diff --git a/.github/workflows/windows_release_nightly_pytorch.yml b/.github/workflows/windows_release_nightly_pytorch.yml
index c7ef93ce1..319942e7c 100644
--- a/.github/workflows/windows_release_nightly_pytorch.yml
+++ b/.github/workflows/windows_release_nightly_pytorch.yml
@@ -31,7 +31,7 @@ jobs:
echo 'import site' >> ./python311._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
- python -m pip wheel torch torchvision torchaudio aiohttp==3.8.4 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
+ python -m pip wheel torch torchvision torchaudio aiohttp==3.8.5 --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
ls ../temp_wheel_dir
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
sed -i '1i../ComfyUI' ./python311._pth
diff --git a/README.md b/README.md
index b055325ed..baa8cf8b6 100644
--- a/README.md
+++ b/README.md
@@ -47,6 +47,7 @@ Workflow examples can be found on the [Examples page](https://comfyanonymous.git
| Ctrl + O | Load workflow |
| Ctrl + A | Select all nodes |
| Ctrl + M | Mute/unmute selected nodes |
+| Ctrl + B | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
| Delete/Backspace | Delete selected nodes |
| Ctrl + Delete/Backspace | Delete the current graph |
| Space | Move the canvas around when held and moving the cursor |
diff --git a/comfy/cli_args.py b/comfy/cli_args.py
index ec7d34a55..374dd2f7d 100644
--- a/comfy/cli_args.py
+++ b/comfy/cli_args.py
@@ -82,6 +82,9 @@ vram_group.add_argument("--novram", action="store_true", help="When lowvram isn'
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
+parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
+
+
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
diff --git a/comfy/clip_vision.py b/comfy/clip_vision.py
index 8d04faf71..2c8603bbe 100644
--- a/comfy/clip_vision.py
+++ b/comfy/clip_vision.py
@@ -25,6 +25,7 @@ class ClipVisionModel():
def encode_image(self, image):
img = torch.clip((255. * image), 0, 255).round().int()
+ img = list(map(lambda a: a, img))
inputs = self.processor(images=img, return_tensors="pt")
outputs = self.model(**inputs)
return outputs
diff --git a/comfy/gligen.py b/comfy/gligen.py
index 90558785b..8d182839e 100644
--- a/comfy/gligen.py
+++ b/comfy/gligen.py
@@ -244,30 +244,15 @@ class Gligen(nn.Module):
self.position_net = position_net
self.key_dim = key_dim
self.max_objs = 30
- self.lowvram = False
+ self.current_device = torch.device("cpu")
def _set_position(self, boxes, masks, positive_embeddings):
- if self.lowvram == True:
- self.position_net.to(boxes.device)
-
objs = self.position_net(boxes, masks, positive_embeddings)
-
- if self.lowvram == True:
- self.position_net.cpu()
- def func_lowvram(x, extra_options):
- key = extra_options["transformer_index"]
- module = self.module_list[key]
- module.to(x.device)
- r = module(x, objs)
- module.cpu()
- return r
- return func_lowvram
- else:
- def func(x, extra_options):
- key = extra_options["transformer_index"]
- module = self.module_list[key]
- return module(x, objs)
- return func
+ def func(x, extra_options):
+ key = extra_options["transformer_index"]
+ module = self.module_list[key]
+ return module(x, objs)
+ return func
def set_position(self, latent_image_shape, position_params, device):
batch, c, h, w = latent_image_shape
@@ -312,14 +297,6 @@ class Gligen(nn.Module):
masks.to(device),
conds.to(device))
- def set_lowvram(self, value=True):
- self.lowvram = value
-
- def cleanup(self):
- self.lowvram = False
-
- def get_models(self):
- return [self]
def load_gligen(sd):
sd_k = sd.keys()
diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py
index beaa623f3..eb088d92b 100644
--- a/comfy/k_diffusion/sampling.py
+++ b/comfy/k_diffusion/sampling.py
@@ -649,7 +649,7 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
s_in = x.new_ones([x.shape[0]])
denoised_1, denoised_2 = None, None
- h_1, h_2 = None, None
+ h, h_1, h_2 = None, None, None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
diff --git a/comfy/model_detection.py b/comfy/model_detection.py
index 49ee9ea70..0edc4f180 100644
