mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-29 15:50:22 +08:00
Merge branch 'comfyanonymous:master' into master
This commit is contained in:
commit
fc09aa398c
@ -1336,3 +1336,26 @@ def sample_res_multistep(model, x, sigmas, extra_args=None, callback=None, disab
|
|||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample_res_multistep_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
def sample_res_multistep_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., noise_sampler=None):
|
||||||
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=True)
|
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise, noise_sampler=noise_sampler, cfg_pp=True)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
|
||||||
|
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
|
||||||
|
extra_args = {} if extra_args is None else extra_args
|
||||||
|
s_in = x.new_ones([x.shape[0]])
|
||||||
|
old_d = None
|
||||||
|
|
||||||
|
for i in trange(len(sigmas) - 1, disable=disable):
|
||||||
|
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||||
|
d = to_d(x, sigmas[i], denoised)
|
||||||
|
if callback is not None:
|
||||||
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||||
|
dt = sigmas[i + 1] - sigmas[i]
|
||||||
|
if i == 0:
|
||||||
|
# Euler method
|
||||||
|
x = x + d * dt
|
||||||
|
else:
|
||||||
|
# Gradient estimation
|
||||||
|
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
|
||||||
|
x = x + d_bar * dt
|
||||||
|
old_d = d
|
||||||
|
return x
|
||||||
|
|||||||
@ -686,7 +686,7 @@ class Sampler:
|
|||||||
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||||
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp"]
|
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "gradient_estimation"]
|
||||||
|
|
||||||
class KSAMPLER(Sampler):
|
class KSAMPLER(Sampler):
|
||||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||||
|
|||||||
@ -2,10 +2,14 @@ import comfy.utils
|
|||||||
import comfy_extras.nodes_post_processing
|
import comfy_extras.nodes_post_processing
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
def reshape_latent_to(target_shape, latent):
|
|
||||||
|
def reshape_latent_to(target_shape, latent, repeat_batch=True):
|
||||||
if latent.shape[1:] != target_shape[1:]:
|
if latent.shape[1:] != target_shape[1:]:
|
||||||
latent = comfy.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center")
|
latent = comfy.utils.common_upscale(latent, target_shape[-1], target_shape[-2], "bilinear", "center")
|
||||||
return comfy.utils.repeat_to_batch_size(latent, target_shape[0])
|
if repeat_batch:
|
||||||
|
return comfy.utils.repeat_to_batch_size(latent, target_shape[0])
|
||||||
|
else:
|
||||||
|
return latent
|
||||||
|
|
||||||
|
|
||||||
class LatentAdd:
|
class LatentAdd:
|
||||||
@ -116,8 +120,7 @@ class LatentBatch:
|
|||||||
s1 = samples1["samples"]
|
s1 = samples1["samples"]
|
||||||
s2 = samples2["samples"]
|
s2 = samples2["samples"]
|
||||||
|
|
||||||
if s1.shape[1:] != s2.shape[1:]:
|
s2 = reshape_latent_to(s1.shape, s2, repeat_batch=False)
|
||||||
s2 = comfy.utils.common_upscale(s2, s1.shape[-1], s1.shape[-2], "bilinear", "center")
|
|
||||||
s = torch.cat((s1, s2), dim=0)
|
s = torch.cat((s1, s2), dim=0)
|
||||||
samples_out["samples"] = s
|
samples_out["samples"] = s
|
||||||
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
|
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user