Merge branch 'master' into dr-support-pip-cm

This commit is contained in:
Dr.Lt.Data 2025-10-09 23:57:10 +09:00
commit fc5703c468
13 changed files with 421 additions and 323 deletions

View File

@ -431,7 +431,7 @@ async def upload_video_to_comfyapi(
f"Video duration ({actual_duration:.2f}s) exceeds the maximum allowed ({max_duration}s)."
)
except Exception as e:
logging.error(f"Error getting video duration: {e}")
logging.error("Error getting video duration: %s", str(e))
raise ValueError(f"Could not verify video duration from source: {e}") from e
upload_mime_type = f"video/{container.value.lower()}"

View File

@ -359,10 +359,10 @@ class ApiClient:
if params:
params = {k: v for k, v in params.items() if v is not None} # aiohttp fails to serialize None values
logging.debug(f"[DEBUG] Request Headers: {request_headers}")
logging.debug(f"[DEBUG] Files: {files}")
logging.debug(f"[DEBUG] Params: {params}")
logging.debug(f"[DEBUG] Data: {data}")
logging.debug("[DEBUG] Request Headers: %s", request_headers)
logging.debug("[DEBUG] Files: %s", files)
logging.debug("[DEBUG] Params: %s", params)
logging.debug("[DEBUG] Data: %s", data)
if content_type == "application/x-www-form-urlencoded":
payload_args = self._create_urlencoded_form_data_args(data or {}, request_headers)
@ -592,9 +592,9 @@ class ApiClient:
error_message=f"HTTP Error {exc.status}",
)
logging.debug(f"[DEBUG] API Error: {user_friendly} (Status: {status_code})")
logging.debug("[DEBUG] API Error: %s (Status: %s)", user_friendly, status_code)
if response_content:
logging.debug(f"[DEBUG] Response content: {response_content}")
logging.debug("[DEBUG] Response content: %s", response_content)
# Retry if eligible
if status_code in self.retry_status_codes and retry_count < self.max_retries:
@ -738,11 +738,9 @@ class SynchronousOperation(Generic[T, R]):
if isinstance(v, Enum):
request_dict[k] = v.value
logging.debug(
f"[DEBUG] API Request: {self.endpoint.method.value} {self.endpoint.path}"
)
logging.debug(f"[DEBUG] Request Data: {json.dumps(request_dict, indent=2)}")
logging.debug(f"[DEBUG] Query Params: {self.endpoint.query_params}")
logging.debug("[DEBUG] API Request: %s %s", self.endpoint.method.value, self.endpoint.path)
logging.debug("[DEBUG] Request Data: %s", json.dumps(request_dict, indent=2))
logging.debug("[DEBUG] Query Params: %s", self.endpoint.query_params)
response_json = await client.request(
self.endpoint.method.value,
@ -757,11 +755,11 @@ class SynchronousOperation(Generic[T, R]):
logging.debug("=" * 50)
logging.debug("[DEBUG] RESPONSE DETAILS:")
logging.debug("[DEBUG] Status Code: 200 (Success)")
logging.debug(f"[DEBUG] Response Body: {json.dumps(response_json, indent=2)}")
logging.debug("[DEBUG] Response Body: %s", json.dumps(response_json, indent=2))
logging.debug("=" * 50)
parsed_response = self.endpoint.response_model.model_validate(response_json)
logging.debug(f"[DEBUG] Parsed Response: {parsed_response}")
logging.debug("[DEBUG] Parsed Response: %s", parsed_response)
return parsed_response
finally:
if owns_client:
@ -877,7 +875,7 @@ class PollingOperation(Generic[T, R]):
status = TaskStatus.PENDING
for poll_count in range(1, self.max_poll_attempts + 1):
try:
logging.debug(f"[DEBUG] Polling attempt #{poll_count}")
logging.debug("[DEBUG] Polling attempt #%s", poll_count)
request_dict = (
None if self.request is None else self.request.model_dump(exclude_none=True)
@ -885,10 +883,13 @@ class PollingOperation(Generic[T, R]):
if poll_count == 1:
logging.debug(
f"[DEBUG] Poll Request: {self.poll_endpoint.method.value} {self.poll_endpoint.path}"
"[DEBUG] Poll Request: %s %s",
self.poll_endpoint.method.value,
self.poll_endpoint.path,
)
logging.debug(
f"[DEBUG] Poll Request Data: {json.dumps(request_dict, indent=2) if request_dict else 'None'}"
"[DEBUG] Poll Request Data: %s",
json.dumps(request_dict, indent=2) if request_dict else "None",
)
# Query task status
@ -903,7 +904,7 @@ class PollingOperation(Generic[T, R]):
# Check if task is complete
status = self._check_task_status(response_obj)
logging.debug(f"[DEBUG] Task Status: {status}")
logging.debug("[DEBUG] Task Status: %s", status)
# If progress extractor is provided, extract progress
if self.progress_extractor:
@ -917,7 +918,7 @@ class PollingOperation(Generic[T, R]):
result_url = self.result_url_extractor(response_obj)
if result_url:
message = f"Result URL: {result_url}"
logging.debug(f"[DEBUG] {message}")
logging.debug("[DEBUG] %s", message)
self._display_text_on_node(message)
self.final_response = response_obj
if self.progress_extractor:
@ -925,7 +926,7 @@ class PollingOperation(Generic[T, R]):
return self.final_response
if status == TaskStatus.FAILED:
message = f"Task failed: {json.dumps(resp)}"
logging.error(f"[DEBUG] {message}")
logging.error("[DEBUG] %s", message)
raise Exception(message)
logging.debug("[DEBUG] Task still pending, continuing to poll...")
# Task pending wait
@ -939,7 +940,12 @@ class PollingOperation(Generic[T, R]):
raise Exception(
f"Polling aborted after {consecutive_errors} network errors: {str(e)}"
) from e
logging.warning("Network error (%s/%s): %s", consecutive_errors, max_consecutive_errors, str(e))
logging.warning(
"Network error (%s/%s): %s",
consecutive_errors,
max_consecutive_errors,
str(e),
)
await asyncio.sleep(self.poll_interval)
except Exception as e:
# For other errors, increment count and potentially abort
@ -949,10 +955,13 @@ class PollingOperation(Generic[T, R]):
f"Polling aborted after {consecutive_errors} consecutive errors: {str(e)}"
) from e
logging.error(f"[DEBUG] Polling error: {str(e)}")
logging.error("[DEBUG] Polling error: %s", str(e))
logging.warning(
f"Error during polling (attempt {poll_count}/{self.max_poll_attempts}): {str(e)}. "
f"Will retry in {self.poll_interval} seconds."
"Error during polling (attempt %s/%s): %s. Will retry in %s seconds.",
poll_count,
self.max_poll_attempts,
str(e),
self.poll_interval,
)
await asyncio.sleep(self.poll_interval)

