This commit is contained in:
Designstanic 2023-08-26 06:04:03 -07:00
commit fbc2d63b28
35 changed files with 1461 additions and 964 deletions

View File

@ -31,7 +31,7 @@ jobs:
echo 'import site' >> ./python311._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
python -m pip wheel torch torchvision torchaudio aiohttp==3.8.4 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
python -m pip wheel torch torchvision torchaudio aiohttp==3.8.5 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
ls ../temp_wheel_dir
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
sed -i '1i../ComfyUI' ./python311._pth

View File

@ -48,6 +48,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
| Ctrl + O | Load workflow |
| Ctrl + A | Select all nodes |
| Ctrl + M | Mute/unmute selected nodes |
| Ctrl + B | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
| Delete/Backspace | Delete selected nodes |
| Ctrl + Delete/Backspace | Delete the current graph |
| Space | Move the canvas around when held and moving the cursor |

View File

@ -6,8 +6,6 @@ import torch as th
import torch.nn as nn
from ..ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
@ -15,7 +13,7 @@ from ..ldm.modules.diffusionmodules.util import (
from ..ldm.modules.attention import SpatialTransformer
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
from ..ldm.util import exists
import comfy.ops
class ControlledUnetModel(UNetModel):
#implemented in the ldm unet
@ -55,6 +53,8 @@ class ControlNet(nn.Module):
use_linear_in_transformer=False,
adm_in_channels=None,
transformer_depth_middle=None,
device=None,
operations=comfy.ops,
):
super().__init__()
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
@ -117,9 +117,9 @@ class ControlNet(nn.Module):
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
)
if self.num_classes is not None:
@ -132,9 +132,9 @@ class ControlNet(nn.Module):
assert adm_in_channels is not None
self.label_emb = nn.Sequential(
nn.Sequential(
linear(adm_in_channels, time_embed_dim),
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
)
)
else:
@ -143,28 +143,28 @@ class ControlNet(nn.Module):
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations)])
self.input_hint_block = TimestepEmbedSequential(
conv_nd(dims, hint_channels, 16, 3, padding=1),
operations.conv_nd(dims, hint_channels, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
operations.conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
operations.conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 96, 96, 3, padding=1),
operations.conv_nd(dims, 96, 96, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2),
nn.SiLU(),
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
zero_module(operations.conv_nd(dims, 256, model_channels, 3, padding=1))
)
self._feature_size = model_channels
@ -182,6 +182,7 @@ class ControlNet(nn.Module):
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
operations=operations
)
]
ch = mult * model_channels
@ -204,11 +205,11 @@ class ControlNet(nn.Module):
SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
use_checkpoint=use_checkpoint, operations=operations
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
self.zero_convs.append(self.make_zero_conv(ch, operations=operations))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
@ -224,16 +225,17 @@ class ControlNet(nn.Module):
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
operations=operations
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
ch, conv_resample, dims=dims, out_channels=out_ch, operations=operations
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
self.zero_convs.append(self.make_zero_conv(ch, operations=operations))
ds *= 2
self._feature_size += ch
@ -253,11 +255,12 @@ class ControlNet(nn.Module):
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
operations=operations
),
SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
use_checkpoint=use_checkpoint, operations=operations
),
ResBlock(
ch,
@ -266,16 +269,17 @@ class ControlNet(nn.Module):
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
operations=operations
),
)
self.middle_block_out = self.make_zero_conv(ch)
self.middle_block_out = self.make_zero_conv(ch, operations=operations)
self._feature_size += ch
def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def make_zero_conv(self, channels, operations=None):
return TimestepEmbedSequential(zero_module(operations.conv_nd(self.dims, channels, channels, 1, padding=0)))
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
emb = self.time_embed(t_emb)
guided_hint = self.input_hint_block(hint, emb, context)
@ -283,9 +287,6 @@ class ControlNet(nn.Module):
outs = []
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)

View File

@ -58,6 +58,8 @@ fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
class LatentPreviewMethod(enum.Enum):
NoPreviews = "none"
Auto = "auto"
@ -82,6 +84,9 @@ vram_group.add_argument("--novram", action="store_true", help="When lowvram isn'
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")

View File

@ -25,6 +25,7 @@ class ClipVisionModel():
def encode_image(self, image):
img = torch.clip((255. * image), 0, 255).round().int()
img = list(map(lambda a: a, img))
inputs = self.processor(images=img, return_tensors="pt")
outputs = self.model(**inputs)
return outputs
@ -49,18 +50,22 @@ def convert_to_transformers(sd, prefix):
if "{}proj".format(prefix) in sd_k:
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
sd = transformers_convert(sd, prefix, "vision_model.", 32)
sd = transformers_convert(sd, prefix, "vision_model.", 48)
return sd
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
if convert_keys:
sd = convert_to_transformers(sd, prefix)
if "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
clip = ClipVisionModel(json_config)
m, u = clip.load_sd(sd)
if len(m) > 0:
print("missing clip vision:", m)
u = set(u)
keys = list(sd.keys())
for k in keys:
@ -71,4 +76,7 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
def load(ckpt_path):
sd = load_torch_file(ckpt_path)
return load_clipvision_from_sd(sd)
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
else:
return load_clipvision_from_sd(sd)

View File

@ -0,0 +1,18 @@
{
"attention_dropout": 0.0,
"dropout": 0.0,
"hidden_act": "gelu",
"hidden_size": 1664,
"image_size": 224,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 8192,
"layer_norm_eps": 1e-05,
"model_type": "clip_vision_model",
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 48,
"patch_size": 14,
"projection_dim": 1280,
"torch_dtype": "float32"
}

483
comfy/controlnet.py Normal file
View File

@ -0,0 +1,483 @@
import torch
import math
import comfy.utils
import comfy.sd
import comfy.model_management
import comfy.model_detection
import comfy.cldm.cldm
import comfy.t2i_adapter.adapter
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
#print(current_batch_size, target_batch_size)
if current_batch_size == 1:
return tensor
per_batch = target_batch_size // batched_number
tensor = tensor[:per_batch]
if per_batch > tensor.shape[0]:
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
current_batch_size = tensor.shape[0]
if current_batch_size == target_batch_size:
return tensor
else:
return torch.cat([tensor] * batched_number, dim=0)
class ControlBase:
def __init__(self, device=None):
self.cond_hint_original = None
self.cond_hint = None
self.strength = 1.0
self.timestep_percent_range = (1.0, 0.0)
self.timestep_range = None
if device is None:
device = comfy.model_management.get_torch_device()
self.device = device
self.previous_controlnet = None
self.global_average_pooling = False
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
self.cond_hint_original = cond_hint
self.strength = strength
self.timestep_percent_range = timestep_percent_range
return self
def pre_run(self, model, percent_to_timestep_function):
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
if self.previous_controlnet is not None:
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
def set_previous_controlnet(self, controlnet):
self.previous_controlnet = controlnet
return self
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.timestep_range = None
def get_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
def inference_memory_requirements(self, dtype):
if self.previous_controlnet is not None:
return self.previous_controlnet.inference_memory_requirements(dtype)
return 0
def control_merge(self, control_input, control_output, control_prev, output_dtype):
out = {'input':[], 'middle':[], 'output': []}
if control_input is not None:
for i in range(len(control_input)):
key = 'input'
x = control_input[i]
if x is not None:
x *= self.strength
if x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].insert(0, x)
if control_output is not None:
for i in range(len(control_output)):
if i == (len(control_output) - 1):
key = 'middle'
index = 0
else:
key = 'output'
index = i
x = control_output[i]
if x is not None:
if self.global_average_pooling:
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
x *= self.strength
if x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].append(x)
if control_prev is not None:
for x in ['input', 'middle', 'output']:
o = out[x]
for i in range(len(control_prev[x])):
prev_val = control_prev[x][i]
if i >= len(o):
o.append(prev_val)
elif prev_val is not None:
if o[i] is None:
o[i] = prev_val
else:
o[i] += prev_val
return out
class ControlNet(ControlBase):
def __init__(self, control_model, global_average_pooling=False, device=None):
super().__init__(device)
self.control_model = control_model
self.control_model_wrapped = comfy.sd.ModelPatcher(self.control_model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
self.global_average_pooling = global_average_pooling
def get_control(self, x_noisy, t, cond, batched_number):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return {}
output_dtype = x_noisy.dtype
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
context = torch.cat(cond['c_crossattn'], 1)
y = cond.get('c_adm', None)
if y is not None:
y = y.to(self.control_model.dtype)
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y)
return self.control_merge(None, control, control_prev, output_dtype)
def copy(self):
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model_wrapped)
return out
class ControlLoraOps:
class Linear(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = None
self.up = None
self.down = None
self.bias = None
def forward(self, input):
if self.up is not None:
return torch.nn.functional.linear(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias)
else:
return torch.nn.functional.linear(input, self.weight.to(input.device), self.bias)
class Conv2d(torch.nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode='zeros',
device=None,
dtype=None
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = False
self.output_padding = 0
self.groups = groups
self.padding_mode = padding_mode
self.weight = None
self.bias = None
self.up = None
self.down = None
def forward(self, input):
if self.up is not None:
return torch.nn.functional.conv2d(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias, self.stride, self.padding, self.dilation, self.groups)
else:
return torch.nn.functional.conv2d(input, self.weight.to(input.device), self.bias, self.stride, self.padding, self.dilation, self.groups)
def conv_nd(self, dims, *args, **kwargs):
if dims == 2:
return self.Conv2d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")
class ControlLora(ControlNet):
def __init__(self, control_weights, global_average_pooling=False, device=None):
ControlBase.__init__(self, device)
self.control_weights = control_weights
self.global_average_pooling = global_average_pooling
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
controlnet_config = model.model_config.unet_config.copy()
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
controlnet_config["operations"] = ControlLoraOps()
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
dtype = model.get_dtype()
self.control_model.to(dtype)
self.control_model.to(comfy.model_management.get_torch_device())
diffusion_model = model.diffusion_model
sd = diffusion_model.state_dict()
cm = self.control_model.state_dict()
for k in sd:
weight = sd[k]
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
key_split = k.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device.
op = comfy.utils.get_attr(diffusion_model, '.'.join(key_split[:-1]))
weight = op._hf_hook.weights_map[key_split[-1]]
try:
comfy.utils.set_attr(self.control_model, k, weight)
except:
pass
for k in self.control_weights:
if k not in {"lora_controlnet"}:
comfy.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
def copy(self):
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
return c
def cleanup(self):
del self.control_model
self.control_model = None
super().cleanup()
def get_models(self):
out = ControlBase.get_models(self)
return out
def inference_memory_requirements(self, dtype):
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
def load_controlnet(ckpt_path, model=None):
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
if "lora_controlnet" in controlnet_data:
return ControlLora(controlnet_data)
controlnet_config = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
use_fp16 = comfy.model_management.should_use_fp16()
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_down_blocks.{}{}".format(count, s)
k_out = "zero_convs.{}.0{}".format(count, s)
if k_in not in controlnet_data:
loop = False
break
diffusers_keys[k_in] = k_out
count += 1
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
if count == 0:
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
else:
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
k_out = "input_hint_block.{}{}".format(count * 2, s)
if k_in not in controlnet_data:
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
loop = False
diffusers_keys[k_in] = k_out
count += 1
new_sd = {}
for k in diffusers_keys:
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
print("leftover keys:", leftover_keys)
controlnet_data = new_sd
pth_key = 'control_model.zero_convs.0.0.weight'
pth = False
key = 'zero_convs.0.0.weight'
if pth_key in controlnet_data:
pth = True
key = pth_key
prefix = "control_model."
elif key in controlnet_data:
prefix = ""
else:
net = load_t2i_adapter(controlnet_data)
if net is None:
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
return net
if controlnet_config is None:
use_fp16 = comfy.model_management.should_use_fp16()
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
if pth:
if 'difference' in controlnet_data:
if model is not None:
comfy.model_management.load_models_gpu([model])
model_sd = model.model_state_dict()
for x in controlnet_data:
c_m = "control_model."
if x.startswith(c_m):
sd_key = "diffusion_model.{}".format(x[len(c_m):])
if sd_key in model_sd:
cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
else:
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.control_model = control_model
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
print(missing, unexpected)
if use_fp16:
control_model = control_model.half()
global_average_pooling = False
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
global_average_pooling = True
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
return control
class T2IAdapter(ControlBase):
def __init__(self, t2i_model, channels_in, device=None):
super().__init__(device)
self.t2i_model = t2i_model
self.channels_in = channels_in
self.control_input = None
def scale_image_to(self, width, height):
unshuffle_amount = self.t2i_model.unshuffle_amount
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
return width, height
def get_control(self, x_noisy, t, cond, batched_number):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return {}
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.control_input = None
self.cond_hint = None
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
if self.control_input is None:
self.t2i_model.to(x_noisy.dtype)
self.t2i_model.to(self.device)
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
self.t2i_model.cpu()
control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
mid = None
if self.t2i_model.xl == True:
mid = control_input[-1:]
control_input = control_input[:-1]
return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
def copy(self):
c = T2IAdapter(self.t2i_model, self.channels_in)
self.copy_to(c)
return c
def load_t2i_adapter(t2i_data):
keys = t2i_data.keys()
if 'adapter' in keys:
t2i_data = t2i_data['adapter']
keys = t2i_data.keys()
if "body.0.in_conv.weight" in keys:
cin = t2i_data['body.0.in_conv.weight'].shape[1]
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
elif 'conv_in.weight' in keys:
cin = t2i_data['conv_in.weight'].shape[1]
channel = t2i_data['conv_in.weight'].shape[0]
ksize = t2i_data['body.0.block2.weight'].shape[2]
use_conv = False
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
if len(down_opts) > 0:
use_conv = True
xl = False
if cin == 256:
xl = True
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
else:
return None
missing, unexpected = model_ad.load_state_dict(t2i_data)
if len(missing) > 0:
print("t2i missing", missing)
if len(unexpected) > 0:
print("t2i unexpected", unexpected)
return T2IAdapter(model_ad, model_ad.input_channels)