--- a/comfy/model_detection.py
+++ b/comfy/model_detection.py
@@ -121,9 +121,20 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_fp16):
return model_config_from_unet_config(unet_config)
-def model_config_from_diffusers_unet(state_dict, use_fp16):
+def unet_config_from_diffusers_unet(state_dict, use_fp16):
match = {}
- match["context_dim"] = state_dict["down_blocks.1.attentions.1.transformer_blocks.0.attn2.to_k.weight"].shape[1]
+ attention_resolutions = []
+
+ attn_res = 1
+ for i in range(5):
+ k = "down_blocks.{}.attentions.1.transformer_blocks.0.attn2.to_k.weight".format(i)
+ if k in state_dict:
+ match["context_dim"] = state_dict[k].shape[1]
+ attention_resolutions.append(attn_res)
+ attn_res *= 2
+
+ match["attention_resolutions"] = attention_resolutions
+
match["model_channels"] = state_dict["conv_in.weight"].shape[0]
match["in_channels"] = state_dict["conv_in.weight"].shape[1]
match["adm_in_channels"] = None
@@ -135,22 +146,22 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
- 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048}
+ 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2560, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 384,
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4],
- 'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280}
+ 'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280, "num_head_channels": 64}
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
- 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
+ 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2048, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
- 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
+ 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 1536, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
@@ -160,9 +171,20 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'adm_in_channels': None, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
- 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768}
+ 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, "num_heads": 8}
- supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl]
+ SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
+ 'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
+ 'num_res_blocks': 2, 'attention_resolutions': [4], 'transformer_depth': [0, 0, 1], 'channel_mult': [1, 2, 4],
+ 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
+
+ SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
+ 'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': use_fp16, 'in_channels': 4, 'model_channels': 320,
+ 'num_res_blocks': 2, 'attention_resolutions': [], 'transformer_depth': [0, 0, 0], 'channel_mult': [1, 2, 4],
+ 'transformer_depth_middle': 0, 'use_linear_in_transformer': True, "num_head_channels": 64, 'context_dim': 1}
+
+
+ supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet]
for unet_config in supported_models:
matches = True
@@ -171,5 +193,11 @@ def model_config_from_diffusers_unet(state_dict, use_fp16):
matches = False
break
if matches:
- return model_config_from_unet_config(unet_config)
+ return unet_config
+ return None
+
+def model_config_from_diffusers_unet(state_dict, use_fp16):
+ unet_config = unet_config_from_diffusers_unet(state_dict, use_fp16)
+ if unet_config is not None:
+ return model_config_from_unet_config(unet_config)
return None
diff --git a/comfy/model_management.py b/comfy/model_management.py
index 4dd15b41c..5c5d5ab74 100644
--- a/comfy/model_management.py
+++ b/comfy/model_management.py
@@ -2,6 +2,7 @@ import psutil
from enum import Enum
from comfy.cli_args import args
import torch
+import sys
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
@@ -201,6 +202,10 @@ if cpu_state == CPUState.MPS:
print(f"Set vram state to: {vram_state.name}")
+DISABLE_SMART_MEMORY = args.disable_smart_memory
+
+if DISABLE_SMART_MEMORY:
+ print("Disabling smart memory management")
def get_torch_device_name(device):
if hasattr(device, 'type'):
@@ -221,132 +226,164 @@ except:
print("Could not pick default device.")