View File

@ -21,7 +21,7 @@ def get_log_directory():
try:
os.makedirs(log_dir, exist_ok=True)
except Exception as e:
logger.error(f"Error creating API log directory {log_dir}: {e}")
logger.error("Error creating API log directory %s: %s", log_dir, str(e))
# Fallback to base temp directory if sub-directory creation fails
return base_temp_dir
return log_dir
@ -122,9 +122,9 @@ def log_request_response(
try:
with open(filepath, "w", encoding="utf-8") as f:
f.write("\n".join(log_content))
logger.debug(f"API log saved to: {filepath}")
logger.debug("API log saved to: %s", filepath)
except Exception as e:
logger.error(f"Error writing API log to {filepath}: {e}")
logger.error("Error writing API log to %s: %s", filepath, str(e))
if __name__ == '__main__':

View File

@ -296,7 +296,7 @@ def validate_video_result_response(response) -> None:
"""Validates that the Kling task result contains a video."""
if not is_valid_video_response(response):
error_msg = f"Kling task {response.data.task_id} succeeded but no video data found in response."
logging.error(f"Error: {error_msg}.\nResponse: {response}")
logging.error("Error: %s.\nResponse: %s", error_msg, response)
raise Exception(error_msg)
@ -304,7 +304,7 @@ def validate_image_result_response(response) -> None:
"""Validates that the Kling task result contains an image."""
if not is_valid_image_response(response):
error_msg = f"Kling task {response.data.task_id} succeeded but no image data found in response."
logging.error(f"Error: {error_msg}.\nResponse: {response}")
logging.error("Error: %s.\nResponse: %s", error_msg, response)
raise Exception(error_msg)

