Added an async loading and offloading of moe layers, having consistent memory with oom errors.
Used to give oom error after the third layer with 24 giga bytes gpu, now goes to the end with consistent memory with minimal latency
Same change pattern as 7e8dd275c2
applied to WAN2.2
If this suffers an exception (such as a VRAM oom) it will leave the
encode() and decode() methods which skips the cleanup of the WAN
feature cache. The comfy node cache then ultimately keeps a reference
this object which is in turn reffing large tensors from the failed
execution.
The feature cache is currently setup at a class variable on the
encoder/decoder however, the encode and decode functions always clear
it on both entry and exit of normal execution.
Its likely the design intent is this is usable as a streaming encoder
where the input comes in batches, however the functions as they are
today don't support that.
So simplify by bringing the cache back to local variable, so that if
it does VRAM OOM the cache itself is properly garbage when the
encode()/decode() functions dissappear from the stack.
## Summary
Fixed incorrect type hint syntax in `MotionEncoder_tc.__init__()` parameter list.
## Changes
- Line 647: Changed `num_heads=int` to `num_heads: int`
- This corrects the parameter annotation from a default value assignment to proper type hint syntax
## Details
The parameter was using assignment syntax (`=`) instead of type annotation syntax (`:`), which would incorrectly set the default value to the `int` class itself rather than annotating the expected type.
If this suffers an exception (such as a VRAM oom) it will leave the
encode() and decode() methods which skips the cleanup of the WAN
feature cache. The comfy node cache then ultimately keeps a reference
this object which is in turn reffing large tensors from the failed
execution.
The feature cache is currently setup at a class variable on the
encoder/decoder however, the encode and decode functions always clear
it on both entry and exit of normal execution.
Its likely the design intent is this is usable as a streaming encoder
where the input comes in batches, however the functions as they are
today don't support that.
So simplify by bringing the cache back to local variable, so that if
it does VRAM OOM the cache itself is properly garbage when the
encode()/decode() functions dissappear from the stack.
* flux: math: Use _addcmul to avoid expensive VRAM intermediate
The rope process can be the VRAM peak and this intermediate
for the addition result before releasing the original can OOM.
addcmul_ it.
* wan: Delete the self attention before cross attention
This saves VRAM when the cross attention and FFN are in play as the
VRAM peak.
* flux: Do the xq and xk ropes one at a time
This was doing independendent interleaved tensor math on the q and k
tensors, leading to the holding of more than the minimum intermediates
in VRAM. On a bad day, it would VRAM OOM on xk intermediates.
Do everything q and then everything k, so torch can garbage collect
all of qs intermediates before k allocates its intermediates.
This reduces peak VRAM usage for some WAN2.2 inferences (at least).
* wan: Optimize qkv intermediates on attention
As commented. The former logic computed independent pieces of QKV in
parallel which help more inference intermediates in VRAM spiking
VRAM usage. Fully roping Q and garbage collecting the intermediates
before touching K reduces the peak inference VRAM usage.
* Initial Chroma Radiance support
* Minor Chroma Radiance cleanups
* Update Radiance nodes to ensure latents/images are on the intermediate device
* Fix Chroma Radiance memory estimation.
* Increase Chroma Radiance memory usage factor
* Increase Chroma Radiance memory usage factor once again
* Ensure images are multiples of 16 for Chroma Radiance
Add batch dimension and fix channels when necessary in ChromaRadianceImageToLatent node
* Tile Chroma Radiance NeRF to reduce memory consumption, update memory usage factor
* Update Radiance to support conv nerf final head type.
* Allow setting NeRF embedder dtype for Radiance
Bump Radiance nerf tile size to 32
Support EasyCache/LazyCache on Radiance (maybe)
* Add ChromaRadianceStubVAE node
* Crop Radiance image inputs to multiples of 16 instead of erroring to be in line with existing VAE behavior
* Convert Chroma Radiance nodes to V3 schema.
* Add ChromaRadianceOptions node and backend support.
Cleanups/refactoring to reduce code duplication with Chroma.
* Fix overriding the NeRF embedder dtype for Chroma Radiance
* Minor Chroma Radiance cleanups
* Move Chroma Radiance to its own directory in ldm
Minor code cleanups and tooltip improvements
* Fix Chroma Radiance embedder dtype overriding
* Remove Radiance dynamic nerf_embedder dtype override feature
* Unbork Radiance NeRF embedder init
* Remove Chroma Radiance image conversion and stub VAE nodes
Add a chroma_radiance option to the VAELoader builtin node which uses comfy.sd.PixelspaceConversionVAE
Add a PixelspaceConversionVAE to comfy.sd for converting BHWC 0..1 <-> BCHW -1..1