View File

@ -244,30 +244,15 @@ class Gligen(nn.Module):
self.position_net = position_net
self.key_dim = key_dim
self.max_objs = 30
self.lowvram = False
self.current_device = torch.device("cpu")
def _set_position(self, boxes, masks, positive_embeddings):
if self.lowvram == True:
self.position_net.to(boxes.device)
objs = self.position_net(boxes, masks, positive_embeddings)
if self.lowvram == True:
self.position_net.cpu()
def func_lowvram(x, extra_options):
key = extra_options["transformer_index"]
module = self.module_list[key]
module.to(x.device)
r = module(x, objs)
module.cpu()
return r
return func_lowvram
else:
def func(x, extra_options):
key = extra_options["transformer_index"]
module = self.module_list[key]
return module(x, objs)
return func
def func(x, extra_options):
key = extra_options["transformer_index"]
module = self.module_list[key]
return module(x, objs)
return func
def set_position(self, latent_image_shape, position_params, device):
batch, c, h, w = latent_image_shape
@ -312,14 +297,6 @@ class Gligen(nn.Module):
masks.to(device),
conds.to(device))
def set_lowvram(self, value=True):
self.lowvram = value
def cleanup(self):
self.lowvram = False
def get_models(self):
return [self]
def load_gligen(sd):
sd_k = sd.keys()

View File

@ -649,7 +649,7 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
s_in = x.new_ones([x.shape[0]])
denoised_1, denoised_2 = None, None
h_1, h_2 = None, None
h, h_1, h_2 = None, None, None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)

View File

@ -10,13 +10,14 @@ from .diffusionmodules.util import checkpoint
from .sub_quadratic_attention import efficient_dot_product_attention
from comfy import model_management
import comfy.ops
if model_management.xformers_enabled():
import xformers
import xformers.ops
from comfy.cli_args import args
import comfy.ops
# CrossAttn precision handling
if args.dont_upcast_attention:
print("disabling upcasting of attention")
@ -52,9 +53,9 @@ def init_(tensor):
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out, dtype=None, device=None):
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=comfy.ops):
super().__init__()
self.proj = comfy.ops.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
@ -62,19 +63,19 @@ class GEGLU(nn.Module):
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
comfy.ops.Linear(dim, inner_dim, dtype=dtype, device=device),
operations.Linear(dim, inner_dim, dtype=dtype, device=device),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device)
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
comfy.ops.Linear(inner_dim, dim_out, dtype=dtype, device=device)
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
)
def forward(self, x):
@ -148,7 +149,7 @@ class SpatialSelfAttention(nn.Module):
class CrossAttentionBirchSan(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
@ -156,12 +157,12 @@ class CrossAttentionBirchSan(nn.Module):
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
nn.Dropout(dropout)
)
@ -245,7 +246,7 @@ class CrossAttentionBirchSan(nn.Module):
class CrossAttentionDoggettx(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
@ -253,12 +254,12 @@ class CrossAttentionDoggettx(nn.Module):
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
nn.Dropout(dropout)
)
@ -343,7 +344,7 @@ class CrossAttentionDoggettx(nn.Module):
return self.to_out(r2)
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
@ -351,12 +352,12 @@ class CrossAttention(nn.Module):
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
nn.Dropout(dropout)
)
@ -399,7 +400,7 @@ class CrossAttention(nn.Module):
class MemoryEfficientCrossAttention(nn.Module):
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None, operations=comfy.ops):
super().__init__()
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
f"{heads} heads.")
@ -409,11 +410,11 @@ class MemoryEfficientCrossAttention(nn.Module):
self.heads = heads
self.dim_head = dim_head
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, value=None, mask=None):
@ -450,7 +451,7 @@ class MemoryEfficientCrossAttention(nn.Module):
return self.to_out(out)
class CrossAttentionPytorch(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
@ -458,11 +459,11 @@ class CrossAttentionPytorch(nn.Module):
self.heads = heads
self.dim_head = dim_head
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, value=None, mask=None):
@ -508,14 +509,14 @@ else:
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
disable_self_attn=False, dtype=None, device=None):
disable_self_attn=False, dtype=None, device=None, operations=comfy.ops):
super().__init__()
self.disable_self_attn = disable_self_attn
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device)
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device) # is self-attn if context is none
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device)
self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device)
self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device)
@ -648,7 +649,7 @@ class SpatialTransformer(nn.Module):
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None,
disable_self_attn=False, use_linear=False,
use_checkpoint=True, dtype=None, device=None):
use_checkpoint=True, dtype=None, device=None, operations=comfy.ops):
super().__init__()
if exists(context_dim) and not isinstance(context_dim, list):
context_dim = [context_dim] * depth
@ -656,26 +657,26 @@ class SpatialTransformer(nn.Module):
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels, dtype=dtype, device=device)
if not use_linear:
self.proj_in = nn.Conv2d(in_channels,
self.proj_in = operations.Conv2d(in_channels,
inner_dim,
kernel_size=1,
stride=1,
padding=0, dtype=dtype, device=device)
else:
self.proj_in = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype, device=device)
self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device)
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
for d in range(depth)]
)
if not use_linear:
self.proj_out = nn.Conv2d(inner_dim,in_channels,
self.proj_out = operations.Conv2d(inner_dim,in_channels,
kernel_size=1,
stride=1,
padding=0, dtype=dtype, device=device)
else:
self.proj_out = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype, device=device)
self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
self.use_linear = use_linear
def forward(self, x, context=None, transformer_options={}):