View File

@ -500,7 +500,7 @@ class MinimaxHailuoVideoNode(comfy_io.ComfyNode):
raise Exception(
f"No video was found in the response. Full response: {file_result.model_dump()}"
)
logging.info(f"Generated video URL: {file_url}")
logging.info("Generated video URL: %s", file_url)
if cls.hidden.unique_id:
if hasattr(file_result.file, "backup_download_url"):
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"

View File

@ -237,7 +237,7 @@ def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
audio_stream = None
for stream in input_container.streams:
logging.info(f"Found stream: type={stream.type}, class={type(stream)}")
logging.info("Found stream: type=%s, class=%s", stream.type, type(stream))
if isinstance(stream, av.VideoStream):
# Create output video stream with same parameters
video_stream = output_container.add_stream(
@ -247,7 +247,7 @@ def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
video_stream.height = stream.height
video_stream.pix_fmt = "yuv420p"
logging.info(
f"Added video stream: {stream.width}x{stream.height} @ {stream.average_rate}fps"
"Added video stream: %sx%s @ %sfps", stream.width, stream.height, stream.average_rate
)
elif isinstance(stream, av.AudioStream):
# Create output audio stream with same parameters
@ -256,9 +256,7 @@ def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
)
audio_stream.sample_rate = stream.sample_rate
audio_stream.layout = stream.layout
logging.info(
f"Added audio stream: {stream.sample_rate}Hz, {stream.channels} channels"
)
logging.info("Added audio stream: %sHz, %s channels", stream.sample_rate, stream.channels)
# Calculate target frame count that's divisible by 16
fps = input_container.streams.video[0].average_rate
@ -288,9 +286,7 @@ def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
for packet in video_stream.encode():
output_container.mux(packet)
logging.info(
f"Encoded {frame_count} video frames (target: {target_frames})"
)
logging.info("Encoded %s video frames (target: %s)", frame_count, target_frames)
# Decode and re-encode audio frames
if audio_stream:
@ -308,7 +304,7 @@ def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
for packet in audio_stream.encode():
output_container.mux(packet)
logging.info(f"Encoded {audio_frame_count} audio frames")
logging.info("Encoded %s audio frames", audio_frame_count)
# Close containers
output_container.close()

View File

@ -172,16 +172,16 @@ async def create_generate_task(
logging.info("[ Rodin3D API - Submit Jobs ] Submit Generate Task Success!")
subscription_key = response.jobs.subscription_key
task_uuid = response.uuid
logging.info(f"[ Rodin3D API - Submit Jobs ] UUID: {task_uuid}")
logging.info("[ Rodin3D API - Submit Jobs ] UUID: %s", task_uuid)
return task_uuid, subscription_key
def check_rodin_status(response: Rodin3DCheckStatusResponse) -> str:
all_done = all(job.status == JobStatus.Done for job in response.jobs)
status_list = [str(job.status) for job in response.jobs]
logging.info(f"[ Rodin3D API - CheckStatus ] Generate Status: {status_list}")
logging.info("[ Rodin3D API - CheckStatus ] Generate Status: %s", status_list)
if any(job.status == JobStatus.Failed for job in response.jobs):
logging.error(f"[ Rodin3D API - CheckStatus ] Generate Failed: {status_list}, Please try again.")
logging.error("[ Rodin3D API - CheckStatus ] Generate Failed: %s, Please try again.", status_list)
raise Exception("[ Rodin3D API ] Generate Failed, Please Try again.")
if all_done:
return "DONE"
@ -235,7 +235,7 @@ async def download_files(url_list, task_uuid):
file_path = os.path.join(save_path, file_name)
if file_path.endswith(".glb"):
model_file_path = file_path
logging.info(f"[ Rodin3D API - download_files ] Downloading file: {file_path}")
logging.info("[ Rodin3D API - download_files ] Downloading file: %s", file_path)
max_retries = 5
for attempt in range(max_retries):
try:
@ -246,7 +246,7 @@ async def download_files(url_list, task_uuid):
f.write(chunk)
break
except Exception as e:
logging.info(f"[ Rodin3D API - download_files ] Error downloading {file_path}:{e}")
logging.info("[ Rodin3D API - download_files ] Error downloading %s:%s", file_path, str(e))
if attempt < max_retries - 1:
logging.info("Retrying...")
await asyncio.sleep(2)