-current_loaded_model = None
-current_gpu_controlnets = []
+current_loaded_models = []
-model_accelerated = False
+class LoadedModel:
+ def __init__(self, model):
+ self.model = model
+ self.model_accelerated = False
+ self.device = model.load_device
+ def model_memory(self):
+ return self.model.model_size()
-def unload_model():
- global current_loaded_model
- global model_accelerated
- global current_gpu_controlnets
- global vram_state
+ def model_memory_required(self, device):
+ if device == self.model.current_device:
+ return 0
+ else:
+ return self.model_memory()
- if current_loaded_model is not None:
- if model_accelerated:
- accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
- model_accelerated = False
+ def model_load(self, lowvram_model_memory=0):
+ patch_model_to = None
+ if lowvram_model_memory == 0:
+ patch_model_to = self.device
- current_loaded_model.unpatch_model()
- current_loaded_model.model.to(current_loaded_model.offload_device)
- current_loaded_model.model_patches_to(current_loaded_model.offload_device)
- current_loaded_model = None
- if vram_state != VRAMState.HIGH_VRAM:
- soft_empty_cache()
+ self.model.model_patches_to(self.device)
+ self.model.model_patches_to(self.model.model_dtype())
- if vram_state != VRAMState.HIGH_VRAM:
- if len(current_gpu_controlnets) > 0:
- for n in current_gpu_controlnets:
- n.cpu()
- current_gpu_controlnets = []
+ try:
+ self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
+ except Exception as e:
+ self.model.unpatch_model(self.model.offload_device)
+ self.model_unload()
+ raise e
+
+ if lowvram_model_memory > 0:
+ print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
+ device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
+ accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
+ self.model_accelerated = True
+
+ return self.real_model
+
+ def model_unload(self):
+ if self.model_accelerated:
+ accelerate.hooks.remove_hook_from_submodules(self.real_model)
+ self.model_accelerated = False
+
+ self.model.unpatch_model(self.model.offload_device)
+ self.model.model_patches_to(self.model.offload_device)
+
+ def __eq__(self, other):
+ return self.model is other.model
def minimum_inference_memory():
- return (768 * 1024 * 1024)
+ return (1024 * 1024 * 1024)
+
+def unload_model_clones(model):
+ to_unload = []
+ for i in range(len(current_loaded_models)):
+ if model.is_clone(current_loaded_models[i].model):
+ to_unload = [i] + to_unload
+
+ for i in to_unload:
+ print("unload clone", i)
+ current_loaded_models.pop(i).model_unload()
+
+def free_memory(memory_required, device, keep_loaded=[]):
+ unloaded_model = False
+ for i in range(len(current_loaded_models) -1, -1, -1):
+ if DISABLE_SMART_MEMORY:
+ current_free_mem = 0
+ else:
+ current_free_mem = get_free_memory(device)
+ if current_free_mem > memory_required:
+ break
+ shift_model = current_loaded_models[i]
+ if shift_model.device == device:
+ if shift_model not in keep_loaded:
+ current_loaded_models.pop(i).model_unload()
+ unloaded_model = True
+
+ if unloaded_model:
+ soft_empty_cache()
+
+
+def load_models_gpu(models, memory_required=0):
+ global vram_state
+
+ inference_memory = minimum_inference_memory()
+ extra_mem = max(inference_memory, memory_required)
+
+ models_to_load = []
+ models_already_loaded = []
+ for x in models:
+ loaded_model = LoadedModel(x)
+
+ if loaded_model in current_loaded_models:
+ index = current_loaded_models.index(loaded_model)
+ current_loaded_models.insert(0, current_loaded_models.pop(index))
+ models_already_loaded.append(loaded_model)
+ else:
+ models_to_load.append(loaded_model)
+
+ if len(models_to_load) == 0:
+ devs = set(map(lambda a: a.device, models_already_loaded))
+ for d in devs:
+ if d != torch.device("cpu"):
+ free_memory(extra_mem, d, models_already_loaded)
+ return
+
+ print("loading new")
+
+ total_memory_required = {}
+ for loaded_model in models_to_load:
+ unload_model_clones(loaded_model.model)
+ total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
+
+ for device in total_memory_required:
+ if device != torch.device("cpu"):
+ free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
+
+ for loaded_model in models_to_load:
+ model = loaded_model.model
+ torch_dev = model.load_device
+ if is_device_cpu(torch_dev):
+ vram_set_state = VRAMState.DISABLED
+ else:
+ vram_set_state = vram_state
+ lowvram_model_memory = 0
+ if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
+ model_size = loaded_model.model_memory_required(torch_dev)
+ current_free_mem = get_free_memory(torch_dev)
+ lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
+ if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
+ vram_set_state = VRAMState.LOW_VRAM
+ else:
+ lowvram_model_memory = 0