View File

@ -8,8 +8,6 @@ import torch.nn.functional as F
from .util import (
checkpoint,
conv_nd,
linear,
avg_pool_nd,
zero_module,
normalization,
@ -17,7 +15,7 @@ from .util import (
)
from ..attention import SpatialTransformer
from comfy.ldm.util import exists
import comfy.ops
class TimestepBlock(nn.Module):
"""
@ -72,14 +70,14 @@ class Upsample(nn.Module):
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None):
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
def forward(self, x, output_shape=None):
assert x.shape[1] == self.channels
@ -108,7 +106,7 @@ class Downsample(nn.Module):
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None):
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
@ -116,7 +114,7 @@ class Downsample(nn.Module):
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
self.op = operations.conv_nd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
)
else:
@ -158,6 +156,7 @@ class ResBlock(TimestepBlock):
down=False,
dtype=None,
device=None,
operations=comfy.ops
):
super().__init__()
self.channels = channels
@ -171,7 +170,7 @@ class ResBlock(TimestepBlock):
self.in_layers = nn.Sequential(
nn.GroupNorm(32, channels, dtype=dtype, device=device),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device),
operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device),
)
self.updown = up or down
@ -187,7 +186,7 @@ class ResBlock(TimestepBlock):
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
operations.Linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
),
@ -197,18 +196,18 @@ class ResBlock(TimestepBlock):
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)
operations.conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
self.skip_connection = operations.conv_nd(
dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
def forward(self, x, emb):
"""
@ -317,6 +316,7 @@ class UNetModel(nn.Module):
adm_in_channels=None,
transformer_depth_middle=None,
device=None,
operations=comfy.ops,
):
super().__init__()
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
@ -379,9 +379,9 @@ class UNetModel(nn.Module):
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
)
if self.num_classes is not None:
@ -394,9 +394,9 @@ class UNetModel(nn.Module):
assert adm_in_channels is not None
self.label_emb = nn.Sequential(
nn.Sequential(
linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
)
)
else:
@ -405,7 +405,7 @@ class UNetModel(nn.Module):
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
)
]
)
@ -426,6 +426,7 @@ class UNetModel(nn.Module):
use_scale_shift_norm=use_scale_shift_norm,
dtype=self.dtype,
device=device,
operations=operations,
)
]
ch = mult * model_channels
@ -447,7 +448,7 @@ class UNetModel(nn.Module):
layers.append(SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
@ -468,10 +469,11 @@ class UNetModel(nn.Module):
down=True,
dtype=self.dtype,
device=device,
operations=operations
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
)
)
)
@ -498,11 +500,12 @@ class UNetModel(nn.Module):
use_scale_shift_norm=use_scale_shift_norm,
dtype=self.dtype,
device=device,
operations=operations
),
SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
),
ResBlock(
ch,
@ -513,6 +516,7 @@ class UNetModel(nn.Module):
use_scale_shift_norm=use_scale_shift_norm,
dtype=self.dtype,
device=device,
operations=operations
),
)
self._feature_size += ch
@ -532,6 +536,7 @@ class UNetModel(nn.Module):
use_scale_shift_norm=use_scale_shift_norm,
dtype=self.dtype,
device=device,
operations=operations
)
]
ch = model_channels * mult
@ -554,7 +559,7 @@ class UNetModel(nn.Module):
SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
)
)
if level and i == self.num_res_blocks[level]:
@ -571,9 +576,10 @@ class UNetModel(nn.Module):
up=True,
dtype=self.dtype,
device=device,
operations=operations
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device)
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
@ -582,12 +588,12 @@ class UNetModel(nn.Module):
self.out = nn.Sequential(
nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
)
if self.predict_codebook_ids:
self.id_predictor = nn.Sequential(
nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
@ -626,7 +632,9 @@ class UNetModel(nn.Module):
transformer_options["block"] = ("middle", 0)
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
if control is not None and 'middle' in control and len(control['middle']) > 0:
h += control['middle'].pop()
ctrl = control['middle'].pop()
if ctrl is not None:
h += ctrl
for id, module in enumerate(self.output_blocks):
transformer_options["block"] = ("output", id)

186
comfy/lora.py Normal file
View File

@ -0,0 +1,186 @@
import comfy.utils
LORA_CLIP_MAP = {
"mlp.fc1": "mlp_fc1",
"mlp.fc2": "mlp_fc2",
"self_attn.k_proj": "self_attn_k_proj",
"self_attn.q_proj": "self_attn_q_proj",
"self_attn.v_proj": "self_attn_v_proj",
"self_attn.out_proj": "self_attn_out_proj",
}
def load_lora(lora, to_load):
patch_dict = {}
loaded_keys = set()
for x in to_load:
alpha_name = "{}.alpha".format(x)
alpha = None
if alpha_name in lora.keys():
alpha = lora[alpha_name].item()
loaded_keys.add(alpha_name)
regular_lora = "{}.lora_up.weight".format(x)
diffusers_lora = "{}_lora.up.weight".format(x)
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
A_name = None
if regular_lora in lora.keys():
A_name = regular_lora
B_name = "{}.lora_down.weight".format(x)
mid_name = "{}.lora_mid.weight".format(x)
elif diffusers_lora in lora.keys():
A_name = diffusers_lora
B_name = "{}_lora.down.weight".format(x)
mid_name = None
elif transformers_lora in lora.keys():
A_name = transformers_lora
B_name ="{}.lora_linear_layer.down.weight".format(x)
mid_name = None
if A_name is not None:
mid = None
if mid_name is not None and mid_name in lora.keys():
mid = lora[mid_name]
loaded_keys.add(mid_name)
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
loaded_keys.add(A_name)
loaded_keys.add(B_name)
######## loha
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
hada_w2_b_name = "{}.hada_w2_b".format(x)
hada_t1_name = "{}.hada_t1".format(x)
hada_t2_name = "{}.hada_t2".format(x)
if hada_w1_a_name in lora.keys():
hada_t1 = None
hada_t2 = None
if hada_t1_name in lora.keys():
hada_t1 = lora[hada_t1_name]
hada_t2 = lora[hada_t2_name]
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
######## lokr
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
for x in lora.keys():
if x not in loaded_keys:
print("lora key not loaded", x)
return patch_dict
def model_lora_keys_clip(model, key_map={}):
sdk = model.state_dict().keys()
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
clip_l_present = False
for b in range(32):
for c in LORA_CLIP_MAP:
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
key_map[lora_key] = k
clip_l_present = True
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
if clip_l_present:
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
key_map[lora_key] = k
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
else:
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
key_map[lora_key] = k
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
return key_map
def model_lora_keys_unet(model, key_map={}):
sdk = model.state_dict().keys()
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = k
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
for k in diffusers_keys:
if k.endswith(".weight"):
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
key_lora = k[:-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = unet_key
diffusers_lora_prefix = ["", "unet."]
for p in diffusers_lora_prefix:
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
if diffusers_lora_key.endswith(".to_out.0"):
diffusers_lora_key = diffusers_lora_key[:-2]
key_map[diffusers_lora_key] = unet_key
return key_map

View File

@ -105,6 +105,29 @@ class BaseModel(torch.nn.Module):
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
adm_inputs = []
weights = []
noise_aug = []
for unclip_cond in unclip_conditioning:
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
weight = unclip_cond["strength"]
noise_augment = unclip_cond["noise_augmentation"]
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
weights.append(weight)
noise_aug.append(noise_augment)
adm_inputs.append(adm_out)
if len(noise_aug) > 1:
adm_out = torch.stack(adm_inputs).sum(0)
noise_augment = noise_augment_merge
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1)
return adm_out
class SD21UNCLIP(BaseModel):
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
@ -114,46 +137,31 @@ class SD21UNCLIP(BaseModel):
def encode_adm(self, **kwargs):
unclip_conditioning = kwargs.get("unclip_conditioning", None)
device = kwargs["device"]
if unclip_conditioning is not None:
adm_inputs = []
weights = []
noise_aug = []
for unclip_cond in unclip_conditioning:
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
weight = unclip_cond["strength"]
noise_augment = unclip_cond["noise_augmentation"]
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
weights.append(weight)
noise_aug.append(noise_augment)
adm_inputs.append(adm_out)
if len(noise_aug) > 1:
adm_out = torch.stack(adm_inputs).sum(0)
#TODO: add a way to control this
noise_augment = 0.05
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = self.noise_augmentor(adm_out[:, :self.noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1)
if unclip_conditioning is None:
return torch.zeros((1, self.adm_channels))
else:
adm_out = torch.zeros((1, self.adm_channels))
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
return adm_out
class SDInpaint(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
self.concat_keys = ("mask", "masked_image")
def sdxl_pooled(args, noise_augmentor):
if "unclip_conditioning" in args:
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
else:
return args["pooled_output"]
class SDXLRefiner(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder = Timestep(256)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
def encode_adm(self, **kwargs):
clip_pooled = kwargs["pooled_output"]
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
@ -177,9 +185,10 @@ class SDXL(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder = Timestep(256)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
def encode_adm(self, **kwargs):
clip_pooled = kwargs["pooled_output"]
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)

View File

@ -121,9 +121,20 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_fp16):
return model_config_from_unet_config(unet_config)
def model_config_from_diffusers_unet(state_dict, use_fp16):
def unet_config_from_diffusers_unet(state_dict, use_fp16):
match = {}
match["context_dim"] = state_dict["down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k.weight"].shape[1]
attention_resolutions = []
attn_res = 1
for i in range(5):
k = "down_blocks.{}.attentions.1.transformer_blocks.0.attn2.to_k.weight".format(i)
if k in state_dict:
match["context_dim"] = state_dict[k].shape[1]
attention_resolutions.append(attn_res)
attn_res *= 2
match["attention_resolutions"] = attention_resolutions
match["model_channels"] = state_dict["conv_in.weight"].shape[0]
match["in_channels"] = state_dict["conv_in.weight"].shape[1]
match["adm_in_channels"] = None
@ -135,22 +146,22 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048}
'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2560, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 384,
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280}
'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280, "num_head_channels": 64}
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2048, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 1536, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
@ -160,9 +171,20 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768}
'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, "num_heads": 8}
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl]
SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [4], 'transformer_depth': [0, 0, 1], 'channel_mult': [1, 2, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [], 'transformer_depth': [0, 0, 0], 'channel_mult': [1, 2, 4],
'transformer_depth_middle': 0, 'use_linear_in_transformer': True, "num_head_channels": 64, 'context_dim': 1}
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet]
for unet_config in supported_models:
matches = True
@ -171,5 +193,11 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
matches = False
break
if matches:
return model_config_from_unet_config(unet_config)
return unet_config
return None
def model_config_from_diffusers_unet(state_dict, use_fp16):
unet_config = unet_config_from_diffusers_unet(state_dict, use_fp16)
if unet_config is not None:
return model_config_from_unet_config(unet_config)
return None

