Commit Graph

138 Commits

Author SHA1 Message Date
Xiaoyu Xu
1aa562917d
Merge 5495b55ab2 into 5ac3b26a7d 2025-12-14 11:02:38 +01:00
comfyanonymous
da2bfb5b0a
Basic implementation of z image fun control union 2.0 (#11304)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
The inpaint part is currently missing and will be implemented later.

I think they messed up this model pretty bad. They added some
control_noise_refiner blocks but don't actually use them. There is a typo
in their code so instead of doing control_noise_refiner -> control_layers
it runs the whole control_layers twice.

Unfortunately they trained with this typo so the model works but is kind
of slow and would probably perform a lot better if they corrected their
code and trained it again.
2025-12-13 01:39:11 -05:00
strint
5495b55ab2 rm useless 2025-12-12 18:03:09 +08:00
Xiaoyu Xu
1122cd0f6b
allow offload quant (#10)
* allow offload quant

* rm cuda

* refine and pass test
2025-12-09 18:07:09 +08:00
rattus
e136b6dbb0
dequantization offload accounting (fixes Flux2 OOMs - incl TEs) (#11171)
* make setattr safe for non existent attributes

Handle the case where the attribute doesnt exist by returning a static
sentinel (distinct from None). If the sentinel is passed in as the set
value, del the attr.

* Account for dequantization and type-casts in offload costs

When measuring the cost of offload, identify weights that need a type
change or dequantization and add the size of the conversion result
to the offload cost.

This is mutually exclusive with lowvram patches which already has
a large conservative estimate and wont overlap the dequant cost so\
dont double count.

* Set the compute type on CLIP MPs

So that the loader can know the size of weights for dequant accounting.
2025-12-08 23:21:31 -05:00
comfyanonymous
d50f342c90
Fix potential issue. (#11201) 2025-12-08 23:20:04 -05:00
comfyanonymous
3b0368aa34
Fix regression. (#11194) 2025-12-08 17:38:36 -05:00
rattus
60ee574748
retune lowVramPatch VRAM accounting (#11173)
In the lowvram case, this now does its math in the model dtype in the
post de-quantization domain. Account for that. The patching was also
put back on the compute stream getting it off-peak so relax the
MATH_FACTOR to only x2 so get out of the worst-case assumption of
everything peaking at once.
2025-12-08 15:18:06 -05:00
Yao Chi
211fa31880
Merge branch 'master' into refine_offload 2025-12-08 15:54:11 +08:00
rattus
4086acf3c2
Fix on-load VRAM OOM (#11144)
slow down the CPU on model load to not run ahead. This fixes a VRAM on
flux 2 load.

I went to try and debug this with the memory trace pickles, which needs
--disable-cuda-malloc which made the bug go away. So I tried this
synchronize and it worked.

The has some very complex interactions with the cuda malloc async and
I dont have solid theory on this one yet.

Still debugging but this gets us over the OOM for the moment.
2025-12-06 18:42:09 -05:00
comfyanonymous
50ca97e776
Speed up lora compute and lower memory usage by doing it in fp16. (#11161) 2025-12-06 18:36:20 -05:00
comfyanonymous
43071e3de3
Make old scaled fp8 format use the new mixed quant ops system. (#11000) 2025-12-05 14:35:42 -05:00
Xiaoyu Xu
7733d51c76
try fix flux2 (#9) 2025-12-04 15:45:36 +08:00
rattus
6be85c7920
mp: use look-ahead actuals for stream offload VRAM calculation (#11096)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
TIL that the WAN TE has a 2GB weight followed by 16MB as the next size
down. This means that team 8GB VRAM would fully offload the TE in async
offload mode as it just multiplied this giant size my the num streams.

Do the more complex logic of summing up the upcoming to-load weight
sizes to avoid triple counting this massive weight.

partial unload does the converse of recording the NS most recent
unloads as they go.
2025-12-03 23:28:44 -05:00
rattus
519c941165
Prs/lora reservations (reduce massive Lora reservations especially on Flux2) (#11069)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
* mp: only count the offload cost of math once

This was previously bundling the combined weight storage and computation
cost

* ops: put all post async transfer compute on the main stream

Some models have massive weights that need either complex
dequantization or lora patching. Don't do these patchings on the offload
stream, instead do them on the main stream to syncrhonize the
potentially large vram spikes for these compute processes. This avoids
having to assume a worst case scenario of multiple offload streams
all spiking VRAM is parallel with whatever the main stream is doing.
2025-12-03 02:28:45 -05:00
rattus
f17251bec6
Account for the VRAM cost of weight offloading (#10733)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
* mm: default to 0 for NUM_STREAMS

Dont count the compute stream as an offload stream. This makes async
offload accounting easier.