+
+ if vram_set_state == VRAMState.NO_VRAM:
+ lowvram_model_memory = 256 * 1024 * 1024
+
+ cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
+ current_loaded_models.insert(0, loaded_model)
+ return
+
def load_model_gpu(model):
- global current_loaded_model
- global vram_state
- global model_accelerated
+ return load_models_gpu([model])
- if model is current_loaded_model:
- return
- unload_model()
+def cleanup_models():
+ to_delete = []
+ for i in range(len(current_loaded_models)):
+ print(sys.getrefcount(current_loaded_models[i].model))
+ if sys.getrefcount(current_loaded_models[i].model) <= 2:
+ to_delete = [i] + to_delete
- torch_dev = model.load_device
- model.model_patches_to(torch_dev)
- model.model_patches_to(model.model_dtype())
- current_loaded_model = model
-
- if is_device_cpu(torch_dev):
- vram_set_state = VRAMState.DISABLED
- else:
- vram_set_state = vram_state
-
- if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
- model_size = model.model_size()
- current_free_mem = get_free_memory(torch_dev)
- lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
- if model_size > (current_free_mem - minimum_inference_memory()): #only switch to lowvram if really necessary
- vram_set_state = VRAMState.LOW_VRAM
-
- real_model = model.model
- patch_model_to = None
- if vram_set_state == VRAMState.DISABLED:
- pass
- elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM or vram_set_state == VRAMState.SHARED:
- model_accelerated = False
- patch_model_to = torch_dev
-
- try:
- real_model = model.patch_model(device_to=patch_model_to)
- except Exception as e:
- model.unpatch_model()
- unload_model()
- raise e
-
- if patch_model_to is not None:
- real_model.to(torch_dev)
-
- if vram_set_state == VRAMState.NO_VRAM:
- device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
- accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
- model_accelerated = True
- elif vram_set_state == VRAMState.LOW_VRAM:
- device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
- accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
- model_accelerated = True
-
- return current_loaded_model
-
-def load_controlnet_gpu(control_models):
- global current_gpu_controlnets
- global vram_state
- if vram_state == VRAMState.DISABLED:
- return
-
- if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
- for m in control_models:
- if hasattr(m, 'set_lowvram'):
- m.set_lowvram(True)
- #don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
- return
-
- models = []
- for m in control_models:
- models += m.get_models()
-
- for m in current_gpu_controlnets:
- if m not in models:
- m.cpu()
-
- device = get_torch_device()
- current_gpu_controlnets = []
- for m in models:
- current_gpu_controlnets.append(m.to(device))
-
-
-def load_if_low_vram(model):
- global vram_state
- if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
- return model.to(get_torch_device())
- return model
-
-def unload_if_low_vram(model):
- global vram_state
- if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
- return model.cpu()
- return model
+ for i in to_delete:
+ x = current_loaded_models.pop(i)
+ x.model_unload()
+ del x
def unet_offload_device():
if vram_state == VRAMState.HIGH_VRAM:
@@ -354,6 +391,25 @@ def unet_offload_device():
else:
return torch.device("cpu")
+def unet_inital_load_device(parameters, dtype):
+ torch_dev = get_torch_device()
+ if vram_state == VRAMState.HIGH_VRAM:
+ return torch_dev
+
+ cpu_dev = torch.device("cpu")
+ dtype_size = 4
+ if dtype == torch.float16 or dtype == torch.bfloat16:
+ dtype_size = 2
+
+ model_size = dtype_size * parameters
+
+ mem_dev = get_free_memory(torch_dev)
+ mem_cpu = get_free_memory(cpu_dev)
+ if mem_dev > mem_cpu and model_size < mem_dev:
+ return torch_dev
+ else:
+ return cpu_dev
+
def text_encoder_offload_device():
if args.gpu_only:
return get_torch_device()
@@ -456,6 +512,13 @@ def get_free_memory(dev=None, torch_free_too=False):
else:
return mem_free_total
+def batch_area_memory(area):
+ if xformers_enabled() or pytorch_attention_flash_attention():
+ #TODO: these formulas are copied from maximum_batch_area below
+ return (area / 20) * (1024 * 1024)
+ else:
+ return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
+
def maximum_batch_area():
global vram_state
if vram_state == VRAMState.NO_VRAM:
diff --git a/comfy/sample.py b/comfy/sample.py
index 48530f132..d7292024e 100644
--- a/comfy/sample.py
+++ b/comfy/sample.py
@@ -51,19 +51,24 @@ def get_models_from_cond(cond, model_type):
models += [c[1][model_type]]
return models
-def load_additional_models(positive, negative, dtype):
+def get_additional_models(positive, negative):
"""loads additional models in positive and negative conditioning"""
