mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-10 21:42:37 +08:00
Merge branch 'master' of https://github.com/comfyanonymous/ComfyUI
This commit is contained in:
commit
fbc2d63b28
@ -31,7 +31,7 @@ jobs:
|
||||
echo 'import site' >> ./python311._pth
|
||||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
|
||||
./python.exe get-pip.py
|
||||
python -m pip wheel torch torchvision torchaudio aiohttp==3.8.4 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
|
||||
python -m pip wheel torch torchvision torchaudio aiohttp==3.8.5 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
|
||||
ls ../temp_wheel_dir
|
||||
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
|
||||
sed -i '1i../ComfyUI' ./python311._pth
|
||||
|
||||
@ -48,6 +48,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
|
||||
| Ctrl + O | Load workflow |
|
||||
| Ctrl + A | Select all nodes |
|
||||
| Ctrl + M | Mute/unmute selected nodes |
|
||||
| Ctrl + B | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
|
||||
| Delete/Backspace | Delete selected nodes |
|
||||
| Ctrl + Delete/Backspace | Delete the current graph |
|
||||
| Space | Move the canvas around when held and moving the cursor |
|
||||
|
||||
@ -6,8 +6,6 @@ import torch as th
|
||||
import torch.nn as nn
|
||||
|
||||
from ..ldm.modules.diffusionmodules.util import (
|
||||
conv_nd,
|
||||
linear,
|
||||
zero_module,
|
||||
timestep_embedding,
|
||||
)
|
||||
@ -15,7 +13,7 @@ from ..ldm.modules.diffusionmodules.util import (
|
||||
from ..ldm.modules.attention import SpatialTransformer
|
||||
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
||||
from ..ldm.util import exists
|
||||
|
||||
import comfy.ops
|
||||
|
||||
class ControlledUnetModel(UNetModel):
|
||||
#implemented in the ldm unet
|
||||
@ -55,6 +53,8 @@ class ControlNet(nn.Module):
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
device=None,
|
||||
operations=comfy.ops,
|
||||
):
|
||||
super().__init__()
|
||||
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
||||
@ -117,9 +117,9 @@ class ControlNet(nn.Module):
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
@ -132,9 +132,9 @@ class ControlNet(nn.Module):
|
||||
assert adm_in_channels is not None
|
||||
self.label_emb = nn.Sequential(
|
||||
nn.Sequential(
|
||||
linear(adm_in_channels, time_embed_dim),
|
||||
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
)
|
||||
)
|
||||
else:
|
||||
@ -143,28 +143,28 @@ class ControlNet(nn.Module):
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
||||
)
|
||||
]
|
||||
)
|
||||
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
|
||||
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations)])
|
||||
|
||||
self.input_hint_block = TimestepEmbedSequential(
|
||||
conv_nd(dims, hint_channels, 16, 3, padding=1),
|
||||
operations.conv_nd(dims, hint_channels, 16, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 16, 16, 3, padding=1),
|
||||
operations.conv_nd(dims, 16, 16, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
||||
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 32, 32, 3, padding=1),
|
||||
operations.conv_nd(dims, 32, 32, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
||||
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 96, 96, 3, padding=1),
|
||||
operations.conv_nd(dims, 96, 96, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
||||
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
||||
zero_module(operations.conv_nd(dims, 256, model_channels, 3, padding=1))
|
||||
)
|
||||
|
||||
self._feature_size = model_channels
|
||||
@ -182,6 +182,7 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
operations=operations
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
@ -204,11 +205,11 @@ class ControlNet(nn.Module):
|
||||
SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
use_checkpoint=use_checkpoint, operations=operations
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self.zero_convs.append(self.make_zero_conv(ch))
|
||||
self.zero_convs.append(self.make_zero_conv(ch, operations=operations))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
@ -224,16 +225,17 @@ class ControlNet(nn.Module):
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
operations=operations
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, operations=operations
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
self.zero_convs.append(self.make_zero_conv(ch))
|
||||
self.zero_convs.append(self.make_zero_conv(ch, operations=operations))
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
@ -253,11 +255,12 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
operations=operations
|
||||
),
|
||||
SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
use_checkpoint=use_checkpoint, operations=operations
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
@ -266,16 +269,17 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
operations=operations
|
||||
),
|
||||
)
|
||||
self.middle_block_out = self.make_zero_conv(ch)
|
||||
self.middle_block_out = self.make_zero_conv(ch, operations=operations)
|
||||
self._feature_size += ch
|
||||
|
||||
def make_zero_conv(self, channels):
|
||||
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
|
||||
def make_zero_conv(self, channels, operations=None):
|
||||
return TimestepEmbedSequential(zero_module(operations.conv_nd(self.dims, channels, channels, 1, padding=0)))
|
||||
|
||||
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
guided_hint = self.input_hint_block(hint, emb, context)
|
||||
@ -283,9 +287,6 @@ class ControlNet(nn.Module):
|
||||
outs = []
|
||||
|
||||
hs = []
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
@ -58,6 +58,8 @@ fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in
|
||||
|
||||
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
||||
|
||||
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
|
||||
|
||||
class LatentPreviewMethod(enum.Enum):
|
||||
NoPreviews = "none"
|
||||
Auto = "auto"
|
||||
@ -82,6 +84,9 @@ vram_group.add_argument("--novram", action="store_true", help="When lowvram isn'
|
||||
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
||||
|
||||
|
||||
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
||||
|
||||
|
||||
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
||||
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
||||
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
||||
|
||||
@ -25,6 +25,7 @@ class ClipVisionModel():
|
||||
|
||||
def encode_image(self, image):
|
||||
img = torch.clip((255. * image), 0, 255).round().int()
|
||||
img = list(map(lambda a: a, img))
|
||||
inputs = self.processor(images=img, return_tensors="pt")
|
||||
outputs = self.model(**inputs)
|
||||
return outputs
|
||||
@ -49,18 +50,22 @@ def convert_to_transformers(sd, prefix):
|
||||
if "{}proj".format(prefix) in sd_k:
|
||||
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
||||
|
||||
sd = transformers_convert(sd, prefix, "vision_model.", 32)
|
||||
sd = transformers_convert(sd, prefix, "vision_model.", 48)
|
||||
return sd
|
||||
|
||||
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
if convert_keys:
|
||||
sd = convert_to_transformers(sd, prefix)
|
||||
if "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
||||
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
||||
else:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
clip = ClipVisionModel(json_config)
|
||||
m, u = clip.load_sd(sd)
|
||||
if len(m) > 0:
|
||||
print("missing clip vision:", m)
|
||||
u = set(u)
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
@ -71,4 +76,7 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
|
||||
def load(ckpt_path):
|
||||
sd = load_torch_file(ckpt_path)
|
||||
return load_clipvision_from_sd(sd)
|
||||
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
|
||||
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
|
||||
else:
|
||||
return load_clipvision_from_sd(sd)
|
||||
|
||||
18
comfy/clip_vision_config_g.json
Normal file
18
comfy/clip_vision_config_g.json
Normal file
@ -0,0 +1,18 @@
|
||||
{
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1664,
|
||||
"image_size": 224,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 8192,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 48,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 1280,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
483
comfy/controlnet.py
Normal file
483
comfy/controlnet.py
Normal file
@ -0,0 +1,483 @@
|
||||
import torch
|
||||
import math
|
||||
import comfy.utils
|
||||
import comfy.sd
|
||||
import comfy.model_management
|
||||
import comfy.model_detection
|
||||
|
||||
import comfy.cldm.cldm
|
||||
import comfy.t2i_adapter.adapter
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
current_batch_size = tensor.shape[0]
|
||||
#print(current_batch_size, target_batch_size)
|
||||
if current_batch_size == 1:
|
||||
return tensor
|
||||
|
||||
per_batch = target_batch_size // batched_number
|
||||
tensor = tensor[:per_batch]
|
||||
|
||||
if per_batch > tensor.shape[0]:
|
||||
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
||||
|
||||
current_batch_size = tensor.shape[0]
|
||||
if current_batch_size == target_batch_size:
|
||||
return tensor
|
||||
else:
|
||||
return torch.cat([tensor] * batched_number, dim=0)
|
||||
|
||||
class ControlBase:
|
||||
def __init__(self, device=None):
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
self.strength = 1.0
|
||||
self.timestep_percent_range = (1.0, 0.0)
|
||||
self.timestep_range = None
|
||||
|
||||
if device is None:
|
||||
device = comfy.model_management.get_torch_device()
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
self.global_average_pooling = False
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
self.timestep_percent_range = timestep_percent_range
|
||||
return self
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def set_previous_controlnet(self, controlnet):
|
||||
self.previous_controlnet = controlnet
|
||||
return self
|
||||
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.timestep_range = None
|
||||
|
||||
def get_models(self):
|
||||
out = []
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_models()
|
||||
return out
|
||||
|
||||
def copy_to(self, c):
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
c.timestep_percent_range = self.timestep_percent_range
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
if self.previous_controlnet is not None:
|
||||
return self.previous_controlnet.inference_memory_requirements(dtype)
|
||||
return 0
|
||||
|
||||
def control_merge(self, control_input, control_output, control_prev, output_dtype):
|
||||
out = {'input':[], 'middle':[], 'output': []}
|
||||
|
||||
if control_input is not None:
|
||||
for i in range(len(control_input)):
|
||||
key = 'input'
|
||||
x = control_input[i]
|
||||
if x is not None:
|
||||
x *= self.strength
|
||||
if x.dtype != output_dtype:
|
||||
x = x.to(output_dtype)
|
||||
out[key].insert(0, x)
|
||||
|
||||
if control_output is not None:
|
||||
for i in range(len(control_output)):
|
||||
if i == (len(control_output) - 1):
|
||||
key = 'middle'
|
||||
index = 0
|
||||
else:
|
||||
key = 'output'
|
||||
index = i
|
||||
x = control_output[i]
|
||||
if x is not None:
|
||||
if self.global_average_pooling:
|
||||
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
||||
|
||||
x *= self.strength
|
||||
if x.dtype != output_dtype:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
out[key].append(x)
|
||||
if control_prev is not None:
|
||||
for x in ['input', 'middle', 'output']:
|
||||
o = out[x]
|
||||
for i in range(len(control_prev[x])):
|
||||
prev_val = control_prev[x][i]
|
||||
if i >= len(o):
|
||||
o.append(prev_val)
|
||||
elif prev_val is not None:
|
||||
if o[i] is None:
|
||||
o[i] = prev_val
|
||||
else:
|
||||
o[i] += prev_val
|
||||
return out
|
||||
|
||||
class ControlNet(ControlBase):
|
||||
def __init__(self, control_model, global_average_pooling=False, device=None):
|
||||
super().__init__(device)
|
||||
self.control_model = control_model
|
||||
self.control_model_wrapped = comfy.sd.ModelPatcher(self.control_model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
|
||||
context = torch.cat(cond['c_crossattn'], 1)
|
||||
y = cond.get('c_adm', None)
|
||||
if y is not None:
|
||||
y = y.to(self.control_model.dtype)
|
||||
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y)
|
||||
return self.control_merge(None, control, control_prev, output_dtype)
|
||||
|
||||
def copy(self):
|
||||
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def get_models(self):
|
||||
out = super().get_models()
|
||||
out.append(self.control_model_wrapped)
|
||||
return out
|
||||
|
||||
class ControlLoraOps:
|
||||
class Linear(torch.nn.Module):
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||
device=None, dtype=None) -> None:
|
||||
factory_kwargs = {'device': device, 'dtype': dtype}
|
||||
super().__init__()
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.weight = None
|
||||
self.up = None
|
||||
self.down = None
|
||||
self.bias = None
|
||||
|
||||
def forward(self, input):
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.linear(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input, self.weight.to(input.device), self.bias)
|
||||
|
||||
class Conv2d(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
bias=True,
|
||||
padding_mode='zeros',
|
||||
device=None,
|
||||
dtype=None
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.dilation = dilation
|
||||
self.transposed = False
|
||||
self.output_padding = 0
|
||||
self.groups = groups
|
||||
self.padding_mode = padding_mode
|
||||
|
||||
self.weight = None
|
||||
self.bias = None
|
||||
self.up = None
|
||||
self.down = None
|
||||
|
||||
|
||||
def forward(self, input):
|
||||
if self.up is not None:
|
||||
return torch.nn.functional.conv2d(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
else:
|
||||
return torch.nn.functional.conv2d(input, self.weight.to(input.device), self.bias, self.stride, self.padding, self.dilation, self.groups)
|
||||
|
||||
def conv_nd(self, dims, *args, **kwargs):
|
||||
if dims == 2:
|
||||
return self.Conv2d(*args, **kwargs)
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
class ControlLora(ControlNet):
|
||||
def __init__(self, control_weights, global_average_pooling=False, device=None):
|
||||
ControlBase.__init__(self, device)
|
||||
self.control_weights = control_weights
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
controlnet_config = model.model_config.unet_config.copy()
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
||||
controlnet_config["operations"] = ControlLoraOps()
|
||||
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
dtype = model.get_dtype()
|
||||
self.control_model.to(dtype)
|
||||
self.control_model.to(comfy.model_management.get_torch_device())
|
||||
diffusion_model = model.diffusion_model
|
||||
sd = diffusion_model.state_dict()
|
||||
cm = self.control_model.state_dict()
|
||||
|
||||
for k in sd:
|
||||
weight = sd[k]
|
||||
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
|
||||
key_split = k.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device.
