* mm: factor out the current stream getter
Make this a reusable function.
* ops: sync the offload stream with the consumption of w&b
This sync is nessacary as pytorch will queue cuda async frees on the
same stream as created to tensor. In the case of async offload, this
will be on the offload stream.
Weights and biases can go out of scope in python which then
triggers the pytorch garbage collector to queue the free operation on
the offload stream possible before the compute stream has used the
weight. This causes a use after free on weight data leading to total
corruption of some workflows.
So sync the offload stream with the compute stream after the weight
has been used so the free has to wait for the weight to be used.
The cast_bias_weight is extended in a backwards compatible way with
the new behaviour opt-in on a defaulted parameter. This handles
custom node packs calling cast_bias_weight and defeatures
async-offload for them (as they do not handle the race).
The pattern is now:
cast_bias_weight(... , offloadable=True) #This might be offloaded
thing(weight, bias, ...)
uncast_bias_weight(...)
* controlnet: adopt new cast_bias_weight synchronization scheme
This is nessacary for safe async weight offloading.
* mm: sync the last stream in the queue, not the next
Currently this peeks ahead to sync the next stream in the queue of
streams with the compute stream. This doesnt allow a lot of
parallelization, as then end result is you can only get one weight load
ahead regardless of how many streams you have.
Rotate the loop logic here to synchronize the end of the queue before
returning the next stream. This allows weights to be loaded ahead of the
compute streams position.
* Implement mixed precision operations with a registry design and metadate for quant spec in checkpoint.
* Updated design using Tensor Subclasses
* Fix FP8 MM
* An actually functional POC
* Remove CK reference and ensure correct compute dtype
* Update unit tests
* ruff lint
* Implement mixed precision operations with a registry design and metadate for quant spec in checkpoint.
* Updated design using Tensor Subclasses
* Fix FP8 MM
* An actually functional POC
* Remove CK reference and ensure correct compute dtype
* Update unit tests
* ruff lint
* Fix missing keys
* Rename quant dtype parameter
* Rename quant dtype parameter
* Fix unittests for CPU build
Same change pattern as 7e8dd275c2
applied to WAN2.2
If this suffers an exception (such as a VRAM oom) it will leave the
encode() and decode() methods which skips the cleanup of the WAN
feature cache. The comfy node cache then ultimately keeps a reference
this object which is in turn reffing large tensors from the failed
execution.
The feature cache is currently setup at a class variable on the
encoder/decoder however, the encode and decode functions always clear
it on both entry and exit of normal execution.
Its likely the design intent is this is usable as a streaming encoder
where the input comes in batches, however the functions as they are
today don't support that.
So simplify by bringing the cache back to local variable, so that if
it does VRAM OOM the cache itself is properly garbage when the
encode()/decode() functions dissappear from the stack.