View File

@ -215,7 +215,7 @@ class VeoVideoGenerationNode(comfy_io.ComfyNode):
initial_response = await initial_operation.execute()
operation_name = initial_response.name
logging.info(f"Veo generation started with operation name: {operation_name}")
logging.info("Veo generation started with operation name: %s", operation_name)
# Define status extractor function
def status_extractor(response):

View File

@ -1,6 +1,9 @@
import torch
import comfy.utils
from enum import Enum
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
def resize_mask(mask, shape):
return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1)
@ -101,24 +104,28 @@ def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_
return out_image, out_alpha
class PorterDuffImageComposite:
class PorterDuffImageComposite(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"source": ("IMAGE",),
"source_alpha": ("MASK",),
"destination": ("IMAGE",),
"destination_alpha": ("MASK",),
"mode": ([mode.name for mode in PorterDuffMode], {"default": PorterDuffMode.DST.name}),
},
}
def define_schema(cls):
return io.Schema(
node_id="PorterDuffImageComposite",
display_name="Porter-Duff Image Composite",
category="mask/compositing",
inputs=[
io.Image.Input("source"),
io.Mask.Input("source_alpha"),
io.Image.Input("destination"),
io.Mask.Input("destination_alpha"),
io.Combo.Input("mode", options=[mode.name for mode in PorterDuffMode], default=PorterDuffMode.DST.name),
],
outputs=[
io.Image.Output(),
io.Mask.Output(),
],
)
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "composite"
CATEGORY = "mask/compositing"
def composite(self, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode):
@classmethod
def execute(cls, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode) -> io.NodeOutput:
batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha))
out_images = []
out_alphas = []
@ -150,45 +157,48 @@ class PorterDuffImageComposite:
out_images.append(out_image)
out_alphas.append(out_alpha.squeeze(2))
result = (torch.stack(out_images), torch.stack(out_alphas))
return result
return io.NodeOutput(torch.stack(out_images), torch.stack(out_alphas))
class SplitImageWithAlpha:
class SplitImageWithAlpha(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
}
}
def define_schema(cls):
return io.Schema(
node_id="SplitImageWithAlpha",
display_name="Split Image with Alpha",
category="mask/compositing",
inputs=[
io.Image.Input("image"),
],
outputs=[
io.Image.Output(),
io.Mask.Output(),
],
)
CATEGORY = "mask/compositing"
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "split_image_with_alpha"
def split_image_with_alpha(self, image: torch.Tensor):
@classmethod
def execute(cls, image: torch.Tensor) -> io.NodeOutput:
out_images = [i[:,:,:3] for i in image]
out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image]
result = (torch.stack(out_images), 1.0 - torch.stack(out_alphas))
return result
return io.NodeOutput(torch.stack(out_images), 1.0 - torch.stack(out_alphas))
class JoinImageWithAlpha:
class JoinImageWithAlpha(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"alpha": ("MASK",),
}
}
def define_schema(cls):
return io.Schema(
node_id="JoinImageWithAlpha",
display_name="Join Image with Alpha",
category="mask/compositing",
inputs=[
io.Image.Input("image"),
io.Mask.Input("alpha"),
],
outputs=[io.Image.Output()],
)
CATEGORY = "mask/compositing"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "join_image_with_alpha"
def join_image_with_alpha(self, image: torch.Tensor, alpha: torch.Tensor):
@classmethod
def execute(cls, image: torch.Tensor, alpha: torch.Tensor) -> io.NodeOutput:
batch_size = min(len(image), len(alpha))
out_images = []
@ -196,19 +206,18 @@ class JoinImageWithAlpha:
for i in range(batch_size):
out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2))
result = (torch.stack(out_images),)
return result
return io.NodeOutput(torch.stack(out_images))
NODE_CLASS_MAPPINGS = {
"PorterDuffImageComposite": PorterDuffImageComposite,
"SplitImageWithAlpha": SplitImageWithAlpha,
"JoinImageWithAlpha": JoinImageWithAlpha,
}
class CompositingExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
PorterDuffImageComposite,
SplitImageWithAlpha,
JoinImageWithAlpha,
]
NODE_DISPLAY_NAME_MAPPINGS = {
"PorterDuffImageComposite": "Porter-Duff Image Composite",
"SplitImageWithAlpha": "Split Image with Alpha",
"JoinImageWithAlpha": "Join Image with Alpha",
}
async def comfy_entrypoint() -> CompositingExtension:
return CompositingExtension()