|
||||
op = comfy.utils.get_attr(diffusion_model, '.'.join(key_split[:-1]))
|
||||
weight = op._hf_hook.weights_map[key_split[-1]]
|
||||
|
||||
try:
|
||||
comfy.utils.set_attr(self.control_model, k, weight)
|
||||
except:
|
||||
pass
|
||||
|
||||
for k in self.control_weights:
|
||||
if k not in {"lora_controlnet"}:
|
||||
comfy.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
||||
|
||||
def copy(self):
|
||||
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def cleanup(self):
|
||||
del self.control_model
|
||||
self.control_model = None
|
||||
super().cleanup()
|
||||
|
||||
def get_models(self):
|
||||
out = ControlBase.get_models(self)
|
||||
return out
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
if "lora_controlnet" in controlnet_data:
|
||||
return ControlLora(controlnet_data)
|
||||
|
||||
controlnet_config = None
|
||||
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
||||
use_fp16 = comfy.model_management.should_use_fp16()
|
||||
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
|
||||
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
||||
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
||||
|
||||
count = 0
|
||||
loop = True
|
||||
while loop:
|
||||
suffix = [".weight", ".bias"]
|
||||
for s in suffix:
|
||||
k_in = "controlnet_down_blocks.{}{}".format(count, s)
|
||||
k_out = "zero_convs.{}.0{}".format(count, s)
|
||||
if k_in not in controlnet_data:
|
||||
loop = False
|
||||
break
|
||||
diffusers_keys[k_in] = k_out
|
||||
count += 1
|
||||
|
||||
count = 0
|
||||
loop = True
|
||||
while loop:
|
||||
suffix = [".weight", ".bias"]
|
||||
for s in suffix:
|
||||
if count == 0:
|
||||
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
|
||||
else:
|
||||
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
|
||||
k_out = "input_hint_block.{}{}".format(count * 2, s)
|
||||
if k_in not in controlnet_data:
|
||||
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
|
||||
loop = False
|
||||
diffusers_keys[k_in] = k_out
|
||||
count += 1
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
if k in controlnet_data:
|
||||
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
||||
|
||||
leftover_keys = controlnet_data.keys()
|
||||
if len(leftover_keys) > 0:
|
||||
print("leftover keys:", leftover_keys)
|
||||
controlnet_data = new_sd
|
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
pth = False
|
||||
key = 'zero_convs.0.0.weight'
|
||||
if pth_key in controlnet_data:
|
||||
pth = True
|
||||
key = pth_key
|
||||
prefix = "control_model."
|
||||
elif key in controlnet_data:
|
||||
prefix = ""
|
||||
else:
|
||||
net = load_t2i_adapter(controlnet_data)
|
||||
if net is None:
|
||||
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
|
||||
return net
|
||||
|
||||
if controlnet_config is None:
|
||||
use_fp16 = comfy.model_management.should_use_fp16()
|
||||
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
||||
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
|
||||
if pth:
|
||||
if 'difference' in controlnet_data:
|
||||
if model is not None:
|
||||
comfy.model_management.load_models_gpu([model])
|
||||
model_sd = model.model_state_dict()
|
||||
for x in controlnet_data:
|
||||
c_m = "control_model."
|
||||
if x.startswith(c_m):
|
||||
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
||||
if sd_key in model_sd:
|
||||
cd = controlnet_data[x]
|
||||
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
||||
else:
|
||||
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
w = WeightsLoader()
|
||||
w.control_model = control_model
|
||||
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
||||
else:
|
||||
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
||||
print(missing, unexpected)
|
||||
|
||||
if use_fp16:
|
||||
control_model = control_model.half()
|
||||
|
||||
global_average_pooling = False
|
||||
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
|
||||
global_average_pooling = True
|
||||
|
||||
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
|
||||
return control
|
||||
|
||||
class T2IAdapter(ControlBase):
|
||||
def __init__(self, t2i_model, channels_in, device=None):
|
||||
super().__init__(device)
|
||||
self.t2i_model = t2i_model
|
||||
self.channels_in = channels_in
|
||||
self.control_input = None
|
||||
|
||||
def scale_image_to(self, width, height):
|
||||
unshuffle_amount = self.t2i_model.unshuffle_amount
|
||||
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
|
||||
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
||||
return width, height
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.control_input = None
|
||||
self.cond_hint = None
|
||||
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
|
||||
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
||||
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
if self.control_input is None:
|
||||
self.t2i_model.to(x_noisy.dtype)
|
||||
self.t2i_model.to(self.device)
|
||||
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
|
||||
self.t2i_model.cpu()
|
||||
|
||||
control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
|
||||
mid = None
|
||||
if self.t2i_model.xl == True:
|
||||
mid = control_input[-1:]
|
||||
control_input = control_input[:-1]
|
||||
return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
|
||||
|
||||
def copy(self):
|
||||
c = T2IAdapter(self.t2i_model, self.channels_in)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def load_t2i_adapter(t2i_data):
|
||||
keys = t2i_data.keys()
|
||||
if 'adapter' in keys:
|
||||
t2i_data = t2i_data['adapter']
|
||||
keys = t2i_data.keys()
|
||||
if "body.0.in_conv.weight" in keys:
|
||||
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
||||
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
elif 'conv_in.weight' in keys:
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
channel = t2i_data['conv_in.weight'].shape[0]
|
||||
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
||||
use_conv = False
|
||||
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
||||
if len(down_opts) > 0:
|
||||
use_conv = True
|
||||
xl = False
|
||||
if cin == 256:
|
||||
xl = True
|
||||
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
||||
else:
|
||||
return None
|
||||
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
||||
if len(missing) > 0:
|
||||
print("t2i missing", missing)
|
||||
|
||||
if len(unexpected) > 0:
|
||||
print("t2i unexpected", unexpected)
|
||||
|
||||
return T2IAdapter(model_ad, model_ad.input_channels)
|
||||
@ -244,30 +244,15 @@ class Gligen(nn.Module):
|
||||
self.position_net = position_net
|
||||
self.key_dim = key_dim
|
||||
self.max_objs = 30
|
||||
self.lowvram = False
|
||||
self.current_device = torch.device("cpu")
|
||||
|
||||
def _set_position(self, boxes, masks, positive_embeddings):
|
||||
if self.lowvram == True:
|
||||
self.position_net.to(boxes.device)
|
||||
|
||||
objs = self.position_net(boxes, masks, positive_embeddings)
|
||||
|
||||
if self.lowvram == True:
|
||||
self.position_net.cpu()
|
||||
def func_lowvram(x, extra_options):
|
||||
key = extra_options["transformer_index"]
|
||||
module = self.module_list[key]
|
||||
module.to(x.device)
|
||||
r = module(x, objs)
|
||||
module.cpu()
|
||||
return r
|
||||
return func_lowvram
|
||||
else:
|
||||
def func(x, extra_options):
|
||||
key = extra_options["transformer_index"]
|
||||
module = self.module_list[key]
|
||||
return module(x, objs)
|
||||
return func
|
||||
def func(x, extra_options):
|
||||
key = extra_options["transformer_index"]
|
||||
module = self.module_list[key]
|
||||
return module(x, objs)
|
||||
return func
|
||||
|
||||
def set_position(self, latent_image_shape, position_params, device):
|
||||
batch, c, h, w = latent_image_shape
|
||||
@ -312,14 +297,6 @@ class Gligen(nn.Module):
|
||||
masks.to(device),
|
||||
conds.to(device))
|
||||
|
||||
def set_lowvram(self, value=True):
|
||||
self.lowvram = value
|
||||
|
||||
def cleanup(self):
|
||||
self.lowvram = False
|
||||
|
||||
def get_models(self):
|
||||
return [self]
|
||||
|
||||
def load_gligen(sd):
|
||||
sd_k = sd.keys()
|
||||
|
||||
@ -649,7 +649,7 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
denoised_1, denoised_2 = None, None
|
||||
h_1, h_2 = None, None
|
||||
h, h_1, h_2 = None, None, None
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
|
||||
@ -10,13 +10,14 @@ from .diffusionmodules.util import checkpoint
|
||||
from .sub_quadratic_attention import efficient_dot_product_attention
|
||||
|
||||
from comfy import model_management
|
||||
import comfy.ops
|
||||
|
||||
if model_management.xformers_enabled():
|
||||
import xformers
|
||||
import xformers.ops
|
||||
|
||||
from comfy.cli_args import args
|
||||
import comfy.ops
|
||||
|
||||
# CrossAttn precision handling
|
||||
if args.dont_upcast_attention:
|
||||
print("disabling upcasting of attention")
|
||||
@ -52,9 +53,9 @@ def init_(tensor):
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, dtype=None, device=None):
|
||||
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
self.proj = comfy.ops.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
|
||||
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
@ -62,19 +63,19 @@ class GEGLU(nn.Module):
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
comfy.ops.Linear(dim, inner_dim, dtype=dtype, device=device),
|
||||
operations.Linear(dim, inner_dim, dtype=dtype, device=device),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device)
|
||||
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
comfy.ops.Linear(inner_dim, dim_out, dtype=dtype, device=device)
|
||||
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@ -148,7 +149,7 @@ class SpatialSelfAttention(nn.Module):
|
||||
|
||||
|
||||
class CrossAttentionBirchSan(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
@ -156,12 +157,12 @@ class CrossAttentionBirchSan(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
@ -245,7 +246,7 @@ class CrossAttentionBirchSan(nn.Module):
|
||||
|
||||
|
||||
class CrossAttentionDoggettx(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
@ -253,12 +254,12 @@ class CrossAttentionDoggettx(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
@ -343,7 +344,7 @@ class CrossAttentionDoggettx(nn.Module):
|
||||
return self.to_out(r2)
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
@ -351,12 +352,12 @@ class CrossAttention(nn.Module):
|
||||
self.scale = dim_head ** -0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
@ -399,7 +400,7 @@ class CrossAttention(nn.Module):
|
||||
|
||||
class MemoryEfficientCrossAttention(nn.Module):
|
||||
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
||||
f"{heads} heads.")