- control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")
+ control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
+
+ control_models = []
+ for m in control_nets:
+ control_models += m.get_models()
+
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
- gligen = [x[1].to(dtype) for x in gligen]
- models = control_nets + gligen
- comfy.model_management.load_controlnet_gpu(models)
+ gligen = [x[1] for x in gligen]
+ models = control_models + gligen
return models
def cleanup_additional_models(models):
"""cleanup additional models that were loaded"""
for m in models:
- m.cleanup()
+ if hasattr(m, 'cleanup'):
+ m.cleanup()
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
device = comfy.model_management.get_torch_device()
@@ -72,7 +77,8 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
noise_mask = prepare_mask(noise_mask, noise.shape, device)
real_model = None
- comfy.model_management.load_model_gpu(model)
+ models = get_additional_models(positive, negative)
+ comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]))
real_model = model.model
noise = noise.to(device)
@@ -81,7 +87,6 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
positive_copy = broadcast_cond(positive, noise.shape[0], device)
negative_copy = broadcast_cond(negative, noise.shape[0], device)
- models = load_additional_models(positive, negative, model.model_dtype())
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
diff --git a/comfy/samplers.py b/comfy/samplers.py
index 28cd46667..ee37913e6 100644
--- a/comfy/samplers.py
+++ b/comfy/samplers.py
@@ -88,9 +88,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
gligen_type = gligen[0]
gligen_model = gligen[1]
if gligen_type == "position":
- gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
+ gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
else:
- gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)
+ gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
patches['middle_patch'] = [gligen_patch]
diff --git a/comfy/sd.py b/comfy/sd.py
index bff9ee141..461c234db 100644
--- a/comfy/sd.py
+++ b/comfy/sd.py
@@ -244,7 +244,7 @@ def set_attr(obj, attr, value):
del prev
class ModelPatcher:
- def __init__(self, model, load_device, offload_device, size=0):
+ def __init__(self, model, load_device, offload_device, size=0, current_device=None):
self.size = size
self.model = model
self.patches = {}
@@ -253,6 +253,10 @@ class ModelPatcher:
self.model_size()
self.load_device = load_device
self.offload_device = offload_device
+ if current_device is None:
+ self.current_device = self.offload_device
+ else:
+ self.current_device = current_device
def model_size(self):
if self.size > 0:
@@ -267,7 +271,7 @@ class ModelPatcher:
return size
def clone(self):
- n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size)
+ n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
@@ -276,6 +280,11 @@ class ModelPatcher:
n.model_keys = self.model_keys
return n
+ def is_clone(self, other):
+ if hasattr(other, 'model') and self.model is other.model:
+ return True
+ return False
+
def set_model_sampler_cfg_function(self, sampler_cfg_function):
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
@@ -390,6 +399,11 @@ class ModelPatcher:
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
set_attr(self.model, key, out_weight)
del temp_weight
+
+ if device_to is not None:
+ self.model.to(device_to)
+ self.current_device = device_to
+
return self.model
def calculate_weight(self, patches, weight, key):
@@ -482,7 +496,7 @@ class ModelPatcher:
return weight
- def unpatch_model(self):
+ def unpatch_model(self, device_to=None):
keys = list(self.backup.keys())
for k in keys:
@@ -490,6 +504,11 @@ class ModelPatcher:
self.backup = {}
+ if device_to is not None:
+ self.model.to(device_to)
+ self.current_device = device_to
+
+
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
key_map = model_lora_keys_unet(model.model)
key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
@@ -555,7 +574,7 @@ class CLIP:
else:
self.cond_stage_model.reset_clip_layer()
- model_management.load_model_gpu(self.patcher)
+ self.load_model()
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
if return_pooled:
return cond, pooled
@@ -571,11 +590,9 @@ class CLIP:
def get_sd(self):
return self.cond_stage_model.state_dict()
- def patch_model(self):
- self.patcher.patch_model()
-
- def unpatch_model(self):
- self.patcher.unpatch_model()
+ def load_model(self):
+ model_management.load_model_gpu(self.patcher)
+ return self.patcher
def get_key_patches(self):
return self.patcher.get_key_patches()
@@ -630,11 +647,12 @@ class VAE:
return samples
def decode(self, samples_in):
- model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
try:
+ memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.4
+ model_management.free_memory(memory_used, self.device)
free_memory = model_management.get_free_memory(self.device)
- batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
+ batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
@@ -650,19 +668,19 @@ class VAE:
return pixel_samples
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
- model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
self.first_stage_model = self.first_stage_model.to(self.offload_device)
return output.movedim(1,-1)
def encode(self, pixel_samples):
- model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1)
try:
+ memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.4 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
+ model_management.free_memory(memory_used, self.device)
free_memory = model_management.get_free_memory(self.device)
- batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
+ batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
for x in range(0, pixel_samples.shape[0], batch_number):
@@ -677,7 +695,6 @@ class VAE:
return samples
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
- model_management.unload_model()
self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1)
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
@@ -757,6 +774,7 @@ class ControlNet(ControlBase):
def __init__(self, control_model, global_average_pooling=False, device=None):
super().__init__(device)
self.control_model = control_model
+ self.control_model_wrapped = ModelPatcher(self.control_model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
self.global_average_pooling = global_average_pooling
def get_control(self, x_noisy, t, cond, batched_number):
@@ -786,11 +804,9 @@ class ControlNet(ControlBase):
precision_scope = contextlib.nullcontext
with precision_scope(model_management.get_autocast_device(self.device)):
- self.control_model = model_management.load_if_low_vram(self.control_model)
context = torch.cat(cond['c_crossattn'], 1)
y = cond.get('c_adm', None)
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
- self.control_model = model_management.unload_if_low_vram(self.control_model)
out = {'middle':[], 'output': []}
autocast_enabled = torch.is_autocast_enabled()
@@ -825,7 +841,7 @@ class ControlNet(ControlBase):
def get_models(self):
out = super().get_models()
- out.append(self.control_model)
+ out.append(self.control_model_wrapped)
return out
@@ -835,7 +851,7 @@ def load_controlnet(ckpt_path, model=None):
controlnet_config = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
use_fp16 = model_management.should_use_fp16()
- controlnet_config = model_detection.model_config_from_diffusers_unet(controlnet_data, use_fp16).unet_config
+ controlnet_config = model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
diffusers_keys = utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
@@ -874,6 +890,9 @@ def load_controlnet(ckpt_path, model=None):
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
+ leftover_keys = controlnet_data.keys()
+ if len(leftover_keys) > 0:
+ print("leftover keys:", leftover_keys)
controlnet_data = new_sd
pth_key = 'control_model.zero_convs.0.0.weight'
@@ -901,8 +920,8 @@ def load_controlnet(ckpt_path, model=None):
if pth:
if 'difference' in controlnet_data:
if model is not None:
- m = model.patch_model()
- model_sd = m.state_dict()
+ model_management.load_models_gpu([model])
+ model_sd = model.model_state_dict()
for x in controlnet_data:
c_m = "control_model."
if x.startswith(c_m):
@@ -910,7 +929,6 @@ def load_controlnet(ckpt_path, model=None):
if sd_key in model_sd:
cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
- model.unpatch_model()
else:
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
@@ -1001,7 +1019,6 @@ class T2IAdapter(ControlBase):
self.copy_to(c)
return c
-
def load_t2i_adapter(t2i_data):
keys = t2i_data.keys()
if 'adapter' in keys:
@@ -1087,7 +1104,7 @@ def load_gligen(ckpt_path):
model = gligen.load_gligen(data)
if model_management.should_use_fp16():
model = model.half()
- return model
+ return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
#TODO: this function is a mess and should be removed eventually
@@ -1199,8 +1216,13 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if output_clipvision:
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
+ dtype = torch.float32
+ if fp16:
+ dtype = torch.float16
+
+ inital_load_device = model_management.unet_inital_load_device(parameters, dtype)
offload_device = model_management.unet_offload_device()
- model = model_config.get_model(sd, "model.diffusion_model.", device=offload_device)
+ model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
model.load_model_weights(sd, "model.diffusion_model.")