View File

@ -2,6 +2,7 @@ import psutil
from enum import Enum
from comfy.cli_args import args
import torch
import sys
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
@ -87,8 +88,10 @@ def get_total_memory(dev=None, torch_total_too=False):
mem_total = 1024 * 1024 * 1024 #TODO
mem_total_torch = mem_total
elif xpu_available:
stats = torch.xpu.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
mem_total = torch.xpu.get_device_properties(dev).total_memory
mem_total_torch = mem_total
mem_total_torch = mem_reserved
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
@ -108,9 +111,6 @@ if not args.normalvram and not args.cpu:
if lowvram_available and total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
elif total_vram > total_ram * 1.1 and total_vram > 14336:
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
vram_state = VRAMState.HIGH_VRAM
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
@ -201,8 +201,13 @@ if cpu_state == CPUState.MPS:
print(f"Set vram state to: {vram_state.name}")
DISABLE_SMART_MEMORY = args.disable_smart_memory
if DISABLE_SMART_MEMORY:
print("Disabling smart memory management")
def get_torch_device_name(device):
global xpu_available
if hasattr(device, 'type'):
if device.type == "cuda":
try:
@ -212,6 +217,8 @@ def get_torch_device_name(device):
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
else:
return "{}".format(device.type)
elif xpu_available:
return "{} {}".format(device, torch.xpu.get_device_name(device))
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
@ -221,132 +228,173 @@ except:
print("Could not pick default device.")
current_loaded_model = None
current_gpu_controlnets = []
current_loaded_models = []
model_accelerated = False
class LoadedModel:
def __init__(self, model):
self.model = model
self.model_accelerated = False
self.device = model.load_device
def model_memory(self):
return self.model.model_size()
def unload_model():
global current_loaded_model
global model_accelerated
global current_gpu_controlnets
global vram_state
def model_memory_required(self, device):
if device == self.model.current_device:
return 0
else:
return self.model_memory()
if current_loaded_model is not None:
if model_accelerated:
accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
model_accelerated = False
def model_load(self, lowvram_model_memory=0):
global xpu_available
patch_model_to = None
if lowvram_model_memory == 0:
patch_model_to = self.device
current_loaded_model.unpatch_model()
current_loaded_model.model.to(current_loaded_model.offload_device)
current_loaded_model.model_patches_to(current_loaded_model.offload_device)
current_loaded_model = None
if vram_state != VRAMState.HIGH_VRAM:
soft_empty_cache()
self.model.model_patches_to(self.device)
self.model.model_patches_to(self.model.model_dtype())
if vram_state != VRAMState.HIGH_VRAM:
if len(current_gpu_controlnets) > 0:
for n in current_gpu_controlnets:
n.cpu()
current_gpu_controlnets = []
try:
self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
if lowvram_model_memory > 0:
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
self.model_accelerated = True
if xpu_available and not args.disable_ipex_optimize:
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
return self.real_model
def model_unload(self):
if self.model_accelerated:
accelerate.hooks.remove_hook_from_submodules(self.real_model)
self.model_accelerated = False
self.model.unpatch_model(self.model.offload_device)
self.model.model_patches_to(self.model.offload_device)
def __eq__(self, other):
return self.model is other.model
def minimum_inference_memory():
return (768 * 1024 * 1024)
return (1024 * 1024 * 1024)
def unload_model_clones(model):
to_unload = []
for i in range(len(current_loaded_models)):
if model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
for i in to_unload:
print("unload clone", i)
current_loaded_models.pop(i).model_unload()
def free_memory(memory_required, device, keep_loaded=[]):
unloaded_model = False
for i in range(len(current_loaded_models) -1, -1, -1):
if not DISABLE_SMART_MEMORY:
if get_free_memory(device) > memory_required:
break
shift_model = current_loaded_models[i]
if shift_model.device == device:
if shift_model not in keep_loaded:
m = current_loaded_models.pop(i)
m.model_unload()
del m
unloaded_model = True
if unloaded_model:
soft_empty_cache()
def load_models_gpu(models, memory_required=0):
global vram_state
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required)
models_to_load = []
models_already_loaded = []
for x in models:
loaded_model = LoadedModel(x)
if loaded_model in current_loaded_models:
index = current_loaded_models.index(loaded_model)
current_loaded_models.insert(0, current_loaded_models.pop(index))
models_already_loaded.append(loaded_model)
else:
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(extra_mem, d, models_already_loaded)
return
print("loading new")
total_memory_required = {}
for loaded_model in models_to_load:
unload_model_clones(loaded_model.model)
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
lowvram_model_memory = 0
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
else:
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 256 * 1024 * 1024
cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
current_loaded_models.insert(0, loaded_model)
return
def load_model_gpu(model):
global current_loaded_model
global vram_state
global model_accelerated
return load_models_gpu([model])
if model is current_loaded_model:
return
unload_model()
def cleanup_models():
to_delete = []
for i in range(len(current_loaded_models)):
print(sys.getrefcount(current_loaded_models[i].model))
if sys.getrefcount(current_loaded_models[i].model) <= 2:
to_delete = [i] + to_delete
torch_dev = model.load_device
model.model_patches_to(torch_dev)
model.model_patches_to(model.model_dtype())
current_loaded_model = model
for i in to_delete:
x = current_loaded_models.pop(i)
x.model_unload()
del x
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = model.model_size()
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - minimum_inference_memory()): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
real_model = model.model
patch_model_to = None
if vram_set_state == VRAMState.DISABLED:
pass
elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM or vram_set_state == VRAMState.SHARED:
model_accelerated = False
patch_model_to = torch_dev
try:
real_model = model.patch_model(device_to=patch_model_to)
except Exception as e:
model.unpatch_model()
unload_model()
raise e
if patch_model_to is not None:
real_model.to(torch_dev)
if vram_set_state == VRAMState.NO_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
model_accelerated = True
elif vram_set_state == VRAMState.LOW_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
model_accelerated = True
return current_loaded_model
def load_controlnet_gpu(control_models):
global current_gpu_controlnets
global vram_state
if vram_state == VRAMState.DISABLED:
return
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
for m in control_models:
if hasattr(m, 'set_lowvram'):
m.set_lowvram(True)
#don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
return
models = []
for m in control_models:
models += m.get_models()
for m in current_gpu_controlnets:
if m not in models:
m.cpu()
device = get_torch_device()
current_gpu_controlnets = []
for m in models:
current_gpu_controlnets.append(m.to(device))
def load_if_low_vram(model):
global vram_state
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
return model.to(get_torch_device())
return model
def unload_if_low_vram(model):
global vram_state
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
return model.cpu()
return model
def dtype_size(dtype):
dtype_size = 4
if dtype == torch.float16 or dtype == torch.bfloat16:
dtype_size = 2
return dtype_size
def unet_offload_device():
if vram_state == VRAMState.HIGH_VRAM:
@ -354,6 +402,24 @@ def unet_offload_device():
else:
return torch.device("cpu")
def unet_inital_load_device(parameters, dtype):
torch_dev = get_torch_device()
if vram_state == VRAMState.HIGH_VRAM:
return torch_dev
cpu_dev = torch.device("cpu")
if DISABLE_SMART_MEMORY:
return cpu_dev
model_size = dtype_size(dtype) * parameters
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
if mem_dev > mem_cpu and model_size < mem_dev:
return torch_dev
else:
return cpu_dev
def text_encoder_offload_device():
if args.gpu_only:
return get_torch_device()
@ -364,8 +430,7 @@ def text_encoder_device():
if args.gpu_only:
return get_torch_device()
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
#NOTE: on a Ryzen 5 7600X with 4080 it's faster to shift to GPU
if torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
if should_use_fp16(prioritize_performance=False):
return get_torch_device()
else:
return torch.device("cpu")
@ -441,8 +506,12 @@ def get_free_memory(dev=None, torch_free_too=False):
mem_free_total = 1024 * 1024 * 1024 #TODO
mem_free_torch = mem_free_total
elif xpu_available:
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
mem_free_torch = mem_free_total
stats = torch.xpu.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_allocated = stats['allocated_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_torch = mem_reserved - mem_active
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
else:
stats = torch.cuda.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
@ -456,6 +525,13 @@ def get_free_memory(dev=None, torch_free_too=False):
else:
return mem_free_total
def batch_area_memory(area):
if xformers_enabled() or pytorch_attention_flash_attention():
#TODO: these formulas are copied from maximum_batch_area below
return (area / 20) * (1024 * 1024)
else:
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
def maximum_batch_area():
global vram_state
if vram_state == VRAMState.NO_VRAM:
@ -490,15 +566,19 @@ def is_device_mps(device):
return True
return False
def should_use_fp16(device=None, model_params=0):
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
global xpu_available
global directml_enabled
if device is not None:
if is_device_cpu(device):
return False
if FORCE_FP16:
return True
if device is not None: #TODO
if is_device_cpu(device) or is_device_mps(device):
if is_device_mps(device):
return False
if FORCE_FP32:
@ -507,9 +587,12 @@ def should_use_fp16(device=None, model_params=0):
if directml_enabled:
return False
if cpu_mode() or mps_mode() or xpu_available:
if cpu_mode() or mps_mode():
return False #TODO ?
if xpu_available:
return True
if torch.cuda.is_bf16_supported():
return True
@ -528,7 +611,7 @@ def should_use_fp16(device=None, model_params=0):
if fp16_works:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
if model_params * 4 > free_model_memory:
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
if props.major < 7:

View File

@ -21,11 +21,25 @@ class Conv2d(torch.nn.Conv2d):
def reset_parameters(self):
return None
def conv_nd(dims, *args, **kwargs):
if dims == 2:
return Conv2d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")
@contextmanager
def use_comfy_ops(): # Kind of an ugly hack but I can't think of a better way
def use_comfy_ops(device=None, dtype=None): # Kind of an ugly hack but I can't think of a better way
old_torch_nn_linear = torch.nn.Linear
torch.nn.Linear = Linear
force_device = device
force_dtype = dtype
def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None):
if force_device is not None:
device = force_device
if force_dtype is not None:
dtype = force_dtype
return Linear(in_features, out_features, bias=bias, device=device, dtype=dtype)
torch.nn.Linear = linear_with_dtype
try:
yield
finally:

View File

@ -51,19 +51,26 @@ def get_models_from_cond(cond, model_type):
models += [c[1][model_type]]
return models
def load_additional_models(positive, negative, dtype):
def get_additional_models(positive, negative, dtype):
"""loads additional models in positive and negative conditioning"""
control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")
control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
inference_memory = 0
control_models = []
for m in control_nets:
control_models += m.get_models()
inference_memory += m.inference_memory_requirements(dtype)
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
gligen = [x[1].to(dtype) for x in gligen]
models = control_nets + gligen
comfy.model_management.load_controlnet_gpu(models)
return models
gligen = [x[1] for x in gligen]
models = control_models + gligen
return models, inference_memory
def cleanup_additional_models(models):
"""cleanup additional models that were loaded"""
for m in models:
m.cleanup()
if hasattr(m, 'cleanup'):
m.cleanup()
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
device = comfy.model_management.get_torch_device()
@ -72,7 +79,8 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
noise_mask = prepare_mask(noise_mask, noise.shape, device)
real_model = None
comfy.model_management.load_model_gpu(model)
models, inference_memory = get_additional_models(positive, negative, model.model_dtype())
comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory)
real_model = model.model
noise = noise.to(device)
@ -81,7 +89,6 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
positive_copy = broadcast_cond(positive, noise.shape[0], device)
negative_copy = broadcast_cond(negative, noise.shape[0], device)
models = load_additional_models(positive, negative, model.model_dtype())
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)

View File

@ -88,9 +88,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
gligen_type = gligen[0]
gligen_model = gligen[1]
if gligen_type == "position":
gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
else:
gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)
gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
patches['middle_patch'] = [gligen_patch]
@ -478,7 +478,7 @@ def pre_run_control(model, conds):
timestep_end = None
percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
if 'control' in x[1]:
x[1]['control'].pre_run(model.inner_model, percent_to_timestep_function)
x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
cond_cnets = []