View File

@ -2,6 +2,8 @@ import comfy.utils
import comfy_extras.nodes_post_processing
import torch
import nodes
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
def reshape_latent_to(target_shape, latent, repeat_batch=True):
@ -13,17 +15,23 @@ def reshape_latent_to(target_shape, latent, repeat_batch=True):
return latent
class LatentAdd:
class LatentAdd(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
def define_schema(cls):
return io.Schema(
node_id="LatentAdd",
category="latent/advanced",
inputs=[
io.Latent.Input("samples1"),
io.Latent.Input("samples2"),
],
outputs=[
io.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples1, samples2):
@classmethod
def execute(cls, samples1, samples2) -> io.NodeOutput:
samples_out = samples1.copy()
s1 = samples1["samples"]
@ -31,19 +39,25 @@ class LatentAdd:
s2 = reshape_latent_to(s1.shape, s2)
samples_out["samples"] = s1 + s2
return (samples_out,)
return io.NodeOutput(samples_out)
class LatentSubtract:
class LatentSubtract(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
def define_schema(cls):
return io.Schema(
node_id="LatentSubtract",
category="latent/advanced",
inputs=[
io.Latent.Input("samples1"),
io.Latent.Input("samples2"),
],
outputs=[
io.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples1, samples2):
@classmethod
def execute(cls, samples1, samples2) -> io.NodeOutput:
samples_out = samples1.copy()
s1 = samples1["samples"]
@ -51,41 +65,49 @@ class LatentSubtract:
s2 = reshape_latent_to(s1.shape, s2)
samples_out["samples"] = s1 - s2
return (samples_out,)
return io.NodeOutput(samples_out)
class LatentMultiply:
class LatentMultiply(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
def define_schema(cls):
return io.Schema(
node_id="LatentMultiply",
category="latent/advanced",
inputs=[
io.Latent.Input("samples"),
io.Float.Input("multiplier", default=1.0, min=-10.0, max=10.0, step=0.01),
],
outputs=[
io.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples, multiplier):
@classmethod
def execute(cls, samples, multiplier) -> io.NodeOutput:
samples_out = samples.copy()
s1 = samples["samples"]
samples_out["samples"] = s1 * multiplier
return (samples_out,)
return io.NodeOutput(samples_out)
class LatentInterpolate:
class LatentInterpolate(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",),
"samples2": ("LATENT",),
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
def define_schema(cls):
return io.Schema(
node_id="LatentInterpolate",
category="latent/advanced",
inputs=[
io.Latent.Input("samples1"),
io.Latent.Input("samples2"),
io.Float.Input("ratio", default=1.0, min=0.0, max=1.0, step=0.01),
],
outputs=[
io.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples1, samples2, ratio):
@classmethod
def execute(cls, samples1, samples2, ratio) -> io.NodeOutput:
samples_out = samples1.copy()
s1 = samples1["samples"]
@ -104,19 +126,26 @@ class LatentInterpolate:
st = torch.nan_to_num(t / mt)
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
return (samples_out,)
return io.NodeOutput(samples_out)
class LatentConcat:
class LatentConcat(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",), "dim": (["x", "-x", "y", "-y", "t", "-t"], )}}
def define_schema(cls):
return io.Schema(
node_id="LatentConcat",
category="latent/advanced",
inputs=[
io.Latent.Input("samples1"),
io.Latent.Input("samples2"),
io.Combo.Input("dim", options=["x", "-x", "y", "-y", "t", "-t"]),
],
outputs=[
io.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples1, samples2, dim):
@classmethod
def execute(cls, samples1, samples2, dim) -> io.NodeOutput:
samples_out = samples1.copy()
s1 = samples1["samples"]
@ -136,22 +165,27 @@ class LatentConcat:
dim = -3
samples_out["samples"] = torch.cat(c, dim=dim)
return (samples_out,)
return io.NodeOutput(samples_out)