if output_vae:
@@ -1221,7 +1243,12 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if len(left_over) > 0:
print("left over keys:", left_over)
- return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae, clipvision)
+ model_patcher = ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
+ if inital_load_device != torch.device("cpu"):
+ print("loaded straight to GPU")
+ model_management.load_model_gpu(model_patcher)
+
+ return (model_patcher, clip, vae, clipvision)
def load_unet(unet_path): #load unet in diffusers format
@@ -1249,14 +1276,6 @@ def load_unet(unet_path): #load unet in diffusers format
return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
def save_checkpoint(output_path, model, clip, vae, metadata=None):
- try:
- model.patch_model()
- clip.patch_model()
- sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
- utils.save_torch_file(sd, output_path, metadata=metadata)
- model.unpatch_model()
- clip.unpatch_model()
- except Exception as e:
- model.unpatch_model()
- clip.unpatch_model()
- raise e
+ model_management.load_models_gpu([model, clip.load_model()])
+ sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
+ utils.save_torch_file(sd, output_path, metadata=metadata)
diff --git a/comfy_extras/nodes_mask.py b/comfy_extras/nodes_mask.py
index b80c8b9a2..5adb468ac 100644
--- a/comfy_extras/nodes_mask.py
+++ b/comfy_extras/nodes_mask.py
@@ -1,15 +1,19 @@
+import numpy as np
+from scipy.ndimage import grey_dilation
import torch
from nodes import MAX_RESOLUTION
-def composite(destination, source, x, y, mask = None, multiplier = 8):
+def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
+ if resize_source:
+ source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
+
x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))
left, top = (x // multiplier, y // multiplier)
right, bottom = (left + source.shape[3], top + source.shape[2],)
-
if mask is None:
mask = torch.ones_like(source)
else:
@@ -40,6 +44,7 @@ class LatentCompositeMasked:
"source": ("LATENT",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
+ "resize_source": ("BOOLEAN", {"default": False}),
},
"optional": {
"mask": ("MASK",),
@@ -50,11 +55,11 @@ class LatentCompositeMasked:
CATEGORY = "latent"
- def composite(self, destination, source, x, y, mask = None):
+ def composite(self, destination, source, x, y, resize_source, mask = None):
output = destination.copy()
destination = destination["samples"].clone()
source = source["samples"]
- output["samples"] = composite(destination, source, x, y, mask, 8)
+ output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
return (output,)
class ImageCompositeMasked:
@@ -66,6 +71,7 @@ class ImageCompositeMasked:
"source": ("IMAGE",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
+ "resize_source": ("BOOLEAN", {"default": False}),
},
"optional": {
"mask": ("MASK",),
@@ -76,9 +82,9 @@ class ImageCompositeMasked:
CATEGORY = "image"
- def composite(self, destination, source, x, y, mask = None):
+ def composite(self, destination, source, x, y, resize_source, mask = None):
destination = destination.clone().movedim(-1, 1)
- output = composite(destination, source.movedim(-1, 1), x, y, mask, 1).movedim(1, -1)
+ output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
return (output,)
class MaskToImage:
@@ -272,6 +278,35 @@ class FeatherMask:
output[-y, :] *= feather_rate
return (output,)
+
+class GrowMask:
+ @classmethod
+ def INPUT_TYPES(cls):
+ return {
+ "required": {
+ "mask": ("MASK",),
+ "expand": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
+ "tapered_corners": ("BOOLEAN", {"default": True}),
+ },
+ }
+
+ CATEGORY = "mask"
+