View File

@ -2,15 +2,15 @@ import torch
import contextlib
import copy
import inspect
import math
from comfy import model_management
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
import yaml
from .cldm import cldm
from .t2i_adapter import adapter
from . import utils
import comfy.utils
from . import clip_vision
from . import gligen
from . import diffusers_convert
@ -21,6 +21,9 @@ from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip
import comfy.lora
import comfy.t2i_adapter.adapter
def load_model_weights(model, sd):
m, u = model.load_state_dict(sd, strict=False)
m = set(m)
@ -47,204 +50,11 @@ def load_clip_weights(model, sd):
if ids.dtype == torch.float32:
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
sd = comfy.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
return load_model_weights(model, sd)
LORA_CLIP_MAP = {
"mlp.fc1": "mlp_fc1",
"mlp.fc2": "mlp_fc2",
"self_attn.k_proj": "self_attn_k_proj",
"self_attn.q_proj": "self_attn_q_proj",
"self_attn.v_proj": "self_attn_v_proj",
"self_attn.out_proj": "self_attn_out_proj",
}
def load_lora(lora, to_load):
patch_dict = {}
loaded_keys = set()
for x in to_load:
alpha_name = "{}.alpha".format(x)
alpha = None
if alpha_name in lora.keys():
alpha = lora[alpha_name].item()
loaded_keys.add(alpha_name)
regular_lora = "{}.lora_up.weight".format(x)
diffusers_lora = "{}_lora.up.weight".format(x)
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
A_name = None
if regular_lora in lora.keys():
A_name = regular_lora
B_name = "{}.lora_down.weight".format(x)
mid_name = "{}.lora_mid.weight".format(x)
elif diffusers_lora in lora.keys():
A_name = diffusers_lora
B_name = "{}_lora.down.weight".format(x)
mid_name = None
elif transformers_lora in lora.keys():
A_name = transformers_lora
B_name ="{}.lora_linear_layer.down.weight".format(x)
mid_name = None
if A_name is not None:
mid = None
if mid_name is not None and mid_name in lora.keys():
mid = lora[mid_name]
loaded_keys.add(mid_name)
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
loaded_keys.add(A_name)
loaded_keys.add(B_name)
######## loha
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
hada_w2_b_name = "{}.hada_w2_b".format(x)
hada_t1_name = "{}.hada_t1".format(x)
hada_t2_name = "{}.hada_t2".format(x)
if hada_w1_a_name in lora.keys():
hada_t1 = None
hada_t2 = None
if hada_t1_name in lora.keys():
hada_t1 = lora[hada_t1_name]
hada_t2 = lora[hada_t2_name]
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
######## lokr
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
for x in lora.keys():
if x not in loaded_keys:
print("lora key not loaded", x)
return patch_dict
def model_lora_keys_clip(model, key_map={}):
sdk = model.state_dict().keys()
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
clip_l_present = False
for b in range(32):
for c in LORA_CLIP_MAP:
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
key_map[lora_key] = k
clip_l_present = True
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
if clip_l_present:
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
key_map[lora_key] = k
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
else:
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
key_map[lora_key] = k
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
return key_map
def model_lora_keys_unet(model, key_map={}):
sdk = model.state_dict().keys()
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = k
diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
for k in diffusers_keys:
if k.endswith(".weight"):
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
key_lora = k[:-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = unet_key
diffusers_lora_prefix = ["", "unet."]
for p in diffusers_lora_prefix:
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
if diffusers_lora_key.endswith(".to_out.0"):
diffusers_lora_key = diffusers_lora_key[:-2]
key_map[diffusers_lora_key] = unet_key
return key_map
def set_attr(obj, attr, value):
attrs = attr.split(".")
for name in attrs[:-1]:
obj = getattr(obj, name)
prev = getattr(obj, attrs[-1])
setattr(obj, attrs[-1], torch.nn.Parameter(value))
del prev
class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0):
def __init__(self, model, load_device, offload_device, size=0, current_device=None):
self.size = size
self.model = model
self.patches = {}
@ -253,6 +63,10 @@ class ModelPatcher:
self.model_size()
self.load_device = load_device
self.offload_device = offload_device
if current_device is None:
self.current_device = self.offload_device
else:
self.current_device = current_device
def model_size(self):
if self.size > 0:
@ -267,7 +81,7 @@ class ModelPatcher:
return size
def clone(self):
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size)
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
@ -276,6 +90,11 @@ class ModelPatcher:
n.model_keys = self.model_keys
return n
def is_clone(self, other):
if hasattr(other, 'model') and self.model is other.model:
return True
return False
def set_model_sampler_cfg_function(self, sampler_cfg_function):
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
@ -388,8 +207,13 @@ class ModelPatcher:
else:
temp_weight = weight.to(torch.float32, copy=True)
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
set_attr(self.model, key, out_weight)
comfy.utils.set_attr(self.model, key, out_weight)
del temp_weight
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
return self.model
def calculate_weight(self, patches, weight, key):
@ -482,18 +306,23 @@ class ModelPatcher:
return weight
def unpatch_model(self):
def unpatch_model(self, device_to=None):
keys = list(self.backup.keys())
for k in keys:
set_attr(self.model, k, self.backup[k])
comfy.utils.set_attr(self.model, k, self.backup[k])
self.backup = {}
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
key_map = model_lora_keys_unet(model.model)
key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
loaded = load_lora(lora, key_map)
key_map = comfy.lora.model_lora_keys_unet(model.model)
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
loaded = comfy.lora.load_lora(lora, key_map)
new_modelpatcher = model.clone()
k = new_modelpatcher.add_patches(loaded, strength_model)
new_clip = clip.clone()
@ -518,12 +347,12 @@ class CLIP:
load_device = model_management.text_encoder_device()
offload_device = model_management.text_encoder_offload_device()
params['device'] = load_device
self.cond_stage_model = clip(**(params))
#TODO: make sure this doesn't have a quality loss before enabling.
# if model_management.should_use_fp16(load_device):
# self.cond_stage_model.half()
if model_management.should_use_fp16(load_device, prioritize_performance=False):
params['dtype'] = torch.float16
else:
params['dtype'] = torch.float32
self.cond_stage_model = self.cond_stage_model.to()
self.cond_stage_model = clip(**(params))
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
@ -537,9 +366,6 @@ class CLIP:
n.layer_idx = self.layer_idx
return n
def load_from_state_dict(self, sd):
self.cond_stage_model.load_sd(sd)
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
return self.patcher.add_patches(patches, strength_patch, strength_model)
@ -555,7 +381,7 @@ class CLIP:
else:
self.cond_stage_model.reset_clip_layer()
model_management.load_model_gpu(self.patcher)
self.load_model()
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
if return_pooled:
return cond, pooled
@ -571,11 +397,9 @@ class CLIP:
def get_sd(self):
return self.cond_stage_model.state_dict()
def patch_model(self):
self.patcher.patch_model()
def unpatch_model(self):
self.patcher.unpatch_model()
def load_model(self):
model_management.load_model_gpu(self.patcher)
return self.patcher
def get_key_patches(self):
return self.patcher.get_key_patches()
@ -590,7 +414,7 @@ class VAE:
self.first_stage_model = AutoencoderKL(**(config['params']))
self.first_stage_model = self.first_stage_model.eval()
if ckpt_path is not None:
sd = utils.load_torch_file(ckpt_path)
sd = comfy.utils.load_torch_file(ckpt_path)
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
sd = diffusers_convert.convert_vae_state_dict(sd)
self.first_stage_model.load_state_dict(sd, strict=False)
@ -603,38 +427,39 @@ class VAE:
self.first_stage_model.to(self.vae_dtype)
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = utils.ProgressBar(steps)
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = comfy.utils.ProgressBar(steps)
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
output = torch.clamp((
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
/ 3.0) / 2.0, min=0.0, max=1.0)
return output
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = utils.ProgressBar(steps)
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = comfy.utils.ProgressBar(steps)
encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float()
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
samples /= 3.0
return samples
def decode(self, samples_in):
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
try:
memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.7
model_management.free_memory(memory_used, self.device)
free_memory = model_management.get_free_memory(self.device)
batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
@ -650,19 +475,19 @@ class VAE:
return pixel_samples
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
self.first_stage_model = self.first_stage_model.to(self.offload_device)
return output.movedim(1,-1)
def encode(self, pixel_samples):
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1)
try:
memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.7 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
model_management.free_memory(memory_used, self.device)
free_memory = model_management.get_free_memory(self.device)
batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
for x in range(0, pixel_samples.shape[0], batch_number):
@ -677,7 +502,6 @@ class VAE:
return samples
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1)
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
@ -687,344 +511,6 @@ class VAE:
def get_sd(self):
return self.first_stage_model.state_dict()
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
#print(current_batch_size, target_batch_size)
if current_batch_size == 1:
return tensor
per_batch = target_batch_size // batched_number
tensor = tensor[:per_batch]
if per_batch > tensor.shape[0]:
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
current_batch_size = tensor.shape[0]
if current_batch_size == target_batch_size:
return tensor
else:
return torch.cat([tensor] * batched_number, dim=0)
class ControlBase:
def __init__(self, device=None):
self.cond_hint_original = None
self.cond_hint = None
self.strength = 1.0
self.timestep_percent_range = (1.0, 0.0)
self.timestep_range = None
if device is None:
device = model_management.get_torch_device()
self.device = device
self.previous_controlnet = None
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
self.cond_hint_original = cond_hint
self.strength = strength
self.timestep_percent_range = timestep_percent_range
return self
def pre_run(self, model, percent_to_timestep_function):
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
if self.previous_controlnet is not None:
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
def set_previous_controlnet(self, controlnet):
self.previous_controlnet = controlnet
return self
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.timestep_range = None
def get_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
class ControlNet(ControlBase):
def __init__(self, control_model, global_average_pooling=False, device=None):
super().__init__(device)
self.control_model = control_model
self.global_average_pooling = global_average_pooling
def get_control(self, x_noisy, t, cond, batched_number):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return {}
output_dtype = x_noisy.dtype
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
if self.control_model.dtype == torch.float16:
precision_scope = torch.autocast
else:
precision_scope = contextlib.nullcontext
with precision_scope(model_management.get_autocast_device(self.device)):
self.control_model = model_management.load_if_low_vram(self.control_model)
context = torch.cat(cond['c_crossattn'], 1)
y = cond.get('c_adm', None)
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
self.control_model = model_management.unload_if_low_vram(self.control_model)
out = {'middle':[], 'output': []}
autocast_enabled = torch.is_autocast_enabled()
for i in range(len(control)):
if i == (len(control) - 1):
key = 'middle'
index = 0
else:
key = 'output'
index = i
x = control[i]
if self.global_average_pooling:
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
x *= self.strength
if x.dtype != output_dtype and not autocast_enabled:
x = x.to(output_dtype)
if control_prev is not None and key in control_prev:
prev = control_prev[key][index]
if prev is not None:
x += prev
out[key].append(x)
if control_prev is not None and 'input' in control_prev:
out['input'] = control_prev['input']
return out
def copy(self):
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model)
return out
def load_controlnet(ckpt_path, model=None):
controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
controlnet_config = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
use_fp16 = model_management.should_use_fp16()
controlnet_config = model_detection.model_config_from_diffusers_unet(controlnet_data, use_fp16).unet_config
diffusers_keys = utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_down_blocks.{}{}".format(count, s)
k_out = "zero_convs.{}.0{}".format(count, s)
if k_in not in controlnet_data:
loop = False
break
diffusers_keys[k_in] = k_out
count += 1
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
if count == 0:
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
else:
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
k_out = "input_hint_block.{}{}".format(count * 2, s)
if k_in not in controlnet_data:
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
loop = False
diffusers_keys[k_in] = k_out
count += 1
new_sd = {}
for k in diffusers_keys:
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
controlnet_data = new_sd
pth_key = 'control_model.zero_convs.0.0.weight'
pth = False
key = 'zero_convs.0.0.weight'
if pth_key in controlnet_data:
pth = True
key = pth_key
prefix = "control_model."
elif key in controlnet_data:
prefix = ""
else:
net = load_t2i_adapter(controlnet_data)
if net is None:
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
return net
if controlnet_config is None:
use_fp16 = model_management.should_use_fp16()
controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
control_model = cldm.ControlNet(**controlnet_config)
if pth:
if 'difference' in controlnet_data:
if model is not None:
m = model.patch_model()
model_sd = m.state_dict()
for x in controlnet_data:
c_m = "control_model."
if x.startswith(c_m):
sd_key = "diffusion_model.{}".format(x[len(c_m):])
if sd_key in model_sd:
cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
model.unpatch_model()
else:
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.control_model = control_model
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
print(missing, unexpected)
if use_fp16:
control_model = control_model.half()
global_average_pooling = False
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
global_average_pooling = True
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
return control
class T2IAdapter(ControlBase):
def __init__(self, t2i_model, channels_in, device=None):
super().__init__(device)
self.t2i_model = t2i_model
self.channels_in = channels_in
self.control_input = None
def get_control(self, x_noisy, t, cond, batched_number):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return {}
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.control_input = None
self.cond_hint = None
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
if self.control_input is None:
self.t2i_model.to(self.device)
self.control_input = self.t2i_model(self.cond_hint)
self.t2i_model.cpu()
output_dtype = x_noisy.dtype
out = {'input':[]}
autocast_enabled = torch.is_autocast_enabled()
for i in range(len(self.control_input)):
key = 'input'
x = self.control_input[i] * self.strength
if x.dtype != output_dtype and not autocast_enabled:
x = x.to(output_dtype)
if control_prev is not None and key in control_prev:
index = len(control_prev[key]) - i * 3 - 3
prev = control_prev[key][index]
if prev is not None:
x += prev
out[key].insert(0, None)
out[key].insert(0, None)
out[key].insert(0, x)
if control_prev is not None and 'input' in control_prev:
for i in range(len(out['input'])):
if out['input'][i] is None:
out['input'][i] = control_prev['input'][i]
if control_prev is not None and 'middle' in control_prev:
out['middle'] = control_prev['middle']
if control_prev is not None and 'output' in control_prev:
out['output'] = control_prev['output']
return out
def copy(self):
c = T2IAdapter(self.t2i_model, self.channels_in)
self.copy_to(c)
return c
def load_t2i_adapter(t2i_data):
keys = t2i_data.keys()
if 'adapter' in keys:
t2i_data = t2i_data['adapter']
keys = t2i_data.keys()
if "body.0.in_conv.weight" in keys:
cin = t2i_data['body.0.in_conv.weight'].shape[1]
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
elif 'conv_in.weight' in keys:
cin = t2i_data['conv_in.weight'].shape[1]
channel = t2i_data['conv_in.weight'].shape[0]
ksize = t2i_data['body.0.block2.weight'].shape[2]
use_conv = False
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
if len(down_opts) > 0:
use_conv = True
model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
else:
return None
model_ad.load_state_dict(t2i_data)
return T2IAdapter(model_ad, cin // 64)
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model
@ -1034,10 +520,10 @@ class StyleModel:
def load_style_model(ckpt_path):
model_data = utils.load_torch_file(ckpt_path, safe_load=True)
model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
keys = model_data.keys()
if "style_embedding" in keys:
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
else:
raise Exception("invalid style model {}".format(ckpt_path))
model.load_state_dict(model_data)
@ -1047,14 +533,14 @@ def load_style_model(ckpt_path):
def load_clip(ckpt_paths, embedding_directory=None):
clip_data = []
for p in ckpt_paths:
clip_data.append(utils.load_torch_file(p, safe_load=True))
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
class EmptyClass:
pass
for i in range(len(clip_data)):
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)
clip_data[i] = comfy.utils.transformers_convert(clip_data[i], "", "text_model.", 32)
clip_target = EmptyClass()
clip_target.params = {}
@ -1083,11 +569,11 @@ def load_clip(ckpt_paths, embedding_directory=None):
return clip
def load_gligen(ckpt_path):
data = utils.load_torch_file(ckpt_path, safe_load=True)
data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
model = gligen.load_gligen(data)
if model_management.should_use_fp16():
model = model.half()
return model
return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
#TODO: this function is a mess and should be removed eventually
@ -1123,7 +609,7 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
pass
if state_dict is None:
state_dict = utils.load_torch_file(ckpt_path)
state_dict = comfy.utils.load_torch_file(ckpt_path)
class EmptyClass:
pass
@ -1169,15 +655,8 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
def calculate_parameters(sd, prefix):
params = 0
for k in sd.keys():
if k.startswith(prefix):
params += sd[k].nelement()
return params
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
sd = utils.load_torch_file(ckpt_path)
sd = comfy.utils.load_torch_file(ckpt_path)
sd_keys = sd.keys()
clip = None
clipvision = None
@ -1185,7 +664,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
model = None
clip_target = None
parameters = calculate_parameters(sd, "model.diffusion_model.")
parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.")
fp16 = model_management.should_use_fp16(model_params=parameters)
class WeightsLoader(torch.nn.Module):
@ -1199,8 +678,13 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if output_clipvision:
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
dtype = torch.float32
if fp16:
dtype = torch.float16
inital_load_device = model_management.unet_inital_load_device(parameters, dtype)
offload_device = model_management.unet_offload_device()
model = model_config.get_model(sd, "model.diffusion_model.", device=offload_device)
model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
model.load_model_weights(sd, "model.diffusion_model.")
if output_vae:
@ -1221,12 +705,17 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if len(left_over) > 0:
print("left over keys:", left_over)
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae, clipvision)
model_patcher = ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
if inital_load_device != torch.device("cpu"):
print("loaded straight to GPU")
model_management.load_model_gpu(model_patcher)
return (model_patcher, clip, vae, clipvision)
def load_unet(unet_path): #load unet in diffusers format
sd = utils.load_torch_file(unet_path)
parameters = calculate_parameters(sd, "")
sd = comfy.utils.load_torch_file(unet_path)
parameters = comfy.utils.calculate_parameters(sd)
fp16 = model_management.should_use_fp16(model_params=parameters)
model_config = model_detection.model_config_from_diffusers_unet(sd, fp16)
@ -1234,7 +723,7 @@ def load_unet(unet_path): #load unet in diffusers format
print("ERROR UNSUPPORTED UNET", unet_path)
return None
diffusers_keys = utils.unet_to_diffusers(model_config.unet_config)
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
new_sd = {}
for k in diffusers_keys:
@ -1249,14 +738,6 @@ def load_unet(unet_path): #load unet in diffusers format
return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
def save_checkpoint(output_path, model, clip, vae, metadata=None):
try:
model.patch_model()
clip.patch_model()
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
utils.save_torch_file(sd, output_path, metadata=metadata)
model.unpatch_model()
clip.unpatch_model()
except Exception as e:
model.unpatch_model()
clip.unpatch_model()
raise e
model_management.load_models_gpu([model, clip.load_model()])
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
comfy.utils.save_torch_file(sd, output_path, metadata=metadata)