class LatentCut:
class LatentCut(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {"samples": ("LATENT",),
"dim": (["x", "y", "t"], ),
"index": ("INT", {"default": 0, "min": -nodes.MAX_RESOLUTION, "max": nodes.MAX_RESOLUTION, "step": 1}),
"amount": ("INT", {"default": 1, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 1})}}
def define_schema(cls):
return io.Schema(
node_id="LatentCut",
category="latent/advanced",
inputs=[
io.Latent.Input("samples"),
io.Combo.Input("dim", options=["x", "y", "t"]),
io.Int.Input("index", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1),
io.Int.Input("amount", default=1, min=1, max=nodes.MAX_RESOLUTION, step=1),
],
outputs=[
io.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples, dim, index, amount):
@classmethod
def execute(cls, samples, dim, index, amount) -> io.NodeOutput:
samples_out = samples.copy()
s1 = samples["samples"]
@ -171,19 +205,25 @@ class LatentCut:
amount = min(-index, amount)
samples_out["samples"] = torch.narrow(s1, dim, index, amount)
return (samples_out,)
return io.NodeOutput(samples_out)
class LatentBatch:
class LatentBatch(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
def define_schema(cls):
return io.Schema(
node_id="LatentBatch",
category="latent/batch",
inputs=[
io.Latent.Input("samples1"),
io.Latent.Input("samples2"),
],
outputs=[
io.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "batch"
CATEGORY = "latent/batch"
def batch(self, samples1, samples2):
@classmethod
def execute(cls, samples1, samples2) -> io.NodeOutput:
samples_out = samples1.copy()
s1 = samples1["samples"]
s2 = samples2["samples"]
@ -192,20 +232,25 @@ class LatentBatch:
s = torch.cat((s1, s2), dim=0)
samples_out["samples"] = s
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
return (samples_out,)
return io.NodeOutput(samples_out)
class LatentBatchSeedBehavior:
class LatentBatchSeedBehavior(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"seed_behavior": (["random", "fixed"],{"default": "fixed"}),}}
def define_schema(cls):
return io.Schema(
node_id="LatentBatchSeedBehavior",
category="latent/advanced",
inputs=[
io.Latent.Input("samples"),
io.Combo.Input("seed_behavior", options=["random", "fixed"], default="fixed"),
],
outputs=[
io.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples, seed_behavior):
@classmethod
def execute(cls, samples, seed_behavior) -> io.NodeOutput:
samples_out = samples.copy()
latent = samples["samples"]
if seed_behavior == "random":
@ -215,41 +260,50 @@ class LatentBatchSeedBehavior:
batch_number = samples_out.get("batch_index", [0])[0]
samples_out["batch_index"] = [batch_number] * latent.shape[0]
return (samples_out,)
return io.NodeOutput(samples_out)
class LatentApplyOperation:
class LatentApplyOperation(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"operation": ("LATENT_OPERATION",),
}}
def define_schema(cls):
return io.Schema(
node_id="LatentApplyOperation",
category="latent/advanced/operations",
is_experimental=True,
inputs=[
io.Latent.Input("samples"),
io.LatentOperation.Input("operation"),
],
outputs=[
io.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced/operations"
EXPERIMENTAL = True
def op(self, samples, operation):
@classmethod
def execute(cls, samples, operation) -> io.NodeOutput:
samples_out = samples.copy()
s1 = samples["samples"]
samples_out["samples"] = operation(latent=s1)
return (samples_out,)
return io.NodeOutput(samples_out)
class LatentApplyOperationCFG:
class LatentApplyOperationCFG(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"operation": ("LATENT_OPERATION",),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls):
return io.Schema(
node_id="LatentApplyOperationCFG",
category="latent/advanced/operations",
is_experimental=True,
inputs=[
io.Model.Input("model"),