|
||||
@ -409,11 +410,11 @@ class MemoryEfficientCrossAttention(nn.Module):
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
@ -450,7 +451,7 @@ class MemoryEfficientCrossAttention(nn.Module):
|
||||
return self.to_out(out)
|
||||
|
||||
class CrossAttentionPytorch(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
@ -458,11 +459,11 @@ class CrossAttentionPytorch(nn.Module):
|
||||
self.heads = heads
|
||||
self.dim_head = dim_head
|
||||
|
||||
self.to_q = comfy.ops.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = comfy.ops.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
self.to_out = nn.Sequential(comfy.ops.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
||||
self.attention_op: Optional[Any] = None
|
||||
|
||||
def forward(self, x, context=None, value=None, mask=None):
|
||||
@ -508,14 +509,14 @@ else:
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
||||
disable_self_attn=False, dtype=None, device=None):
|
||||
disable_self_attn=False, dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
self.disable_self_attn = disable_self_attn
|
||||
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
||||
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device) # is a self-attention if not self.disable_self_attn
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device)
|
||||
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
|
||||
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
||||
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device) # is self-attn if context is none
|
||||
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
|
||||
self.norm1 = nn.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.norm2 = nn.LayerNorm(dim, dtype=dtype, device=device)
|
||||
self.norm3 = nn.LayerNorm(dim, dtype=dtype, device=device)
|
||||
@ -648,7 +649,7 @@ class SpatialTransformer(nn.Module):
|
||||
def __init__(self, in_channels, n_heads, d_head,
|
||||
depth=1, dropout=0., context_dim=None,
|
||||
disable_self_attn=False, use_linear=False,
|
||||
use_checkpoint=True, dtype=None, device=None):
|
||||
use_checkpoint=True, dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
if exists(context_dim) and not isinstance(context_dim, list):
|
||||
context_dim = [context_dim] * depth
|
||||
@ -656,26 +657,26 @@ class SpatialTransformer(nn.Module):
|
||||
inner_dim = n_heads * d_head
|
||||
self.norm = Normalize(in_channels, dtype=dtype, device=device)
|
||||
if not use_linear:
|
||||
self.proj_in = nn.Conv2d(in_channels,
|
||||
self.proj_in = operations.Conv2d(in_channels,
|
||||
inner_dim,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0, dtype=dtype, device=device)
|
||||
else:
|
||||
self.proj_in = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
||||
self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
||||
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device)
|
||||
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
|
||||
for d in range(depth)]
|
||||
)
|
||||
if not use_linear:
|
||||
self.proj_out = nn.Conv2d(inner_dim,in_channels,
|
||||
self.proj_out = operations.Conv2d(inner_dim,in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0, dtype=dtype, device=device)
|
||||
else:
|
||||
self.proj_out = comfy.ops.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
||||
self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
||||
self.use_linear = use_linear
|
||||
|
||||
def forward(self, x, context=None, transformer_options={}):
|
||||
|
||||
@ -8,8 +8,6 @@ import torch.nn.functional as F
|
||||
|
||||
from .util import (
|
||||
checkpoint,
|
||||
conv_nd,
|
||||
linear,
|
||||
avg_pool_nd,
|
||||
zero_module,
|
||||
normalization,
|
||||
@ -17,7 +15,7 @@ from .util import (
|
||||
)
|
||||
from ..attention import SpatialTransformer
|
||||
from comfy.ldm.util import exists
|
||||
|
||||
import comfy.ops
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
@ -72,14 +70,14 @@ class Upsample(nn.Module):
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None):
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
|
||||
self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, output_shape=None):
|
||||
assert x.shape[1] == self.channels
|
||||
@ -108,7 +106,7 @@ class Downsample(nn.Module):
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None):
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
@ -116,7 +114,7 @@ class Downsample(nn.Module):
|
||||
self.dims = dims
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
self.op = operations.conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
|
||||
)
|
||||
else:
|
||||
@ -158,6 +156,7 @@ class ResBlock(TimestepBlock):
|
||||
down=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=comfy.ops
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
@ -171,7 +170,7 @@ class ResBlock(TimestepBlock):
|
||||
self.in_layers = nn.Sequential(
|
||||
nn.GroupNorm(32, channels, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device),
|
||||
operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
@ -187,7 +186,7 @@ class ResBlock(TimestepBlock):
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
operations.Linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
|
||||
),
|
||||
@ -197,18 +196,18 @@ class ResBlock(TimestepBlock):
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)
|
||||
operations.conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(
|
||||
self.skip_connection = operations.conv_nd(
|
||||
dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device
|
||||
)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
|
||||
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
@ -317,6 +316,7 @@ class UNetModel(nn.Module):
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
device=None,
|
||||
operations=comfy.ops,
|
||||
):
|
||||
super().__init__()
|
||||
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
||||
@ -379,9 +379,9 @@ class UNetModel(nn.Module):
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
@ -394,9 +394,9 @@ class UNetModel(nn.Module):
|
||||
assert adm_in_channels is not None
|
||||
self.label_emb = nn.Sequential(
|
||||
nn.Sequential(
|
||||
linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
)
|
||||
)
|
||||
else:
|
||||
@ -405,7 +405,7 @@ class UNetModel(nn.Module):
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
||||
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
||||
)
|
||||
]
|
||||
)
|
||||
@ -426,6 +426,7 @@ class UNetModel(nn.Module):
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
@ -447,7 +448,7 @@ class UNetModel(nn.Module):
|
||||
layers.append(SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
@ -468,10 +469,11 @@ class UNetModel(nn.Module):
|
||||
down=True,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
)
|
||||
)
|
||||
@ -498,11 +500,12 @@ class UNetModel(nn.Module):
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
),
|
||||
SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
@ -513,6 +516,7 @@ class UNetModel(nn.Module):
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
@ -532,6 +536,7 @@ class UNetModel(nn.Module):
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
@ -554,7 +559,7 @@ class UNetModel(nn.Module):
|
||||
SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
||||
)
|
||||
)
|
||||
if level and i == self.num_res_blocks[level]:
|
||||
@ -571,9 +576,10 @@ class UNetModel(nn.Module):
|
||||
up=True,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
operations=operations
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device)
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
@ -582,12 +588,12 @@ class UNetModel(nn.Module):
|
||||
self.out = nn.Sequential(
|
||||
nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
|
||||
zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
|
||||
)
|
||||
if self.predict_codebook_ids:
|
||||
self.id_predictor = nn.Sequential(
|
||||
nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
||||
conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
|
||||
operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
|
||||
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
|
||||
@ -626,7 +632,9 @@ class UNetModel(nn.Module):
|
||||
transformer_options["block"] = ("middle", 0)
|
||||
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
|
||||
if control is not None and 'middle' in control and len(control['middle']) > 0:
|
||||
h += control['middle'].pop()
|
||||
ctrl = control['middle'].pop()
|
||||
if ctrl is not None:
|
||||
h += ctrl
|
||||
|
||||
for id, module in enumerate(self.output_blocks):
|
||||
transformer_options["block"] = ("output", id)
|
||||
|
||||
186
comfy/lora.py
Normal file
186
comfy/lora.py
Normal file
@ -0,0 +1,186 @@
|
||||
import comfy.utils
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
"mlp.fc1": "mlp_fc1",
|
||||
"mlp.fc2": "mlp_fc2",
|
||||
"self_attn.k_proj": "self_attn_k_proj",
|
||||
"self_attn.q_proj": "self_attn_q_proj",
|
||||
"self_attn.v_proj": "self_attn_v_proj",
|
||||
"self_attn.out_proj": "self_attn_out_proj",
|
||||
}
|
||||
|
||||
|
||||
def load_lora(lora, to_load):
|
||||
patch_dict = {}
|
||||
loaded_keys = set()
|
||||
for x in to_load:
|
||||
alpha_name = "{}.alpha".format(x)
|
||||
alpha = None
|
||||
if alpha_name in lora.keys():
|
||||
alpha = lora[alpha_name].item()
|
||||
loaded_keys.add(alpha_name)
|
||||
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name ="{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
|
||||
|
||||
######## loha
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
|
||||
|
||||
######## lokr
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
|
||||
|
||||
for x in lora.keys():
|
||||
if x not in loaded_keys:
|
||||
print("lora key not loaded", x)
|
||||
return patch_dict
|
||||
|
||||
def model_lora_keys_clip(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
|
||||
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
||||
clip_l_present = False
|
||||
for b in range(32):
|
||||
for c in LORA_CLIP_MAP:
|
||||
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
clip_l_present = True
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
if clip_l_present:
|
||||
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
else:
|
||||
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
return key_map
|
||||
|
||||
def model_lora_keys_unet(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = k
|
||||
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
key_lora = k[:-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = unet_key
|
||||
|
||||
diffusers_lora_prefix = ["", "unet."]
|
||||
for p in diffusers_lora_prefix:
|
||||
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
|
||||
if diffusers_lora_key.endswith(".to_out.0"):
|
||||
diffusers_lora_key = diffusers_lora_key[:-2]
|
||||
key_map[diffusers_lora_key] = unet_key
|
||||
return key_map
|
||||
@ -105,6 +105,29 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
|
||||
|
||||
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
noise_aug = []
|
||||
for unclip_cond in unclip_conditioning:
|
||||
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
|
||||
weight = unclip_cond["strength"]
|
||||
noise_augment = unclip_cond["noise_augmentation"]
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
noise_augment = noise_augment_merge
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
||||
|
||||
return adm_out
|
||||
|
||||
class SD21UNCLIP(BaseModel):
|
||||
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
|
||||
@ -114,46 +137,31 @@ class SD21UNCLIP(BaseModel):
|
||||
def encode_adm(self, **kwargs):
|
||||
unclip_conditioning = kwargs.get("unclip_conditioning", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if unclip_conditioning is not None:
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
noise_aug = []
|
||||
for unclip_cond in unclip_conditioning:
|
||||
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
|
||||
weight = unclip_cond["strength"]
|
||||
noise_augment = unclip_cond["noise_augmentation"]
|
||||
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
#TODO: add a way to control this
|
||||
noise_augment = 0.05
|
||||
noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = self.noise_augmentor(adm_out[:, :self.noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
||||
if unclip_conditioning is None:
|
||||
return torch.zeros((1, self.adm_channels))
|
||||
else:
|
||||
adm_out = torch.zeros((1, self.adm_channels))
|
||||
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
|
||||
|
||||
return adm_out
|
||||
|
||||
class SDInpaint(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.concat_keys = ("mask", "masked_image")
|
||||
|
||||
def sdxl_pooled(args, noise_augmentor):
|
||||
if "unclip_conditioning" in args:
|
||||
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
|
||||
else:
|
||||
return args["pooled_output"]
|
||||
|
||||
class SDXLRefiner(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.embedder = Timestep(256)
|
||||
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
clip_pooled = kwargs["pooled_output"]
|
||||
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
|
||||
width = kwargs.get("width", 768)
|
||||
height = kwargs.get("height", 768)
|
||||
crop_w = kwargs.get("crop_w", 0)
|
||||
@ -177,9 +185,10 @@ class SDXL(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.embedder = Timestep(256)
|
||||
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
|
||||
|
||||
def encode_adm(self, **kwargs):
|
||||
clip_pooled = kwargs["pooled_output"]
|
||||
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
|
||||
width = kwargs.get("width", 768)
|
||||
height = kwargs.get("height", 768)
|
||||
crop_w = kwargs.get("crop_w", 0)
|
||||
|
||||
@ -121,9 +121,20 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_fp16):
|
||||
return model_config_from_unet_config(unet_config)
|
||||
|
||||
|
||||
def model_config_from_diffusers_unet(state_dict, use_fp16):
|
||||
def unet_config_from_diffusers_unet(state_dict, use_fp16):
|
||||
match = {}
|
||||
match["context_dim"] = state_dict["down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k.weight"].shape[1]
|
||||
attention_resolutions = []
|
||||
|
||||
attn_res = 1
|
||||
for i in range(5):
|
||||
k = "down_blocks.{}.attentions.1.transformer_blocks.0.attn2.to_k.weight".format(i)
|
||||
if k in state_dict:
|
||||
match["context_dim"] = state_dict[k].shape[1]
|
||||
attention_resolutions.append(attn_res)
|
||||
attn_res *= 2
|
||||
|
||||
match["attention_resolutions"] = attention_resolutions
|
||||
|
||||
match["model_channels"] = state_dict["conv_in.weight"].shape[0]
|
||||
match["in_channels"] = state_dict["conv_in.weight"].shape[1]
|
||||
match["adm_in_channels"] = None
|
||||
@ -135,22 +146,22 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
|
||||
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
|
||||
'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048}
|
||||
'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
|
||||
|
||||
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2560, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 384,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4],
|
||||
'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280}
|
||||
'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280, "num_head_channels": 64}
|
||||
|
||||
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
|
||||
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
|
||||
|
||||
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2048, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
|
||||
|
||||
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 1536, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
|
||||
@ -160,9 +171,20 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
|
||||
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
|
||||
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768}
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, "num_heads": 8}
|
||||
|
||||
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl]
|
||||
SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [4], 'transformer_depth': [0, 0, 1], 'channel_mult': [1, 2, 4],
|
||||
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
|
||||
|
||||
SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
||||
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
|
||||
'num_res_blocks': 2, 'attention_resolutions': [], 'transformer_depth': [0, 0, 0], 'channel_mult': [1, 2, 4],
|
||||
'transformer_depth_middle': 0, 'use_linear_in_transformer': True, "num_head_channels": 64, 'context_dim': 1}
|
||||
|
||||
|
||||
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet]
|
||||
|
||||
for unet_config in supported_models:
|
||||
matches = True
|
||||
@ -171,5 +193,11 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
|
||||
matches = False
|
||||
break
|
||||
if matches:
|
||||
return model_config_from_unet_config(unet_config)
|
||||
return unet_config
|
||||
return None
|
||||
|
||||
def model_config_from_diffusers_unet(state_dict, use_fp16):
|
||||
unet_config = unet_config_from_diffusers_unet(state_dict, use_fp16)
|
||||
if unet_config is not None:
|
||||
return model_config_from_unet_config(unet_config)
|
||||
return None
|
||||
|
||||
@ -2,6 +2,7 @@ import psutil
|
||||
from enum import Enum
|
||||
from comfy.cli_args import args
|
||||
import torch
|
||||
import sys
|
||||
|
||||
class VRAMState(Enum):
|
||||
DISABLED = 0 #No vram present: no need to move models to vram
|
||||
@ -87,8 +88,10 @@ def get_total_memory(dev=None, torch_total_too=False):
|
||||
mem_total = 1024 * 1024 * 1024 #TODO
|
||||
mem_total_torch = mem_total
|
||||
elif xpu_available:
|
||||
stats = torch.xpu.memory_stats(dev)
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_total = torch.xpu.get_device_properties(dev).total_memory
|
||||
mem_total_torch = mem_total
|
||||
mem_total_torch = mem_reserved
|
||||
else:
|
||||
stats = torch.cuda.memory_stats(dev)
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
@ -108,9 +111,6 @@ if not args.normalvram and not args.cpu:
|
||||
if lowvram_available and total_vram <= 4096:
|
||||
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
|
||||
set_vram_to = VRAMState.LOW_VRAM
|
||||
elif total_vram > total_ram * 1.1 and total_vram > 14336:
|
||||
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
|
||||
vram_state = VRAMState.HIGH_VRAM
|
||||
|
||||
try:
|
||||
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
|
||||
@ -201,8 +201,13 @@ if cpu_state == CPUState.MPS:
|
||||
|
||||
print(f"Set vram state to: {vram_state.name}")
|
||||
|
||||
DISABLE_SMART_MEMORY = args.disable_smart_memory
|
||||
|
||||
if DISABLE_SMART_MEMORY:
|
||||
print("Disabling smart memory management")
|
||||
|
||||
def get_torch_device_name(device):
|
||||
global xpu_available
|
||||
if hasattr(device, 'type'):
|
||||
if device.type == "cuda":
|
||||
try:
|
||||
@ -212,6 +217,8 @@ def get_torch_device_name(device):
|
||||
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
|
||||
else:
|
||||
return "{}".format(device.type)
|
||||
elif xpu_available:
|
||||
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
||||
else:
|
||||
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
||||
|
||||
@ -221,132 +228,173 @@ except:
|
||||
print("Could not pick default device.")
