mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-10 14:20:49 +08:00
Merge branch 'master' into controlnet-annotator
This commit is contained in:
commit
fd21cbb13e
@ -186,7 +186,10 @@ def load_embed(embedding_name, embedding_directory):
|
|||||||
import safetensors.torch
|
import safetensors.torch
|
||||||
embed = safetensors.torch.load_file(embed_path, device="cpu")
|
embed = safetensors.torch.load_file(embed_path, device="cpu")
|
||||||
else:
|
else:
|
||||||
|
if 'weights_only' in torch.load.__code__.co_varnames:
|
||||||
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
|
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
|
||||||
|
else:
|
||||||
|
embed = torch.load(embed_path, map_location="cpu")
|
||||||
if 'string_to_param' in embed:
|
if 'string_to_param' in embed:
|
||||||
values = embed['string_to_param'].values()
|
values = embed['string_to_param'].values()
|
||||||
else:
|
else:
|
||||||
|
|||||||
71
models/configs/v1-inpainting-inference.yaml
Normal file
71
models/configs/v1-inpainting-inference.yaml
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
model:
|
||||||
|
base_learning_rate: 7.5e-05
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 64
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: false # Note: different from the one we trained before
|
||||||
|
conditioning_key: hybrid # important
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.18215
|
||||||
|
finetune_keys: null
|
||||||
|
|
||||||
|
scheduler_config: # 10000 warmup steps
|
||||||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||||
|
params:
|
||||||
|
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
|
||||||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||||
|
f_start: [ 1.e-6 ]
|
||||||
|
f_max: [ 1. ]
|
||||||
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 32 # unused
|
||||||
|
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 768
|
||||||
|
use_checkpoint: True
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||||
|
|
||||||
3
nodes.py
3
nodes.py
@ -759,8 +759,7 @@ def load_custom_nodes():
|
|||||||
for possible_module in possible_modules:
|
for possible_module in possible_modules:
|
||||||
module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
|
module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
|
||||||
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
|
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
|
||||||
|
module_name = possible_module
|
||||||
module_name = os.path.basename(module_path)
|
|
||||||
try:
|
try:
|
||||||
if os.path.isfile(module_path):
|
if os.path.isfile(module_path):
|
||||||
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
|
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user