io.LatentOperation.Input("operation"),
],
outputs=[
io.Model.Output(),
],
)
CATEGORY = "latent/advanced/operations"
EXPERIMENTAL = True
def patch(self, model, operation):
@classmethod
def execute(cls, model, operation) -> io.NodeOutput:
m = model.clone()
def pre_cfg_function(args):
@ -261,21 +315,25 @@ class LatentApplyOperationCFG:
return conds_out
m.set_model_sampler_pre_cfg_function(pre_cfg_function)
return (m, )
return io.NodeOutput(m)
class LatentOperationTonemapReinhard:
class LatentOperationTonemapReinhard(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": { "multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
}}
def define_schema(cls):
return io.Schema(
node_id="LatentOperationTonemapReinhard",
category="latent/advanced/operations",
is_experimental=True,
inputs=[
io.Float.Input("multiplier", default=1.0, min=0.0, max=100.0, step=0.01),
],
outputs=[
io.LatentOperation.Output(),
],
)
RETURN_TYPES = ("LATENT_OPERATION",)
FUNCTION = "op"
CATEGORY = "latent/advanced/operations"
EXPERIMENTAL = True
def op(self, multiplier):
@classmethod
def execute(cls, multiplier) -> io.NodeOutput:
def tonemap_reinhard(latent, **kwargs):
latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None]
normalized_latent = latent / latent_vector_magnitude
@ -291,39 +349,27 @@ class LatentOperationTonemapReinhard:
new_magnitude *= top
return normalized_latent * new_magnitude
return (tonemap_reinhard,)
return io.NodeOutput(tonemap_reinhard)
class LatentOperationSharpen:
class LatentOperationSharpen(io.ComfyNode):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sharpen_radius": ("INT", {
"default": 9,
"min": 1,
"max": 31,
"step": 1
}),
"sigma": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 10.0,
"step": 0.1
}),
"alpha": ("FLOAT", {
"default": 0.1,
"min": 0.0,
"max": 5.0,
"step": 0.01
}),
}}
def define_schema(cls):
return io.Schema(
node_id="LatentOperationSharpen",
category="latent/advanced/operations",
is_experimental=True,
inputs=[
io.Int.Input("sharpen_radius", default=9, min=1, max=31, step=1),
io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.1),
io.Float.Input("alpha", default=0.1, min=0.0, max=5.0, step=0.01),
],
outputs=[
io.LatentOperation.Output(),
],
)
RETURN_TYPES = ("LATENT_OPERATION",)
FUNCTION = "op"
CATEGORY = "latent/advanced/operations"
EXPERIMENTAL = True
def op(self, sharpen_radius, sigma, alpha):
@classmethod
def execute(cls, sharpen_radius, sigma, alpha) -> io.NodeOutput:
def sharpen(latent, **kwargs):
luminance = (torch.linalg.vector_norm(latent, dim=(1)) + 1e-6)[:,None]
normalized_latent = latent / luminance
@ -340,19 +386,27 @@ class LatentOperationSharpen:
sharpened = torch.nn.functional.conv2d(padded_image, kernel.repeat(channels, 1, 1).unsqueeze(1), padding=kernel_size // 2, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
return luminance * sharpened
return (sharpen,)
return io.NodeOutput(sharpen)
NODE_CLASS_MAPPINGS = {
"LatentAdd": LatentAdd,
"LatentSubtract": LatentSubtract,
"LatentMultiply": LatentMultiply,
"LatentInterpolate": LatentInterpolate,
"LatentConcat": LatentConcat,
"LatentCut": LatentCut,
"LatentBatch": LatentBatch,
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
"LatentApplyOperation": LatentApplyOperation,
"LatentApplyOperationCFG": LatentApplyOperationCFG,
"LatentOperationTonemapReinhard": LatentOperationTonemapReinhard,
"LatentOperationSharpen": LatentOperationSharpen,
}
class LatentExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
LatentAdd,
LatentSubtract,
LatentMultiply,
LatentInterpolate,
LatentConcat,
LatentCut,
LatentBatch,
LatentBatchSeedBehavior,
LatentApplyOperation,
LatentApplyOperationCFG,
LatentOperationTonemapReinhard,
LatentOperationSharpen,
]
async def comfy_entrypoint() -> LatentExtension:
return LatentExtension()