|
||||
|
||||
|
||||
current_loaded_model = None
|
||||
current_gpu_controlnets = []
|
||||
current_loaded_models = []
|
||||
|
||||
model_accelerated = False
|
||||
class LoadedModel:
|
||||
def __init__(self, model):
|
||||
self.model = model
|
||||
self.model_accelerated = False
|
||||
self.device = model.load_device
|
||||
|
||||
def model_memory(self):
|
||||
return self.model.model_size()
|
||||
|
||||
def unload_model():
|
||||
global current_loaded_model
|
||||
global model_accelerated
|
||||
global current_gpu_controlnets
|
||||
global vram_state
|
||||
def model_memory_required(self, device):
|
||||
if device == self.model.current_device:
|
||||
return 0
|
||||
else:
|
||||
return self.model_memory()
|
||||
|
||||
if current_loaded_model is not None:
|
||||
if model_accelerated:
|
||||
accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
|
||||
model_accelerated = False
|
||||
def model_load(self, lowvram_model_memory=0):
|
||||
global xpu_available
|
||||
patch_model_to = None
|
||||
if lowvram_model_memory == 0:
|
||||
patch_model_to = self.device
|
||||
|
||||
current_loaded_model.unpatch_model()
|
||||
current_loaded_model.model.to(current_loaded_model.offload_device)
|
||||
current_loaded_model.model_patches_to(current_loaded_model.offload_device)
|
||||
current_loaded_model = None
|
||||
if vram_state != VRAMState.HIGH_VRAM:
|
||||
soft_empty_cache()
|
||||
self.model.model_patches_to(self.device)
|
||||
self.model.model_patches_to(self.model.model_dtype())
|
||||
|
||||
if vram_state != VRAMState.HIGH_VRAM:
|
||||
if len(current_gpu_controlnets) > 0:
|
||||
for n in current_gpu_controlnets:
|
||||
n.cpu()
|
||||
current_gpu_controlnets = []
|
||||
try:
|
||||
self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
|
||||
except Exception as e:
|
||||
self.model.unpatch_model(self.model.offload_device)
|
||||
self.model_unload()
|
||||
raise e
|
||||
|
||||
if lowvram_model_memory > 0:
|
||||
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
|
||||
device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
|
||||
accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
|
||||
self.model_accelerated = True
|
||||
|
||||
if xpu_available and not args.disable_ipex_optimize:
|
||||
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
|
||||
|
||||
return self.real_model
|
||||
|
||||
def model_unload(self):
|
||||
if self.model_accelerated:
|
||||
accelerate.hooks.remove_hook_from_submodules(self.real_model)
|
||||
self.model_accelerated = False
|
||||
|
||||
self.model.unpatch_model(self.model.offload_device)
|
||||
self.model.model_patches_to(self.model.offload_device)
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.model is other.model
|
||||
|
||||
def minimum_inference_memory():
|
||||
return (768 * 1024 * 1024)
|
||||
return (1024 * 1024 * 1024)
|
||||
|
||||
def unload_model_clones(model):
|
||||
to_unload = []
|
||||
for i in range(len(current_loaded_models)):
|
||||
if model.is_clone(current_loaded_models[i].model):
|
||||
to_unload = [i] + to_unload
|
||||
|
||||
for i in to_unload:
|
||||
print("unload clone", i)
|
||||
current_loaded_models.pop(i).model_unload()
|
||||
|
||||
def free_memory(memory_required, device, keep_loaded=[]):
|
||||
unloaded_model = False
|
||||
for i in range(len(current_loaded_models) -1, -1, -1):
|
||||
if not DISABLE_SMART_MEMORY:
|
||||
if get_free_memory(device) > memory_required:
|
||||
break
|
||||
shift_model = current_loaded_models[i]
|
||||
if shift_model.device == device:
|
||||
if shift_model not in keep_loaded:
|
||||
m = current_loaded_models.pop(i)
|
||||
m.model_unload()
|
||||
del m
|
||||
unloaded_model = True
|
||||
|
||||
if unloaded_model:
|
||||
soft_empty_cache()
|
||||
|
||||
|
||||
def load_models_gpu(models, memory_required=0):
|
||||
global vram_state
|
||||
|
||||
inference_memory = minimum_inference_memory()
|
||||
extra_mem = max(inference_memory, memory_required)
|
||||
|
||||
models_to_load = []
|
||||
models_already_loaded = []
|
||||
for x in models:
|
||||
loaded_model = LoadedModel(x)
|
||||
|
||||
if loaded_model in current_loaded_models:
|
||||
index = current_loaded_models.index(loaded_model)
|
||||
current_loaded_models.insert(0, current_loaded_models.pop(index))
|
||||
models_already_loaded.append(loaded_model)
|
||||
else:
|
||||
models_to_load.append(loaded_model)
|
||||
|
||||
if len(models_to_load) == 0:
|
||||
devs = set(map(lambda a: a.device, models_already_loaded))
|
||||
for d in devs:
|
||||
if d != torch.device("cpu"):
|
||||
free_memory(extra_mem, d, models_already_loaded)
|
||||
return
|
||||
|
||||
print("loading new")
|
||||
|
||||
total_memory_required = {}
|
||||
for loaded_model in models_to_load:
|
||||
unload_model_clones(loaded_model.model)
|
||||
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
|
||||
|
||||
for device in total_memory_required:
|
||||
if device != torch.device("cpu"):
|
||||
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
|
||||
|
||||
for loaded_model in models_to_load:
|
||||
model = loaded_model.model
|
||||
torch_dev = model.load_device
|
||||
if is_device_cpu(torch_dev):
|
||||
vram_set_state = VRAMState.DISABLED
|
||||
else:
|
||||
vram_set_state = vram_state
|
||||
lowvram_model_memory = 0
|
||||
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
|
||||
model_size = loaded_model.model_memory_required(torch_dev)
|
||||
current_free_mem = get_free_memory(torch_dev)
|
||||
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
|
||||
if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
|
||||
vram_set_state = VRAMState.LOW_VRAM
|
||||
else:
|
||||
lowvram_model_memory = 0
|
||||
|
||||
if vram_set_state == VRAMState.NO_VRAM:
|
||||
lowvram_model_memory = 256 * 1024 * 1024
|
||||
|
||||
cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
|
||||
current_loaded_models.insert(0, loaded_model)
|
||||
return
|
||||
|
||||
|
||||
def load_model_gpu(model):
|
||||
global current_loaded_model
|
||||
global vram_state
|
||||
global model_accelerated
|
||||
return load_models_gpu([model])
|
||||
|
||||
if model is current_loaded_model:
|
||||
return
|
||||
unload_model()
|
||||
def cleanup_models():
|
||||
to_delete = []
|
||||
for i in range(len(current_loaded_models)):
|
||||
print(sys.getrefcount(current_loaded_models[i].model))
|
||||
if sys.getrefcount(current_loaded_models[i].model) <= 2:
|
||||
to_delete = [i] + to_delete
|
||||
|
||||
torch_dev = model.load_device
|
||||
model.model_patches_to(torch_dev)
|
||||
model.model_patches_to(model.model_dtype())
|
||||
current_loaded_model = model
|
||||
for i in to_delete:
|
||||
x = current_loaded_models.pop(i)
|
||||
x.model_unload()
|
||||
del x
|
||||
|
||||
if is_device_cpu(torch_dev):
|
||||
vram_set_state = VRAMState.DISABLED
|
||||
else:
|
||||
vram_set_state = vram_state
|
||||
|
||||
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
|
||||
model_size = model.model_size()
|
||||
current_free_mem = get_free_memory(torch_dev)
|
||||
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
|
||||
if model_size > (current_free_mem - minimum_inference_memory()): #only switch to lowvram if really necessary
|
||||
vram_set_state = VRAMState.LOW_VRAM
|
||||
|
||||
real_model = model.model
|
||||
patch_model_to = None
|
||||
if vram_set_state == VRAMState.DISABLED:
|
||||
pass
|
||||
elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM or vram_set_state == VRAMState.SHARED:
|
||||
model_accelerated = False
|
||||
patch_model_to = torch_dev
|
||||
|
||||
try:
|
||||
real_model = model.patch_model(device_to=patch_model_to)
|
||||
except Exception as e:
|
||||
model.unpatch_model()
|
||||
unload_model()
|
||||
raise e
|
||||
|
||||
if patch_model_to is not None:
|
||||
real_model.to(torch_dev)
|
||||
|
||||
if vram_set_state == VRAMState.NO_VRAM:
|
||||
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
|
||||
accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
|
||||
model_accelerated = True
|
||||
elif vram_set_state == VRAMState.LOW_VRAM:
|
||||
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
|
||||
accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
|
||||
model_accelerated = True
|
||||
|
||||
return current_loaded_model
|
||||
|
||||
def load_controlnet_gpu(control_models):
|
||||
global current_gpu_controlnets
|
||||
global vram_state
|
||||
if vram_state == VRAMState.DISABLED:
|
||||
return
|
||||
|
||||
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
|
||||
for m in control_models:
|
||||
if hasattr(m, 'set_lowvram'):
|
||||
m.set_lowvram(True)
|
||||
#don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
|
||||
return
|
||||
|
||||
models = []
|
||||
for m in control_models:
|
||||
models += m.get_models()
|
||||
|
||||
for m in current_gpu_controlnets:
|
||||
if m not in models:
|
||||
m.cpu()
|
||||
|
||||
device = get_torch_device()
|
||||
current_gpu_controlnets = []
|
||||
for m in models:
|
||||
current_gpu_controlnets.append(m.to(device))
|
||||
|
||||
|
||||
def load_if_low_vram(model):
|
||||
global vram_state
|
||||
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
|
||||
return model.to(get_torch_device())
|
||||
return model
|
||||
|
||||
def unload_if_low_vram(model):
|
||||
global vram_state
|
||||
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
|
||||
return model.cpu()
|
||||
return model
|
||||
def dtype_size(dtype):
|
||||
dtype_size = 4
|
||||
if dtype == torch.float16 or dtype == torch.bfloat16:
|
||||
dtype_size = 2
|
||||
return dtype_size
|
||||
|
||||
def unet_offload_device():
|
||||
if vram_state == VRAMState.HIGH_VRAM:
|
||||
@ -354,6 +402,24 @@ def unet_offload_device():
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
def unet_inital_load_device(parameters, dtype):
|
||||
torch_dev = get_torch_device()
|
||||
if vram_state == VRAMState.HIGH_VRAM:
|
||||
return torch_dev
|
||||
|
||||
cpu_dev = torch.device("cpu")
|
||||
if DISABLE_SMART_MEMORY:
|
||||
return cpu_dev
|
||||
|
||||
model_size = dtype_size(dtype) * parameters
|
||||
|
||||
mem_dev = get_free_memory(torch_dev)
|
||||
mem_cpu = get_free_memory(cpu_dev)
|
||||
if mem_dev > mem_cpu and model_size < mem_dev:
|
||||
return torch_dev
|
||||
else:
|
||||
return cpu_dev
|
||||
|
||||
def text_encoder_offload_device():
|
||||
if args.gpu_only:
|
||||
return get_torch_device()
|
||||
@ -364,8 +430,7 @@ def text_encoder_device():
|
||||
if args.gpu_only:
|
||||
return get_torch_device()
|
||||
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
|
||||
#NOTE: on a Ryzen 5 7600X with 4080 it's faster to shift to GPU
|
||||
if torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
|
||||
if should_use_fp16(prioritize_performance=False):
|
||||
return get_torch_device()
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
@ -441,8 +506,12 @@ def get_free_memory(dev=None, torch_free_too=False):
|
||||
mem_free_total = 1024 * 1024 * 1024 #TODO
|
||||
mem_free_torch = mem_free_total
|
||||
elif xpu_available:
|
||||
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
|
||||
mem_free_torch = mem_free_total
|
||||
stats = torch.xpu.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_allocated = stats['allocated_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
|
||||
else:
|
||||
stats = torch.cuda.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
@ -456,6 +525,13 @@ def get_free_memory(dev=None, torch_free_too=False):
|
||||
else:
|
||||
return mem_free_total
|
||||
|
||||
def batch_area_memory(area):
|
||||
if xformers_enabled() or pytorch_attention_flash_attention():
|
||||
#TODO: these formulas are copied from maximum_batch_area below
|
||||
return (area / 20) * (1024 * 1024)
|
||||
else:
|
||||
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
|
||||
|
||||
def maximum_batch_area():
|
||||
global vram_state
|
||||
if vram_state == VRAMState.NO_VRAM:
|
||||
@ -490,15 +566,19 @@ def is_device_mps(device):
|
||||
return True
|
||||
return False
|
||||
|
||||
def should_use_fp16(device=None, model_params=0):
|
||||
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
|
||||
global xpu_available
|
||||
global directml_enabled
|
||||
|
||||
if device is not None:
|
||||
if is_device_cpu(device):
|
||||
return False
|
||||
|
||||
if FORCE_FP16:
|
||||
return True
|
||||
|
||||
if device is not None: #TODO
|
||||
if is_device_cpu(device) or is_device_mps(device):
|
||||
if is_device_mps(device):
|
||||
return False
|
||||
|
||||
if FORCE_FP32:
|
||||
@ -507,9 +587,12 @@ def should_use_fp16(device=None, model_params=0):
|
||||
if directml_enabled:
|
||||
return False
|
||||
|
||||
if cpu_mode() or mps_mode() or xpu_available:
|
||||
if cpu_mode() or mps_mode():
|
||||
return False #TODO ?