View File

@ -43,7 +43,7 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
"hidden"
]
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None): # clip-vit-base-patch32
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
self.num_layers = 12
@ -54,17 +54,21 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
config = CLIPTextConfig.from_json_file(textmodel_json_config)
self.num_layers = config.num_hidden_layers
with comfy.ops.use_comfy_ops():
with comfy.ops.use_comfy_ops(device, dtype):
with modeling_utils.no_init_weights():
self.transformer = CLIPTextModel(config)
if dtype is not None:
self.transformer.to(dtype)
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = None
self.empty_tokens = [[49406] + [49407] * 76]
self.text_projection = None
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.layer_norm_hidden_state = True
if layer == "hidden":
assert layer_idx is not None
@ -137,9 +141,9 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if backup_embeds.weight.dtype != torch.float32:
precision_scope = torch.autocast
else:
precision_scope = contextlib.nullcontext
precision_scope = lambda a, b: contextlib.nullcontext(a)
with precision_scope(model_management.get_autocast_device(device)):
with precision_scope(model_management.get_autocast_device(device), torch.float32):
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
self.transformer.set_input_embeddings(backup_embeds)
@ -154,13 +158,17 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
pooled_output = outputs.pooler_output
if self.text_projection is not None:
pooled_output = pooled_output.to(self.text_projection.device) @ self.text_projection
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
return z.float(), pooled_output.float()
def encode(self, tokens):
return self(tokens)
def load_sd(self, sd):
if "text_projection" in sd:
self.text_projection[:] = sd.pop("text_projection")
if "text_projection.weight" in sd:
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
return self.transformer.load_state_dict(sd, strict=False)
def parse_parentheses(string):

View File

@ -3,13 +3,13 @@ import torch
import os
class SD2ClipModel(sd1_clip.SD1ClipModel):
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None):
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
if layer == "penultimate":
layer="hidden"
layer_idx=23
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json")
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path)
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
self.empty_tokens = [[49406] + [49407] + [0] * 75]
def clip_layer(self, layer_idx):

View File

@ -17,7 +17,7 @@
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 1,
"projection_dim": 512,
"projection_dim": 1024,
"torch_dtype": "float32",
"vocab_size": 49408
}

View File

@ -3,23 +3,17 @@ import torch
import os
class SDXLClipG(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
if layer == "penultimate":
layer="hidden"
layer_idx=-2
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path)
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
self.empty_tokens = [[49406] + [49407] + [0] * 75]
self.text_projection = torch.nn.Parameter(torch.empty(1280, 1280))
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.layer_norm_hidden_state = False
def load_sd(self, sd):
if "text_projection" in sd:
self.text_projection[:] = sd.pop("text_projection")
if "text_projection.weight" in sd:
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
return super().load_sd(sd)
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer):
@ -42,11 +36,11 @@ class SDXLTokenizer(sd1_clip.SD1Tokenizer):
return self.clip_g.untokenize(token_weight_pair)
class SDXLClipModel(torch.nn.Module):
def __init__(self, device="cpu"):
def __init__(self, device="cpu", dtype=None):
super().__init__()
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device)
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device, dtype=dtype)
self.clip_l.layer_norm_hidden_state = False
self.clip_g = SDXLClipG(device=device)
self.clip_g = SDXLClipG(device=device, dtype=dtype)
def clip_layer(self, layer_idx):
self.clip_l.clip_layer(layer_idx)
@ -70,9 +64,9 @@ class SDXLClipModel(torch.nn.Module):
return self.clip_l.load_sd(sd)
class SDXLRefinerClipModel(torch.nn.Module):
def __init__(self, device="cpu"):
def __init__(self, device="cpu", dtype=None):
super().__init__()
self.clip_g = SDXLClipG(device=device)
self.clip_g = SDXLClipG(device=device, dtype=dtype)
def clip_layer(self, layer_idx):
self.clip_g.clip_layer(layer_idx)

View File

@ -101,17 +101,30 @@ class ResnetBlock(nn.Module):
class Adapter(nn.Module):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, xl=True):
super(Adapter, self).__init__()
self.unshuffle = nn.PixelUnshuffle(8)
self.unshuffle_amount = 8
resblock_no_downsample = []
resblock_downsample = [3, 2, 1]
self.xl = xl
if self.xl:
self.unshuffle_amount = 16
resblock_no_downsample = [1]
resblock_downsample = [2]
self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
for i in range(len(channels)):
for j in range(nums_rb):
if (i != 0) and (j == 0):
if (i in resblock_downsample) and (j == 0):
self.body.append(
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
elif (i in resblock_no_downsample) and (j == 0):
self.body.append(
ResnetBlock(channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
else:
self.body.append(
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
@ -128,6 +141,16 @@ class Adapter(nn.Module):
for j in range(self.nums_rb):
idx = i * self.nums_rb + j
x = self.body[idx](x)
if self.xl:
features.append(None)
if i == 0:
features.append(None)
features.append(None)
if i == 2:
features.append(None)
else:
features.append(None)
features.append(None)
features.append(x)
return features
@ -241,10 +264,14 @@ class extractor(nn.Module):
class Adapter_light(nn.Module):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
super(Adapter_light, self).__init__()
self.unshuffle = nn.PixelUnshuffle(8)
self.unshuffle_amount = 8
self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
self.xl = False
for i in range(len(channels)):
if i == 0:
self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False))
@ -259,6 +286,8 @@ class Adapter_light(nn.Module):
features = []
for i in range(len(self.channels)):
x = self.body[i](x)
features.append(None)
features.append(None)
features.append(x)
return features

View File

@ -32,6 +32,13 @@ def save_torch_file(sd, ckpt, metadata=None):
else:
safetensors.torch.save_file(sd, ckpt)
def calculate_parameters(sd, prefix=""):
params = 0
for k in sd.keys():
if k.startswith(prefix):
params += sd[k].nelement()
return params
def transformers_convert(sd, prefix_from, prefix_to, number):
keys_to_replace = {
"{}positional_embedding": "{}embeddings.position_embedding.weight",
@ -230,6 +237,20 @@ def safetensors_header(safetensors_path, max_size=100*1024*1024):
return None
return f.read(length_of_header)
def set_attr(obj, attr, value):
attrs = attr.split(".")
for name in attrs[:-1]:
obj = getattr(obj, name)
prev = getattr(obj, attrs[-1])
setattr(obj, attrs[-1], torch.nn.Parameter(value))
del prev
def get_attr(obj, attr):
attrs = attr.split(".")
for name in attrs:
obj = getattr(obj, name)
return obj
def bislerp(samples, width, height):
def slerp(b1, b2, r):
'''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''

