image)
return (img_np_to_tensor(np_detected_map),)
class MIDASPreprocessor:
class ScribblePreprocess:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",) }}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "transform_scribble"
CATEGORY = "preprocessor"
def transform_scribble(self, image):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_scribble2image.py
np_img = img_tensor_to_np(image)
np_detected_map = np.zeros_like(np_img, dtype=np.uint8)
np_detected_map[np.min(np_img, axis=2) < 127] = 255
return (img_np_to_tensor(np_detected_map),)
class FakeScribblePreprocess:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",) }}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "transform_scribble"
CATEGORY = "preprocessor"
def transform_scribble(self, image):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_fake_scribble2image.py
np_detected_map = common_annotator_call(hed.HEDdetector(), image)
np_detected_map = hed.nms(np_detected_map, 127, 3.0)
np_detected_map = cv2.GaussianBlur(np_detected_map, (0, 0), 3.0)
np_detected_map[np_detected_map > 4] = 255
np_detected_map[np_detected_map < 255] = 0
return (img_np_to_tensor(np_detected_map),)
class MIDASDepthPreprocess:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ) ,
@ -59,12 +100,28 @@ class MIDASPreprocessor:
CATEGORY = "preprocessor"
def estimate_depth(self, image, a, bg_threshold):
model_midas = midas.MidasDetector()
image, _ = model_midas(img_tensor_to_np(image), a, bg_threshold)
image = img_np_to_tensor(HWC3(image))
return (image,)
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py
depth_map_np, normal_map_np = common_annotator_call(midas.MidasDetector(), image, a, bg_threshold)
return (img_np_to_tensor(depth_map_np),)
class MLSDPreprocessor:
class MIDASNormalPreprocess:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ) ,
"a": ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.1}),
"bg_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.1})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "estimate_normal"
CATEGORY = "preprocessor"
def estimate_normal(self, image, a, bg_threshold):
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py
depth_map_np, normal_map_np = common_annotator_call(midas.MidasDetector(), image, a, bg_threshold)
return (img_np_to_tensor(normal_map_np),)
class MLSDPreprocess:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",) ,
@ -78,12 +135,11 @@ class MLSDPreprocessor:
CATEGORY = "preprocessor"
def detect_edge(self, image, score_threshold, dist_threshold):
model_mlsd = mlsd.MLSDdetector()
image = model_mlsd(img_tensor_to_np(image), score_threshold, dist_threshold)
image = img_np_to_tensor(HWC3(image))
return (image,)
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_hough2image.py
np_detected_map = common_annotator_call(mlsd.MLSDdetector(), image, score_threshold, dist_threshold)
return (img_np_to_tensor(np_detected_map),)
class OpenPosePreprocessor:
class OpenposePreprocess:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", ),
@ -95,12 +151,11 @@ class OpenPosePreprocessor:
CATEGORY = "preprocessor"
def estimate_pose(self, image, detect_hand):
model_openpose = openpose.OpenposeDetector()
image, _ = model_openpose(img_tensor_to_np(image), detect_hand == "enable")
image = img_np_to_tensor(HWC3(image))
return (image,)
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_pose2image.py
np_detected_map = common_annotator_call(openpose.OpenposeDetector(), image, detect_hand == "enable")
return (img_np_to_tensor(np_detected_map),)
class UniformerPreprocessor:
class UniformerPreprocess:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE", )
@ -111,15 +166,18 @@ class UniformerPreprocessor:
CATEGORY = "preprocessor"
def semantic_segmentate(self, image):
model_uniformer = uniformer.UniformerDetector()
image = model_uniformer(img_np_to_tensor(image))
image = img_np_to_tensor(HWC3(image))
return (image,)
#Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_seg2image.py
np_detected_map = common_annotator_call(uniformer.UniformerDetector(), image)
return (img_np_to_tensor(np_detected_map),)
NODE_CLASS_MAPPINGS = {
"CannyPreprocessor": CannyPreprocessor,
"HEDPreprocessor": HEDPreprocessor,
"DepthPreprocessor": MIDASPreprocessor,
"MLSDPreprocessor": MLSDPreprocessor,
"OpenPosePreprocessor": OpenPosePreprocessor,
"CannyEdgePreproces": CannyEdgePreproces,
"M-LSDPreprocess": MLSDPreprocess,
"HEDPreproces": HEDPreproces,
"ScribblePreprocess": ScribblePreprocess,
"FakeScribblePreprocess": FakeScribblePreprocess,
"OpenposePreprocess": OpenposePreprocess,
"MiDaS-DepthPreprocess": MIDASDepthPreprocess,
"MiDaS-NormalPreprocess": MIDASNormalPreprocess,
"SemSegPreprocess": UniformerPreprocess
}