|
||||
|
||||
if xpu_available:
|
||||
return True
|
||||
|
||||
if torch.cuda.is_bf16_supported():
|
||||
return True
|
||||
|
||||
@ -528,7 +611,7 @@ def should_use_fp16(device=None, model_params=0):
|
||||
|
||||
if fp16_works:
|
||||
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
|
||||
if model_params * 4 > free_model_memory:
|
||||
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
||||
return True
|
||||
|
||||
if props.major < 7:
|
||||
|
||||
18
comfy/ops.py
18
comfy/ops.py
@ -21,11 +21,25 @@ class Conv2d(torch.nn.Conv2d):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
if dims == 2:
|
||||
return Conv2d(*args, **kwargs)
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
@contextmanager
|
||||
def use_comfy_ops(): # Kind of an ugly hack but I can't think of a better way
|
||||
def use_comfy_ops(device=None, dtype=None): # Kind of an ugly hack but I can't think of a better way
|
||||
old_torch_nn_linear = torch.nn.Linear
|
||||
torch.nn.Linear = Linear
|
||||
force_device = device
|
||||
force_dtype = dtype
|
||||
def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None):
|
||||
if force_device is not None:
|
||||
device = force_device
|
||||
if force_dtype is not None:
|
||||
dtype = force_dtype
|
||||
return Linear(in_features, out_features, bias=bias, device=device, dtype=dtype)
|
||||
|
||||
torch.nn.Linear = linear_with_dtype
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
|
||||
@ -51,19 +51,26 @@ def get_models_from_cond(cond, model_type):
|
||||
models += [c[1][model_type]]
|
||||
return models
|
||||
|
||||
def load_additional_models(positive, negative, dtype):
|
||||
def get_additional_models(positive, negative, dtype):
|
||||
"""loads additional models in positive and negative conditioning"""
|
||||
control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")
|
||||
control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
|
||||
|
||||
inference_memory = 0
|
||||
control_models = []
|
||||
for m in control_nets:
|
||||
control_models += m.get_models()
|
||||
inference_memory += m.inference_memory_requirements(dtype)
|
||||
|
||||
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
|
||||
gligen = [x[1].to(dtype) for x in gligen]
|
||||
models = control_nets + gligen
|
||||
comfy.model_management.load_controlnet_gpu(models)
|
||||
return models
|
||||
gligen = [x[1] for x in gligen]
|
||||
models = control_models + gligen
|
||||
return models, inference_memory
|
||||
|
||||
def cleanup_additional_models(models):
|
||||
"""cleanup additional models that were loaded"""
|
||||
for m in models:
|
||||
m.cleanup()
|
||||
if hasattr(m, 'cleanup'):
|
||||
m.cleanup()
|
||||
|
||||
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
||||
device = comfy.model_management.get_torch_device()
|
||||
@ -72,7 +79,8 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
|
||||
noise_mask = prepare_mask(noise_mask, noise.shape, device)
|
||||
|
||||
real_model = None
|
||||
comfy.model_management.load_model_gpu(model)
|
||||
models, inference_memory = get_additional_models(positive, negative, model.model_dtype())
|
||||
comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory)
|
||||
real_model = model.model
|
||||
|
||||
noise = noise.to(device)
|
||||
@ -81,7 +89,6 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
|
||||
positive_copy = broadcast_cond(positive, noise.shape[0], device)
|
||||
negative_copy = broadcast_cond(negative, noise.shape[0], device)
|
||||
|
||||
models = load_additional_models(positive, negative, model.model_dtype())
|
||||
|
||||
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||
|
||||
|
||||
@ -88,9 +88,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
gligen_type = gligen[0]
|
||||
gligen_model = gligen[1]
|
||||
if gligen_type == "position":
|
||||
gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
|
||||
gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
|
||||
else:
|
||||
gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)
|
||||
gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
|
||||
|
||||
patches['middle_patch'] = [gligen_patch]
|
||||
|
||||
@ -478,7 +478,7 @@ def pre_run_control(model, conds):
|
||||
timestep_end = None
|
||||
percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
|
||||
if 'control' in x[1]:
|
||||
x[1]['control'].pre_run(model.inner_model, percent_to_timestep_function)
|
||||
x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
|
||||
|
||||
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
||||
cond_cnets = []
|
||||
|
||||
701
comfy/sd.py
701
comfy/sd.py
@ -2,15 +2,15 @@ import torch
|
||||
import contextlib
|
||||
import copy
|
||||
import inspect
|
||||
import math
|
||||
|
||||
from comfy import model_management
|
||||
from .ldm.util import instantiate_from_config
|
||||
from .ldm.models.autoencoder import AutoencoderKL
|
||||
import yaml
|
||||
from .cldm import cldm
|
||||
from .t2i_adapter import adapter
|
||||
|
||||
from . import utils
|
||||
import comfy.utils
|
||||
|
||||
from . import clip_vision
|
||||
from . import gligen
|
||||
from . import diffusers_convert
|
||||
@ -21,6 +21,9 @@ from . import sd1_clip
|
||||
from . import sd2_clip
|
||||
from . import sdxl_clip
|
||||
|
||||
import comfy.lora
|
||||
import comfy.t2i_adapter.adapter
|
||||
|
||||
def load_model_weights(model, sd):
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
m = set(m)
|
||||
@ -47,204 +50,11 @@ def load_clip_weights(model, sd):
|
||||
if ids.dtype == torch.float32:
|
||||
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
||||
|
||||
sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
sd = comfy.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
return load_model_weights(model, sd)
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
"mlp.fc1": "mlp_fc1",
|
||||
"mlp.fc2": "mlp_fc2",
|
||||
"self_attn.k_proj": "self_attn_k_proj",
|
||||
"self_attn.q_proj": "self_attn_q_proj",
|
||||
"self_attn.v_proj": "self_attn_v_proj",
|
||||
"self_attn.out_proj": "self_attn_out_proj",
|
||||
}
|
||||
|
||||
|
||||
def load_lora(lora, to_load):
|
||||
patch_dict = {}
|
||||
loaded_keys = set()
|
||||
for x in to_load:
|
||||
alpha_name = "{}.alpha".format(x)
|
||||
alpha = None
|
||||
if alpha_name in lora.keys():
|
||||
alpha = lora[alpha_name].item()
|
||||
loaded_keys.add(alpha_name)
|
||||
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name ="{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
|
||||
|
||||
######## loha
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
|
||||
|
||||
######## lokr
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)
|
||||
|
||||
for x in lora.keys():
|
||||
if x not in loaded_keys:
|
||||
print("lora key not loaded", x)
|
||||
return patch_dict
|
||||
|
||||
def model_lora_keys_clip(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
|
||||
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
||||
clip_l_present = False
|
||||
for b in range(32):
|
||||
for c in LORA_CLIP_MAP:
|
||||
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
clip_l_present = True
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
if clip_l_present:
|
||||
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
else:
|
||||
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
return key_map
|
||||
|
||||
def model_lora_keys_unet(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = k
|
||||
|
||||
diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
key_lora = k[:-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = unet_key
|
||||
|
||||
diffusers_lora_prefix = ["", "unet."]
|
||||
for p in diffusers_lora_prefix:
|
||||
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
|
||||
if diffusers_lora_key.endswith(".to_out.0"):
|
||||
diffusers_lora_key = diffusers_lora_key[:-2]
|
||||
key_map[diffusers_lora_key] = unet_key
|
||||
return key_map
|
||||
|
||||
def set_attr(obj, attr, value):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs[:-1]:
|
||||
obj = getattr(obj, name)
|
||||
prev = getattr(obj, attrs[-1])
|
||||
setattr(obj, attrs[-1], torch.nn.Parameter(value))
|
||||
del prev
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0):
|
||||
def __init__(self, model, load_device, offload_device, size=0, current_device=None):
|
||||
self.size = size
|
||||
self.model = model
|
||||
self.patches = {}
|
||||
@ -253,6 +63,10 @@ class ModelPatcher:
|
||||
self.model_size()
|
||||
self.load_device = load_device
|
||||
self.offload_device = offload_device
|
||||
if current_device is None:
|
||||
self.current_device = self.offload_device
|
||||
else:
|
||||
self.current_device = current_device
|
||||
|
||||
def model_size(self):
|
||||
if self.size > 0:
|
||||
@ -267,7 +81,7 @@ class ModelPatcher:
|
||||
return size
|
||||
|
||||
def clone(self):
|
||||
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size)
|
||||
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device)
|
||||
n.patches = {}
|
||||
for k in self.patches:
|
||||
n.patches[k] = self.patches[k][:]
|
||||
@ -276,6 +90,11 @@ class ModelPatcher:
|
||||
n.model_keys = self.model_keys
|
||||
return n
|
||||
|
||||
def is_clone(self, other):
|
||||
if hasattr(other, 'model') and self.model is other.model:
|
||||
return True
|
||||
return False
|
||||
|
||||
def set_model_sampler_cfg_function(self, sampler_cfg_function):
|
||||
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
|
||||
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
|
||||
@ -388,8 +207,13 @@ class ModelPatcher:
|
||||
else:
|
||||
temp_weight = weight.to(torch.float32, copy=True)
|
||||
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
|
||||
set_attr(self.model, key, out_weight)
|
||||
comfy.utils.set_attr(self.model, key, out_weight)
|
||||
del temp_weight
|
||||
|
||||
if device_to is not None:
|
||||
self.model.to(device_to)
|
||||
self.current_device = device_to
|
||||
|
||||
return self.model
|
||||
|
||||
def calculate_weight(self, patches, weight, key):
|
||||
@ -482,18 +306,23 @@ class ModelPatcher:
|
||||
|
||||
return weight
|
||||
|
||||
def unpatch_model(self):
|
||||
def unpatch_model(self, device_to=None):
|
||||
keys = list(self.backup.keys())
|
||||
|
||||
for k in keys:
|
||||
set_attr(self.model, k, self.backup[k])
|
||||
comfy.utils.set_attr(self.model, k, self.backup[k])
|
||||
|
||||
self.backup = {}
|
||||
|
||||
if device_to is not None:
|
||||
self.model.to(device_to)
|
||||
self.current_device = device_to
|
||||
|
||||
|
||||
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
||||
key_map = model_lora_keys_unet(model.model)
|
||||
key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
loaded = load_lora(lora, key_map)
|
||||
key_map = comfy.lora.model_lora_keys_unet(model.model)
|
||||
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
loaded = comfy.lora.load_lora(lora, key_map)
|
||||
new_modelpatcher = model.clone()
|
||||
k = new_modelpatcher.add_patches(loaded, strength_model)
|
||||
new_clip = clip.clone()
|
||||
@ -518,12 +347,12 @@ class CLIP:
|
||||
load_device = model_management.text_encoder_device()
|
||||
offload_device = model_management.text_encoder_offload_device()
|
||||
params['device'] = load_device
|
||||
self.cond_stage_model = clip(**(params))
|
||||
#TODO: make sure this doesn't have a quality loss before enabling.