+ RETURN_TYPES = ("MASK",)
+
+ FUNCTION = "expand_mask"
+
+ def expand_mask(self, mask, expand, tapered_corners):
+ c = 0 if tapered_corners else 1
+ kernel = np.array([[c, 1, c],
+ [1, 1, 1],
+ [c, 1, c]])
+ output = mask.numpy().copy()
+ while expand > 0:
+ output = grey_dilation(output, footprint=kernel)
+ expand -= 1
+ output = torch.from_numpy(output)
+ return (output,)
@@ -285,6 +320,7 @@ NODE_CLASS_MAPPINGS = {
"CropMask": CropMask,
"MaskComposite": MaskComposite,
"FeatherMask": FeatherMask,
+ "GrowMask": GrowMask,
}
NODE_DISPLAY_NAME_MAPPINGS = {
diff --git a/comfy_extras/nodes_post_processing.py b/comfy_extras/nodes_post_processing.py
index a138b292e..51bdb24fa 100644
--- a/comfy_extras/nodes_post_processing.py
+++ b/comfy_extras/nodes_post_processing.py
@@ -2,6 +2,7 @@ import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
+import math
import comfy.utils
@@ -209,9 +210,36 @@ class Sharpen:
return (result,)
+class ImageScaleToTotalPixels:
+ upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
+ crop_methods = ["disabled", "center"]
+
+ @classmethod
+ def INPUT_TYPES(s):
+ return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
+ "megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
+ }}
+ RETURN_TYPES = ("IMAGE",)
+ FUNCTION = "upscale"
+
+ CATEGORY = "image/upscaling"
+
+ def upscale(self, image, upscale_method, megapixels):
+ samples = image.movedim(-1,1)
+ total = int(megapixels * 1024 * 1024)
+
+ scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
+ width = round(samples.shape[3] * scale_by)
+ height = round(samples.shape[2] * scale_by)
+
+ s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
+ s = s.movedim(1,-1)
+ return (s,)
+
NODE_CLASS_MAPPINGS = {
"ImageBlend": Blend,
"ImageBlur": Blur,
"ImageQuantize": Quantize,
"ImageSharpen": Sharpen,
+ "ImageScaleToTotalPixels": ImageScaleToTotalPixels,
}
diff --git a/execution.py b/execution.py
index a1a7c75c8..e10fdbb60 100644
--- a/execution.py
+++ b/execution.py
@@ -354,6 +354,7 @@ class PromptExecutor:
d = self.outputs_ui.pop(x)
del d
+ comfy.model_management.cleanup_models()
if self.server.client_id is not None:
self.server.send_sync("execution_cached", { "nodes": list(current_outputs) , "prompt_id": prompt_id}, self.server.client_id)
executed = set()
diff --git a/nodes.py b/nodes.py
index f9057c97b..057a7e95f 100644
--- a/nodes.py
+++ b/nodes.py
@@ -1588,6 +1588,28 @@ class ImageBatch:
s = torch.cat((image1, image2), dim=0)
return (s,)
+class EmptyImage:
+ def __init__(self, device="cpu"):
+ self.device = device
+
+ @classmethod
+ def INPUT_TYPES(s):
+ return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
+ "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
+ "batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
+ "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
+ }}
+ RETURN_TYPES = ("IMAGE",)
+ FUNCTION = "generate"
+
+ CATEGORY = "image"
+
+ def generate(self, width, height, batch_size=1, color=0):
+ r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
+ g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
+ b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
+ return (torch.cat((r, g, b), dim=-1), )
+
class ImagePadForOutpaint:
@classmethod
@@ -1674,6 +1696,7 @@ NODE_CLASS_MAPPINGS = {
"ImageInvert": ImageInvert,
"ImageBatch": ImageBatch,
"ImagePadForOutpaint": ImagePadForOutpaint,
+ "EmptyImage": EmptyImage,
"ConditioningAverage ": ConditioningAverage ,
"ConditioningCombine": ConditioningCombine,
"ConditioningConcat": ConditioningConcat,
diff --git a/web/index.html b/web/index.html
index 71067d993..41bc246c0 100644
--- a/web/index.html
+++ b/web/index.html
@@ -6,6 +6,7 @@
+