* mm: remove 128MB minimum

This is from a previous offloading system requirement. Remove it to
make behaviour of the loader and partial unloader consistent.

* mp: order the module list by offload expense

Calculate an approximate offloading temporary VRAM cost to offload a
weight and primary order the module load list by that. In the simple
case this is just the same as the module weight, but with Loras, a
weight with a lora consumes considerably more VRAM to do the Lora
application on-the-fly.

This will slightly prioritize lora weights, but is really for
proper VRAM offload accounting.

* mp: Account for the VRAM cost of weight offloading

when checking the VRAM headroom, assume that the weight needs to be
offloaded, and only load if it has space for both the load and offload
 * the number of streams.

As the weights are ordered from largest to smallest by offload cost
this is guaranteed to fit in VRAM (tm), as all weights that follow
will be smaller.

Make the partial unload aware of this system as well by saving the
budget for offload VRAM to the model state and accounting accordingly.
Its possible that partial unload increases the size of the largest
offloaded weights, and thus needs to unload a little bit more than
asked to accomodate the bigger temp buffers.

Honor the existing codes floor on model weight loading of 128MB by
having the patcher honor this separately withough regard to offloading.
Otherwise when MM specifies its 128MB minimum, MP will see the biggest
weights, and budget that 128MB to only offload buffer and load nothing
which isnt the intent of these minimums. The same clamp applies in
case of partial offload of the currently loading model.
2025-11-27 01:03:03 -05:00
Yao Chi
d28093f290
Merge branch 'master' into refine_offload 2025-11-26 16:58:34 +08:00
comfyanonymous
bdb10a583f
Fix loras not working on mixed fp8. (#10899) 2025-11-26 00:07:58 -05:00
comfyanonymous
25022e0b09
Cleanup and fix issues with text encoder quants. (#10872)
Some checks are pending
Python Linting / Run Ruff (push) Waiting to run
Python Linting / Run Pylint (push) Waiting to run
Build package / Build Test (3.10) (push) Waiting to run
Build package / Build Test (3.11) (push) Waiting to run
Build package / Build Test (3.12) (push) Waiting to run
Build package / Build Test (3.13) (push) Waiting to run
Build package / Build Test (3.9) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.10, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.11, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-stable (12.1, , linux, 3.12, [self-hosted Linux], stable) (push) Waiting to run
Full Comfy CI Workflow Runs / test-unix-nightly (12.1, , linux, 3.11, [self-hosted Linux], nightly) (push) Waiting to run
Execution Tests / test (macos-latest) (push) Waiting to run
Execution Tests / test (ubuntu-latest) (push) Waiting to run
Execution Tests / test (windows-latest) (push) Waiting to run
Test server launches without errors / test (push) Waiting to run
Unit Tests / test (macos-latest) (push) Waiting to run
Unit Tests / test (ubuntu-latest) (push) Waiting to run
Unit Tests / test (windows-2022) (push) Waiting to run
2025-11-25 01:48:53 -05:00
rattus
18e7d6dba5
mm/mp: always unload re-used but modified models (#10724)
The partial unloader path in model re-use flow skips straight to the
actual unload without any check of the patching UUID. This means that
if you do an upscale flow with a model patch on an existing model, it
will not apply your patchings.

Fix by delaying the partial_unload until after the uuid checks. This
is done by making partial_unload a model of partial_load where extra_mem
is -ve.
2025-11-12 16:19:53 -05:00
comfyanonymous
dea899f221
Unload weights if vram usage goes up between runs. (#10690) 2025-11-09 18:51:33 -05:00
comfyanonymous
e632e5de28
Add logging for model unloading. (#10692) 2025-11-09 18:06:39 -05:00
comfyanonymous
44869ff786
Fix issue with pinned memory. (#10597) 2025-11-01 17:25:59 -04:00
comfyanonymous
614cf9805e
Add a ScaleROPE node. Currently only works on WAN models. (#10559) 2025-10-30 22:11:38 -04:00
rattus
513b0c46fb
Add RAM Pressure cache mode (#10454)
* execution: Roll the UI cache into the outputs

Currently the UI cache is parallel to the output cache with
expectations of being a content superset of the output cache.
At the same time the UI and output cache are maintained completely
seperately, making it awkward to free the output cache content without
changing the behaviour of the UI cache.

There are two actual users (getters) of the UI cache. The first is
the case of a direct content hit on the output cache when executing a
node. This case is very naturally handled by merging the UI and outputs
cache.

The second case is the history JSON generation at the end of the prompt.
This currently works by asking the cache for all_node_ids and then
pulling the cache contents for those nodes. all_node_ids is the nodes
of the dynamic prompt.

So fold the UI cache into the output cache. The current UI cache setter
now writes to a prompt-scope dict. When the output cache is set, just
get this value from the dict and tuple up with the outputs.