|
||||
# if model_management.should_use_fp16(load_device):
|
||||
# self.cond_stage_model.half()
|
||||
if model_management.should_use_fp16(load_device, prioritize_performance=False):
|
||||
params['dtype'] = torch.float16
|
||||
else:
|
||||
params['dtype'] = torch.float32
|
||||
|
||||
self.cond_stage_model = self.cond_stage_model.to()
|
||||
self.cond_stage_model = clip(**(params))
|
||||
|
||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
|
||||
self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
@ -537,9 +366,6 @@ class CLIP:
|
||||
n.layer_idx = self.layer_idx
|
||||
return n
|
||||
|
||||
def load_from_state_dict(self, sd):
|
||||
self.cond_stage_model.load_sd(sd)
|
||||
|
||||
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
||||
return self.patcher.add_patches(patches, strength_patch, strength_model)
|
||||
|
||||
@ -555,7 +381,7 @@ class CLIP:
|
||||
else:
|
||||
self.cond_stage_model.reset_clip_layer()
|
||||
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
self.load_model()
|
||||
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
|
||||
if return_pooled:
|
||||
return cond, pooled
|
||||
@ -571,11 +397,9 @@ class CLIP:
|
||||
def get_sd(self):
|
||||
return self.cond_stage_model.state_dict()
|
||||
|
||||
def patch_model(self):
|
||||
self.patcher.patch_model()
|
||||
|
||||
def unpatch_model(self):
|
||||
self.patcher.unpatch_model()
|
||||
def load_model(self):
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
return self.patcher
|
||||
|
||||
def get_key_patches(self):
|
||||
return self.patcher.get_key_patches()
|
||||
@ -590,7 +414,7 @@ class VAE:
|
||||
self.first_stage_model = AutoencoderKL(**(config['params']))
|
||||
self.first_stage_model = self.first_stage_model.eval()
|
||||
if ckpt_path is not None:
|
||||
sd = utils.load_torch_file(ckpt_path)
|
||||
sd = comfy.utils.load_torch_file(ckpt_path)
|
||||
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
||||
sd = diffusers_convert.convert_vae_state_dict(sd)
|
||||
self.first_stage_model.load_state_dict(sd, strict=False)
|
||||
@ -603,38 +427,39 @@ class VAE:
|
||||
self.first_stage_model.to(self.vae_dtype)
|
||||
|
||||
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = utils.ProgressBar(steps)
|
||||
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
|
||||
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
|
||||
output = torch.clamp((
|
||||
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
||||
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
||||
/ 3.0) / 2.0, min=0.0, max=1.0)
|
||||
return output
|
||||
|
||||
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = utils.ProgressBar(steps)
|
||||
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
|
||||
encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float()
|
||||
samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples /= 3.0
|
||||
return samples
|
||||
|
||||
def decode(self, samples_in):
|
||||
model_management.unload_model()
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
try:
|
||||
memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.7
|
||||
model_management.free_memory(memory_used, self.device)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
|
||||
batch_number = int(free_memory / memory_used)
|
||||
batch_number = max(1, batch_number)
|
||||
|
||||
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
|
||||
@ -650,19 +475,19 @@ class VAE:
|
||||
return pixel_samples
|
||||
|
||||
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||
model_management.unload_model()
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
|
||||
self.first_stage_model = self.first_stage_model.to(self.offload_device)
|
||||
return output.movedim(1,-1)
|
||||
|
||||
def encode(self, pixel_samples):
|
||||
model_management.unload_model()
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
pixel_samples = pixel_samples.movedim(-1,1)
|
||||
try:
|
||||
memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.7 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
|
||||
model_management.free_memory(memory_used, self.device)
|
||||
free_memory = model_management.get_free_memory(self.device)
|
||||
batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
|
||||
batch_number = int(free_memory / memory_used)
|
||||
batch_number = max(1, batch_number)
|
||||
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
|
||||
for x in range(0, pixel_samples.shape[0], batch_number):
|
||||
@ -677,7 +502,6 @@ class VAE:
|
||||
return samples
|
||||
|
||||
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||
model_management.unload_model()
|
||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||
pixel_samples = pixel_samples.movedim(-1,1)
|
||||
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
|
||||
@ -687,344 +511,6 @@ class VAE:
|
||||
def get_sd(self):
|
||||
return self.first_stage_model.state_dict()
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
current_batch_size = tensor.shape[0]
|
||||
#print(current_batch_size, target_batch_size)
|
||||
if current_batch_size == 1:
|
||||
return tensor
|
||||
|
||||
per_batch = target_batch_size // batched_number
|
||||
tensor = tensor[:per_batch]
|
||||
|
||||
if per_batch > tensor.shape[0]:
|
||||
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
||||
|
||||
current_batch_size = tensor.shape[0]
|
||||
if current_batch_size == target_batch_size:
|
||||
return tensor
|
||||
else:
|
||||
return torch.cat([tensor] * batched_number, dim=0)
|
||||
|
||||
class ControlBase:
|
||||
def __init__(self, device=None):
|
||||
self.cond_hint_original = None
|
||||
self.cond_hint = None
|
||||
self.strength = 1.0
|
||||
self.timestep_percent_range = (1.0, 0.0)
|
||||
self.timestep_range = None
|
||||
|
||||
if device is None:
|
||||
device = model_management.get_torch_device()
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)):
|
||||
self.cond_hint_original = cond_hint
|
||||
self.strength = strength
|
||||
self.timestep_percent_range = timestep_percent_range
|
||||
return self
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
||||
|
||||
def set_previous_controlnet(self, controlnet):
|
||||
self.previous_controlnet = controlnet
|
||||
return self
|
||||
|
||||
def cleanup(self):
|
||||
if self.previous_controlnet is not None:
|
||||
self.previous_controlnet.cleanup()
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.timestep_range = None
|
||||
|
||||
def get_models(self):
|
||||
out = []
|
||||
if self.previous_controlnet is not None:
|
||||
out += self.previous_controlnet.get_models()
|
||||
return out
|
||||
|
||||
def copy_to(self, c):
|
||||
c.cond_hint_original = self.cond_hint_original
|
||||
c.strength = self.strength
|
||||
c.timestep_percent_range = self.timestep_percent_range
|
||||
|
||||
class ControlNet(ControlBase):
|
||||
def __init__(self, control_model, global_average_pooling=False, device=None):
|
||||
super().__init__(device)
|
||||
self.control_model = control_model
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
if self.control_model.dtype == torch.float16:
|
||||
precision_scope = torch.autocast
|
||||
else:
|
||||
precision_scope = contextlib.nullcontext
|
||||
|
||||
with precision_scope(model_management.get_autocast_device(self.device)):
|
||||
self.control_model = model_management.load_if_low_vram(self.control_model)
|
||||
context = torch.cat(cond['c_crossattn'], 1)
|
||||
y = cond.get('c_adm', None)
|
||||
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
|
||||
self.control_model = model_management.unload_if_low_vram(self.control_model)
|
||||
out = {'middle':[], 'output': []}
|
||||
autocast_enabled = torch.is_autocast_enabled()
|
||||
|
||||
for i in range(len(control)):
|
||||
if i == (len(control) - 1):
|
||||
key = 'middle'
|
||||
index = 0
|
||||
else:
|
||||
key = 'output'
|
||||
index = i
|
||||
x = control[i]
|
||||
if self.global_average_pooling:
|
||||
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
||||
|
||||
x *= self.strength
|
||||
if x.dtype != output_dtype and not autocast_enabled:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
if control_prev is not None and key in control_prev:
|
||||
prev = control_prev[key][index]
|
||||
if prev is not None:
|
||||
x += prev
|
||||
out[key].append(x)
|
||||
if control_prev is not None and 'input' in control_prev:
|
||||
out['input'] = control_prev['input']
|
||||
return out
|
||||
|
||||
def copy(self):
|
||||
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
def get_models(self):
|
||||
out = super().get_models()
|
||||
out.append(self.control_model)
|
||||
return out
|
||||
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
|
||||
controlnet_config = None
|
||||
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
||||
use_fp16 = model_management.should_use_fp16()
|
||||
controlnet_config = model_detection.model_config_from_diffusers_unet(controlnet_data, use_fp16).unet_config
|
||||
diffusers_keys = utils.unet_to_diffusers(controlnet_config)
|
||||
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
||||
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
||||
|
||||
count = 0
|
||||
loop = True
|
||||
while loop:
|
||||
suffix = [".weight", ".bias"]
|
||||
for s in suffix:
|
||||
k_in = "controlnet_down_blocks.{}{}".format(count, s)
|
||||
k_out = "zero_convs.{}.0{}".format(count, s)
|
||||
if k_in not in controlnet_data:
|
||||
loop = False
|
||||
break
|
||||
diffusers_keys[k_in] = k_out
|
||||
count += 1
|
||||
|
||||
count = 0
|
||||
loop = True
|
||||
while loop:
|
||||
suffix = [".weight", ".bias"]
|
||||
for s in suffix:
|
||||
if count == 0:
|
||||
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
|
||||
else:
|
||||
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
|
||||
k_out = "input_hint_block.{}{}".format(count * 2, s)
|
||||
if k_in not in controlnet_data:
|
||||
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
|
||||
loop = False
|
||||
diffusers_keys[k_in] = k_out
|
||||
count += 1
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
if k in controlnet_data:
|
||||
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
||||
|
||||
controlnet_data = new_sd
|
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
pth = False
|
||||
key = 'zero_convs.0.0.weight'
|
||||
if pth_key in controlnet_data:
|
||||
pth = True
|
||||
key = pth_key
|
||||
prefix = "control_model."
|
||||
elif key in controlnet_data:
|
||||
prefix = ""
|
||||
else:
|
||||
net = load_t2i_adapter(controlnet_data)
|
||||
if net is None:
|
||||
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
|
||||
return net
|
||||
|
||||
if controlnet_config is None:
|
||||
use_fp16 = model_management.should_use_fp16()
|
||||
controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
||||
control_model = cldm.ControlNet(**controlnet_config)
|
||||
|
||||
if pth:
|
||||
if 'difference' in controlnet_data:
|
||||
if model is not None:
|
||||
m = model.patch_model()
|
||||
model_sd = m.state_dict()
|
||||
for x in controlnet_data:
|
||||
c_m = "control_model."
|
||||
if x.startswith(c_m):
|
||||
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
||||
if sd_key in model_sd:
|
||||
cd = controlnet_data[x]
|
||||
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
||||
model.unpatch_model()
|
||||
else:
|
||||
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
pass
|
||||
w = WeightsLoader()
|
||||
w.control_model = control_model
|
||||
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
||||
else:
|
||||
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
||||
print(missing, unexpected)
|
||||
|
||||
if use_fp16:
|
||||
control_model = control_model.half()
|
||||
|
||||
global_average_pooling = False
|
||||
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
|
||||
global_average_pooling = True
|
||||
|
||||
control = ControlNet(control_model, global_average_pooling=global_average_pooling)
|
||||
return control
|
||||
|
||||
class T2IAdapter(ControlBase):
|
||||
def __init__(self, t2i_model, channels_in, device=None):
|
||||
super().__init__(device)
|
||||
self.t2i_model = t2i_model
|
||||
self.channels_in = channels_in
|
||||
self.control_input = None
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
control_prev = None
|
||||
if self.previous_controlnet is not None:
|
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
||||
|
||||
if self.timestep_range is not None:
|
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
||||
if control_prev is not None:
|
||||
return control_prev
|
||||
else:
|
||||
return {}
|
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.control_input = None
|
||||
self.cond_hint = None
|
||||
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
|
||||
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
||||
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
if self.control_input is None:
|
||||
self.t2i_model.to(self.device)
|
||||
self.control_input = self.t2i_model(self.cond_hint)
|
||||
self.t2i_model.cpu()
|
||||
|
||||
output_dtype = x_noisy.dtype
|
||||
out = {'input':[]}
|
||||
|
||||
autocast_enabled = torch.is_autocast_enabled()
|
||||
for i in range(len(self.control_input)):
|
||||
key = 'input'
|
||||
x = self.control_input[i] * self.strength
|
||||
if x.dtype != output_dtype and not autocast_enabled:
|
||||
x = x.to(output_dtype)
|
||||
|
||||
if control_prev is not None and key in control_prev:
|
||||
index = len(control_prev[key]) - i * 3 - 3
|
||||
prev = control_prev[key][index]
|
||||
if prev is not None:
|
||||
x += prev
|
||||
out[key].insert(0, None)
|
||||
out[key].insert(0, None)
|
||||
out[key].insert(0, x)
|
||||
|
||||
if control_prev is not None and 'input' in control_prev:
|
||||
for i in range(len(out['input'])):
|
||||
if out['input'][i] is None:
|
||||
out['input'][i] = control_prev['input'][i]
|
||||
if control_prev is not None and 'middle' in control_prev:
|
||||
out['middle'] = control_prev['middle']
|
||||
if control_prev is not None and 'output' in control_prev:
|
||||
out['output'] = control_prev['output']
|
||||
return out
|
||||
|
||||
def copy(self):
|
||||
c = T2IAdapter(self.t2i_model, self.channels_in)
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
|
||||
def load_t2i_adapter(t2i_data):
|
||||
keys = t2i_data.keys()
|
||||
if 'adapter' in keys:
|
||||
t2i_data = t2i_data['adapter']
|
||||
keys = t2i_data.keys()
|
||||
if "body.0.in_conv.weight" in keys:
|
||||
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
||||
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
elif 'conv_in.weight' in keys:
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
channel = t2i_data['conv_in.weight'].shape[0]
|
||||
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
||||
use_conv = False
|
||||
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
||||
if len(down_opts) > 0:
|
||||
use_conv = True
|
||||
model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
|
||||
else:
|
||||
return None
|
||||
model_ad.load_state_dict(t2i_data)
|
||||
return T2IAdapter(model_ad, cin // 64)
|
||||
|
||||
|
||||
class StyleModel:
|
||||
def __init__(self, model, device="cpu"):
|
||||
self.model = model
|
||||
@ -1034,10 +520,10 @@ class StyleModel:
|
||||
|
||||
|
||||
def load_style_model(ckpt_path):
|
||||
model_data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
keys = model_data.keys()
|
||||
if "style_embedding" in keys:
|
||||
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
else:
|
||||
raise Exception("invalid style model {}".format(ckpt_path))
|
||||
model.load_state_dict(model_data)
|
||||
@ -1047,14 +533,14 @@ def load_style_model(ckpt_path):
|
||||
def load_clip(ckpt_paths, embedding_directory=None):
|
||||
clip_data = []
|
||||
for p in ckpt_paths:
|
||||
clip_data.append(utils.load_torch_file(p, safe_load=True))
|
||||
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
|
||||
for i in range(len(clip_data)):
|
||||
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
|
||||
clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
||||
clip_data[i] = comfy.utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
||||
|
||||
clip_target = EmptyClass()
|
||||
clip_target.params = {}
|
||||
@ -1083,11 +569,11 @@ def load_clip(ckpt_paths, embedding_directory=None):
|
||||
return clip
|
||||
|
||||
def load_gligen(ckpt_path):
|
||||
data = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
model = gligen.load_gligen(data)
|
||||
if model_management.should_use_fp16():
|
||||
model = model.half()
|
||||
return model
|
||||
return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
|
||||
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
||||
#TODO: this function is a mess and should be removed eventually
|
||||
@ -1123,7 +609,7 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
pass
|
||||
|
||||
if state_dict is None:
|
||||
state_dict = utils.load_torch_file(ckpt_path)
|
||||
state_dict = comfy.utils.load_torch_file(ckpt_path)
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
@ -1169,15 +655,8 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
|
||||
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
|
||||
|
||||
def calculate_parameters(sd, prefix):
|
||||
params = 0
|
||||
for k in sd.keys():
|
||||
if k.startswith(prefix):
|
||||
params += sd[k].nelement()
|
||||
return params
|
||||
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
|
||||
sd = utils.load_torch_file(ckpt_path)
|
||||
sd = comfy.utils.load_torch_file(ckpt_path)
|
||||
sd_keys = sd.keys()
|
||||
clip = None
|
||||
clipvision = None
|
||||
@ -1185,7 +664,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
model = None
|
||||
clip_target = None
|
||||
|
||||
parameters = calculate_parameters(sd, "model.diffusion_model.")
|
||||
parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.")
|
||||
fp16 = model_management.should_use_fp16(model_params=parameters)
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
@ -1199,8 +678,13 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
if output_clipvision:
|
||||
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
|
||||
|
||||
dtype = torch.float32
|
||||
if fp16:
|
||||
dtype = torch.float16
|
||||
|
||||
inital_load_device = model_management.unet_inital_load_device(parameters, dtype)
|
||||
offload_device = model_management.unet_offload_device()
|
||||
model = model_config.get_model(sd, "model.diffusion_model.", device=offload_device)
|
||||
model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
|
||||
model.load_model_weights(sd, "model.diffusion_model.")