View File

@ -5,6 +5,8 @@ import folder_paths
import os
import logging
from enum import Enum
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
CLAMP_QUANTILE = 0.99
@ -71,32 +73,40 @@ def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu()
return output_sd
class LoraSave:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
class LoraSave(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="LoraSave",
display_name="Extract and Save Lora",
category="_for_testing",
inputs=[
io.String.Input("filename_prefix", default="loras/ComfyUI_extracted_lora"),
io.Int.Input("rank", default=8, min=1, max=4096, step=1),
io.Combo.Input("lora_type", options=tuple(LORA_TYPES.keys())),
io.Boolean.Input("bias_diff", default=True),
io.Model.Input(
"model_diff",
tooltip="The ModelSubtract output to be converted to a lora.",
optional=True,
),
io.Clip.Input(
"text_encoder_diff",
tooltip="The CLIPSubtract output to be converted to a lora.",
optional=True,
),
],
is_experimental=True,
is_output_node=True,
)
@classmethod
def INPUT_TYPES(s):
return {"required": {"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}),
"rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1}),
"lora_type": (tuple(LORA_TYPES.keys()),),
"bias_diff": ("BOOLEAN", {"default": True}),
},
"optional": {"model_diff": ("MODEL", {"tooltip": "The ModelSubtract output to be converted to a lora."}),
"text_encoder_diff": ("CLIP", {"tooltip": "The CLIPSubtract output to be converted to a lora."})},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "_for_testing"
def save(self, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None):
def execute(cls, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None) -> io.NodeOutput:
if model_diff is None and text_encoder_diff is None:
return {}
return io.NodeOutput()
lora_type = LORA_TYPES.get(lora_type)
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
output_sd = {}
if model_diff is not None:
@ -108,12 +118,16 @@ class LoraSave:
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None)
return {}
return io.NodeOutput()
NODE_CLASS_MAPPINGS = {
"LoraSave": LoraSave
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LoraSave": "Extract and Save Lora"
}
class LoraSaveExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
LoraSave,
]
async def comfy_entrypoint() -> LoraSaveExtension:
return LoraSaveExtension()

View File

@ -1,24 +1,33 @@
from typing_extensions import override
import comfy.utils
from comfy_api.latest import ComfyExtension, io
class PatchModelAddDownscale:
upscale_methods = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"]
class PatchModelAddDownscale(io.ComfyNode):
UPSCALE_METHODS = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"block_number": ("INT", {"default": 3, "min": 1, "max": 32, "step": 1}),
"downscale_factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 9.0, "step": 0.001}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.001}),
"downscale_after_skip": ("BOOLEAN", {"default": True}),
"downscale_method": (s.upscale_methods,),
"upscale_method": (s.upscale_methods,),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
def define_schema(cls):
return io.Schema(
node_id="PatchModelAddDownscale",
display_name="PatchModelAddDownscale (Kohya Deep Shrink)",
category="model_patches/unet",
inputs=[
io.Model.Input("model"),
io.Int.Input("block_number", default=3, min=1, max=32, step=1),
io.Float.Input("downscale_factor", default=2.0, min=0.1, max=9.0, step=0.001),
io.Float.Input("start_percent", default=0.0, min=0.0, max=1.0, step=0.001),
io.Float.Input("end_percent", default=0.35, min=0.0, max=1.0, step=0.001),
io.Boolean.Input("downscale_after_skip", default=True),
io.Combo.Input("downscale_method", options=cls.UPSCALE_METHODS),
io.Combo.Input("upscale_method", options=cls.UPSCALE_METHODS),
],
outputs=[
io.Model.Output(),
],
)
CATEGORY = "model_patches/unet"
def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method):
@classmethod
def execute(cls, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method) -> io.NodeOutput:
model_sampling = model.get_model_object("model_sampling")
sigma_start = model_sampling.percent_to_sigma(start_percent)
sigma_end = model_sampling.percent_to_sigma(end_percent)
@ -41,13 +50,21 @@ class PatchModelAddDownscale:
else:
m.set_model_input_block_patch(input_block_patch)
m.set_model_output_block_patch(output_block_patch)
return (m, )
return io.NodeOutput(m)
NODE_CLASS_MAPPINGS = {
"PatchModelAddDownscale": PatchModelAddDownscale,
}
NODE_DISPLAY_NAME_MAPPINGS = {
# Sampling
"PatchModelAddDownscale": "PatchModelAddDownscale (Kohya Deep Shrink)",
"PatchModelAddDownscale": "",
}
class ModelDownscaleExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
PatchModelAddDownscale,
]
async def comfy_entrypoint() -> ModelDownscaleExtension:
return ModelDownscaleExtension()

View File

@ -61,7 +61,6 @@ messages_control.disable = [
# next warnings should be fixed in future
"bad-classmethod-argument", # Class method should have 'cls' as first argument
"wrong-import-order", # Standard imports should be placed before third party imports
"logging-fstring-interpolation", # Use lazy % formatting in logging functions
"ungrouped-imports",
"unnecessary-pass",
"unnecessary-lambda-assignment",