mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-09 05:40:49 +08:00
Compare commits
5 Commits
0096de09af
...
068b75bb44
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
068b75bb44 | ||
|
|
3cd7b32f1b | ||
|
|
c0c9720d77 | ||
|
|
43e9509856 | ||
|
|
265b4f0fa1 |
2
.github/workflows/stable-release.yml
vendored
2
.github/workflows/stable-release.yml
vendored
@ -117,7 +117,7 @@ jobs:
|
||||
./python.exe get-pip.py
|
||||
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
|
||||
|
||||
grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
|
||||
grep comfy ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
|
||||
./python.exe -s -m pip install -r requirements_comfyui.txt
|
||||
rm requirements_comfyui.txt
|
||||
|
||||
|
||||
@ -36,10 +36,10 @@ class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer):
|
||||
|
||||
class Gemma3_12BModel(sd1_clip.SDClipModel):
|
||||
def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
||||
llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None)
|
||||
if llama_scaled_fp8 is not None:
|
||||
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["quantization_metadata"] = llama_quantization_metadata
|
||||
|
||||
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||
|
||||
@ -119,12 +119,12 @@ class LTXAVTEModel(torch.nn.Module):
|
||||
return self.load_state_dict(sdo, strict=False)
|
||||
|
||||
|
||||
def ltxav_te(dtype_llama=None, llama_scaled_fp8=None):
|
||||
def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
class LTXAVTEModel_(LTXAVTEModel):
|
||||
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
|
||||
if llama_quantization_metadata is not None:
|
||||
model_options = model_options.copy()
|
||||
model_options["llama_scaled_fp8"] = llama_scaled_fp8
|
||||
model_options["llama_quantization_metadata"] = llama_quantization_metadata
|
||||
if dtype_llama is not None:
|
||||
dtype = dtype_llama
|
||||
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
||||
|
||||
78
comfy_extras/nodes_sage3.py
Normal file
78
comfy_extras/nodes_sage3.py
Normal file
@ -0,0 +1,78 @@
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy.ldm.modules.attention import get_attention_function
|
||||
from comfy.model_patcher import ModelPatcher
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
from server import PromptServer
|
||||
|
||||
|
||||
class Sage3PatchModel(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="Sage3PatchModel",
|
||||
display_name="Patch SageAttention 3",
|
||||
description="Patch the model to use `attention3_sage` during the middle blocks and steps, keeping the default attention function for the first/last blocks and steps",
|
||||
category="_for_testing",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
],
|
||||
outputs=[io.Model.Output()],
|
||||
is_experimental=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model: ModelPatcher) -> io.NodeOutput:
|
||||
sage3: Callable | None = get_attention_function("sage3", default=None)
|
||||
|
||||
if sage3 is None:
|
||||
PromptServer.instance.send_progress_text(
|
||||
"`sageattn3` is not installed / available...",
|
||||
cls.hidden.unique_id,
|
||||
)
|
||||
return io.NodeOutput(model)
|
||||
|
||||
def attention_override(func: Callable, *args, **kwargs):
|
||||
transformer_options: dict = kwargs.get("transformer_options", {})
|
||||
|
||||
block_index: int = transformer_options.get("block_index", 0)
|
||||
total_blocks: int = transformer_options.get("total_blocks", 1)
|
||||
|
||||
if block_index == 0 or block_index >= (total_blocks - 1):
|
||||
return func(*args, **kwargs)
|
||||
|
||||
sample_sigmas: torch.Tensor = transformer_options["sample_sigmas"]
|
||||
sigmas: torch.Tensor = transformer_options["sigmas"]
|
||||
|
||||
total_steps: int = sample_sigmas.size(0)
|
||||
step: int = 0
|
||||
|
||||
for i in range(total_steps):
|
||||
if torch.allclose(sample_sigmas[i], sigmas):
|
||||
step = i
|
||||
break
|
||||
|
||||
if step == 0 or step >= (total_steps - 1):
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return sage3(*args, **kwargs)
|
||||
|
||||
model = model.clone()
|
||||
model.model_options["transformer_options"][
|
||||
"optimized_attention_override"
|
||||
] = attention_override
|
||||
|
||||
return io.NodeOutput(model)
|
||||
|
||||
|
||||
class Sage3Extension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [Sage3PatchModel]
|
||||
|
||||
|
||||
async def comfy_entrypoint():
|
||||
return Sage3Extension()
|
||||
Loading…
Reference in New Issue
Block a user