|
||||
|
||||
if output_vae:
|
||||
@ -1221,12 +705,17 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
if len(left_over) > 0:
|
||||
print("left over keys:", left_over)
|
||||
|
||||
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae, clipvision)
|
||||
model_patcher = ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
|
||||
if inital_load_device != torch.device("cpu"):
|
||||
print("loaded straight to GPU")
|
||||
model_management.load_model_gpu(model_patcher)
|
||||
|
||||
return (model_patcher, clip, vae, clipvision)
|
||||
|
||||
|
||||
def load_unet(unet_path): #load unet in diffusers format
|
||||
sd = utils.load_torch_file(unet_path)
|
||||
parameters = calculate_parameters(sd, "")
|
||||
sd = comfy.utils.load_torch_file(unet_path)
|
||||
parameters = comfy.utils.calculate_parameters(sd)
|
||||
fp16 = model_management.should_use_fp16(model_params=parameters)
|
||||
|
||||
model_config = model_detection.model_config_from_diffusers_unet(sd, fp16)
|
||||
@ -1234,7 +723,7 @@ def load_unet(unet_path): #load unet in diffusers format
|
||||
print("ERROR UNSUPPORTED UNET", unet_path)
|
||||
return None
|
||||
|
||||
diffusers_keys = utils.unet_to_diffusers(model_config.unet_config)
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
@ -1249,14 +738,6 @@ def load_unet(unet_path): #load unet in diffusers format
|
||||
return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
|
||||
|
||||
def save_checkpoint(output_path, model, clip, vae, metadata=None):
|
||||
try:
|
||||
model.patch_model()
|
||||
clip.patch_model()
|
||||
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
|
||||
utils.save_torch_file(sd, output_path, metadata=metadata)
|
||||
model.unpatch_model()
|
||||
clip.unpatch_model()
|
||||
except Exception as e:
|
||||
model.unpatch_model()
|
||||
clip.unpatch_model()
|
||||
raise e
|
||||
model_management.load_models_gpu([model, clip.load_model()])
|
||||
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
|
||||
comfy.utils.save_torch_file(sd, output_path, metadata=metadata)
|
||||
|
||||
@ -43,7 +43,7 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
"hidden"
|
||||
]
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None): # clip-vit-base-patch32
|
||||
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None): # clip-vit-base-patch32
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
self.num_layers = 12
|
||||
@ -54,17 +54,21 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
||||
config = CLIPTextConfig.from_json_file(textmodel_json_config)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
with comfy.ops.use_comfy_ops():
|
||||
with comfy.ops.use_comfy_ops(device, dtype):
|
||||
with modeling_utils.no_init_weights():
|
||||
self.transformer = CLIPTextModel(config)
|
||||
|
||||
if dtype is not None:
|
||||
self.transformer.to(dtype)
|
||||
self.max_length = max_length
|
||||
if freeze:
|
||||
self.freeze()
|
||||
self.layer = layer
|
||||
self.layer_idx = None
|
||||
self.empty_tokens = [[49406] + [49407] * 76]
|
||||
self.text_projection = None
|
||||
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
|
||||
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
||||
|
||||
self.layer_norm_hidden_state = True
|
||||
if layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
@ -137,9 +141,9 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
if backup_embeds.weight.dtype != torch.float32:
|
||||
precision_scope = torch.autocast
|
||||
else:
|
||||
precision_scope = contextlib.nullcontext
|
||||
precision_scope = lambda a, b: contextlib.nullcontext(a)
|
||||
|
||||
with precision_scope(model_management.get_autocast_device(device)):
|
||||
with precision_scope(model_management.get_autocast_device(device), torch.float32):
|
||||
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
|
||||
self.transformer.set_input_embeddings(backup_embeds)
|
||||
|
||||
@ -154,13 +158,17 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
|
||||
pooled_output = outputs.pooler_output
|
||||
if self.text_projection is not None:
|
||||
pooled_output = pooled_output.to(self.text_projection.device) @ self.text_projection
|
||||
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
|
||||
return z.float(), pooled_output.float()
|
||||
|
||||
def encode(self, tokens):
|
||||
return self(tokens)
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_projection" in sd:
|
||||
self.text_projection[:] = sd.pop("text_projection")
|
||||
if "text_projection.weight" in sd:
|
||||
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
|
||||
return self.transformer.load_state_dict(sd, strict=False)
|
||||
|
||||
def parse_parentheses(string):
|
||||
|
||||
@ -3,13 +3,13 @@ import torch
|
||||
import os
|
||||
|
||||
class SD2ClipModel(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None):
|
||||
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
|
||||
if layer == "penultimate":
|
||||
layer="hidden"
|
||||
layer_idx=23
|
||||
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json")
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path)
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
|
||||
self.empty_tokens = [[49406] + [49407] + [0] * 75]
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
|
||||
@ -17,7 +17,7 @@
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 24,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 512,
|
||||
"projection_dim": 1024,
|
||||
"torch_dtype": "float32",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
|
||||
@ -3,23 +3,17 @@ import torch
|
||||
import os
|
||||
|
||||
class SDXLClipG(sd1_clip.SD1ClipModel):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None):
|
||||
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
|
||||
if layer == "penultimate":
|
||||
layer="hidden"
|
||||
layer_idx=-2
|
||||
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path)
|
||||
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
|
||||
self.empty_tokens = [[49406] + [49407] + [0] * 75]
|
||||
self.text_projection = torch.nn.Parameter(torch.empty(1280, 1280))
|
||||
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
||||
self.layer_norm_hidden_state = False
|
||||
|
||||
def load_sd(self, sd):
|
||||
if "text_projection" in sd:
|
||||
self.text_projection[:] = sd.pop("text_projection")
|
||||
if "text_projection.weight" in sd:
|
||||
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
|
||||
return super().load_sd(sd)
|
||||
|
||||
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer):
|
||||
@ -42,11 +36,11 @@ class SDXLTokenizer(sd1_clip.SD1Tokenizer):
|
||||
return self.clip_g.untokenize(token_weight_pair)
|
||||
|
||||
class SDXLClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu"):
|
||||
def __init__(self, device="cpu", dtype=None):
|
||||
super().__init__()
|
||||
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device)
|
||||
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device, dtype=dtype)
|
||||
self.clip_l.layer_norm_hidden_state = False
|
||||
self.clip_g = SDXLClipG(device=device)
|
||||
self.clip_g = SDXLClipG(device=device, dtype=dtype)
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
self.clip_l.clip_layer(layer_idx)
|
||||
@ -70,9 +64,9 @@ class SDXLClipModel(torch.nn.Module):
|
||||
return self.clip_l.load_sd(sd)
|
||||
|
||||
class SDXLRefinerClipModel(torch.nn.Module):
|
||||
def __init__(self, device="cpu"):
|
||||
def __init__(self, device="cpu", dtype=None):
|
||||
super().__init__()
|
||||
self.clip_g = SDXLClipG(device=device)
|
||||
self.clip_g = SDXLClipG(device=device, dtype=dtype)
|
||||
|
||||
def clip_layer(self, layer_idx):
|
||||
self.clip_g.clip_layer(layer_idx)
|
||||
|
||||
@ -101,17 +101,30 @@ class ResnetBlock(nn.Module):
|
||||
|
||||
|
||||
class Adapter(nn.Module):
|
||||
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
|
||||
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, xl=True):
|
||||
super(Adapter, self).__init__()
|
||||
self.unshuffle = nn.PixelUnshuffle(8)
|
||||
self.unshuffle_amount = 8
|
||||
resblock_no_downsample = []
|
||||
resblock_downsample = [3, 2, 1]
|
||||
self.xl = xl
|
||||
if self.xl:
|
||||
self.unshuffle_amount = 16
|
||||
resblock_no_downsample = [1]
|
||||
resblock_downsample = [2]
|
||||
|
||||
self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
|
||||
self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
|
||||
self.channels = channels
|
||||
self.nums_rb = nums_rb
|
||||
self.body = []
|
||||
for i in range(len(channels)):
|
||||
for j in range(nums_rb):
|
||||
if (i != 0) and (j == 0):
|
||||
if (i in resblock_downsample) and (j == 0):
|
||||
self.body.append(
|
||||
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
elif (i in resblock_no_downsample) and (j == 0):
|
||||
self.body.append(
|
||||
ResnetBlock(channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
else:
|
||||
self.body.append(
|
||||
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
||||
@ -128,6 +141,16 @@ class Adapter(nn.Module):
|
||||
for j in range(self.nums_rb):
|
||||
idx = i * self.nums_rb + j
|
||||
x = self.body[idx](x)
|
||||
if self.xl:
|
||||
features.append(None)
|
||||
if i == 0:
|
||||
features.append(None)
|
||||
features.append(None)
|
||||
if i == 2:
|
||||
features.append(None)
|
||||
else:
|
||||
features.append(None)
|
||||
features.append(None)
|
||||
features.append(x)
|
||||
|
||||
return features
|
||||
@ -241,10 +264,14 @@ class extractor(nn.Module):
|
||||
class Adapter_light(nn.Module):
|
||||
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
|
||||
super(Adapter_light, self).__init__()
|
||||
self.unshuffle = nn.PixelUnshuffle(8)
|
||||
self.unshuffle_amount = 8
|
||||
self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
|
||||
self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
|
||||
self.channels = channels
|
||||
self.nums_rb = nums_rb
|
||||
self.body = []
|
||||
self.xl = False
|
||||
|
||||
for i in range(len(channels)):
|
||||
if i == 0:
|
||||
self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False))
|
||||
@ -259,6 +286,8 @@ class Adapter_light(nn.Module):
|
||||
features = []
|
||||
for i in range(len(self.channels)):
|
||||
x = self.body[i](x)
|
||||
features.append(None)
|
||||
features.append(None)
|
||||
features.append(x)
|
||||
|
||||
return features
|
||||
|
||||
@ -32,6 +32,13 @@ def save_torch_file(sd, ckpt, metadata=None):
|
||||
else:
|
||||
safetensors.torch.save_file(sd, ckpt)
|
||||
|
||||
def calculate_parameters(sd, prefix=""):
|
||||
params = 0
|
||||
for k in sd.keys():
|
||||
if k.startswith(prefix):
|
||||
params += sd[k].nelement()
|
||||
return params
|
||||
|
||||
def transformers_convert(sd, prefix_from, prefix_to, number):
|
||||
keys_to_replace = {
|
||||
"{}positional_embedding": "{}embeddings.position_embedding.weight",
|
||||
@ -230,6 +237,20 @@ def safetensors_header(safetensors_path, max_size=100*1024*1024):
|
||||
return None
|
||||
return f.read(length_of_header)
|
||||
|
||||
def set_attr(obj, attr, value):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs[:-1]:
|
||||
obj = getattr(obj, name)
|
||||
prev = getattr(obj, attrs[-1])
|
||||
setattr(obj, attrs[-1], torch.nn.Parameter(value))
|
||||
del prev
|
||||
|
||||
def get_attr(obj, attr):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs:
|
||||
obj = getattr(obj, name)
|
||||
return obj
|
||||
|
||||
def bislerp(samples, width, height):
|
||||
def slerp(b1, b2, r):
|
||||
'''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
|
||||
|
||||
@ -1,15 +1,19 @@
|
||||
import numpy as np
|
||||
from scipy.ndimage import grey_dilation
|
||||
import torch
|
||||
|
||||
from nodes import MAX_RESOLUTION
|
||||
|
||||
def composite(destination, source, x, y, mask = None, multiplier = 8):
|
||||
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
|
||||
if resize_source:
|
||||
source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
|
||||
|
||||
x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
|
||||
y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))
|
||||
|
||||
left, top = (x // multiplier, y // multiplier)
|
||||
right, bottom = (left + source.shape[3], top + source.shape[2],)
|
||||
|
||||
|
||||
if mask is None:
|
||||
mask = torch.ones_like(source)
|
||||
else:
|
||||
@ -40,6 +44,7 @@ class LatentCompositeMasked:
|
||||
"source": ("LATENT",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"resize_source": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
"optional": {
|
||||
"mask": ("MASK",),
|
||||
@ -50,11 +55,11 @@ class LatentCompositeMasked:
|
||||
|
||||
CATEGORY = "latent"
|
||||
|
||||
def composite(self, destination, source, x, y, mask = None):
|
||||
def composite(self, destination, source, x, y, resize_source, mask = None):
|
||||
output = destination.copy()
|
||||
destination = destination["samples"].clone()
|
||||
source = source["samples"]
|
||||
output["samples"] = composite(destination, source, x, y, mask, 8)
|
||||
output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
|
||||
return (output,)
|
||||
|
||||
class ImageCompositeMasked:
|
||||
@ -66,6 +71,7 @@ class ImageCompositeMasked:
|
||||