View File

@ -1,15 +1,19 @@
import numpy as np
from scipy.ndimage import grey_dilation
import torch
from nodes import MAX_RESOLUTION
def composite(destination, source, x, y, mask = None, multiplier = 8):
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
if resize_source:
source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))
left, top = (x // multiplier, y // multiplier)
right, bottom = (left + source.shape[3], top + source.shape[2],)
if mask is None:
mask = torch.ones_like(source)
else:
@ -40,6 +44,7 @@ class LatentCompositeMasked:
"source": ("LATENT",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"resize_source": ("BOOLEAN", {"default": False}),
},
"optional": {
"mask": ("MASK",),
@ -50,11 +55,11 @@ class LatentCompositeMasked:
CATEGORY = "latent"
def composite(self, destination, source, x, y, mask = None):
def composite(self, destination, source, x, y, resize_source, mask = None):
output = destination.copy()
destination = destination["samples"].clone()
source = source["samples"]
output["samples"] = composite(destination, source, x, y, mask, 8)
output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
return (output,)
class ImageCompositeMasked:
@ -66,6 +71,7 @@ class ImageCompositeMasked:
"source": ("IMAGE",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"resize_source": ("BOOLEAN", {"default": False}),
},
"optional": {
"mask": ("MASK",),
@ -76,9 +82,9 @@ class ImageCompositeMasked:
CATEGORY = "image"
def composite(self, destination, source, x, y, mask = None):
def composite(self, destination, source, x, y, resize_source, mask = None):
destination = destination.clone().movedim(-1, 1)
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1).movedim(1, -1)
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
return (output,)
class MaskToImage:
@ -272,6 +278,35 @@ class FeatherMask:
output[-y, :] *= feather_rate
return (output,)
class GrowMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
"expand": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"tapered_corners": ("BOOLEAN", {"default": True}),
},
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "expand_mask"
def expand_mask(self, mask, expand, tapered_corners):
c = 0 if tapered_corners else 1
kernel = np.array([[c, 1, c],
[1, 1, 1],
[c, 1, c]])
output = mask.numpy().copy()
while expand > 0:
output = grey_dilation(output, footprint=kernel)
expand -= 1
output = torch.from_numpy(output)
return (output,)
@ -285,6 +320,7 @@ NODE_CLASS_MAPPINGS = {
"CropMask": CropMask,
"MaskComposite": MaskComposite,
"FeatherMask": FeatherMask,
"GrowMask": GrowMask,
}
NODE_DISPLAY_NAME_MAPPINGS = {

View File

@ -2,6 +2,7 @@ import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import math
import comfy.utils
@ -209,9 +210,36 @@ class Sharpen:
return (result,)
class ImageScaleToTotalPixels:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
crop_methods = ["disabled", "center"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
"megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, image, upscale_method, megapixels):
samples = image.movedim(-1,1)
total = int(megapixels * 1024 * 1024)
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
s = s.movedim(1,-1)
return (s,)
NODE_CLASS_MAPPINGS = {
"ImageBlend": Blend,
"ImageBlur": Blur,
"ImageQuantize": Quantize,
"ImageSharpen": Sharpen,
"ImageScaleToTotalPixels": ImageScaleToTotalPixels,
}

View File

@ -354,6 +354,7 @@ class PromptExecutor:
d = self.outputs_ui.pop(x)
del d
comfy.model_management.cleanup_models()
if self.server.client_id is not None:
self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id)
executed = set()

View File

@ -22,6 +22,7 @@ import comfy.samplers
import comfy.sample
import comfy.sd
import comfy.utils
import comfy.controlnet
import comfy.clip_vision
@ -569,7 +570,7 @@ class ControlNetLoader:
def load_controlnet(self, control_net_name):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = comfy.sd.load_controlnet(controlnet_path)
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
return (controlnet,)
class DiffControlNetLoader:
@ -585,7 +586,7 @@ class DiffControlNetLoader:
def load_controlnet(self, model, control_net_name):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = comfy.sd.load_controlnet(controlnet_path, model)
controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
return (controlnet,)
@ -1306,7 +1307,7 @@ class LoadImage:
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(files), )},
{"image": (sorted(files), {"image_upload": True})},
}
CATEGORY = "image"
@ -1349,7 +1350,7 @@ class LoadImageMask:
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{"image": (sorted(files), ),
{"image": (sorted(files), {"image_upload": True}),
"channel": (s._color_channels, ), }
}
@ -1465,6 +1466,28 @@ class ImageBatch:
s = torch.cat((image1, image2), dim=0)
return (s,)
class EmptyImage:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate"
CATEGORY = "image"
def generate(self, width, height, batch_size=1, color=0):
r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
return (torch.cat((r, g, b), dim=-1), )
class ImagePadForOutpaint:
@classmethod
@ -1551,6 +1574,7 @@ NODE_CLASS_MAPPINGS = {
"ImageInvert": ImageInvert,
"ImageBatch": ImageBatch,
"ImagePadForOutpaint": ImagePadForOutpaint,
"EmptyImage": EmptyImage,
"ConditioningAverage ": ConditioningAverage ,
"ConditioningCombine": ConditioningCombine,
"ConditioningConcat": ConditioningConcat,
@ -1650,6 +1674,8 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"VAEEncodeTiled": "VAE Encode (Tiled)",
}
EXTENSION_WEB_DIRS = {}
def load_custom_node(module_path, ignore=set()):
module_name = os.path.basename(module_path)
if os.path.isfile(module_path):
@ -1658,11 +1684,20 @@ def load_custom_node(module_path, ignore=set()):
try:
if os.path.isfile(module_path):
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
module_dir = os.path.split(module_path)[0]
else:
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
module_dir = module_path
module = importlib.util.module_from_spec(module_spec)
sys.modules[module_name] = module
module_spec.loader.exec_module(module)
if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
if os.path.isdir(web_dir):
EXTENSION_WEB_DIRS[module_name] = web_dir
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
for name in module.NODE_CLASS_MAPPINGS:
if name not in ignore:

View File

@ -75,6 +75,8 @@
"#!wget -c https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors -P ./models/checkpoints/\n",
"#!wget -c https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0.safetensors -P ./models/checkpoints/\n",
"\n",
"# SDXL ReVision\n",
"#!wget -c https://huggingface.co/comfyanonymous/clip_vision_g/resolve/main/clip_vision_g.safetensors -P ./models/clip_vision/\n",
"\n",
"# SD1.5\n",
"!wget -c https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -P ./models/checkpoints/\n",
@ -142,6 +144,11 @@
"#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15s2_lineart_anime_fp16.safetensors -P ./models/controlnet/\n",
"#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11u_sd15_tile_fp16.safetensors -P ./models/controlnet/\n",
"\n",
"# ControlNet SDXL\n",
"#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-canny-rank256.safetensors -P ./models/controlnet/\n",
"#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-depth-rank256.safetensors -P ./models/controlnet/\n",
"#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-recolor-rank256.safetensors -P ./models/controlnet/\n",
"#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-sketch-rank256.safetensors -P ./models/controlnet/\n",
"\n",
"# Controlnet Preprocessor nodes by Fannovel16\n",
"#!cd custom_nodes && git clone https://github.com/Fannovel16/comfy_controlnet_preprocessors; cd comfy_controlnet_preprocessors && python install.py\n",

View File

@ -5,6 +5,7 @@ import nodes
import folder_paths
import execution
import uuid
import urllib
import json
import glob
import struct
@ -67,6 +68,8 @@ class PromptServer():
mimetypes.init()
mimetypes.types_map['.js'] = 'application/javascript; charset=utf-8'
self.supports = ["custom_nodes_from_web"]
self.prompt_queue = None
self.loop = loop
self.messages = asyncio.Queue()
@ -123,8 +126,17 @@ class PromptServer():
@routes.get("/extensions")
async def get_extensions(request):
files = glob.glob(os.path.join(self.web_root, 'extensions/**/*.js'), recursive=True)
return web.json_response(list(map(lambda f: "/" + os.path.relpath(f, self.web_root).replace("\\", "/"), files)))
files = glob.glob(os.path.join(
self.web_root, 'extensions/**/*.js'), recursive=True)
extensions = list(map(lambda f: "/" + os.path.relpath(f, self.web_root).replace("\\", "/"), files))
for name, dir in nodes.EXTENSION_WEB_DIRS.items():
files = glob.glob(os.path.join(dir, '**/*.js'), recursive=True)
extensions.extend(list(map(lambda f: "/extensions/" + urllib.parse.quote(
name) + "/" + os.path.relpath(f, dir).replace("\\", "/"), files)))
return web.json_response(extensions)
def get_dir_by_type(dir_type):
if dir_type is None:
@ -492,6 +504,12 @@ class PromptServer():
def add_routes(self):
self.app.add_routes(self.routes)
for name, dir in nodes.EXTENSION_WEB_DIRS.items():
self.app.add_routes([
web.static('/extensions/' + urllib.parse.quote(name), dir, follow_symlinks=True),
])
self.app.add_routes([
web.static('/', self.web_root, follow_symlinks=True),
])

View File

@ -5,7 +5,7 @@ import { app } from "../../scripts/app.js";
app.registerExtension({
name: "Comfy.UploadImage",
async beforeRegisterNodeDef(nodeType, nodeData, app) {
if (nodeData.name === "LoadImage" || nodeData.name === "LoadImageMask") {
if (nodeData?.input?.required?.image?.[1]?.image_upload === true) {
nodeData.input.required.upload = ["IMAGEUPLOAD"];
}
},

View File

@ -6,6 +6,7 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
<link rel="stylesheet" type="text/css" href="./lib/litegraph.css" />
<link rel="stylesheet" type="text/css" href="./style.css" />
<link rel="stylesheet" type="text/css" href="./user.css" />
<script type="text/javascript" src="./lib/litegraph.core.js"></script>
<script type="text/javascript" src="./lib/litegraph.extensions.js" defer></script>
<script type="module">

View File

@ -284,6 +284,11 @@ export class ComfyApp {
}
}
options.push({
content: "Bypass",
callback: (obj) => { if (this.mode === 4) this.mode = 0; else this.mode = 4; this.graph.change(); }
});
// prevent conflict of clipspace content
if(!ComfyApp.clipspace_return_node) {
options.push({
@ -1021,18 +1026,21 @@ export class ComfyApp {
}
/**
* Loads all extensions from the API into the window
* Loads all extensions from the API into the window in parallel
*/
async #loadExtensions() {
const extensions = await api.getExtensions();
this.logging.addEntry("Comfy.App", "debug", { Extensions: extensions });
for (const ext of extensions) {
try {
await import(api.apiURL(ext));
} catch (error) {
console.error("Error loading extension", ext, error);
}
}
const extensions = await api.getExtensions();
this.logging.addEntry("Comfy.App", "debug", { Extensions: extensions });
const extensionPromises = extensions.map(async ext => {
try {
await import(api.apiURL(ext));
} catch (error) {
console.error("Error loading extension", ext, error);
}
});
await Promise.all(extensionPromises);
}
/**

1
web/user.css Normal file
View File

@ -0,0 +1 @@
/* Put custom styles here */