When generating the history, simply iterate prompt-scope dict.

This prepares support for more complex caching strategies (like RAM
pressure caching) where less than 1 workflow will be cached and it
will be desirable to keep the UI cache and output cache in sync.

* sd: Implement RAM getter for VAE

* model_patcher: Implement RAM getter for ModelPatcher

* sd: Implement RAM getter for CLIP

* Implement RAM Pressure cache

Implement a cache sensitive to RAM pressure. When RAM headroom drops
down below a certain threshold, evict RAM-expensive nodes from the
cache.

Models and tensors are measured directly for RAM usage. An OOM score
is then computed based on the RAM usage of the node.

Note the due to indirection through shared objects (like a model
patcher), multiple nodes can account the same RAM as their individual
usage. The intent is this will free chains of nodes particularly
model loaders and associate loras as they all score similar and are
sorted in close to each other.

Has a bias towards unloading model nodes mid flow while being able
to keep results like text encodings and VAE.

* execution: Convert the cache entry to NamedTuple

As commented in review.

Convert this to a named tuple and abstract away the tuple type
completely from graph.py.
2025-10-30 17:39:02 -04:00
Jedrzej Kosinski
998bf60beb
Add units/info for the numbers displayed on 'load completely' and 'load partially' log messages (#10538) 2025-10-29 19:37:06 -04:00
comfyanonymous
25de7b1bfa
Try to fix slow load issue on low ram hardware with pinned mem. (#10536) 2025-10-29 17:20:27 -04:00
comfyanonymous
ec4fc2a09a
Fix case of weights not being unpinned. (#10533) 2025-10-29 15:48:06 -04:00
comfyanonymous
3fa7a5c04a
Speed up offloading using pinned memory. (#10526)
To enable this feature use: --fast pinned_memory
2025-10-29 00:21:01 -04:00
strint
dc7c77e78c better partial unload 2025-10-23 18:09:47 +08:00
strint
aab0e244f7 fix MMAP_MEM_THRESHOLD_GB default 2025-10-23 14:44:51 +08:00
strint
98ba311511 add env 2025-10-21 19:06:34 +08:00
strint
80383932ec lazy rm file 2025-10-21 18:00:31 +08:00
strint
08e094ed81 use native mmap 2025-10-21 17:00:56 +08:00
strint
2d010f545c refine code 2025-10-21 11:54:56 +08:00
strint
2f0d56656e refine code 2025-10-21 11:38:17 +08:00
strint
05c2518c6d refact mmap 2025-10-21 02:59:51 +08:00
strint
8aeebbf7ef fix to 2025-10-21 02:27:40 +08:00
strint
49561788cf fix log 2025-10-21 02:03:38 +08:00
strint
e9e1d2f0e8 add mmap tensor 2025-10-21 00:40:14 +08:00
strint
5c3c6c02b2 add debug log of cpu load 2025-10-17 16:33:14 +08:00
comfyanonymous
f1dd6e50f8
Fix bug with applying loras on fp8 scaled without fp8 ops. (#10279) 2025-10-09 19:02:40 -04:00
comfyanonymous
139addd53c
More surgical fix for #10267 (#10276) 2025-10-09 16:37:35 -04:00
comfyanonymous
3412d53b1d
USO style reference. (#9677)
Load the projector.safetensors file with the ModelPatchLoader node and use
the siglip_vision_patch14_384.safetensors "clip vision" model and the
USOStyleReferenceNode.
2025-09-02 15:36:22 -04:00
comfyanonymous
0963493a9c
Support for Qwen Diffsynth Controlnets canny and depth. (#9465)
These are not real controlnets but actually a patch on the model so they
will be treated as such.

Put them in the models/model_patches/ folder.

Use the new ModelPatchLoader and QwenImageDiffsynthControlnet nodes.
2025-08-20 22:26:37 -04:00
City
d9277301d2
Initial code for new SLG node (#8759) 2025-07-02 20:13:43 -04:00
Kohaku-Blueleaf
520eb77b72
LoRA Trainer: LoRA training node in weight adapter scheme (#8446) 2025-06-13 19:25:59 -04:00
Jedrzej Kosinski
2e24a15905
Call unpatch_hooks at the start of ModelPatcher.partially_unload (#7253)
* Call unpatch_hooks at the start of ModelPatcher.partially_unload

* Only call unpatch_hooks in partially_unload if lowvram is possible
2025-03-16 06:02:45 -04:00
Jedrzej Kosinski
528d1b3563
When cached_hook_patches contain weights for hooks, only use hook_backup for unused keys (#7067) 2025-03-09 04:26:31 -04:00
comfyanonymous
fa62287f1f More code reuse in wan.
Fix bug when changing the compute dtype on wan.
2025-02-26 05:22:29 -05:00