"source": ("IMAGE",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"resize_source": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
"optional": {
|
||||
"mask": ("MASK",),
|
||||
@ -76,9 +82,9 @@ class ImageCompositeMasked:
|
||||
|
||||
CATEGORY = "image"
|
||||
|
||||
def composite(self, destination, source, x, y, mask = None):
|
||||
def composite(self, destination, source, x, y, resize_source, mask = None):
|
||||
destination = destination.clone().movedim(-1, 1)
|
||||
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1).movedim(1, -1)
|
||||
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
|
||||
return (output,)
|
||||
|
||||
class MaskToImage:
|
||||
@ -272,6 +278,35 @@ class FeatherMask:
|
||||
output[-y, :] *= feather_rate
|
||||
|
||||
return (output,)
|
||||
|
||||
class GrowMask:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"expand": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"tapered_corners": ("BOOLEAN", {"default": True}),
|
||||
},
|
||||
}
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "expand_mask"
|
||||
|
||||
def expand_mask(self, mask, expand, tapered_corners):
|
||||
c = 0 if tapered_corners else 1
|
||||
kernel = np.array([[c, 1, c],
|
||||
[1, 1, 1],
|
||||
[c, 1, c]])
|
||||
output = mask.numpy().copy()
|
||||
while expand > 0:
|
||||
output = grey_dilation(output, footprint=kernel)
|
||||
expand -= 1
|
||||
output = torch.from_numpy(output)
|
||||
return (output,)
|
||||
|
||||
|
||||
|
||||
@ -285,6 +320,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"CropMask": CropMask,
|
||||
"MaskComposite": MaskComposite,
|
||||
"FeatherMask": FeatherMask,
|
||||
"GrowMask": GrowMask,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
|
||||
@ -2,6 +2,7 @@ import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from PIL import Image
|
||||
import math
|
||||
|
||||
import comfy.utils
|
||||
|
||||
@ -209,9 +210,36 @@ class Sharpen:
|
||||
|
||||
return (result,)
|
||||
|
||||
class ImageScaleToTotalPixels:
|
||||
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
|
||||
crop_methods = ["disabled", "center"]
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
||||
"megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "upscale"
|
||||
|
||||
CATEGORY = "image/upscaling"
|
||||
|
||||
def upscale(self, image, upscale_method, megapixels):
|
||||
samples = image.movedim(-1,1)
|
||||
total = int(megapixels * 1024 * 1024)
|
||||
|
||||
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
||||
width = round(samples.shape[3] * scale_by)
|
||||
height = round(samples.shape[2] * scale_by)
|
||||
|
||||
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
||||
s = s.movedim(1,-1)
|
||||
return (s,)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ImageBlend": Blend,
|
||||
"ImageBlur": Blur,
|
||||
"ImageQuantize": Quantize,
|
||||
"ImageSharpen": Sharpen,
|
||||
"ImageScaleToTotalPixels": ImageScaleToTotalPixels,
|
||||
}
|
||||
|
||||
@ -354,6 +354,7 @@ class PromptExecutor:
|
||||
d = self.outputs_ui.pop(x)
|
||||
del d
|
||||
|
||||
comfy.model_management.cleanup_models()
|
||||
if self.server.client_id is not None:
|
||||
self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id)
|
||||
executed = set()
|
||||
|
||||
43
nodes.py
43
nodes.py
@ -22,6 +22,7 @@ import comfy.samplers
|
||||
import comfy.sample
|
||||
import comfy.sd
|
||||
import comfy.utils
|
||||
import comfy.controlnet
|
||||
|
||||
import comfy.clip_vision
|
||||
|
||||
@ -569,7 +570,7 @@ class ControlNetLoader:
|
||||
|
||||
def load_controlnet(self, control_net_name):
|
||||
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
|
||||
controlnet = comfy.sd.load_controlnet(controlnet_path)
|
||||
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
|
||||
return (controlnet,)
|
||||
|
||||
class DiffControlNetLoader:
|
||||
@ -585,7 +586,7 @@ class DiffControlNetLoader:
|
||||
|
||||
def load_controlnet(self, model, control_net_name):
|
||||
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
|
||||
controlnet = comfy.sd.load_controlnet(controlnet_path, model)
|
||||
controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
|
||||
return (controlnet,)
|
||||
|
||||
|
||||
@ -1306,7 +1307,7 @@ class LoadImage:
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
||||
return {"required":
|
||||
{"image": (sorted(files), )},
|
||||
{"image": (sorted(files), {"image_upload": True})},
|
||||
}
|
||||
|
||||
CATEGORY = "image"
|
||||
@ -1349,7 +1350,7 @@ class LoadImageMask:
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
||||
return {"required":
|
||||
{"image": (sorted(files), ),
|
||||
{"image": (sorted(files), {"image_upload": True}),
|
||||
"channel": (s._color_channels, ), }
|
||||
}
|
||||
|
||||
@ -1465,6 +1466,28 @@ class ImageBatch:
|
||||
s = torch.cat((image1, image2), dim=0)
|
||||
return (s,)
|
||||
|
||||
class EmptyImage:
|
||||
def __init__(self, device="cpu"):
|
||||
self.device = device
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
|
||||
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
|
||||
}}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "generate"
|
||||
|
||||
CATEGORY = "image"
|
||||
|
||||
def generate(self, width, height, batch_size=1, color=0):
|
||||
r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
|
||||
g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
|
||||
b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
|
||||
return (torch.cat((r, g, b), dim=-1), )
|
||||
|
||||
class ImagePadForOutpaint:
|
||||
|
||||
@classmethod
|
||||
@ -1551,6 +1574,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"ImageInvert": ImageInvert,
|
||||
"ImageBatch": ImageBatch,
|
||||
"ImagePadForOutpaint": ImagePadForOutpaint,
|
||||
"EmptyImage": EmptyImage,
|
||||
"ConditioningAverage ": ConditioningAverage ,
|
||||
"ConditioningCombine": ConditioningCombine,
|
||||
"ConditioningConcat": ConditioningConcat,
|
||||
@ -1650,6 +1674,8 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"VAEEncodeTiled": "VAE Encode (Tiled)",
|
||||
}
|
||||
|
||||
EXTENSION_WEB_DIRS = {}
|
||||
|
||||
def load_custom_node(module_path, ignore=set()):
|
||||
module_name = os.path.basename(module_path)
|
||||
if os.path.isfile(module_path):
|
||||
@ -1658,11 +1684,20 @@ def load_custom_node(module_path, ignore=set()):
|
||||
try:
|
||||
if os.path.isfile(module_path):
|
||||
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
|
||||
module_dir = os.path.split(module_path)[0]
|
||||
else:
|
||||
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
|
||||
module_dir = module_path
|
||||
|
||||
module = importlib.util.module_from_spec(module_spec)
|
||||
sys.modules[module_name] = module
|
||||
module_spec.loader.exec_module(module)
|
||||
|
||||
if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
|
||||
web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
|
||||
if os.path.isdir(web_dir):
|
||||
EXTENSION_WEB_DIRS[module_name] = web_dir
|
||||
|
||||
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
|
||||
for name in module.NODE_CLASS_MAPPINGS:
|
||||
if name not in ignore:
|
||||
|
||||
@ -75,6 +75,8 @@
|
||||
"#!wget -c https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors -P ./models/checkpoints/\n",
|
||||
"#!wget -c https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0.safetensors -P ./models/checkpoints/\n",
|
||||
"\n",
|
||||
"# SDXL ReVision\n",
|
||||
"#!wget -c https://huggingface.co/comfyanonymous/clip_vision_g/resolve/main/clip_vision_g.safetensors -P ./models/clip_vision/\n",
|
||||
"\n",
|
||||
"# SD1.5\n",
|
||||
"!wget -c https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -P ./models/checkpoints/\n",
|
||||
@ -142,6 +144,11 @@
|
||||
"#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11p_sd15s2_lineart_anime_fp16.safetensors -P ./models/controlnet/\n",
|
||||
"#!wget -c https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/resolve/main/control_v11u_sd15_tile_fp16.safetensors -P ./models/controlnet/\n",
|
||||
"\n",
|
||||
"# ControlNet SDXL\n",
|
||||
"#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-canny-rank256.safetensors -P ./models/controlnet/\n",
|
||||
"#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-depth-rank256.safetensors -P ./models/controlnet/\n",
|
||||
"#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-recolor-rank256.safetensors -P ./models/controlnet/\n",
|
||||
"#!wget -c https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-sketch-rank256.safetensors -P ./models/controlnet/\n",
|
||||
"\n",
|
||||
"# Controlnet Preprocessor nodes by Fannovel16\n",
|
||||
"#!cd custom_nodes && git clone https://github.com/Fannovel16/comfy_controlnet_preprocessors; cd comfy_controlnet_preprocessors && python install.py\n",
|
||||
|
||||
22
server.py
22
server.py
@ -5,6 +5,7 @@ import nodes
|
||||
import folder_paths
|
||||
import execution
|
||||
import uuid
|
||||
import urllib
|
||||
import json
|
||||
import glob
|
||||
import struct
|
||||
@ -67,6 +68,8 @@ class PromptServer():
|
||||
|
||||
mimetypes.init()
|
||||
mimetypes.types_map['.js'] = 'application/javascript; charset=utf-8'
|
||||
|
||||
self.supports = ["custom_nodes_from_web"]
|
||||
self.prompt_queue = None
|
||||
self.loop = loop
|
||||
self.messages = asyncio.Queue()
|
||||
@ -123,8 +126,17 @@ class PromptServer():
|
||||
|
||||
@routes.get("/extensions")
|
||||
async def get_extensions(request):
|
||||
files = glob.glob(os.path.join(self.web_root, 'extensions/**/*.js'), recursive=True)
|
||||
return web.json_response(list(map(lambda f: "/" + os.path.relpath(f, self.web_root).replace("\\", "/"), files)))
|
||||
files = glob.glob(os.path.join(
|
||||
self.web_root, 'extensions/**/*.js'), recursive=True)
|
||||
|
||||
extensions = list(map(lambda f: "/" + os.path.relpath(f, self.web_root).replace("\\", "/"), files))
|
||||
|
||||
for name, dir in nodes.EXTENSION_WEB_DIRS.items():
|
||||
files = glob.glob(os.path.join(dir, '**/*.js'), recursive=True)
|
||||
extensions.extend(list(map(lambda f: "/extensions/" + urllib.parse.quote(
|
||||
name) + "/" + os.path.relpath(f, dir).replace("\\", "/"), files)))
|
||||
|
||||
return web.json_response(extensions)
|
||||
|
||||
def get_dir_by_type(dir_type):
|
||||
if dir_type is None:
|
||||
@ -492,6 +504,12 @@ class PromptServer():
|
||||
|
||||
def add_routes(self):
|
||||
self.app.add_routes(self.routes)
|
||||
|
||||
for name, dir in nodes.EXTENSION_WEB_DIRS.items():
|
||||
self.app.add_routes([
|
||||
web.static('/extensions/' + urllib.parse.quote(name), dir, follow_symlinks=True),
|
||||
])
|
||||
|
||||
self.app.add_routes([
|
||||
web.static('/', self.web_root, follow_symlinks=True),
|
||||
])
|
||||
|
||||
@ -5,7 +5,7 @@ import { app } from "../../scripts/app.js";
|
||||
app.registerExtension({
|
||||
name: "Comfy.UploadImage",
|
||||
async beforeRegisterNodeDef(nodeType, nodeData, app) {
|
||||
if (nodeData.name === "LoadImage" || nodeData.name === "LoadImageMask") {
|
||||
if (nodeData?.input?.required?.image?.[1]?.image_upload === true) {
|
||||
nodeData.input.required.upload = ["IMAGEUPLOAD"];
|
||||
}
|
||||
},
|
||||
|
||||
@ -6,6 +6,7 @@
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no">
|
||||
<link rel="stylesheet" type="text/css" href="./lib/litegraph.css" />
|
||||
<link rel="stylesheet" type="text/css" href="./style.css" />
|
||||
<link rel="stylesheet" type="text/css" href="./user.css" />
|
||||
<script type="text/javascript" src="./lib/litegraph.core.js"></script>
|
||||
<script type="text/javascript" src="./lib/litegraph.extensions.js" defer></script>
|
||||
<script type="module">
|
||||
|
||||
@ -284,6 +284,11 @@ export class ComfyApp {
|
||||
}
|
||||
}
|
||||
|
||||
options.push({
|
||||
content: "Bypass",
|
||||
callback: (obj) => { if (this.mode === 4) this.mode = 0; else this.mode = 4; this.graph.change(); }
|
||||
});
|
||||
|
||||
// prevent conflict of clipspace content
|
||||
if(!ComfyApp.clipspace_return_node) {
|
||||
options.push({
|
||||
@ -1021,18 +1026,21 @@ export class ComfyApp {
|
||||
}
|
||||
|
||||
/**
|
||||
* Loads all extensions from the API into the window
|
||||
* Loads all extensions from the API into the window in parallel
|
||||
*/
|
||||
async #loadExtensions() {
|
||||
const extensions = await api.getExtensions();
|
||||
this.logging.addEntry("Comfy.App", "debug", { Extensions: extensions });
|
||||
for (const ext of extensions) {
|
||||
try {
|
||||
await import(api.apiURL(ext));
|
||||
} catch (error) {
|
||||
console.error("Error loading extension", ext, error);
|
||||
}
|
||||
}
|
||||
const extensions = await api.getExtensions();
|
||||
this.logging.addEntry("Comfy.App", "debug", { Extensions: extensions });
|
||||
|
||||
const extensionPromises = extensions.map(async ext => {
|
||||
try {
|
||||
await import(api.apiURL(ext));
|
||||
} catch (error) {
|
||||
console.error("Error loading extension", ext, error);
|
||||
}
|
||||
});
|
||||
|
||||
await Promise.all(extensionPromises);
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
1
web/user.css
Normal file
1
web/user.css
Normal file
@ -0,0 +1 @@
|
||||
/* Put custom styles here */
|
||||
Loading…
Reference in New Issue
Block a user